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Abstract: 
 How does the human brain’s structural scaffold give rise to its intricate functional 
dynamics? This is a central challenge in translational neuroscience, particularly in epilepsy, a 
disorder that affects over 50 million people worldwide. Treatment for medication-resistant focal 
epilepsy is often structural – through surgery, devices or focal laser ablation – but structural 
targets, particularly in patients without clear lesions, are largely based on functional mapping via 
intracranial EEG (iEEG). Unfortunately, the relationship between structural and functional 
connectivity in the seizing brain is poorly understood. In this study, we quantify structure-
function coupling, specifically between white matter connections and iEEG, across preictal and 
ictal periods in 45 seizures from 9 patients with unilateral drug-resistant focal epilepsy. We use 
High Angular Resolution Diffusion Imaging (HARDI) tractography to construct structural 
connectivity networks and correlate these networks with time-varying broadband and frequency-
specific functional networks derived from coregistered iEEG. Across all frequency bands, we 
find significant increases in structure-function coupling from preictal to ictal periods. We 
demonstrate that short-range structural connections are primarily responsible for this increase in 
coupling. Finally, we find that spatiotemporal patterns of structure-function coupling are 
stereotyped, and a function of each patient’s individual anatomy. These results suggest that 
seizures harness the underlying structural connectome as they propagate. Our findings suggest 
that the relationship between structural and functional connectivity in epilepsy may inform 
current and new therapies to map and alter seizure spread, and pave the way for better-targeted, 
patient-specific interventions. 
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1. Introduction: 
 Epilepsy is a neurological disorder characterized by recurrent, unprovoked seizures. It 
affects over 50 million people worldwide [World Health Organization, 2018] and will afflict 
approximately 1 in 26 people during their lifetime [Hesdorffer et al., 2011]. The most common 
subtype is focal or localization-related epilepsy, in which seizures arise from a specific region in 
the brain [French, 2007]. Patients with localization-related epilepsy often experience 
uncontrolled seizures despite medication, leading to neurological and psychiatric co-morbidities, 
deterioration in quality of life, and up to an eleven-fold increase in mortality rate [Fazel et al., 
2013; Kwan et al., 2011]. 

Recent evidence shows that seizures most commonly arise from abnormal brain networks 
rather than isolated focal lesions [Bernhardt et al., 2013; Kramer and Cash, 2012]. As a result, 
researchers are applying graph theoretical methods from the rapidly growing field of network 
neuroscience to identify brain network abnormalities in epilepsy, in the hope of finding targets 
for therapeutic interventions. In this approach, investigators map whole-brain structural and 
functional networks, or “connectomes”, by characterizing connectivity between brain regions 
based on multi-modal neuroimaging data [Bassett and Sporns, 2017; Bullmore and Sporns, 2009; 
Rubinov and Sporns, 2010]. Structural brain networks are most commonly derived from 
diffusion tensor imaging (DTI) tractography [Hagmann et al., 2008]. Functional brain networks 
are most commonly derived from correlations in signal fluctuations across multiple recording 
sites from modalities such as resting state functional MRI (fMRI) [Biswal et al., 1995; Salvador 
et al., 2004], magnetoencephalography (MEG) [Stam, 2004], and electroencephalography (EEG) 
[Micheloyannis et al., 2006]. These approaches reveal a wide variety of network disruptions in 
epilepsy patients, both structurally [Raj et al., 2010; Taylor et al., 2015; Vaessen et al., 2012] and 
functionally [de Campos et al., 2016; Pedersen et al., 2015; Pittau et al., 2012]. While still 
nascent, this work shows promise for clinical applications, as network-based measures may serve 
as biomarkers for predicting seizure onset and spread [Burns et al., 2014; Jirsa et al., 2017; 
Khambhati et al., 2016; Proix et al., 2016], cognitive impairments [Vaessen et al., 2012; 
Vlooswijk et al., 2011], and outcome following surgical therapy [Goodfellow et al., 2016; Lopes 
et al., 2018; Sinha et al., 2017].  
 Most studies of epileptic networks focus solely on either structural or functional 
connectivity. However, it is commonly understood that the two are tightly linked. In fact, there is 
great interest in the neuroscience community in elucidating the relationship between brain 
structure and function. Recent evidence shows that structural and functional brain networks are 
correlated at multiple temporal and spatial scales, that structural connectivity constrains 
functional connectivity, and that functional connectivity can modulate structural connectivity via 
mechanisms of plasticity [Chu et al., 2015; Finger et al., 2016; Greicius et al., 2009; Hagmann et 
al., 2010; Hermundstad et al., 2013; Hermundstad et al., 2014; van den Heuvel et al., 2009; 
Honey et al., 2009; Rubinov et al., 2009; Skudlarski et al., 2008; Zhang et al., 2010]. 
  Given the robust coupling between structure and function in healthy brains, disruptions 
in structure-function coupling can serve as biomarkers of neurological disease, including in 
epilepsy. For example, Zhang et al. (2011) report that the degree of coupling between resting 
state fMRI networks and DTI tractography networks is lower in idiopathic generalized epilepsy 
patients compared with healthy controls, and is negatively correlated with epilepsy duration. 
Using a similar approach, Chiang et al. (2015) report decreased structure-function coupling in 
patients with left temporal lobe epilepsy compared with healthy subjects. These two studies 
employ resting-state fMRI, which characterizes the static, interictal functional epileptic network. 
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However, little is known about the correlation between structural and functional connectivity 
during seizures. How does structure-function coupling change over the course of seizure 
evolution? And which particular connections drive these changes? Clinically, it is well 
understood that focal seizures often quickly spread to distant brain regions, but the relationship 
of this spread to underlying structure has not been quantified. Understanding where seizures are 
generated and how they spread has been hampered by sparsely sampled intracranial EEG and 
lesion-negative clinical brain images, and yet remains vital for planning surgical treatments for 
epilepsy. 

In order to address these questions, we study structure-function coupling in 45 seizures 
from 9 drug-resistant localization-related epilepsy patients undergoing routine evaluation for 
epilepsy surgery. To construct time-varying functional connectivity (FC) networks, we utilize 
clinical recordings from intracranial EEG (iEEG), an invasive method that captures electrical 
activity from the brain in the form of aggregate local field potentials, at high spatial and temporal 
resolution [Lachaux et al., 2003; Penfield and Jasper, 1954]. To construct structural connectivity 
(SC) networks, we analyze High Angular Resolution Diffusion Imaging (HARDI), an advanced 
diffusion imaging method that can produce robust tractography results in regions of crossing 
white matter pathways [Tuch et al., 2002]. Below we characterize relationships between these 
two modalities across time, frequency, and space. We hypothesize that there would be an 
increase in structure-function coupling during the progression from preictal to ictal states, as 
seizures spread along structural pathways. Our findings shed light on the pathophysiological 
processes involved in seizure dynamics, which can ultimately inform new approaches for clinical 
intervention. We detail these investigations below. 
 
2. Materials and Methods: 
 
2.1 Subjects 
 We studied nine patients undergoing pre-surgical evaluation for drug-resistant epilepsy at 
the Hospital of the University of Pennsylvania. Seizure localization was determined via 
comprehensive clinical evaluation, which included multimodal imaging, scalp and intracranial 
video-EEG monitoring, and neuropsychological testing. This study was approved by the 
Institutional Review Board of the University of Pennsylvania, and all subjects provided written 
informed consent prior to participating.  
 
2.2 Intracranial EEG acquisition 
 Cortical surface and depth electrodes were implanted in patients based on clinical 
necessity. Electrode configurations (Ad Tech Medical Instruments, Racine, WI) consisted of 
linear cortical strips and two-dimensional cortical grid arrays (2.3 mm diameter with 10 mm 
inter-contact spacing), and linear depths (1.1 mm diameter with 10 mm inter-contact spacing). 
Continuous iEEG signals were obtained for the duration of each patient’s stay in the epilepsy 
monitoring unit. Signals were recorded at 500 Hz. For each clinically identified seizure event, a 
board-certified epileptologist precisely annotated the onset time, termination time, seizure type, 
and electrodes recording artifact signals. Seizure onset times were defined by the earliest 
electrographic change (EEC) [Litt et al., 2001]. Seizure types were classified using ILAE 2017 
criteria [Fisher et al., 2017] as focal aware (previously known as simple partial), focal impaired 
awareness (previously known as complex partial), or focal to bilateral tonic-clonic (previously 
known as complex partial with secondary generalization).  Furthermore, the onset time of 
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bilateral spread was noted for focal to bilateral tonic-clonic seizures. All annotations were 
verified and consistent with detailed clinical documentation. To ensure consistency and validity 
of the captured seizures, we discarded seizures that contained substantial artifacts in all 
electrodes, events that were very short (< 15 seconds), or those that occurred during sleep. De-
identified iEEG recordings are available online on the International Epilepsy Electrophysiology 
Portal (www.ieeg.org, IEEG Portal) [Kini et al., 2016; Wagenaar et al., 2013]. 
 
2.3 Image acquisition 
 Prior to electrode implantation, MRI data were collected on a 3T Siemens Magnetom 
Trio scanner (Siemens, Erlangen, Germany) using a 32-channel phased-array head coil. High-
resolution anatomical images were acquired using a magnetization prepared rapid gradient-echo 
(MPRAGE) T1- weighted sequence (TR = 1810 ms, TE = 3.51 ms, flip angle = 9º, field of view 
= 240 mm, resolution = 0.94 × 0.94 × 1.0 mm3). High angular resolution diffusion imaging 
(HARDI) was acquired with a single-shot EPI multishell diffusion-weighted imaging sequence 
(116 diffusion sampling directions, b-values of 0, 300, 700 and 2000 s/mm2, resolution = 2.5 x 
2.5 x 2.5 mm3 resolution, field of view = 240 mm). Following electrode implantation, spiral CT 
images (Siemens, Erlangen, Germany) were obtained clinically for the purposes of electrode 
localization. Both bone and tissue windows were obtained (120 KV, 300 mA, axial slice 
thickness = 1.0 mm). 
 
2.4 Region of interest selection 
 A brain network consists of nodes representing regions of interest (ROIs) within the 
brain, and edges representing the strength of connectivity between these ROIs. In order to carry 
out direct quantitative comparisons of structural and functional networks, it was necessary to 
establish a one-to-one correspondence between functional network nodes and structural network 
nodes. We therefore determined the location of each electrode in Montreal Neurological Institute 
(MNI) space and assigned each electrode to its nearest structural region of interest (ROI). 
Structural ROIs were defined by an upsampled version of the Automated Anatomical Labeling 
Atlas [Desikan et al., 2006; Tzourio-Mazoyer et al., 2002], which consisted of 600 roughly 
equally sized (ROI sizes averaging 2.14 +/- 0.28 cm3) anatomically constrained regions covering 
the entire brain with the exception of the cerebellum. We chose this atlas (AAL-600) because it 
has ROIs of the same order of resolution as iEEG, obeys gross anatomical boundaries, and has 
successfully been used in prior studies to evaluate structural and functional connectivity patterns 
in the brain [Hermundstad et al., 2013; Hermundstad et al., 2014].   
 To determine electrode MNI coordinates, electrodes were first identified via thresholding 
of the CT image and labeled using a semi-automated process.  Each patient’s CT and T1-
weighted MRI images were aligned using 3D rigid affine registration, with mutual information 
as the similarity metric. The T1-weighted MRI images were then aligned to the standard MNI 
brain using diffeomorphic registration with the symmetric normalization (SyN) method [Avants 
et al., 2008]. The resulting transformations were used to warp the coordinates of the electrode 
centroids into MNI space. Co-registrations and transformations were carried out using Advanced 
Normalization Tools (ANTS) software [Avants et al., 2009; Avants et al., 2011], and the 
accuracy of each step was confirmed via visual inspection. In our final framework, electrodes 
served as nodes of the functional networks and the associated structural ROIs served as nodes of 
the structural networks. 
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2.5 Structural network generation 
 Diffusion-weighted images were skull-stripped via the FSL brain extraction tool and 
underwent eddy current and motion correction via the FSL eddy tool [Andersson and 
Sotiropoulos, 2016]. Next, DWI susceptibility distortions were mitigated using the structural T1-
weighted image as follows: T1-weighted images were registered to the b0 image from the DWI 
scans using FSL FLIRT boundary-based registration [Greve and Fischl, 2009],  T1-weighted 
images were contrast inverted and intensity matched to the DWI image, and finally the DWI 
scans underwent nonlinear transformation to the T1-weighted scan [Wang et al., 2017]. 
Following these preprocessing steps, DSI-Studio (http://dsi-studio.labsolver.org) was used to 
reconstruct the orientation density functions (ODFs) within each voxel using generalized q-
sample imaging with a diffusion sampling length ratio of 1.25 [Yeh et al., 2010]. Deterministic 
whole-brain fiber tracking was performed using an angular threshold of 35 degrees, step size of 1 
mm, and quantitative anisotropy threshold based on Otsu’s threshold [Otsu, 1979]. The fiber 
trajectories were smoothed by averaging the propagation direction with 20% of the previous 
direction. Tracks with length shorter than 10 mm or longer than 400 mm were discarded, and a 
total of 1,000,000 tracts were generated per brain. Deterministic tractography was chosen based 
upon prior work indicating that deterministic tractography generates fewer false positive 
connections than probabilistic approaches, and that network-based estimations are substantially 
less accurate when false positives are introduced into the network compared with false negatives 
[Zalesky et al., 2010].   
 Subject-level AAL-600 atlases were generated in DWI space by applying the previously 
generated registration transformations from MNI to T1-weighted space and from T1-weighted 
space to DWI space. Finally, structural networks were generated by computing the number of 
streamlines connecting each pair of structural ROIs identified in Section 2.4. The distribution of 
mean streamline lengths between each pair of structural ROIs for each patient is illustrated in 
Supp. Figure 1. Streamline counts were subsequently log-transformed to improve normality of 
the distribution, as is common in prior studies [Bonilha et al., 2015; Park et al., 2017; Taylor et 
al., 2018; Wirsich et al., 2016].  
 
2.5 Functional network generation 
 Each seizure event consisted of an ictal period spanning the time between seizure onset 
(EEC) and termination, and an associated preictal period of equivalent duration immediately 
prior to seizure onset. Following removal of artifact-ridden electrodes, intracranial EEG signals 
for each seizure event were common-average referenced to reduce potential sources of correlated 
noise [Ludwig et al., 2009]. Next, each event was divided into 1 s non-overlapping time 
windows in accordance with previous studies [Khambhati et al., 2015; Khambhati et al., 2016; 
Khambhati et al., 2017; Kramer et al., 2010].  
 To generate a functional network representing broadband functional interactions between 
iEEG signals for each 1 s time window, we carried out a method described in detail previously 
[Khambhati et al., 2017]. Namely, signals were notch-filtered at 60 Hz to remove power line 
noise, low-pass and high-pass filtered at 115 Hz and 5 Hz to account for noise and drift, and pre-
whitened using a first-order autoregressive model to account for slow dynamics. Functional 
networks were then generated by applying a normalized cross-correlation function 𝜌 between the 
signals of each pair of electrodes within each time window, using the formula:                 

   𝜌"#(𝑘) =
𝑎𝑟𝑔𝑚𝑎𝑥

𝜏
.
/
	 	("1(2)3	"1)(#1 24	5 3#1)

671681
2 ,   Eq. (2) 
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where 𝑥 and 𝑦 are signals from two electrodes, 𝑘 is the 1 s time window, 𝑡 is one of the 𝑇 
samples during the time window, and 𝜏 is the time lag between signals, with a maximum lag of 
250 ms. Next, to gain an understanding of the frequency dependence of SC-FC relationships, we 
generated functional networks across physiologically relevant frequency bands as described in 
detail in a previous study [Khambhati et al., 2016]. Specifically, multitaper coherence estimation 
(time-bandwidth product of 5, 8 tapers) was used to compute functional coherence networks for 
each 1 s window across four frequency bands: α/θ (5-15 Hz), β (15-25 Hz), low-γ (30-40 Hz), 
and high-γ (95-105 Hz). Both broadband and frequency-specific networks were represented as 
full-weighted adjacency matrices for each 1 s window in each seizure event.  
 
 2.6 Structure-function coupling analysis 
 To quantify the relationship between structure and function in the epileptic brain, we 
computed the Pearson correlation coefficient between the edges of each SC network and the 
edges of each broadband FC network, followed by Fisher r-z transformation for variance 
stabilization [Fisher, 1921]. This led to a time series of SC-FC correlations for each seizure event 
in each subject.  To better understand the frequency-dependence of SC-FC coupling, we repeated 
the same analysis using the frequency-specific functional networks.  
 Next, to understand the extent to which the resulting SC-FC time series evolve similarly 
within each subject, we computed the Euclidean distances between these time series for all pairs 
of seizure events. Importantly, we first time-normalized the time series for each seizure event to 
span 200 evenly spaced time bins (100 preictal and 100 ictal). Next, for each seizure event, we 
generated a single vector consisting of the SC-FC time series for all six frequency bands: 
broadband, α/θ, β, low-γ, and high-γ. Euclidean distances were then computed between all pairs 
of vectors, comprised of pairs belonging to the same patient and pairs belonging to different 
patients. 
 Finally, we wished to assess which edges in the structural network were responsible for 
the changes in SC-FC correlation between preictal and ictal periods. We therefore first computed 
a mean ictal and mean preictal broadband functional network for each subject by averaging 
across seizures events and across windows within each time period. Next, we carried out a 
virtual edge resection approach, in which we removed an edge from the network and computed 
the change in SC-FC correlation, ∆𝑧 𝑖 , as follows: 
 
              ∆𝑧 𝑖 = 𝑁[𝑧 −	𝑧B],    Eq. (2) 
 
where 𝑧 is the SC-FC correlation, 𝑧B is the SC-FC correlation following removal of edge 𝑖, and 𝑁 
is the number of edges in the network. We performed this calculation for both preictal and ictal 
time periods. Since we were specifically interested in edges that statistically contribute to the 
increase in SC-FC correlation during seizures, we defined a measure of contribution, 𝜎(𝑖), for 
each edge 𝑖 in which a structural connection exists on the increase in SC-FC correlation during 
seizures as follows: 
 
           𝜎(𝑖) = ∆𝑧BE2FG(𝑖) − ∆𝑧HIJBE2FG(𝑖) ,                         Eq. (3) 
 
where ∆𝑧BE2FG(𝑖) and ∆𝑧HIJBE2FG(𝑖)	are the relative changes in SC-FC correlations following 
removal of edge 𝑖 during the ictal and preictal periods, respectively. 
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 We defined contributors of SC-FC correlation during seizures as structural edges with 
∆𝑧BE2FG(𝑖) > 	0 and 𝜎 𝑖 > 	0. This is because we wanted to identify regions that positively 
contributed to SC-FC correlation ictally, and more so ictally than preictally.  To better 
understand the properties of contributor edges, we computed the lengths of both the contributor 
edges and non-contributor edges, in terms of both streamline length and physical Euclidean 
distance. The purpose of this analysis was to determine whether the increased SC-FC correlation 
during seizures was due to long- or short-range connections. 
 A summary of our patient-level SC-FC analysis pipeline is illustrated in Figure 1.  
 
2.7 Statistical analyses 
 To determine whether the SC-FC correlations were significantly greater than chance, for 
each 1 second window we generated a null distribution of correlations via random permutation of 
the functional network edges (10,000 permutations). We then compared the mean SC-FC 
correlations during ictal and preictal periods with the null correlations. Next, to determine 
whether there was a significant increase in SC-FC correlation between preictal and ictal periods, 
we computed the difference between the mean ictal z and the mean preictal z for each seizure 
event. We modeled these paired differences using a linear mixed effects model with subject 
assignment as the random effect, and determined whether the difference was significantly greater 
than zero using the parametric bootstrap method (1000 bootstrapped samples), which is robust to 
small sample sizes [Davison and Hinkley, 1997; Halekoh and Højsgaard, 2014]. To assess 
whether the findings were robust to our choice of non-ictal period, we repeated the above 
analysis substituting the preictal periods with interictal periods of equivalent duration that were 
at least 6 hours away from seizure activity (Note: data from these interictal periods were verified 
via visual inspection to be artifact-free and were processed as in 2.5). To further compare 
findings during preictal and interictal periods, we also carried out the above statistical analysis to 
determine significant differences between mean preictal z and mean interictal z. To assess the 
degree of intra-subject similarity of SC-FC evolution, we compared the between-subject 
Euclidean distances (described in 2.6) to the within-subject Euclidean distances and tested the 
significance of the difference using permutational multivariate analysis of variance 
(PERMANOVA) (999 permutations) [Anderson, 2017].  
 To characterize the properties of edges that contribute to the increase in SC-FC 
correlation during seizures, we computed the mean length of all contributor edges and the mean 
length of all non-contributor edges for each subject. Edge length was computed using two 
metrics: mean streamline length, and Euclidean distance. We compared the mean contributor and 
non-contributor edge lengths using a paired t-test. Furthermore, to assess the relationship 
between edge contribution and edge length among the contributor edges, we classified 
contributor edges into “low”, “medium”, and “high” contribution levels for each subject using 
tertiles. The edge lengths in these three categories were compared using paired t-tests. Finally, 
given prior knowledge that structural connection weights decrease with Euclidean distance 
[Donahue et al., 2016; Kaiser and Hilgetag, 2004; Lewis et al., 2009; Rubinov et al., 2015], we 
repeated all analyses after removing the effect of Euclidean distance from the structural networks 
using linear regression. 
 
 
3. Results 
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3.1 Clinical data 
 A total of 45 clinical seizures (mean duration 71 s +/- 44 s), were recorded across the 9 
patients (mean age 40.2 +/- 11.8; 5 female). All seizures had focal onset, and were characterized 
as focal aware, focal impaired awareness, or focal to bilateral tonic-clonic. Patient demographic 
and clinical details are detailed in Table 1.  
 
3.2 SC-FC coupling using broadband functional connectivity 
 To assess the overall temporal patterns of SC-FC coupling changes during seizures, we 
first quantified SC-FC correlations using broadband functional connectivity networks. For each 
individual seizure event, we determined the degree of SC-FC coupling, as measured by z (Figure 
2A).  For all seizures in all subjects, SC-FC coupling was significantly greater than chance 
during interictal, preictal and ictal periods (p < 0.05, permutation-based testing; Figure 2B). 
While the temporal progression of SC-FC changes was subject-specific (Figure 2C), there was a 
consistent increase between preictal and ictal periods (Figure 2D). Per-seizure paired differences 
in mean z values reveal significantly greater SC-FC correlation during ictal periods than preictal 
periods (p = 0.023, linear mixed effects analysis with subject as random effect). This effect was 
maintained when substituting preictal periods with randomly chosen interictal clips of equivalent 
duration at least 6 hours away from seizure activity (p = 0.021). It was also maintained after 
regressing out the effect of distance (p < 0.05, Supp. Figure 2). Moreover, there were no 
significant differences between preictal and interictal period SC-FC correlation values (p = 0.70).  

 
3.3 Frequency-specific SC-FC analysis 
 Next, to better understand the frequency dependence of the observed increase in SC-FC 
coupling during seizures, we repeated the SC-FC coupling analysis across four frequency bands 
(α/θ, β, low-γ, and high-γ). Similar to the previous analysis, we found that the extent of SC-FC 
coupling was significantly greater than chance at all time points during preictal and ictal periods 
(p < 0.05, permutation-based testing) for all frequency bands (Figure 3A). Moreover, while the 
preictal SC-FC was lower in higher frequency bands (Figure 3B), the increase in SC-FC 
coupling between preictal and ictal periods was significant across all frequency bands (α/θ: p < 
0.05; β: p < 0.05; low-γ: p < 0.05; high-γ: p < 0.05) (Figure 3B, 3C). This finding was upheld 
after regressing out the effect of distance (Supp. Figure 2). Similar to the findings with 
broadband functional connectivity, the findings were consistent when substituting preictal 
periods with interictal periods (α/θ: p < 0.05; β: p < 0.05; low-γ: p < 0.05; high-γ: p < 0.05), and 
there were no significant differences between preictal and interictal period SC-FC correlation 
values (α/θ: p < 0.05; β: p < 0.05; low-γ: p < 0.05; high-γ: p < 0.05) (Supp. Figure 3). 
 We noted that while the increase was significant across all frequency bands, there were 
subject-specific frequency-dependent changes in SC-FC correlation. For example, subject 4 
exhibited particularly salient increases in SC-FChigh-γ coupling, while subject 6 had only 
moderate increases in SC-FChigh-γ coupling but higher increases in SC-FCβ and SC-FClow-γ 
(Figure 3C, Supp. Figure 4). To quantify this subject-specific effect, we determined the most 
salient frequency band for each subject by identifying the band with the maximum mean increase 
in SC-FC coupling across seizure events (Figure 3D).  
 Finally, we characterized the within-subject similarity of the SC-FC time courses across 
all frequency bands. Using Euclidean distance as a measure of dissimilarity, we determined that 
the SC-FC time courses were significantly more similar within-patient than between-patient 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 4, 2018. ; https://doi.org/10.1101/406793doi: bioRxiv preprint 

https://doi.org/10.1101/406793
http://creativecommons.org/licenses/by-nc-nd/4.0/


 P. Shah et al. 10 

(p<0.001, R2=0.50, permutational MANOVA) (Figure 3E), indicating that the temporal 
dynamics of SC-FC coupling is stereotyped in each patient across seizure events. 
 
3.3 SC-FC sub-analysis in focal to bilateral tonic-clonic seizures 
 As previously noted, the temporal progression of SC-FC changes was subject-specific 
(Figure 2C, Figure 3A). More specifically, we observed that in patients who experienced focal 
to bilateral tonic-clonic (FBTC) seizures (subjects 1-3), there was a drop in SC-FC coupling after 
the initial rise following seizure onset. Analysis of the individual SC-FC time courses in these 
seizures revealed that the drop corresponded with onset of BTC activity (Figure 4A). 
Furthermore, quantitative analysis revealed significantly greater SC-FC correlation during pre-
BTC ictal periods than preictal periods (p < 0.05), as well as significantly greater SC-FC 
correlation during pre-BTC ictal periods than post-BTC ictal periods (p < 0.05). To focus on the 
relationship between structure and function prior to the onset of generalized hypersynchronous 
activity, we limited the ictal periods to the periods prior BTC onset for the subsequent virtual 
edge resection analysis. 
 
3.4 Virtual edge resection analysis 
 Given our finding that SC-FC coupling was significantly higher during ictal periods 
compared with preictal periods, we wanted to identify and characterize the structural edges that 
statistically accounted for this increase. After quantifying the contribution 𝜎(𝑖) of each edge on 
the SC-FC coupling, we mapped the contributor edges onto each subject’s brain (Figure 5) to 
facilitate subject-specific characterization of SC-FC relationships. Furthermore, at the group 
level, we determined that contributor edges were predominantly short-range, as quantified by 
significantly shorter edge lengths in contributors compared with non-contributors, based on both 
geometric Euclidean distance (p < 0.05, two-tailed paired t test) (Figure 6A) and streamline 
distance (p < 0.05, two-tailed paired t test) (Figure 6B). This finding held individually for each 
subject. Furthermore, within the contributor edges, we found a trend within each subject that 
higher contribution edges are shorter-range, both in terms of Euclidean distance (Figure 6C) and 
streamline length (Figure 6D). These findings held following distance regression (Supp. Figure 
2). 
 
4. Discussion: 
 The main goal of this study is to characterize the relationship between structural and 
functional connectivity during seizure onset and spread. Using network-based analysis of 
HARDI and iEEG data, we observe significant structure-function coupling at rest and a marked 
increase in this coupling during the progression from preictal to ictal states. This finding persists 
across frequency bands, with subject-specific levels of frequency-dependent increases.  
Furthermore, we present a technique for assessing the impact of individual structural connections 
to the observed ictal increase in structure-function correlation, and demonstrate that the effect is 
primarily due to short-range connections. Consistency of findings across seizures within each 
patient suggest that the spatiotemporal patterns of structure-function coupling are highly 
stereotyped.  Our findings shed light on the dynamics of focal epileptic seizures in relation to 
underlying structure by demonstrating that seizure spread is tightly controlled by short-range 
structural connections. 
 
4.1 Structure-function coupling across time, frequency and space 
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We observe greater coupling between structural and broadband functional networks 
during preictal and interictal periods than expected by chance. This finding is consistent with 
studies relating DTI-based structural networks with resting-state fMRI-based functional 
networks in healthy adults [Damoiseaux and Greicius, 2009; Hermundstad et al., 2013; van den 
Heuvel et al., 2009; Honey et al., 2009; Skudlarski et al., 2008; Zhang et al., 2010]. It is 
important to note that the functional signals recorded using iEEG are fundamentally different 
from those recorded using fMRI. While recent studies suggest that blood-oxygen level dependent 
(BOLD) signal fluctuations correlate with slow fluctuations in EEG gamma power, the exact 
relationship between fMRI (BOLD) signals and electrophysiology has yet to be resolved [He and 
Liu, 2008; He and Raichle, 2009; Ko et al., 2011; Logothetis et al., 2001] Nonetheless, our 
finding suggests that the tie between structure and function at rest is robust across diverse 
measurements of functional connectivity.  

Interestingly, we observe that preictal FC networks in lower frequency bands have higher 
correlation to SC networks than preictal FC networks in higher frequency bands. This 
relationship decreases during the ictal period, with high SC-FC coupling in all frequency bands. 
Since it is believed that lower frequencies facilitate long-distance connections in the brain while 
higher frequencies facilitate shorter connections [Kopell et al., 2000; Miller et al., 2007], our 
finding may suggest a relative shift to short-range, high-frequency connectivity during seizure 
generation. However, this observation could be influenced by the spatial distribution of 
electrodes, which tend to be clustered around the putative seizure onset zone, leading to a bias 
towards short-range connections within the seizure generating network. Therefore, we plan to 
corroborate these findings in patients with stereoelectroencephalography (stereo-EEG), an 
increasingly popular and less invasive method that records from stereotactically placed 
intracranial depth electrodes and allows for wider sampling of the brain network [Cossu et al., 
2005; Luders et al., 2013; Varotto et al., 2012]. 

Despite individual variations inherent to our patient population, the finding of increased 
SC-FC coupling during ictal periods compared with preictal periods is extremely robust, using 
both broadband and narrow-band functional connectivity. We compare SC-FC time courses from 
ictal periods to those of immediately preictal periods to allow for matched pairwise comparisons 
and to facilitate visualization along a continuous temporal scale. To ensure that activity 
immediately prior to seizure onset is a good representation of non-ictal activity, we repeat our 
analysis after substituting the preictal periods with interictal periods far away from seizure 
activity, and attain consistent results. The rise in SC-FC coupling during seizures indicates that 
seizures may rely on the brain’s underlying architecture during initial seizure spread. We note 
that in several of the patients, the rise in SC-FC correlation occurs prior to the clinically-marked 
earliest electrographic change (EEC) representative of seizure onset, suggesting that SC-FC 
coupling may also be a valuable biomarker for seizure prediction or its early generation. 

We discover that in focal to bilateral tonic-clonic seizures, there is a significant decrease 
in SC-FC coupling before onset of bilateral tonic-clonic activity. This finding is not surprising, 
given that bilateral tonic-clonic periods are associated with generalized hypersynchronous neural 
activity that is not localized to particular brain regions or pathways. This finding also supports 
that the observed SC-FC coupling increase during seizures relates to seizure propagation, and is 
not simply a result of highly synchronous activity.  

Of note, the temporal dynamics of SC-FC coupling is highly consistent between seizures 
within each patient. This indicates that seizures may be “hard-wired” in a sense, and is a 
macroscopic analog to the microscale finding of stereotyped ictal progression [Wenzel et al., 
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2017]. However, since our dataset consists of a relatively small group of adult focal epilepsy 
patients, with the majority having temporal lobe epilepsy, these conclusions may be specific to 
our dataset and should be confirmed using larger, more diverse patient populations. 

To assess the role of each structural connection on the rise in SC-FC coupling during 
seizures, we implement a virtual edge resection method. Such leave-one-out simulation-based 
methods have been gaining popularity to probe the role of individual nodes and edges on overall 
network topology [Alstott et al., 2009; Honey and Sporns, 2008; Khambhati et al., 2016; Rafal et 
al., 2015]. In our case, we determine the contribution of structural connections to SC-FC 
correlation and generate seizure-specific brain maps of these connections. Group-level analysis 
reveals that connections with high contribution are predominantly short-range, in terms of both 
streamline length and Euclidean distance. While the connections themselves are short, the 
locations of these connections appear distributed across the brain, including connections that are 
contralateral to seizure onset. This suggests that seizure dynamics rely on a distributed network 
of locally clustered connections. While further analyses and validation are needed, mapping 
connections in relation to seizure onset and spread could ultimately be useful in pinpointing 
networks for therapeutic removal via targeted methods such as laser ablation [Willie et al., 2014] 
or neurostimulation [Fisher and Velasco, 2014].   
 
4.2 Methodological Considerations and Limitations 
 An important but inevitable limitation of this work relates to the incomplete sampling of 
the network via iEEG. Electrode placement is limited by clinical necessity and constrained by 
the boundaries of the craniotomy, in order to minimize invasiveness and reduce patient 
morbidity. Therefore, it is not possible to sample functional connectivity from the entire brain at 
high resolution time scales accessible through iEEG. While clinicians aim to place electrodes 
around putative seizure onset zones, it is possible that the entire seizure network may not be 
captured in certain cases. Recent efforts to map whole-brain iEEG using recordings from 
multiple subjects [Betzel et al., 2017] and to construct models of whole-brain iEEG within 
individual subjects [Owen and Manning, 2017] may help circumvent this issue. Furthermore, 
while limited by impedance from the skull and inability to localize subcortical activity, ictal 
scalp EEG recordings, or ictal MEG recordings could supplement our intracranial analysis as 
both allow for consistent, grid-like spatial sampling with temporal resolution comparable to 
iEEG. The feasibility of such approaches has already been demonstrated in a recent paper 
revealing significant overlap between DTI networks and scalp EEG functional networks in the 
interictal state [Chu et al., 2015], and in early work on ictal MEG (M. Cook, S. Plummer, 
personal communication, 8/2018). 
 Our structural network findings are also limited by the capacity of our imaging methods. 
While HARDI has demonstrated superiority over conventional DTI in terms of its ability to 
resolve crossing fibers in regions of high fiber heterogeneity [Tuch et al., 2002], HARDI 
tractography is still only a proxy for true white matter pathways. Similar to other neuroimaging 
modalities, it is subject to partial volume effects and artifacts such as eddy current and 
susceptibility distortions [Assaf and Pasternak, 2008; Le Bihan et al., 2006]. Diffusion-based 
tractography is documented to recapitulate known pathways types including the short and long 
association fibers linking cortical gyri, the projection fiber connecting the cortex to lower 
portions of the brain, and the commissural fibers linking the two hemispheres [Mamata et al., 
2002], but may not reconstruct unmyelinated intracortical axons. Furthermore, streamline count 
may not be a direct measure of the strength of anatomical connectivity.   
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 Due to the strong relationship between spatial proximity and structural connection 
strength, it is not possible to entirely disentangle the effects of Euclidean distance on our 
findings. Given prior work that epileptiform activity propagates within layer V of the neocortex 
[Badawy et al., 2009], it is possible that local functional connections could partially be attributed 
to local cortical spreading phenomena rather than white matter propagation along short-range 
arcuate fibers. Local functional connectivity could also be due to measurement of a common 
source of signal. Despite these concerns, our finding of higher SC-FC coupling during seizures 
hold after regressing out Euclidean distance from our structural networks. This suggests that SC-
FC coupling goes beyond solely distance-based effects. 
 Finally, while this study considers only direct structural connections, functional 
connectivity in the brain is also partially attributed to indirect structural connections 
[Damoiseaux and Greicius, 2009; Honey et al., 2009; Liang et al., 2017].  Future studies could 
employ the property of communicability [Estrada and Hatano, 2008] to incorporate path lengths 
of greater than one into the construction of structural networks while also accounting for the 
effects of spatial proximity.  
 
4.3 Conclusions 

We present a comprehensive approach to understanding the relationship between 
structure and function in the epileptic brain.  Our work provides important insights into the 
structural underpinnings of seizure dynamics. It is our hope that by openly sharing our data and 
pipeline that we can accelerate translating this nascent field of network analysis in clinical 
epilepsy to help patients. 
 
5. Acknowledgements: This work was supported by National Institutes of Health grants 
1R01NS099348, K23-NS073801, 1R01NS085211, and 1R01MH112847. We also acknowledge 
support by the Thornton Foundation, the Mirowski Family Foundation, the ISI Foundation, the 
John D. and Catherine T. MacArthur Foundation, the Sloan Foundation, and the Paul Allen 
Foundation. 
 
 
6. Tables and Figures 
 

Subject # Age Gender Outcome  Localization Seizures recorded 
(#) Treatment 

1 48 F IA RTL FBTC (3) ATL + hippocampectomy 

2 39 M IB RTL/DNET FBTC (2) ATL + hippocampectomy 

3 45 F IA LTL FIAS (1), FBTC (3) ATL + hippocampectomy 

4 36 M IB RTL FAS (1), FIAS (5) ATL + hippocampectomy 

5 40 F IA RTL FIAS (5) ATL + hippocampectomy 

6 50 M N/A Bilateral PVH FIAS (4) N/A 

7 24 M 1B RTL FIAS (6) ATL + hippocampectomy 

8 58 F N/A BTL FIAS (5) N/A 

9 22 F 1A LTL FIAS (10) Laser ablation 
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Table 1: Patient demographic and clinical information. Post-surgical outcome was based on 
Engel classification score (scale: I–IV, seizure freedom to no improvement). M: male, F: female, 
RTL: right temporal lobe, LTL: left temporal lobe, BTL: bilateral temporal lobe, DNET: 
dysembryoplastic neuroepithelial tumor, PVH: Periventricular heterotopia, FIAS: focal impaired 
awareness seizure, FAS: focal aware seizure, FBTC: focal to bilateral tonic-clonic, ATL: anterior 
temporal lobectomy.  
 

 
Figure 1: Summary of patient-level SC-FC analysis pipeline. (A) HARDI pre-processing and 
whole-brain tractography was carried out. (B) iEEG data were pre-processed and seizures were 
annotated, with each seizure event consisting of an ictal period and an associated preictal period 
of equivalent duration. (C) Regions of interest (ROIs) were selected via a one-to-one spatial 
correspondence between electrode centroids and atlas regions. (D) The structural connectivity 
(SC) network was generated using log-normalized streamline counts between atlas ROIs 
associated with each electrode location. (E) Time-varying broadband functional connectivity 
(FC) networks were generated for each 1s time window by computing correlation between iEEG 
signals across electrode pairs. Frequency-specific FC networks were similarly computed using 
coherence between iEEG signals across electrode pairs. (F) SC-FC relationships were quantified 
across time, frequency, and space (see Methods for details). 
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Figure 2: SC-FC analysis using broadband functional connectivity. (A) Temporal dynamics of 
SC-FC correlation as measured by Fisher’s z for one example seizure in one patient, along with 
permutation-based null distribution of z values (mean +/- standard deviation). (B) Per-seizure z 
values during interictal, preictal, and ictal periods reveal SC-FC correlations significantly greater 
than chance across all periods (p < 0.05). (C) Temporal dynamics of SC-FC correlation across all 
subjects (mean +/- standard deviation across seizures in each subject). For visualization purposes 
only, time courses were normalized to span 200 evenly spaced time windows (100 preictal and 
100 ictal) and smoothed with a 5-window moving average filter. (D) Per-seizure paired 
differences in mean z values reveal significantly greater SC-FC correlation during ictal periods 
than preictal periods (p = 0.023). This effect holds when substituting preictal periods with 
interictal periods (p = 0.021), with no significant difference between preictal and interictal period 
SC-FC correlation values (p = 0.70). 
 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 4, 2018. ; https://doi.org/10.1101/406793doi: bioRxiv preprint 

https://doi.org/10.1101/406793
http://creativecommons.org/licenses/by-nc-nd/4.0/


 P. Shah et al. 16 

 
Figure 3: Frequency-specific SC-FC analysis. (A) Temporal dynamics of SC-FC correlation as 
measured by Fisher’s z in alpha/theta, beta, low gamma, and high gamma frequency bands (mean 
+/- standard deviation across seizures in each subject, following interpolation to normalize ictal 
and preictal durations).  (B) Per-seizure z values during interictal, preictal, and ictal periods 
(mean +/- S.D.) are significantly greater than chance (p < 0.05, permutation-based testing). (C) 
The increase in SC-FC correlation between preictal and ictal periods is further illustrated using 
paired differences for each individual seizure (p < 0.05, linear mixed effects analysis with subject 
as random effect). (D) Heatmap illustration highlights that frequency-dependent changes in SC-
FC correlation are subject-specific. (E) Seizures within subjects evolve similarly, as evidenced 
by higher between-patient Euclidean distances between SC-FC correlation time courses 
compared to within-patient distances (p<0.001, R2=0.50, permutational MANOVA).  
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Figure 4: Assessment of SC-FC coupling in focal to bilateral tonic-clonic seizures. (A) 
Illustration of SC-FC coupling in two focal to bilateral tonic-clonic seizures, one from Subject 1 
and one from Subject 3, reveals decrease in SC-FC coupling following bilateral tonic-clonic 
(BTC) onset (BTC onset indicated by dotted red line). For comparison, SC-FC coupling time 
course from a focal impaired awareness seizure in Subject 3 (without BTC) does not illustrate 
the same decrease. (B) In all bilateral tonic-clonic seizures, per-seizure paired differences in 
mean z values reveal significantly greater SC-FC correlation during pre-BTC ictal periods than 
preictal periods (p < 0.05), as well as significantly greater SC-FC correlation during pre-BTC 
ictal periods than post-BTC ictal periods (p < 0.05). 
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Figure 5: Subject-specific virtual edge resection approach to determine the contribution,	𝜎 𝑖 , of 
each structural edge 𝑖 on the increase in SC-FC correlation during seizures. Results are shown 
for an example seizure in a patient with left temporal lobe epilepsy. Only “contributor” edges 
(𝜎 𝑖  > 0 and ∆𝑧BE2FG 𝑖 > 0) are included to highlight edges that are associated with the SC-FC 
increase, with edge thickness and color used to representing magnitude of 𝜎 𝑖 .	 
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Figure 6: Relationship between edge contribution and edge length. Findings reveal that 
contributor edges are shorter-range in terms of both (A) Euclidean distance and (B) streamline 
length (p < 0.05, two-tailed paired t test). Furthermore, there is a trend that edges with higher 
contribution are shorter-range, in terms of both (C) Euclidean distance and (D) streamline length, 
with significant differences between low and medium contribution edges (p < 0.05, two-tailed 
paired t test), and low and high contribution edges (p < 0.05, two-tailed paired t test). 
 
 
7. Supplementary Materials 
 
Supplementary Figures: 
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Supplementary Fig 1: Distributions of streamline lengths for each subject, along with max 
streamline length for each subject (dotted grey lines). 
 

 

 
Supplementary Figure 2: Repetition of key SC-FC coupling analyses repeated following 
distance regression. (A) SC-FC analysis using broadband functional connectivity.  (B) 
Frequency-specific SC-FC analysis.  (C) Relationship between edge contribution and edge 
length. 
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Supplementary Figure 3: Per-seizure paired differences in mean z values reveal significantly 
greater SC-FC correlation during ictal periods than preictal periods in all frequency bands (p < 
0.05, linear mixed effects analysis with subject as random effect). This effect holds when 
substituting preictal periods with randomly chosen interictal clips of equivalent duration at least 
6 hours away from seizure activity (p < 0.05), with no significant difference between preictal and 
interictal period SC-FC correlation values (p > 0.05). See Figures 2B and 3C for details. 
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Supplementary Figure 4: Temporal dynamics of SC-FC correlation as measured by Fisher’s z 
in alpha/theta, beta, low gamma, and high gamma frequency bands (mean +/- standard deviation 
across seizures in each subject, following interpolation to normalize ictal and preictal durations), 
delineated by subject (row/color) and band (column). See Figure 3A for details. 
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