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Abstract 

Joint analysis of multiple traits can result in the identification of associations not found through 
the analysis of each trait in isolation. In addition, approaches that consider multiple traits can aid 
in the characterization of shared genetic etiology among those traits. In recent years, parent-
offspring trio studies have reported an enrichment of de novo mutations (DNMs) in 
neuropsychiatric disorders. The analysis of DNM data in the context of neuropsychiatric 
disorders has implicated multiple putatively causal genes, and a number of reported genes are 
shared across disorders. However, a joint analysis method designed to integrate de novo 
mutation data from multiple studies has yet to be implemented. We here introduce multiple-trait 
TADA (mTADA) which jointly analyzes two traits using DNMs from non-overlapping family 
samples. mTADA uses two single-trait analysis data sets to estimate the proportion of 
overlapping risk genes, and reports genes shared between and specific to the relevant disorders. 
We applied mTADA to >13,000 trios for six disorders: schizophrenia (SCZ), autism spectrum 
disorder (ASD), developmental disorders (DD), intellectual disability (ID), epilepsy (EPI), and 
congenital heart disease (CHD). We report the proportion of overlapping risk genes and the 
specific risk genes shared for each pair of disorders. A total of 153 genes were found to be 
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shared in at least one pair of disorders. The largest percentages of shared risk genes were 
observed for pairs of DD, ID, ASD, and CHD (>20%) whereas SCZ, CHD, and EPI did not 
show strong overlaps in risk gene set between them. Furthermore, mTADA identified additional 
SCZ, EPI and CHD risk genes through integration with DD de novo mutation data. For CHD, 
using DD information, 31 risk genes with posterior probabilities > 0.8 were identified, and 20 of 
these 31 genes were not in the list of known CHD genes. We find evidence that most significant 
CHD risk genes are strongly expressed in prenatal stages of the human genes. Finally, we 
validated our findings for CHD and EPI in independent cohorts comprising 1241 CHD trios, 226 
CHD singletons and 197 EPI trios. Multiple novel risk genes identified by mTADA also had de 
novo mutations in these independent data sets. The joint analysis method introduced here, 
mTADA, is able to identify risk genes shared by two traits as well as additional risk genes not 
found through single-trait analysis only. A number of risk genes reported by mTADA are 
identified only through joint analysis, specifically when ASD, DD, or ID are one of the two traits 
examined. This suggests that novel genes for the trait or a new trait might converge to a core-
gene list of the three traits.  

1. Introduction 
 
The analysis of multiple traits can help characterize the genetic architectures of complex 
disorders (Solovieff, et al., 2013). One approach is to meta-analyze results derived from separate 
single-trait studies (Zhernakova, et al., 2011). However, joint analysis with multiple traits can 
better accommodate heterogeneity of genetic effects of the same variants or genes across traits 
(Allison, et al., 1998; Galesloot, et al., 2014). Numerous studies have jointly analyzed two or 
more traits and successfully identified shared common-variant associations (Giambartolomei, et 
al., 2014; Pickrell, et al., 2016; Lutz, et al., 2017; Turley, et al., 2018); however, none of these 
studies has examined rare variation from case-control (CC) data, or de novo variants for which 
mutations rates should be taken into account. For these rare variants, gene based tests have 
successfully identified genes associated with different disorders (He, et al., 2013; De Rubeis, et 
al., 2014; Iossifov, et al., 2014; Nguyen, et al., 2017). Some recent studies have also shown that 
there are multiple risk genes that are shared between neurodevelopmental disorders (Hoischen, et 
al., 2014; Li, et al., 2016; Nguyen, et al., 2017), and also with congenital heart disease (CHD) 
(Homsy, et al., 2015; Willsey, et al., 2018). These results are based on the intersection among the 
top prioritized genes from each disorder; therefore, reported numbers of genes shared by multiple 
disorders remain low (Nguyen, et al., 2017; Willsey, et al., 2018). Development of multi-trait 
rare-variant methods for neuropsychiatric disorders (NPDs) and related disorders will facilitate 
the understanding of this important aspect of genetic architecture for these phenotypes.  
 
Currently, there is still a limitation in the risk gene identification for a single trait of NPDs and 
relevant disorders. One reason is that risk gene discovery is underpowered when sample sizes are 
limited, as well as when relative risks (RRs) are not large (He, et al., 2013; Nguyen, et al., 2017). 
Multiple risk genes have been reported for developmental disorders (DD), intellectual disability 
(ID) and autism spectrum disorder (ASD) (De Rubeis, et al., 2014; Lelieveld, et al., 2016; 
Deciphering Developmental Disorders Study, 2017) thanks to large sample sizes and/or RRs 
(Nguyen, et al., 2017). However, there are a few risk genes identified for schizophrenia (SCZ) 
and epilepsy (EPI) because of small RRs and small sample size respectively (Nguyen, et al., 
2017). Simply increasing sample size is an expensive solution and might not be feasible for some 
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rare disorders. If the genetics overlap, methods that can leverage the information from one trait 
to increase power for risk-gene identification for another trait with smaller sample size or RRs 
could help in obtaining additional genes for these disorders.  
 

Here, we have developed a new statistical model that combines de novo mutation information to 
identify shared and specific risk genes for two disorders. To illustrate the advantage of the new 
pipeline over its previous single-trait version, we have applied the pipeline to a large data set of 
different NPDs and CHD (~13,000 parent-offspring trios) and identified shared genes between 
each pair of these disorders. We have also used this pipeline to identify additional risk genes for 
each disorder by borrowing the information of other traits. The identification of shared genes is 
important for understanding the overlapping genetic information of these disorders.  

2. Methods 

2.1 The mTADA pipeline 

2.1.1 Statistical models in mTADA 

We developed the multi-trait Transmission And Denovo Association (mTADA) pipeline to 
analyze DNMs for any two given disorders using the computational framework of extTADA 
(Nguyen, et al., 2017) (Table 1). The mTADA pipeline is gene-based and requires input data of 
the number of de novo mutations and mutation rate per gene. If the de novo mutations are 
stratified on the basis of predicted effect (e.g. ‘missense’, ‘nonsense’, etc.), then each gene-
annotation category should have its own mutation rate that reflects the predicted effects of the 
mutations within. In summary, for each gene, we consider four models 𝑀"	(𝑗 = 0. .3) reflecting 
four alternative hypotheses: the gene is associated with neither trait (H0), the first trait only (H1), 
the second trait only (H2), or both traits (H3). We assume prior probabilities 𝜋"	(𝑗 = 0. .3) for the 
four models. To build models for these hypotheses, we used single-trait models from TADA (He, 
et al., 2013); therefore, we first introduce TADA and then mTADA. Like TADA , mTADA 
divides mutations into different annotation categories (e.g., loss-of-function or missense 
variants), builds models for these categories, and then integrates information across models to 
infer results.  

In TADA, for the single trait 𝑘, for each variant/mutation category in each gene, all variants are 
collapsed and considered as one count (𝑥.) with 𝑥.~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(2𝑁.𝜇𝛾.), in which 𝑁., 𝜇 and 𝛾.  
are the sample size (family number), mutation rate and relative risk (RR) of the category. For a 
single trait, TADA compares two hypotheses for each gene: non-risk gene 𝛾. = 1, and risk gene 
𝛾. > 1 in which 𝛾.  follows a Gamma distribution: 𝛾.~	𝐺𝑎𝑚𝑚𝑎(𝛾̅.𝛽., 𝛽.) with 𝛾̅.  being the 
mean relative risk (meanRR) across risk genes, and 𝛽.  being a dispersion parameter. Thus, 
TADA implies that a proportion of all genes (𝜋.A) are risk genes. In mTADA, with two traits and 
four models, we define 𝛾.  as the non-null RR for trait 𝑘 (𝑘 = 1,2), which we can describe in 
terms of 𝛾.," for trait 𝑘 under the 𝑗BC  model as 𝛾D = 𝛾D,D = 𝛾D,E > 1 for the first trait, and 𝛾F =
𝛾F,F = 𝛾F,E > 1 for the second trait (Table 1). Under the non-risk gene models for each trait, 
𝛾D,G = 𝛾F,G = 𝛾F,D = 𝛾D,F = 1.  
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The likelihood of the data across all 𝑁 genes can be computed as 𝐿 = ∏ ∑ 𝜋"𝑃K"D𝑃K"FE
"LG

M
KLD  with 

𝑃K". = 𝑃(𝑥.K|𝜙."), where 𝑥.K and 𝜙.K are the 𝑖BC gene data and 𝑗BC  model parameters for trait 𝑘 
(𝑘 = 1, 2). In addition, if the data include multiple categories of variants then 𝑃K". =
∏PLD
QR 𝑃K"

.S 	with 𝑛T  being the number of categories.  
 

Hypothesis Proportion First trait Second trait 

𝐻G: gene is associated with neither trait 𝜋G 𝑥D	~	𝑃𝑜𝑖𝑠𝑠𝑜𝑛(2𝑁D𝜇) 𝑥F	~	𝑃𝑜𝑖𝑠𝑠𝑜𝑛(2𝑁F𝜇) 

𝐻D: gene is associated with the first trait 𝜋D 𝑥D	~	𝑃𝑜𝑖𝑠𝑠𝑜𝑛(2𝑁D𝜇𝛾D) 

𝛾D	~	𝐺𝑎𝑚𝑚𝑎(𝛾̅D𝛽D,𝛽D) 

𝑥F	~	𝑃𝑜𝑖𝑠𝑠𝑜𝑛(2𝑁F𝜇) 

𝐻F: gene is associated with the second trait 𝜋F 

 

𝑥D	~	𝑃𝑜𝑖𝑠𝑠𝑜𝑛(2𝑁D𝜇) 𝑥F	~	𝑃𝑜𝑖𝑠𝑠𝑜𝑛(2𝑁D𝜇𝛾F) 

𝛾F	~	𝐺𝑎𝑚𝑚𝑎(𝛾̅F𝛽F,𝛽F) 

𝐻E: gene is associated with both traits 𝜋E 

 

𝑥D	~	𝑃𝑜𝑖𝑠𝑠𝑜𝑛(2𝑁D𝜇𝛾D) 

𝛾D	~	𝐺𝑎𝑚𝑚𝑎(𝛾̅D𝛽D,𝛽D) 

𝑥F	~	𝑃𝑜𝑖𝑠𝑠𝑜𝑛(2𝑁F𝜇𝛾F) 

𝛾F	~	𝐺𝑎𝑚𝑚𝑎(𝛾̅F𝛽F,𝛽F) 

Table 1: Statistical models for four hypotheses in mTADA for one category of variants in each 
trait. For each gene, mTADA assumes that the gene can be in one of four models 𝑀G. . 𝑀E. 
𝜋"	(𝑗 = 0. .3) is the prior probability of the 𝑗BC  model. 𝑥. and 𝑁.	(𝑘 = 1,2) are the data and the 
sample size of the kth trait. 𝜇 is the mutation rate of the gene; 𝛾.  and 𝛾̅. are the relative risk and 
mean relative risks of the variant category. Grey and blue cells describe models for risk and 
non-risk genes respectively.  

2.1.2 Estimation of the parameters 

We used our single-trait pipeline, extTADA, to estimate the proportions of risk genes (𝜋DA and 
𝜋FA), mean relative risks (𝛾̅DA and 𝛾̅FA) and dispersion parameters (𝛽DA and 𝛽FA) for each single trait 
(described as the superscript). We used these values inside mTADA: 𝜋D = 𝜋DA −	𝜋E	, 𝜋F = 𝜋FA −
	𝜋E, and 𝜋G = 1 − (𝜋DA + 𝜋FA −	𝜋E) because of ∑ 𝜋"E

"LG = 1. We also assumed that 𝛾̅D = 	 𝛾̅DA; 
𝛾̅F = 	 𝛾̅FA; 𝛽D = 𝛽DA and 𝛽F = 𝛽FA. Therefore, we only estimated 𝜋E inside mTADA. Bayesian 
models were built using the rstan package (Carpenter, et al., 2016). We used Markov Chain 
Monte Carlo (MCMC) within rstan to estimate 𝜋E. We also implemented another option for 
users to choose the automatic differentiation vibrational inference (ADVI) (Kucukelbir, et al., 
2015) to estimate 𝜋E. Convergence was diagnosed by the estimated potential scale reduction 
statistic (𝑅Y) and visualizing traces of results. The Locfit package (Loader, 2007) was used to 
obtain the mode, credible interval (CI) of 𝜋E. We used the mode as the estimated value of 𝜋E. 

2.1.3 Inference of risk genes 

For gene 𝑖, the statistical support for the 𝑗BC  model is captured by its posterior probability 

(𝑃𝑃K" =
Z[\][

^\][
_

∑ Z`\]`
^ \]`

_a
`bc

, abbreviated as PP0, PP1, PP2 or PP3 for a gene). Inference of risk genes 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 3, 2018. ; https://doi.org/10.1101/406868doi: bioRxiv preprint 

https://doi.org/10.1101/406868


shared by the two traits can be made based on PP3. To summarize the evidence for association 
with a given trait, we used the sum of posterior probabilities of models including the risk gene 
hypothesis for that trait (Barber, et al., 2010), i.e. 𝑃𝑃KD + 𝑃𝑃KE for trait one and 𝑃𝑃KF + 𝑃𝑃KE for 
trait two. In this way, we can clearly see how trait two’s data’s support for risk genes may 
contribute to support for trait one.  

2.2 Simulation analysis 

2.2.1 Generation of simulated data 

We simulated data under the mTADA model in Table 1. A gene was assigned to one of the four 
groups (four models) by using the probability (𝜋G, 𝜋D, 𝜋F, 𝜋E). We used 𝜋DA = 0.05 and 𝜋FA 	=
0.03 which are approximately equal to ASD, ID and DD results in our single-trait study 
(Nguyen, et al., 2017). 𝜋E was simulated with different values between 0 to min(𝜋DA, 𝜋FA	), and 
𝜋G, 𝜋D and 𝜋F were calculated as in the previous section. A range of meanRRs were simulated for 
each of the two traits. Two mutation categories were simulated for each trait; therefore, there 
were four meanRRs for the two traits. We simulated 100 values of each combination of 𝜋E, 𝛾̅D 
and 𝛾̅F and calculated the mean of these 100 simulation results. 
2.2.2 Validation of parameter inference and risk gene discovery 

To calculate Type I error, we simulated different combinations of genetic parameters with 𝜋E =
0. For each PP threshold, if there were at least one significant overlapping gene (PP3 > the PP 
threshold) then the error was calculated.  

We used simulated data to assess the correlation between true and observed 𝜋E values and 
between PPs and observed false discovery rates (oFDRs). An oFDR at a PP threshold was 
defined as the number of false positive genes divided by the number of identified genes. To use 
mTADA for single traits, for the 𝑖BC gene, we calculated 𝑃𝑃KD + 𝑃𝑃KE and 𝑃𝑃KF + 𝑃𝑃KE for the 
first and second trait respectively. 

2.2.3 Comparison between single-trait and two-trait pipelines 
We used AUCs (area under the Receiver Operating Characteristic (ROC) curve) to compare risk 
gene classification performance between mTADA and extTADA on single traits. To obtain 
AUCs, we calculated true and false positive rates for extTADA and mTADA across PP 
thresholds, and calculated the areas under these ROC curves. We set a threshold of PP=0.8 to 
compare gene counts between mTADA and extTADA. 

2.3 Neuropsychiatric disease and congenital heart disease de novo mutation data 
We used the DNM data collected by Nguyen, et al. (2017) and CHD data from Homsy, et al. 
(2015). These data included 356 EPI trios, 5122 ASD trios, 4293 DD trios, 1012 ID trios, 1017 
SCZ trios, and 1213 CHD trios. DNMs were annotated and classified into multiple categories as 
in our previous work (Nguyen, et al., 2017). For NDDs (EPI, ASD, DD and ID) and CHD, we 
used two categories (Nguyen, et al., 2017): loss-of-function (LoF) and missense damaging (MiD) 
DNMs. The LoF category included nonsense, essential splice site, and frameshift DNMs defined 
by Plink/Seq (Fromer, et al., 2014) while the MiD category included DNMs annotated as 
missense by Plink/Seq and predicted damaging by each of seven methods (Genovese, et al., 
2016): SIFT, Polyphen2_HDIV, Polyphen2_HVAR, LRT, PROVEAN, MutationTaster, and 
MutationAssessor. For SCZ, we used LoF, MiD and synonymous mutations within DNase I 
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hypersensitive sites (DHSs) because this category showed significant DNM enrichment in SCZ 
probands (Takata, et al., 2016) and non-null meanRR in extTADA (Nguyen, et al., 2017). 
Mutation rates were calculated as described by Fromer, et al. (2014) and Nguyen, et al. (2017). 
extTADA was used to obtain the proportions of risk genes and the meanRR of each category for 
each disorder. These values were then used as input for mTADA to estimate πE and then 
calculate 𝑃𝑃K" (i = 1. . N, j = 0. .3) for each pair of traits.  

The MCMC algorithm, No-U-Turn Sampler (NUTS), in the 𝑟𝑠𝑡𝑎𝑛 package was used to estimate 
𝜋E. Two independent chains and 5000 steps for each chain were used in the sampling process. 
Only 1000 samples from each chain were chosen for further analyses.  
We used results from new de novo studies to validate mTADA results. New CHD de novo data 
include 2,871 probands which consist of 2445 trios (1204 trios are inside the data set of 
extTADA and used in the primary analysis of this study) and 226 singletons (Jin, et al., 2017). In 
addition, we used the whole-genome-sequencing (WGS) trio data for EPI (Hamdan, et al., 2017) 
to validate results of EPI, which include 197 trios not included in our mTADA analyses. 
For further in silico validation and characterization genes identified by mTADA, GeNets (Li, et 
al., 2017) was used to test protein-protein interactions (PPIs). The STRING database 
(Szklarczyk, et al., 2017) was also used as an alternative source for PPIs. For GeNets, we used 
results from input genes and direct-connection candidate genes automatically inferred by 
GeNets. For STRING, we used input genes only to obtain final results. To examine expression 
information of identified genes, spatiotemporal transcriptomic data were obtained from 
BRAINSPAN (Miller, et al., 2014), divided into eight developmental time points (four prenatal 
and four postnatal) (Lin, et al., 2015), and analyzed by hierarchical clustering for developmental 
trajectories. 
To test the significance of the overlap of two gene sets, a permutation approach was used. We 
chose two random gene sets whose lengths are the same as the two tested gene sets from the 
background genes (19358 genes from mTADA). This was carried out 𝑁 times (𝑁 = 10,000 in 
this study) and the numbers of overlapping genes were recorded in a vector 𝒎. P value was 
calculated as (𝑙𝑒𝑛𝑔𝑡ℎ(𝒎[𝒎 > 𝑚G]) + 1)/(𝑙𝑒𝑛𝑔𝑡ℎ(𝒎) + 1)) in which 𝑚G is the observed 
number of overlapping genes between the two tested gene sets. 
  

3. Results 
Because mTADA is a novel tool that analyzes multiple traits using de novo mutation and 
mutation rate data, we validated mTADA using data simulated under its model (Table 1) and 
compared gene-identification results with our a single-trait pipeline extTADA.  

3.1 Results of mTADA on simulated data 

We used 𝜋DA = 0.05 and 𝜋FA 	= 0.03 as described in the Method section and simulated different 
data sets from the combination of different values of 𝜋E and MeanRRs. 

3.1.1 Type I error of shared risk gene identification 
We first estimated Type I error for identifying shared risk genes (i.e. associated with both traits). 
We simulated data with 𝜋E = 0 and tested for shared risk genes using different thresholds of the 
posterior probability of Model III (PP3). Smaller PP3 thresholds correspond to increased Type I 
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error levels. This error was smaller than 0.05 when PP3 > 0.8 (Figure 1A). Overall, the error 
decreased when meanRRs or sample sizes increased. 

3.1.2 Correlations between posterior probabilities and observed false discovery rates. 
We also calculated the correlation between PPs and observed FDRs (oFDRs) for all situations. 
Regarding PP3 and oFDRs, PP=0.8 and 0.5 were approximately with oFDR=0.1 and 0.25 
respectively. Small meanRRs could create higher FDRs, but this affection was not very strong 
(Figure 1B). These results were also similar for other situations: genes were associated with only 
first trait, only second trait, single traits (e.g., only first trait and both traits) (Figure S1, S2). 

 
Figure 1: Validation of shared risk gene identification using mTADA on simulated data. Left 
panels show the Type I error of the identification of risk genes for both traits: X-axes are 
posterior probabilities (PPs) of Model III while Y-axes are Type I errors. Right panels show the 
correlation between PPs (x axis) and observed false discovery rates (FDRs, y axis). These are 
for the combination of different sample sizes (ntrio) and mean relative risks (MeanGamma). 
ntrio and MeanGamma describe the information of two traits. 

    

The correlation between simulated and estimated values of 𝜋E was also assessed. For large 
meanRRs, high correlations were observed for all sample sizes. For smaller meanRRs (range 
here), 𝜋E values were over- or underestimated (Figure S3). However, these small differences 
were not much affected to main analyses (Figure 1, S1, S2). 

3.1.3 Power for single-trait risk gene discovery 
We compared gene numbers identified by mTADA and extTADA using the same threshold PP > 
0.8. For 𝜋E = 0 (no overlapping information), mTADA and extTADA reported nearly the same 
positive gene numbers (Figure 2A). However, mTADA identified more genes than extTADA 
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when 𝜋E increased. In addition, mTADA’s gene counts were also higher than those of extTADA 
when higher meanRRs were used. 

 
Figure 2: Results of simulated data for single traits. Right panels show AUC (area under the 
Receiver Operating Characteristic (ROC) curve) results of mTADA and extTADA while left 
panels describe positive gene counts with PPs > 0.8. MeanGamma, ntrio and pi3 describe for 
mean relative risks, sample sizes and the proportions of overlapping genes. ntrio and 
MeanGamma describe the information of two traits. 
3.1.4 Comparison of AUCs for single traits 
We designed a simulation experiment to assess the performance in the classification of risk and 
non-risk genes. We applied extTADA to single-trait data from our simulated data. We then 
calculated AUCs for mTADA and extTADA using classification results from single-trait data. 
AUCs of both were equal when 𝜋E = 0 (Figure 2B). However, AUCs of mTADA were higher 
than those of extTADA when 𝜋E’s values were larger. In addition, mTADA also performed 
better extTADA with larger meanRRs. 
3.2 Results of mTADA and extTADA on neuropsychiatric disease and CHD data 
mTADA was applied to family data of 15 pairs of six disorders (ASD, SCZ, DD, ID, EPI and 
CHD). A threshold PP > 0.8 was used to prioritize top genes. To compare between mTADA and 
extTADA, we also extracted top prioritized genes from extTADA using the same threshold PP > 
0.8.  
DD based results showed strong convergence with smaller credible intervals because of its large 
sample size as well as a high relative risks of DNMs (Figure 3). The highest 𝜋E was observed for 
pairs of DD, ID, ASD and CHD (𝜋E > 	0.019). These disorders also had the highest percentage 
of genes that overlap if we only focused on gene risk-gene proportions (Figure 3). CHD and EPI 
had the lowest 𝜋E (0.001) followed by SCZ-EPI (0.0023). Figure S4 shows sampling results of 
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the proportions of overlapping genes for each pair of these traits; and Table S1 describes results 
of 𝜋DA, 𝜋FA estimated by extTADA and 𝜋E estimated by mTADA.  

Regarding overlapping genes, the highest number was also observed for DD and ID (88 genes) 
followed by ASD-DD (67 genes) and ASD-ID (47 genes). Four pairs of traits (CHD-EPI, SCZ-
EPI, CHD-SCZ, SCZ-ID) had no overlapping genes. In comparison with extTADA in the 
identification of overlapping genes, mTADA reported higher or equal gene numbers (Figure 3). 
Table S2 shows full mTADA’s results for these six disorders.  
We also used mTADA to prioritize top genes for single traits and compared with extTADA. For 
DD and ID, mTADA always performed better extTADA (Figure 3). Similar results were also 
observed for ASD; except for the pair ASD-SCZ in which mTADA was better than extTADA 
for SCZ but extTADA was better than mTADA for ASD. For CHD, EPI and SCZ, mTADA was 
better than extTADA when CHD was combined with DD.  

 

 
Figure 3: Results of real data. A) Estimated results of the overlapping proportion of risk genes 
(𝜋E) for 15 pairs of 6 disorders: schizophrenia (SCZ), congenital heart disease (CHD), 
intellectual disability (ID), developmental disorder (DD), autism spectrum disorder (ASD), 
epilepsy (EPI). The first, second and third panels shows the proportion of risk genes that overlap 
for two traits (= 𝜋E/(𝜋D + 𝜋F + 𝜋E)), first trait only (= 𝜋E/(𝜋D + 𝜋E)) and second trait only (= 
𝜋E/(𝜋F + 𝜋E)) while the fourth panel is 𝜋E. B) mTADA’s and extTADA’s results for all pairs of 
disorders by using posterior probabilities > 0.8. Numbers in cells are number of risk genes. For 
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example, for the pair of DD and ID, mTADA’s results are: 3, 4 and 88 genes for Model 1, 2 and 
3 respectively; 173 and 101 genes for DD and ID in that order. 

 

Gene Name ASD-DD ASD-EPI ASD-ID CHD-ASD CHD-DD CHD-EPI CHD-ID CHD-SCZ DD-EPI DD-ID ID-EPI SCZ-ASD SCZ-DD SCZ-EPI SCZ-ID 

POGZ 1.00 0.14 1.00 0.97 0.99 0.01 0.99 0.46 0.17 1.00 0.27 0.82 0.86 0.02 0.75 

SCN2A 1.00 1.00 1.00 0.22 0.50 0.03 0.36 0.02 1.00 1.00 1.00 0.82 0.85 0.75 0.73 

ARID1B 1.00 0.08 1.00 0.89 0.97 0.00 0.94 0.02 0.09 1.00 0.15 0.16 0.19 0.00 0.10 

GABRB3 0.98 0.99 0.94 0.28 0.61 0.06 0.28 0.00 1.00 0.98 0.99 0.14 0.20 0.14 0.06 

KCNQ2 0.82 0.87 0.90 0.05 0.66 0.05 0.51 0.00 1.00 1.00 1.00 0.02 0.22 0.13 0.11 

STXBP1 0.98 0.99 0.99 0.23 0.65 0.05 0.49 0.00 1.00 1.00 1.00 0.12 0.22 0.13 0.11 

TLK2 0.98 0.09 0.99 0.85 0.96 0.01 0.95 0.05 0.13 1.00 0.22 0.23 0.31 0.00 0.19 

CHD2 1.00 0.80 1.00 0.41 0.72 0.02 0.56 0.00 0.82 1.00 0.88 0.16 0.19 0.02 0.10 

CTNNB1 0.84 0.01 0.92 0.39 0.97 0.00 0.95 0.03 0.13 1.00 0.21 0.03 0.22 0.00 0.12 

MLL 0.91 0.60 0.89 0.08 0.60 0.02 0.34 0.00 0.91 1.00 0.92 0.03 0.16 0.03 0.07 

SYNGAP1 1.00 0.08 1.00 0.32 0.63 0.00 0.48 0.03 0.09 1.00 0.15 0.83 0.86 0.01 0.74 

CACNA1A 0.09 0.11 0.03 0.01 0.95 0.34 0.70 0.01 1.00 0.98 0.98 0.00 0.17 0.10 0.04 

KCNQ3 0.93 0.78 0.78 0.11 0.67 0.03 0.24 0.00 0.95 0.98 0.92 0.05 0.22 0.07 0.06 

MED13L 0.90 0.01 0.95 0.19 0.82 0.00 0.72 0.01 0.06 1.00 0.09 0.03 0.20 0.00 0.10 

 
Table 2: Genes with the posterior probabilities (PPs) of Model 3 (two traits) > 0.8. These genes 
appear in at least 4 pairs of disorders. Cells shows the PP values. 
 

Insights into top mTADA genes 

Overlapping genes between two traits 
Using a threshold PP>0.8, 153 genes were supported by the two-trait model in at least one pair 
(𝜋E > 0.8, Table S2). Seven genes (ARID1B, GABRB3, KCNQ2, STXBP1, SYNGAP1, TLK2, 
POGZ, SCN2A) were observed for at least six pairs of disorders (Table 2). POGZ and SCN2A 
were present in eight pairs of disorders. POGZ was significant for pairs relating to ASD, DD, ID, 
CHD and SZ while SCN2A was significant for pairs relating to ASD, DD, EPI, ID and SCZ. We 
checked DNMs of these two genes. As expected, POGZ had no DNMs for CHD, and SCZN2A 
had no DNMs for EPI. Interestingly, in the latest CHD study (Jin, et al., 2017), POGZ was one of 
the top CHD gene while no DNMs were observed for SCN2A. In addition, in the latest study of 
6,753 parent–offspring trios with NDDs and EPI (Heyne, et al., 2018), 16 DNMs were in 
POGZ, but only one DNM was from a patient who has both ID and EPI. 

Significant genes of single traits 
To better understand mTADA results, we focused on three disorders (EPI, CHD and SCZ) whose 
DN-based genes have not been reported as many as the three other disorders. We used the 
𝑃𝑃K. + 𝑃𝑃KE	(𝑘 = 1, 2) of mTADA to obtain a single-trait’s PP for the 𝑖BC gene in the analysis of 
each pair of two disorders. We used DD as the main trait to infer results of other trait. 
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CHD 
There were 31 genes with PP>0.8 by combining CHD and DD. 20/31 was not in the list of 
known CHD genes and in the meta-analysis results of a recent CHD study of Jin, et al. (2017)  
(Figure 4). We tested the PPIs of these 31 genes by using GeNets and STRING database. Based 
on GeNets, these genes were well connected to communities (Overall connectivity p < 2.2x10-
e3, Figure 4). Next, by using STRING database, the number of edges were also higher than 
expected between these 31 nodes (20 edges versus 9 expected edges, p = 0.00198). We used 
expression data to test these genes. The majority of these genes were strongly expressed in early 
to late-mid prenatal stages (Figure 4). 
 

Validation of CHD genes using an independent data set 
We used the data of Jin, et al. (2017) to validate these results (See Methods). First, we tested the 
top CHD genes from the independent data set which include 1241 trios and 226 cases from Jin, 
et al. (2017). From the 1241 trios, three genes (CTNNB1, CUL3, LZTR1) of the 20 novel genes 
had LoF or MiD DNMs (p<2.00e-4, Figure 4). In addition, CUL3 had one LoF variant from case 
data. These three genes had only one DNMs in the primary analysis, and were not called as 
significant genes by extTADA. We also ran extTADA on the 1241 trios, and saw that 4 of the 31 
genes had PP>0.8 (Figure 4). As expected, extTADA results of the majority of these 31 genes 
had low PPs because these genes had only 0 or 1 DNMs. Next, we compared our 31 genes with 
the top 25 genes meta-analyzed by Jin, et al. (2017). 8/31 were in the 25-gene list (p < 9.99e-05).  
 
To better understand the performance of mTADA on the combination of CHD and other 
disorders, we applied mTADA to the independent data set only and the combined data set. First, 
we ran mTADA on the independent 1241-trio data. Similar to the primary analysis, we also saw 
high overlaps between CHD, ASD, DD and ID (Figure 4). By combining CHD and DD, 24 
genes had PP>0.8. There were 6 overlapping genes between the 31 genes and the 24 genes (p < 
9.99e-05). In these six genes, two genes NSD1 and CTNNB1 showed the benefit of using 
mTADA. Both genes had only one LoF DNM and did not show significant results in the original 
study of 1204 trios (Homsy, et al., 2015) as well as extTADA, but had highly significant PPs 
from mTADA (PP>0.97). Next, mTADA was applied to full 2451 trios. Estimated 𝜋E values 
were similar to those of 1204 trios (Figure 4). There were 57 genes with PP>0.8.19/57 genes 
were in the 31 genes (p < 9.99e-05).  
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Figure 4: Congenital heart disease (CHD) results by using developmental disorder (DD) 
information. This is the top 31 genes (posterior probabilities, PPs, > 0.8) identified by mTADA 
using the data set of Homsy, et al. (2015). A) PPs of the 31 genes: dn_lof/MiD, ca_lof/MiD, 
cn_lof/MiD describes loss-of-function/missense damaging de novo mutation, case and control 
variant counts respectively (the fourth and fifth columns are for DD data). PP 2015, PP 2017, 
PP 2015+2017 describe PPs of CHD data from Homsy, et al. (2015), Jin, et al. (2017) and both 
respectively; the sixteenth column describes whether a gene is a known CHD gene (Y) or not 
(N); the seventeenth column shows meta-p values calculated by Jin, et al. (2017) for their top 25 
genes. The last column describes PPs of extTADA for an independent trio data of Jin, et al. 
(2017). B) The results of the analysis of protein-protein interactions. C) Results of the gene 
expression analysis. D) New mTADA results for the CHD data set of Jin, et al. (2017): top 
panels are for an independent data set while bottom panels are for full data sets. 
 

EPI 
There were 15 genes with PP>0.8 by combining EPI and DD. Similar to top CHD genes, these 
genes were connected to communities (Overall connectivity p<2.2x10-e3, Figure S5) by using 
GetNets. They also had more interactions than expected by using the STRING database (22 
edges versus 2 expected edges, p = 1.11e-05). Four genes GABBR2, HECW2, MLL, WDR19 
were not in the list of known EPI genes. GABBR2 was reported as a top gene by extTADA 
(PP=0.97), but HECW2, MLL, WDR19 had only PP<0.3 in extTADA. Interestingly, both 
GABBR2, HECW2 had DNMs in a WGS study recently (Hamdan, et al., 2017). We also used 
expression data to test these EPI genes. Differently from CHD, these genes were expressed in 
different stages of the human brain (Figure S5). 

SCZ 
There were 10 genes with PP>0.8 including AUTS2, BRPF1, HIST1H1E, MAP4K4, MKI67, 
POGZ, SCN2A, SETD1A, SYNGAP1, TAF13. These were significantly connected to 
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MLL2 HGNC:7133 4 0 2 0 7 0 1.00 1.00 1.00 0 0 0 0 Y 8.50E-19 1.00

KDM5B HGNC:18039 3 0 3 0 0 0 1.00 0.06 0.98 2 4 0 0 N 2.90E-04 0.02

RBFOX2 HGNC:9906 3 0 0 0 0 0 1.00 0.03 0.96 1 0 0 0 N 1.10E-06 0.04

CHD7 HGNC:20626 2 0 2 2 9 3 1.00 1.00 1.00 0 1 1 0 Y 7.50E-19 1.00

NAA15 HGNC:30782 2 0 2 0 0 0 1.00 0.11 0.94 0 0 0 0 N - 0.04

POGZ HGNC:18801 1 1 6 0 1 0 0.99 0.89 1.00 0 0 0 0 N 2.90E-04 0.32

PTPN11 HGNC:9644 0 3 0 2 0 2 0.99 0.97 1.00 0 0 0 0 Y 1.80E-15 0.97

KANSL1 HGNC:24565 1 0 8 0 0 0 0.98 0.20 0.83 0 1 0 0 Y - 0.04

CTNNB1 HGNC:2514 1 0 11 0 1 0 0.97 0.86 0.97 0 0 0 0 N - 0.32

TCF12 HGNC:11623 1 0 2 1 0 0 0.97 0.17 0.80 2 1 0 0 N - 0.04

KAT6B HGNC:17582 1 0 8 0 0 0 0.97 0.16 0.77 0 0 0 0 Y - 0.03

KAT6A HGNC:13013 1 0 8 0 0 0 0.97 0.15 0.76 0 0 0 0 N - 0.03

EIF4A2 HGNC:3284 1 0 1 1 0 0 0.97 0.20 0.84 0 0 0 0 N - 0.04

ARID1B HGNC:18040 1 0 30 0 0 0 0.97 0.14 0.73 0 0 0 0 N - 0.03

NSD1 HGNC:14234 1 0 7 1 2 0 0.97 0.99 0.99 0 1 1 0 Y 1.30E-04 0.81

TLK2 HGNC:11842 1 0 0 2 0 0 0.96 0.18 0.80 0 0 0 0 N - 0.04

SRRM2 HGNC:16639 1 0 2 0 0 0 0.96 0.19 0.82 1 0 0 0 N - 0.03

MAP2 HGNC:6839 1 0 2 0 0 0 0.96 0.19 0.82 1 0 0 0 N - 0.04

EP300 HGNC:3373 1 0 12 3 0 0 0.96 0.09 0.58 1 0 0 0 N - 0.02

WHSC1 HGNC:12766 1 0 3 0 0 0 0.95 0.12 0.67 0 0 0 0 N - 0.03

CACNA1A HGNC:1388 1 0 0 5 0 0 0.95 0.06 0.45 1 0 0 0 N - 0.02

MEIS2 HGNC:7001 1 0 2 0 0 0 0.94 0.14 0.72 0 0 0 0 N - 0.04

GANAB HGNC:4138 1 1 0 2 0 0 0.93 0.05 0.93 0 0 0 0 N - 0.03

MEA1 HGNC:6986 1 0 1 0 0 0 0.92 0.15 0.75 0 0 0 0 N - 0.05

ZNF623 HGNC:29084 1 0 1 0 0 0 0.92 0.14 0.74 0 0 0 0 N - 0.05

CUL3 HGNC:2553 1 0 2 0 1 0 0.90 0.76 0.92 1 0 0 0 N - 0.31

COL4A3BP HGNC:2205 0 1 0 4 0 0 0.88 0.19 0.93 2 0 0 0 N - 0.04

FLT4 HGNC:3767 1 0 1 0 1 0 0.86 0.76 0.93 8 1 0 0 N 9.80E-10 0.34

CDK13 HGNC:1733 1 0 1 0 0 0 0.86 0.10 0.62 1 0 0 0 N - 0.04

LZTR1 HGNC:6742 0 1 1 2 0 1 0.85 0.69 0.99 3 3 0 0 N - 0.50

MED13L HGNC:22962 0 1 13 5 0 0 0.82 0.10 0.82 0 0 0 0 Y - 0.02
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communities by the PPI analysis (Overall connectivity p<2.2x10-e3, Figure S6) by using 
GeNets. These genes were not strongly connected by using STRING database (1 edges versus 0 
expected edges, p = 0.22). In these genes, only TAF13 and SETD1A were suggested as top genes 
in previous study (Fromer, et al., 2012; Nguyen, et al., 2017). In addition, AUTS2 (PP>0.8) was 
reported as a SCZ genes from a common variant based study (Zhang, et al., 2014). Using 
expression data, multiple genes of these genes were expressed in prenatal stages, but the signals 
were as not strong as those of CHD (Figure S6). 
 
4. Discussion 
In this paper, we propose a method to jointly analyze two traits (mTADA) using de novo exome 
sequencing data. The method is an extension of our previous work for single traits (He, et al., 
2013; Nguyen, et al., 2017). mTADA estimates the proportion of overlapping genes between two 
traits, and then uses this information to infer how many overlapping genes exist between two 
traits. The pipeline is also able to infer the number of risk genes for each trait by calculating 
posterior probabilities (PPs) of genes for each trait. On simulated data, mTADA performs better 
than extTADA on the identification of risk genes. We also applied mTADA to more than 13,000 
trios of five disorders and reported overlapping genes between these disorders. We also saw that 
mTADA reported more risk genes for these disorders than extTADA. This suggests that 
mTADA can help in the identification of additional risk genes, especially for disorders whose 
large sample sizes are challenging to obtain or whose mean relative risks are small. For such 
disorders, users can combine the data of the disorders with large public data sets (e.g., trio data 
of ASD, DD) to prioritize risk genes. Using one-trait information to leverage the information for 
other traits has been successful in fine-mapping (Kichaev, et al., 2017) and common-variant 
(Maier, et al., 2018) studies. Based on our best knowledge, mTADA is the first tool using this 
approach for de novo mutation data. We hope that mTADA 
(https://github.com/hoangtn/mTADA) will be generally useful for analyzing de novo mutation 
data across complex traits.  
 
 
By using mTADA, multiple overlapping genes were observed for CHD, DD, ID and ASD. This 
replicates a recent study (Homsy, et al., 2015) in which high overlapping genes were observed 
for CHD and neurodevelopmental disorders (NDDs). Interestingly, CHD did not show any 
overlapping information with another NDD: epilepsy (EPI). Two genes SCN2A and POGZ 
which have been reported as risk genes for some of these disorders (Stessman, et al., 2016; 
White, et al., 2016; Ben-Shalom, et al., 2017; Jin, et al., 2017) are top overlapping genes from 
mTADA (Table S2), but they show different trends. No SCN2A DNMs are in CHD data and no 
POGZ DNMs are in EPI data. One possible reason is that the sample size of EPI is small in this 
study (356 trios). Another hypothesis might be because they do not have strong overlapping 
biological pathways. We did not see any overlapping information between SCZ and CHD as well 
as SCZ and CHD. We analyzed in depth the top prioritized genes of CHD, EPI and SCZ (Figure 
4, S5-6). Top risk CHD and EPI genes from mTADA are also reported in recent study (Hamdan, 
et al., 2017; Jin, et al., 2017). Multiple top CHD genes have only one DNM, but have DNMs or 
variants in independent data sets (Figure 4). This suggests that they might be real risk-genes for 
this disorder. Interesting, we identify 20 novel CHD genes (posterior probabilities > 0.8) and 3 of 
these 20 genes have DNMs in an independent data set. This shows the benefit of using mTADA 
in the prediction of risk genes for CHD by borrowing the information of DD. CHD genes are 
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strongly expressed in pre-natal stages of the human brain (Figure 4).  
 
Although mTADA performs better than the single-trait based extTADA, it does have some 
limitations. mTADA uses the parameters of single traits from extTADA to infer the proportion 
of overlapping genes (𝜋E). Using parameters from extTADA makes mTADA much faster in its 
calculation, it means mTADA relies on the results of the single-trait pipeline extTADA that uses 
a full Bayesian approach. Also, mTADA as well as extTADA use de novo counts for each gene 
and divide these counts into different categories similar to other rare variant based studies 
(Sanders, et al., 2012; De Rubeis, et al., 2014; Genovese, et al., 2016; Allen, et al., 2017). Future 
studies which are able to incorporate the annotation information of each DNM may increase the 
power of mTADA or similar tools.  
 
With further development, the mTADA approach can be generalized further to consider more 
than two traits simultaneously, and the increased information could increase the number of 
identified risk genes but at a cost of increased computational time.  
 
In conclusion, mTADA can be very useful for better understanding the genetic correlation across 
disorders (via the proportion of overlapping genes), and to prioritize additional risk genes for 
disorders. The approach of mTADA can be used to identify shared/specific risk genes for 
different categories of one trait (e.g., loss of function and missense de novo mutations). Genetic 
information of de novo mutations and rare case/control variants can be different (Sifrim, et al., 
2016), mTADA might be adopted to pipelines which are able to apply to DNMs and rCCVs as 
two traits. 
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