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Abstract 35 

Limited health literacy can be a barrier to healthcare delivery, but widespread classification of patient health 36 

literacy is challenging. We applied natural language processing and machine learning on a large sample of 37 

283,216 secure messages sent from 6,941 patients to their clinicians for this study to develop and validate 38 

literacy profiles as indicators of patients’ health literacy. All patients were participants in Kaiser Permanente 39 

Northern California’s DISTANCE Study. We created three literacy profiles, comparing performance of each 40 

literacy profile against a gold standard of patient self-report. We also analyzed associations between the literacy 41 

profiles and patient demographics, health outcomes and healthcare utilization. T-tests were used for numeric data 42 

such as A1C, Charlson comorbidity index and healthcare utilization rates, and chi-square tests for categorical 43 

data such as sex, race, continuous medication gaps and severe hypoglycemia. Literacy profiles varied in their test 44 

characteristics, with C-statistics ranging from 0.61-0.74. Relationships between literacy profiles and health 45 

outcomes revealed patterns consistent with previous health literacy research: patients identified via literacy 46 

profiles as having limited health literacy were older and more likely minority; had poorer medication adherence 47 

and glycemic control; and higher rates of hypoglycemia, comorbidities and healthcare utilization. This research 48 

represents the first successful attempt to use natural language processing and machine learning to measure health 49 

literacy. Literacy profiles offer an automated and economical way to identify patients with limited health literacy 50 

and a greater vulnerability to poor health outcomes.  51 

 52 

BACKGROUND AND SIGNIFICANCE 53 

An estimated 30.3 million people in the U.S. had diabetes mellitus (DM) in 2015 according to the Centers for 54 

Disease Control and Prevention (2017). Like most chronic conditions, DM self-management can be complex and 55 

requires that patients frequently communicate with healthcare providers. Health literacy (HL) is generally 56 

defined as a patient’s ability to obtain, process, comprehend and communicate basic health information [1, 2]. 57 

DM patients with limited HL have a higher risk of poor health outcomes, including worse blood sugar control, 58 

higher complication rates [3], and a greater incidence of hypoglycemia [4, 5]. Poor communication and sub-59 

optimal adherence to medication may explain some of these disparities [6, 7]. Limited HL contributes to 60 
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preventable suffering, more rapid decline in physical function [8] and related healthcare costs. Online patient 61 

portals embedded within electronic health records (EHRs) are now being used widely to bridge in-person 62 

encounters and providing support between visits by allowing patients and providers to communicate via secure 63 

messages (SMs). The reach and effectiveness of online communication is likely heavily affected by patients’ HL. 64 

Limited HL is a barrier to use of patient portals and impacts patients’ evaluation of online health information [9]. 65 

However, no research has harnessed SMs to identify patients with limited HL to provide disease management 66 

support. Developing scalable tools to identify limited HL without primary data collection burden would be an 67 

efficient way to target tailored provider communication and related interventions. The goal of the ECLIPPSE 68 

study (Employing Computational Linguistics to Improve Patient-Provider Secure Email exchanges) is to develop 69 

patient literacy profiles (LPs) using natural language processing (NLP) tools and machine learning (ML) to 70 

classify HL (limited vs. not) in a large sample of SMs from diabetes patients and to assess whether LPs are 71 

associated with patient demographics and health outcomes. We hypothesize that patients’ language constructs in 72 

portal communications can be harnessed to estimate their health literacy (HL). 73 

Prior research in medical domains has benefitted from the use of NLP and ML, such as representation of clinical 74 

narratives, assessing medical articles’ text quality, and developing semantic lexicons for medical language 75 

processing [10-17]. Some of the commonly used NLP tools and techniques these studies employed are Apache 76 

clinical text analysis and knowledge extraction system (cTAKES) [18], the clinical language annotation, 77 

modeling, and processing tool (CLAMP) [19], the medical language extraction and encoding system (MedLee) 78 

[20], the Kawasaki disease-NLP (KD-NLP) [21] tool, Flesch-Kincaid Grade level (FKGL)  [22], SMOG [23-24] 79 

and suitability assessment of materials (SAM) [25] tool. Most of these tools have been used for clinical analyses 80 

and not HL; very few ones like Flesch-Kincaid and SMOG use surface-level features centered on relatively 81 

shallow lexical and sentential indices.  82 

Despite the increasing use of NLP and ML techniques in health domains, to our knowledge, no study has utilized 83 

these techniques to estimate the HL of patients. Kim and Xie [26] carried out a literature survey to identify 84 

online health services used by people with limited HL. These authors concluded that there is a need for new HL 85 

screening tools. Healthcare delivery systems are recognizing the importance of identifying the subset of patients 86 

who have limited HL. Measuring HL, however, requires the use of interviews or questionnaires, rendering the 87 
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process challenging, especially for larger patient populations. An automated LP based on NLP would provide a 88 

more efficient means to identify patients with limited HL. We set out to develop an automated LP prototype that 89 

can (a) identify patients with potential HL limitations in an automated way, and (b) determine whether the 90 

measures are associated with health outcomes, and (c) deliver feedback to clinicians about the HL skills of 91 

patients so that clinicians can modify their language to make SMs to the patients more readable and actionable, 92 

thereby improving communication. To accomplish the first two objectives, the current study examines the extent 93 

to which patients’ self-reported HL can be estimated using LP models created using NLP and ML techniques. 94 

MATERIALS AND METHODS 95 

KP has a well-developed and mature patient portal, kp.org. Previous research suggests that patients who access 96 

such portals are more likely to have better (a) healthcare utilization [27], (b) medication adherence [28-29] and 97 

(c) glycemic (blood sugar) control [30-31]. Among DM patients, better ratings of physician communication are 98 

associated with greater SM usage [32]. Limited HL poses a barrier to portal and SM use. However, these 99 

disparities are rapidly narrowing. In 2014, 68% of KP DM patients with limited HL and 84% with adequate HL 100 

accessed the portal. Overall, 46% used SM in 2014, compared to 30% in 2009. Those with limited HL are 101 

rapidly gaining ground, showing a 65% increase in 5 years period compared to a 41% increase for adequate HL 102 

(unpublished data). The greatest gains have been among Latinos and African Americans. 103 

Data source and participants 104 

Data for this study were extracted from the KPNC Diabetes Registry (N~320,000, as of 01/01/2017). Our 105 

sampling frame includes >1 million SMs generated by >150,000 ethnically diverse DM patients and >9,000 106 

clinicians from an integrated delivery system - KPNC. We identified the subset of these patients who completed 107 

a survey entitled the Diabetes Study of Northern California (DISTANCE), including providing self-reported HL 108 

(N=14,357) [33-35]. DISTANCE involved a survey of DM patients receiving care from KPNC, oversampling 109 

minority sub-groups to assess the role of socio-demographic factors on quality of care. The variables in 110 

DISTANCE were collected from questionnaires completed via telephone, on-line, or paper and pencil (62% 111 

response rate).  112 

We extracted all the SMs (N=1,050,577) exchanged between a patient and all clinicians from KP’s patient portal 113 

between 01/01/2006 and 12/31/2015. We then identified those SMs that a patient sent to his or her primary care 114 
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physician(s). We also removed all patients whose SM lacked sufficient words (<50 words) to provide linguistic 115 

coverage and patients who did not have matching DISTANCE survey data. We then removed all SMs written in a 116 

language other than English and all SMs identified as written by proxies (i.e., SMs written for the patient by 117 

caregivers) [36]. The final cleaned data consisted of 6,941 patients and 283,216 SMs.  These SMs were collated 118 

into a single file from which we extracted the linguistic features for each patient, aggregating their SMs. These 119 

linguistic features were used to predict HL based on self-reported HL scores obtained from survey data.  120 

Variables 121 

Primary predictors: The Linguistic Features 122 

We used a set of 185 linguistic features, derived from the patients’ SMs sent to their clinicians, to predict patients’ 123 

self-reported HL and create the LPs. We used NLP tools to select features that measure different language aspects, 124 

such as text level information (e.g., number of words in the text, token type ratio), lexical sophistication, syntactic 125 

complexity, text cohesion (e.g., connectives, word overlap), and affect (S1 Table). These linguistic aspects have 126 

previously been shown to predict literacy levels in non-clinical corpora [37-38]. NLP tools used to extract these 127 

features included the Tool for the Automatic Assessment of Lexical Sophistication (TAALES) [39-40], the Tool 128 

for the Automatic Analysis of Cohesion (TAACO) [41], the Tool for the Automatic Assessment of Syntactic 129 

Sophistication and Complexity (TAASSC) [42-43], the SEntiment ANalysis and Cognition Engine (séance) [44], 130 

and the Writing Assessment Tool (WAT) [45-46].  131 

Dependent Variable(s): Self-Reported Health Literacy   132 

As a gold standard, we used combinations of self-reported HL items from DISTANCE survey to compute three 133 

dependent variable versions of predicted self-reported HL. The survey included the following HL measures: self-134 

reported confidence in filling out medical forms (HLCONF), problems in understanding written medical 135 

information (HLPROB), frequency of needing help in reading and understanding health materials (HLHELP); 136 

and an original item: problems understanding prescription labels (HLLABELS) (S2 Table). The first three items 137 

have been previously validated [47]. Patient responses were collected using a 5-point Likert scale in which a 138 

response of 1 referred to “Always” and a response of 5 to “Never.” For our analyses, we combined these items to 139 

create different self-reported variables to be able to compare the performance of the linguistic features against 140 
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different computations of self-reported HL (i.e., combined HL [HLCOMB], trinary summed HL [HLSUMTri], 141 

and average HL [HLAVG]; see S2 Table for definitions and computation of these variables).  142 

HLCOMB considers binary forms of three self-reported HL measures (HLPROB2, HLCONF2, and HLHELP2 143 

in Appendix 2); a ‘zero’ score indicates that a patient reports no HL limitations and a ‘one’ that a patient reports 144 

limited HL on any one of the three items. HLSUMTri is a trinary variable computed by summing the Likert scale 145 

values obtained for HLPROB, HLCONF, and HLHELP. The HLSUMTri variable had three possible values 146 

ranging between 0 and 2. Zero (0) indicates a patient with limited HL, whereas one (1) and two (2) represent a 147 

patient with marginal and adequate HL, respectively. The HLAVG scores were computed by taking the mean of 148 

HLPROB, HLHELP, HLCONF, and HLLABELS (S2 Table). 149 

Dependent Variable(s): Health Outcomes 150 

Using data derived from the EHR, we examined medication adherence based on continuous medication gaps 151 

(CMG) [48-49], a validated adherence measure of percent time with insufficient medication supply; 152 

hypoglycemia (a side effect of DM treatment that can be a marker for poor communication); Hemoglobin A1c 153 

(an integrated measure of blood sugar control); and Charlson index [50-51] (a measure of comorbidity and 154 

illness severity). Comorbid illness was measured with the Deyo version of the Charlson comorbidity index [52]. 155 

We considered patients to have poor adherence if CMG>20% and adequate adherence when CMG≤20% [53]. 156 

A1c was based on the most recent value collected after the first SM sent since DISTANCE survey completion, 157 

and CMG, severe hypoglycemia and Charlson index were measured the year before the first SM was sent. The 158 

occurrence of any hypoglycemia-related ED visit or hospitalization was based on a validated algorithm [54] (any 159 

of the following ICD-9 codes: 251.0, 251.1, 251.2, 962.3, or 250.8, without concurrent 259.8, 272.7, 681.XX, 160 

682.XX, 686.9X, 707.1-707.9, 709.3 730.0-730.2, or 731.8 codes). Another set of analysis was conducted for 161 

health service utilization, using outpatient clinic visits, emergency room encounters and hospitalizations. 162 

Statistical analysis 163 

Analyses were conducted to develop three LPs using several supervised ML algorithms [55-59]. We examined 164 

links between three summed self-reported HL variables (HLCOMB, HLSUMTri, and HLAVG) and the 185 165 

linguistic predictor variables extracted using the linguistic tools. To perform binary classification, we categorized 166 

the summed self-reported HL scores into discrete levels (limited vs. high HL). We trained ML models, including 167 
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linear discriminant analysis (LDA), support vector machines (SVM), random forests, and artificial neural 168 

networks on 70% of the data and tested the model performance on the remaining 30%. In all cases, linguistic 169 

features were used to predict the discrete HL levels. Several metrics such as accuracy, sensitivity, specificity, 170 

positive and negative predictive values (PPV and NPV), and C-statistic (area under the receiver operator 171 

characteristic (ROC) curves) were used as measures of model performance using a split sample approach. The 172 

resulting LPs were subsequently validated against self-reported HL items previously collected from the patients 173 

via in the DISTANCE survey [34], and the HL-sensitive health outcomes obtained from administrative data from 174 

the EHR, described above. We discuss the results of the three models that performed the best for each of the 175 

dependent variables. 176 

Lastly, to examine whether the ML approaches resulted in patterns similar to those reported in prior literature on 177 

self-reported and directly measured HL, we examined bivariate associations between each of the LP models and 178 

demographic, health outcome and healthcare utilization variables using a two-sided p-value at the 0.05 level of 179 

significance. Categorical variables such as sex, race, continuous medication gaps [53] and severe hypoglycemia 180 

were analyzed using chi-square analysis. Mean comparisons were conducted using t-tests for A1c, Charlson 181 

(comorbidity) index [50], healthcare utilization rates.  182 

 183 

RESULTS 184 

Aggregated Health Literacy Measures 185 

The first analysis to create an LP modeled HLCOMB as the dependent variable. The data for HLCOMB were 186 

distributed uniformly, with 3,229 patients having high HL (or no HL limitations), and 3,712 limited HL. The LDA 187 

model performed the best for this version of the LP, achieving an accuracy of 60.55% and a C-statistic of 0.63 for 188 

the test data (Table 1; bold entries indicate the highest value for a given metric within an LP).  189 

The second analysis considered HLSUMTri as the dependent variable to create an LP. Since the HLSUMTri 190 

variable had three possible values (classes), we used multiclass classification. The accuracy of the models was 191 

lower and ranged between 50.67% and 54.23%. SVM achieved the highest accuracy. However, SVM classified all 192 

the instances as marginal or adequate HL. To determine how these algorithms performed using binary 193 
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classification, we combined the inadequate (0) and marginal (1) HL instances and re-classified these as limited 194 

(0+1) HL, while the high (2) HL cases were retained. In binary classification, the LDA model performed the best, 195 

and the results for these models were better than the multiclass classification results. The LDA model achieved an 196 

accuracy of 63.58% and a C-statistic of 0.61. However, the C-statistic was lower than the LDA model of the LP 197 

trained using HLCOMB, as was its sensitivity (39.32% vs. 56.10%, Table 1). 198 

For the third analysis, we considered the HLAVG scores as the dependent variable to create an LP. The data set 199 

included 3,173 limited HL and 3,768 high HL instances. Accuracy and other metrics were observed for the SVM 200 

version of this LP:  accuracy and c-statistic for SVM model were 62.52% and 0.74 respectively. While the 201 

specificity was lower, it achieved the greatest balance in PPV and NPV (Table 1). 202 

Table 1: Classification metric statistics of models for different self-reported Literacy Profiles (Positive class: High HL) 203 
ML 

Algorithm 

for 

Literacy 

Profiles 

 Literacy 

Profile 

(Dependent 

Variable) 

Accuracy 
C-

statistic 
Sensitivity Specificity 

Positive 

Predictive 

Value 

(PPV) 

Negative 

Predictive 

Value 

(NPV) 

# of Predicted 

limited vs high 

HL* 

LDA HLCOMB 60.55 0.63 56.10 64.42 57.83 62.78 1142 / 939 

LDA HLSUMTri 63.58 0.61 39.32 79.32 55.23 66.82 1498 / 583 

SVM HLAVG 62.52 0.74 75.49 47.11 62.91 61.79 725 / 1356 

* The numbers are a function of sample size for test set only 204 

 205 

Linguistic Characteristics 206 

The LP models generally showed that patients with predicted limited HL produced messages having fewer 207 

words, and those words were less sophisticated (i.e., more concrete) and demonstrated less lexical diversity (i.e., 208 

greater repetition of words). Additionally, patients with limited predicted HL produced more words that 209 

expressed negative affect (i.e., more words related to failure and fewer positive words). Lastly, limited predicted 210 

HL patients focused less on personal language, using a greater incidence of third person pronouns and fewer first 211 

person pronouns. 212 

Demographics 213 

The average age of our study population at the time of the DISTANCE study was 56.8 (±10); 54.3% were male 214 

and 32.2% were white. When applying the ML model-derived LPs to the validation dataset, we found patterns 215 

that matched previously observed relationships between patient characteristics and HL. For example, patients 216 
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identified by the LPs to have limited HL were 1-3 years older than high HL patients. In addition, 70.8-76.1% of 217 

the predicted limited HL patients were non-white, compared to 59.9-63.5% of high HL patients (Table 2), and 218 

84.7-88.7% of patients with predicted limited HL had high school diplomas compared to 93.4-95% of patients 219 

with high HL. 220 

Table 2: Demographics (Sex %, Race % and Age – Mean (SD)) 221 

ML 

Algorithm 

for 

Literacy 

Profiles 

Literacy 

Profile 

(Dependent 

Variable) 

Sex - Men % Race – White % Age at Survey – Mean (SD) 

P-value Limited 

HL 

High 

HL 

P-

value 

Limited 

HL 

High 

HL 
Limited HL High HL 

LDA HLCOMB 54.9 53.7 0.32 25.5 40.0 57.91 (10.0) 55.53 (9.66) < 0.001 

LDA HLSUMTri 55.8 53.6 0.08 29.2 40.1 57.34 (10.0) 55.43 (9.50) < 0.001 

SVM HLAVG 53.6 56.2 0.06 23.9 36.5 58.88 (9.98) 55.74 (9.74) < 0.001 

 222 

Health Outcomes 223 

To evaluate whether the LP scores were associated with health outcomes in the anticipated directions, we linked 224 

these modeled LP scores to outcomes previously found to be associated with measured HL. The results for 225 

medication adherence for LP models using HLCOMB and HLSUMTri lacked significance, whereas the model for 226 

HLAVG was statistically significant (Table 3). Patients with limited HL based on this LP were more likely to have 227 

poor medication adherence than high HL patients (24.5%-25.6% vs. 23.2%-23.4%). Patients predicted to have 228 

limited HL had higher severe hypoglycemia rates in all the models, with SVM distinguishing the most. In sum, the 229 

SVM version of the LP HLAVG appeared to be the LP that performed best. 230 

Table 3: Poor adherence and Hypoglycemia (%) 231 
ML 

Algorithm for 

Literacy Profiles 

Literacy Profile 

(Dependent 

Variable) 

Poor medication adherence (%) Severe Hypoglycemia (%) 
Limited 

HL 
High 

HL 
P-value 

Limited 

HL 
High 

HL 
P-value 

LDA HLCOMB 24.9 23.3 0.143 4.0 2.0 < 0.001 
LDA HLSUMTri 24.5 23.2 0.296 3.5 2.1 < 0.001 
SVM HLAVG 25.6 23.4 0.047 5.1 2.0 < 0.001 

 232 

Table 4 shows that patients predicted to have limited HL as measured by the LP HLAVG had poorer glycemic 233 

control. Patients with predicted limited HL had higher prevalence of comorbid conditions compared to those with 234 

high HL (up to 0.63 more on Charlson score). Again, the SVM version of the LP HLAVG appeared to be the LP 235 

that performed best.  236 
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 237 
 238 
 239 

Table 4: A1c and Charlson Index - Mean (SD) 240 

 241 

Healthcare Service Utilization 242 

Finally, analyses of healthcare service utilization rates demonstrated that patients with predicted limited HL had on 243 

average 10 outpatient clinic visits annually, compared to an average of 8 to 9 among patients with high HL. 244 

Similar differences were found for emergency room visits (0.53 vs 0.31) and inpatient hospitalizations (0.25 vs 245 

0.13; see Table 5). These were significant for all models, although the differences in emergency room visits and 246 

inpatient hospitalizations were most robust for the SVM HLAVG version. 247 

Table 5: Healthcare Service Utilization (outpatient clinic visit, emergency room encounter and hospitalization – Mean (SD)) 248 

ML 

Algorithm for 

Literacy Profiles 

Literacy 

Profile 

(Dependent 

Variable) 

Outpatient clinic visit ED visits Hospitalization 

P-value 
Limited HL High HL 

Limited 

HL 
High HL 

Limited 

HL 
High HL 

LDA HLCOMB 10.02 (10.4) 8.76 (8.76) 0.46 (1.07) 0.30 (0.75) 0.21 (0.68) 0.13 (0.51) < 0.001 

LDA HLSUMTri 9.69 (10.0) 8.79 (8.81) 0.42 (1.00) 0.31 (0.75) 0.19 (0.63) 0.14 (0.56) < 0.001 

SVM HLAVG 10.29 (10.7) 9.01 (9.16) 0.53 (1.20) 0.31 (0.76) 0.25 (0.73) 0.13 (0.54) < 0.001 

 249 

DISCUSSION 250 

The objective of the study was to examine the extent to which HL can be estimated through the linguistic 251 

features of DM patients’ secure messages. We compared three LPs modeled from different derivations of 252 

patients’ self-reported HL using multiple ML algorithms to determine the LP that best predicted self-reported 253 

HL. The SVM LP model for HLAVG performed quite well for all the metrics except specificity, and it generated 254 

the best balance with respect to PPV and NPV. In addition, HLAVG predicted that about 1/3 of patients have 255 

limited HL, consistent with prior research. With respect to confirmation of previous correlations between 256 

accepted measures of HL and health outcomes, the LP derived from the HLAVG SVM model also performed the 257 

best.  258 

ML 

Algorithm for 

Literacy Profiles 

Literacy Profile 

(Dependent 

Variable) 

A1c Charlson Index 

Limited HL High HL P-value Limited HL High HL P-value 

LDA HLCOMB 7.51 (1.56) 7.48 (1.50) 0.371 2.44 (1.78) 1.99 (1.39) < 0.001 

LDA HLSUMTri 7.50 (1.54) 7.49 (1.52) 0.786 2.34 (1.71) 1.94 (1.34) < 0.001 

SVM HLAVG 7.55 (1.57) 7.47 (1.51) 0.038 2.65 (1.91) 2.02 (1.41) < 0.001 
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Overall, we found that several linguistic features that measure different language aspects of SMs derived from 259 

electronic patient portals yielded models that predicted self-reported HL with a modest but acceptable degree of 260 

accuracy. Together, these features, including less sophisticated and less positive language, provide us with a 261 

language profile of limited HL patients. While the linguistic features we included have been previously studied 262 

to classify literacy [37-38], the texts that have been assessed have not been derived from e-mail messages. We 263 

found that combinations of language features can be applied to SMs to successfully distinguish patients based on 264 

self-reported metrics of HL. To our knowledge, this represents the first successful attempt to use NLP to identify 265 

patients who have higher likelihoods of self-reported limited HL and vulnerability to worse health outcomes. 266 

The ultimate goal of this work is to develop tools to improve communication between clinicians and patients so 267 

as to foster “shared meaning”. Measuring HL has traditionally been extremely challenging at both the individual 268 

and population levels, given the time and personnel demands intrinsic to current HL measurement approaches. 269 

An automated LP could provide an efficient means to help identify the subpopulation of patients with limited 270 

HL. Given that limited HL is an important and potentially remediable factor influencing the incidence of, 271 

complication rates of, and mortality from DM and other chronic diseases, developing a valid method for rapid 272 

HL assessment likely represents a significant accomplishment with potentially broad public health and clinical 273 

benefits. For instance, identifying patients with potentially limited HL could prove useful for alerting physicians 274 

about potential difficulties in comprehending written instructions.  This lack of comprehension is particularly 275 

critical when there are significant drug safety concerns, e.g., anticoagulants and insulin. Additionally, patients 276 

identified as having limited HL could be flagged to receive follow up communications to ensure understanding 277 

of medication instructions and adherence. 278 

Limitations 279 

Our study has important limitations. While our patient sample was large and ethnically diverse, and we studied a 280 

large number of patients’ SMs, we were only able to analyze those patients who had engaged in SM with their 281 

clinicians. As such, the SM-based method used in this study can only be applied to patients who use SM. 282 

However, recent data suggest that patients with limited HL are accelerating in their use of patient portals, and 283 

over 2/3 of Kaiser diabetes patients with limited HL now use the patient portal. In addition, we limited the study 284 
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to only English SMs, excluded second language patients who may have limited HL. At the time of this study, 285 

KPNC did not have a Spanish language portal.  286 

Our future research will compare performance of these LP models with novel LPs derived from (a) linguistic 287 

expert ratings of SMs and (b) existing linguistic indices that estimate literacy; we will examine the relative 288 

performance of these LPs in safety net healthcare systems, as well as in patient populations with conditions other 289 

than DM. In addition, while limited HL is more heavily concentrated in safety net healthcare settings, this phase 290 

of our research involved a fully insured population (Kaiser Permanente) because of the availability of extensive 291 

linguistic and health-related data. However, Kaiser Permanente has a sizable Medicaid population, and over ¼ of 292 

their patients have limited HL [4, 47]. Moreover, Kaiser Permanente members are ethnically diverse and largely 293 

representative of the U.S. population, with the exception of extremes of income. Finally, while our cross-294 

sectional bivariate analyses with respect to health outcomes were confirmatory, future work will utilize 295 

longitudinal data to examine the extent to which LPs may be causally associated with changes in health. 296 

CONCLUSION 297 

Population management is increasingly incorporating predictive models and derived scores as a means of risk 298 

stratifying and targeting care. Our LPs offer healthcare delivery systems a novel, automated, and economical way 299 

to identify the subset of patients who have higher likelihoods of having limited HL. Based on our results, we 300 

recommend that researchers and health system planners interested in using NLP to identify limited HL use the 301 

version of the LP that we have named SVM HLAVG. The LP-derived information could be used to tailor and 302 

target both communication and clinical interventions at the health system level. In addition, LPs could be 303 

employed as a provider alert in the EHR to improve individual-level communication, or could be harnessed to 304 

provide automated feedback to clinicians as they are composing SMs. Insofar as the subset of patients using SM 305 

is large and rapidly growing, a literacy profile will soon be calculable on the majority of patients. While the LP is 306 

only a proxy for actual barriers to health-related communication, our research demonstrates that LPs are 307 

modestly associated with both self-reported HL as well as health outcomes previously shown to be sensitive to 308 

HL (e.g., medication adherence, Hemoglobin A1c, hypoglycemia, comorbidities, and utilization). Our future 309 

work will (1) compare alternative methods to estimate HL, including those derived from expert ratings and 310 

previously validated linguistic indices, (2) develop similar measures for clinicians’ SMs to measure linguistic 311 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 3, 2018. ; https://doi.org/10.1101/406876doi: bioRxiv preprint 

https://doi.org/10.1101/406876


 13 

discordance with patients, (3) determine if automated feedback to clinicians improves SM linguistic 312 

concordance, and (4) extend this research to safety net healthcare settings. 313 
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