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The internal representations of early deep artificial neural net-
works (ANNs) were found to be remarkably similar to the in-
ternal neural representations measured experimentally in the
primate brain. Here we ask, as deep ANNs have continued to
evolve, are they becoming more or less brain-like? ANNs that
are most functionally similar to the brain will contain mecha-
nisms that are most like those used by the brain. We therefore
developed Brain-Score – a composite of multiple neural and be-
havioral benchmarks that score any ANN on how similar it is to
the brain’s mechanisms for core object recognition – and we de-
ployed it to evaluate a wide range of state-of-the-art deep ANNs.
Using this scoring system, we here report that: (1) DenseNet-
169, CORnet-S and ResNet-101 are the most brain-like ANNs.
(2) There remains considerable variability in neural and behav-
ioral responses that is not predicted by any ANN, suggesting
that no ANN model has yet captured all the relevant mecha-
nisms. (3) Extending prior work, we found that gains in ANN
ImageNet performance led to gains on Brain-Score. However,
correlation weakened at ≥ 70% top-1 ImageNet performance,
suggesting that additional guidance from neuroscience is needed
to make further advances in capturing brain mechanisms. (4)
We uncovered smaller (i.e. less complex) ANNs that are more
brain-like than many of the best-performing ImageNet models,
which suggests the opportunity to simplify ANNs to better un-
derstand the ventral stream. The scoring system used here is far
from complete. However, we propose that evaluating and track-
ing model-benchmark correspondences through a Brain-Score
that is regularly updated with new brain data is an exciting op-
portunity: experimental benchmarks can be used to guide ma-
chine network evolution, and machine networks are mechanistic
hypotheses of the brain’s network and thus drive next experi-
ments. To facilitate both of these, we release Brain-Score.org:
a platform that hosts the neural and behavioral benchmarks,
where ANNs for visual processing can be submitted to receive a
Brain-Score and their rank relative to other models, and where
new experimental data can be naturally incorporated.
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Introduction
Deep convolutional artificial neural networks (ANNs) (LeCun
et al., 2015) were derived in part from findings in visual neu-

roscience (see Yamins and DiCarlo (2016) for review) and
are now the leading models in machine vision and other areas
of AI. Soon after Krizhevsky et al. (2012)’s initial results,
it was found that by evolving deep ANNs to achieve gains
in performance (through either architecture search or weight
training), those ANNs developed internal feature represen-
tations that are remarkably similar to neural representations
recorded in mid and high levels of the non-human primate
ventral visual processing stream (Yamins et al., 2013, 2014;
Khaligh-Razavi and Kriegeskorte, 2014) (see Yamins and Di-
Carlo (2016) for review). More recent work has extended this
same "performance-driven" ANN approach to the human vi-
sual system (Güçlü and van Gerven, 2015; Cichy et al., 2016;
Kubilius et al., 2016), to lower levels of visual processing (Ca-
dena et al., 2017), to auditory processing (Kell et al., 2018),
and to the rodent tactile system (Zhuang et al., 2017).
The models from this early work outlined above outperformed
all other neuroscience models at the time and yielded rea-
sonable scores on predicting response patterns from both sin-
gle unit activity and fMRI. It was also suggested that ANNs
with improved task performance were likely to be even better
matches to the primate visual stream (Yamins et al. (2014);
Yamins and DiCarlo (2016)). We thus ask, as model perfor-
mance has increased from Alexnet’s 57.67% top-1 on Ima-
geNet to up to 85.4% (Mahajan et al., 2018)1 today, are these
even better models of the primate visual stream?
To answer this question, we here propose Brain-Score to eval-
uate any ANN on how brain-like it is – focusing on the parts of
the brain that have been implicated in visual object recognition.
Brain-Score is a composite benchmark consisting of neural
and behavioral benchmarks, where each benchmark refers
to the application of a metric to a particular dataset. Neural
metrics assess the similarity of internally observable signals:
image-evoked feature activations in ANNs and image-evoked
recorded neural activations in different primate brain regions.
Behavioral metrics assess the similarity of the "outputs" of
ANNs and primates, such as predictions on match-to-sample
tasks. For this study, we assembled a base set of neural and be-

1This model was unfortunately unavailable at the time of writing and we
thus excluded it from the following analyses. The best ImageNet model
included here is PNASNet with 82.9% top-1 performance.
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havioral benchmarks: neural recordings from cortical areas V4
and IT in macaque monkeys and behavioral data from humans.
We then evaluated dozens of state-of-the-art deep ANNs on
these three brain benchmarks and the resulting Brain-Score.
We note that while neuroscience models have in the past been
influential as building blocks of today’s deep neural networks,
we do not claim that Brain-Score will automatically yield bet-
ter models for machine learning. This is a benchmark for the
brain sciences, encouraging a quantified evaluation of models
on neural and behavioral data. Further, while benchmarking is
common in machine learning, most of neuroscience still lacks
standardized datasets and tools to perform such benchmarks
routinely, and there is little awareness of the benefits of a
rigorous evaluation of proposed models of brain mechanisms.
Brain-Score is our attempt to bridge this gap and provide the
means to track progress in brain-like model development on a
scale that is larger than individual laboratories.
Our main contributions are the following:

• We replicate prior work (Yamins et al., 2014) showing
that ANNs that have higher ImageNet performance tend
to be more functionally similar to the ventral visual
stream, and we extend that work by demonstrating that
many state-of-the-art deep ANNs simultaneously score
well on all three of the brain benchmarks (V4, IT, and
behavior).

• We report that correlation between ImageNet perfor-
mance and neural data prediction is weak for recent
models (i.e. those with ImageNet top-1 performance
≥ 70%), but variability between models appears non-
trivial. In other words, some ANNs appear to predict
neural responses better than others but not because they
perform better on ImageNet.

• We show that an ANN’s ImageNet performance corre-
lates robustly with behavioral metrics, meaning that
the image-by-image patterns of behavior of high-
performing ANNs mostly resemble and predict those
of primates. Similar to predicting neural response data,
there is significant variability among ANNs, and the
ANNs with the highest ImageNet performance (NAS-
Net and PNASNet) predict behavioral data considerably
worse than older models such as ResNet-101.

• We identify DenseNet-169, CORnet-S (a new shallow
recurrent network) and ResNet-101 as the current top
three models of the mechanisms underlying primate ob-
ject recognition (under our current set of benchmarks).

• To enable fast evaluations of neural networks on brain
data, we release a platform, Brain-Score.org, that hosts
the neural and behavioral data and accompanying met-
rics, where ANNs for visual processing can easily be
submitted to receive a Brain-Score and their rank rela-
tive to other models. The Brain-Score and the ranking
of models will be updated regularly as new experimental
benchmarks are added and new ANNs become avail-
able. We also plan to include anatomical benchmarks

in a future update of Brain-Score. This platform can
easily be extended with new data, such as human fMRI
recordings.

Stepping back, we suggest that evaluating and tracking the
anatomical, neural, and behavioral correspondences through
a Brain-Score that is regularly updated with new brain data
is an exciting opportunity: brain measurements can be used
to guide ANN evolution to emulate brain functions not yet
captured by ANNs and to make ANNs that are more human-
like in their patterns of success and failures. For the brain
and cognitive sciences, the ANN that best emulates the brain
simultaneously becomes the current best understanding of how
the brain actually works, and the driver of next experiments.

Brain Benchmarks
In the following section we outline the benchmarks that mod-
els are measured against. A benchmark consists of a metric
applied to a specific set of experimental data, which here can
be either neural recordings or behavioral measurements.

Neural. The purpose of neural metrics is to establish how
well internal representations of a source system (e.g., a neural
network model) match the internal representations in a target
system (e.g., a primate). Unlike typical machine learning
benchmarks, these metrics provide a principled way to prefer
some models over others even if their outputs are identical. We
outline here one common metric, Neural Predictivity, which
is a form of a linear regression.

Neural Predictivity: Image-Level Neural Consistency Neu-
ral Predictivity is used to evaluate how well responses X to
given images in a source system (e.g., a deep ANN) predict
the responses in a target system (e.g., a single neuron’s re-
sponse in visual area IT). As inputs, this metric requires two
assemblies of the form stimuli×neuroid where neuroids can
either be neural recordings or model activations. First, source
neuroids are mapped to each target neuroid using a linear
transformation:

y = Xw+ ε,

where w denotes linear regression weights and ε is the noise in
the neural recordings. This mapping procedure is performed
on multiple train-test splits across stimuli. In each run, the
weights are fit to map from source neuroids to a target neuroid
using training images, and then using these weights predicted
responses y′ are obtained for the held-out images. We used
the neuroids from V4 and IT separately to compute these fits.
To obtain a neural predictivity score for each neuroid, we
compare predicted responses y′ with the measured neuroid
responses y by computing the Pearson correlation coefficient
r:

r =
∑n
i=1(yi−y)(y′i−y′)√∑n
i=1(yi−y)2(y′i−y′)2

(1)

A median over all individual neuroid neural predictivity values
(e.g., all measured target sites in a target brain region) is
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Figure 1: Overview of the Brain-Score. We compare neural networks using two classes of metrics: neural metrics compare the internal activations to regions of the macaque
ventral stream, and behavioral metrics compare the similarity in outputs. Brain-Score is correlated with ImageNet performance for small, randomly combined models (gray
dots) but becomes weak for current state-of-the-art models (green dots) at≥ 70% top-1 performance.

computed to obtain a predictivity score for that train-test split
(median is used since responses are typically distributed non-
normally). The final neural predictivity score for the target
brain region is computed as the mean across all train-test
splits.

We further estimate the internal consistency between neural
responses by splitting neural responses in half across repeated
presentations of the same image and computing Spearman-
Brown-corrected Pearson correlation coefficient (Eq. 1) be-
tween the two splits across images for each neuroid.

In practice, we found that standard linear regression is
comparably slow given a large dimensionality of the
source system and not sufficiently robust. Thus, following
Yamins et al. (2014), we use a partial least squares (PLS) re-
gression with 25 components. We further optimized this
procedure by first projecting source features into a lower-
dimensional space using principal components analysis. The
projection matrix is obtained for the features of a selection

of ImageNet images, so that the projection is constant across
train-test splits. This projection matrix is then used to trans-
form source features. Results reported here were obtained
by retaining 1000 principal components from the feature re-
sponses per layer to 1000 ImageNet validation images that
captured the most variance of a source model.

Neural Recordings The neural dataset currently used in
both neural benchmarks included in this version of Brain-
Score is comprised of neural responses to 2,560 naturalistic
stimuli in 88 V4 neurons and 168 IT neurons (cf. Fig. 1),
collected by Majaj et al. (2015). The image set consists of
2,560 grayscale images in eight object categories (animals,
boats, cars, chairs, faces, fruits, planes, tables). Each category
contains eight unique objects (for instance, the “face” cate-
gory has eight unique faces). The image set was generated by
pasting a 3D object model on a naturalist background. In each
image, the position, pose, and size of an object was randomly
selected in order to create a challenging object recognition
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task both for primates and machines. A circular mask was
applied to each image (see Majaj et al. (2015) for details on
image generation).
Two macaque monkeys were implanted three arrays each,
with one array placed in area V4 and the other two placed
on the posterior-anterior axis of IT cortex. The monkeys
passively observed a series of images (100 ms image duration
with 100 ms of gap between each image) that each subtended
approximately 8 deg visual angle. To obtain a stable estimate
of the neural responses to each image, each each image was
re-tested about 50 times (re-tests were randomly interleaved
with other images). In the benchmarks used here, we used an
average neural firing rate (normalized to a blank gray image
response) in the window between 70 ms and 170 ms after
image onset where the majority of object category-relevant
information is contained (Majaj et al., 2015).

Behavioral. The purpose of behavioral benchmarks it to com-
pute the similarity between source (e.g., an ANN model) and
target (e.g., human or monkey) behavioral responses in any
given task. For core object recognition tasks, primates (both
human and monkey) exhibit behavioral patterns that differ
from ground truth labels. Thus, our primary benchmark here
is a behavioral response pattern metric, not an overall accuracy
metric, and higher scores are obtained by ANNs that produce
and predict the primate patterns of successes and failures. One
consequence of this is that ANNs that achieve 100% accuracy
will not achieve a perfect behavioral similarity score.
Even within the visual behavioral domain of core object recog-
nition, there are many possible behavioral metrics. We here
use the metric of the image-by-image patterns of difficulty,
broken down by the object choice alternatives (termed I2n),
because recent work (Rajalingham et al., 2018) suggests that
it has the most power to distinguish among alternative ANNs
(assuming that sufficient amounts of behavioral data are avail-
able).

I2n: Normalized Image-Level Behavioral Consistency
Source data (model features) for a total of i images are trans-
formed first into a ib× c matrix of c object categories and
ib images with behavioral data available using the following
procedure. First, images where behavioral responses are not
available (namely, i− ib images) are used to build a c-way
logistic regression from source data to a c-value probability
vector for each image, where each probability is the probabil-
ity that a given object is in the image. This regression is then
used to estimate probabilities for the held-out ib images. For
each image, all normalized target-distractor pair probabilities
are computed from the c-way probability vector. For instance,
if an image contains a dog and the distractor is a bear, the
target-distractor score is p(dog)

p(dog)+p(bear) .
In order to compare source and target data, we first transform
these raw accuracies in the ib × c response matrix to a d′

measure for each cell in the ib× c matrix:

d′ = Z(Hit Rate)−Z(False Alarms Rate),
where Z is the estimated z-score of responses, Hit Rate is
the accuracy of a given target-distractor pair while the False

Alarms Rate corresponds to how often the observers incor-
rectly reported seeing that target object in images where an-
other object was presented. For instance, if a given image
contains a dog and distractor is a bear, the Hit Rate for the
dog-bear pair for that image comes straight from the ib× c
matrix, while in order to obtain the False Alarms Rate, all
cells from that matrix that did not have dogs in the image but
had a dog as a distractor are averaged, and 1 minus that value
is used as a False Alarm Rate. All d′ above 5 were clipped.
This transformation helps to remove bias in responses and
also to diminish ceiling effects (since many primate accura-
cies were close to 1), but empirically observed benefits of d′

in this dataset are small; see Rajalingham et al. (2018) for a
thorough explanation.
The resulting response matrix is further refined by subtracting
the mean Hit Rate across trials of the same target-distractor
pair (e.g., for dog-bear trials, their mean is subtracted from
each trial). Such normalization exposes variance unique to
each image and removes global trends that may be easier for
models to capture. For instance, dog-bear trials on average
could have been harder than dog-zebra trials. Without this
normalization, a model might score very well by only cap-
turing this tendency. After normalization, all responses are
centered around zero, and thus capturing only global trends
but not each image’s idiosyncrasies would be insufficient for
a model to rank well.
After normalization, a Pearson correlation coefficient rst be-
tween source and target data is computed using Eq. 1. We
further estimate noise ceiling, that is, how well an ideal model
could perform given the noise in the measured behavioral
responses, by dividing target data in half across trials, com-
puting the normalized d′ ib× c matrices for each half, and
computing the Pearson correlation coefficient rtt between the
two halves. If source data is produced by a stochastic process,
the same procedure can be carried out on the source data,
resulting in the source’s reliability rss.
The final behavioral predictivity score of each ANN is then
computed by:

r = rst√
rssrtt

All models that we tested so far produced deterministic re-
sponses, thus rss = 1 in our scoring.

Primate behavioral data The behavioral data used in the
current round of benchmarks was obtained by Rajalingham
et al. (2015) and Rajalingham et al. (2018). Here we focus
on only the human behavioral data, but the human and non-
human primate behavioral patterns are very similar to each
other (Rajalingham et al., 2015, 2018).
The image set used in this data collection was generated in
a similar way as the images for V4 and IT using 24 object
categories. In total, the dataset contains 2,400 images (100
per object). For this benchmark, we used 240 (10 per object)
of these images for which the most trials were obtained. 1,472
human observers responded to briefly presented images on
Amazon Mechanical Turk. At each trial, an image was pre-
sented for 100 ms, followed by two response choices, one
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corresponding to the target object present in the image and the
other being one of the remaining 23 objects (i.e., a distractor
object). Participants responded by choosing which object was
presented in the image. Thus, over three hundred thousand re-
sponses for each target-distractor pair were obtained from mul-
tiple participants, resulting in a 240 (images)× 24 (objects)
response matrix when averaged across participants.

Brain-Score. To evaluate how well a model is doing overall,
we computed the global Brain-Score as a composite of neural
V4 predictivity score, neural IT predictivity score, and behav-
ioral I2n predictivity score (each of these scores was computed
as described above). The Brain-Score presented here is the
mean of the three scores. This approach does not normalize
by different scales of the scores so it may be penalizing scores
with low variance but it also does not make any assumptions
about significant differences in the scores, which would be
present in ranking.

Candidate Models
For this round of evaluations, we sought to bench-
mark most commonly used neural network families:
AlexNet (Krizhevsky et al., 2012), VGG (Simonyan and Zis-
serman, 2014), ResNet (He et al., 2015), Inception (Szegedy
et al., 2015a,b, 2016), InceptionResNet (Szegedy et al.,
2016), SqueezeNet (Iandola et al., 2016), DenseNet (Huang
et al., 2017), MobileNet (Howard et al., 2017), and
(P)NASNet (Zoph and Le, 2016; Liu et al., 2017). Most
of pre-trained models were available in TensorFlow (Abadi
et al., 2016), either via their Keras (Chollet et al., 2015) or
Slim interface. For AlexNet, SqueezeNet, ResNet-18 and
ResNet-34, we used their PyTorch implementation (Paszke
et al., 2017).
To further map out the space of possible architectures and
a baseline of neural, behavioral, and performance scores,
we included an in-house-developed family of models with
up to moderate ImageNet performance, termed BaseNets:
lightweight AlexNet-like architectures with six convolutional
layers and a single fully-connected layer, captured at vari-
ous stages of training. Various hyperparameters were varied
between BaseNets, such as the number of filter maps, non-
linearities, pooling, learning rate scheduling, and so on, and
formed a basis for the CORnet family of models (Kubilius
et al., 2018b).
We also tested CORnet-S, a new model that was developed
with the goal of rivaling the best models on Brain-Score while
being significantly shallower than competitors by leveraging
bottleneck architecture and recurrence (Kubilius et al., 2018b).
CORnet-S is composed of four recurrent areas with two to
three convolutions each and a fully-connected layer at the end.
For Neural Predictivities, we used activations at multiple inter-
nal layers of the networks. Layers were pre-selected by hand
to include layers at multiple depths in each model and respect-
ing the natural structuring (e.g., the outputs of a ResNet block
were used, not the internal activations within the block). To
keep the regression manageable, features were further down-
sampled with PCA to 1,000 dimensions. After testing every

layer on both V4 and IT, we report the model’s score as the
score of the best layer per region. Going forward, we are
imagining more flexible methods for mapping model layers to
brain regions, such as combining the activations of multiple
layers. For CORnet-S, which already commits to a mapping
to brain regions, we use the pre-defined mapping of the model.
Behavioral scores were obtained using the final pre-readout
layer of a network (i.e., the layer just before the last
weight layer after which features are transformed into 1,000-
dimensional outputs specific to the ImageNet task). In this
case, features were not downsampled because typically dimen-
sionality of the readout layer was sufficiently low to compute
the scores quickly.

Results
We examined a wide range of deep neural network trained on
ImageNet and compared their internal representations with
neural recordings in non-human visual cortical areas V4 and
IT and with human behavioral measurements.

Ranking of state-of-the-art networks. Table 1 summa-
rizes the scores for each model on the range of brain bench-
marks. The Brain-Score against ImageNet performance is
shown in Fig. 1. The strongest model under our current set
of benchmarks is DenseNet-169 with a Brain-Score of .549,
closely followed by CORnet-S with a Brain-Score of .544
and ResNet-101 with a Brain-Score of .542. The current top-
performing models on ImageNet from the machine learning
community all stem from the DenseNet and ResNet families
of models. DenseNet-169 and ResNet-101 are also among
the highest-scoring models on the IT neural predictivity and
the behavioral predictivity respectively with scores of .604 on
IT (DenseNet-169, layer conv5_block16_concat) and .378 on
behavior ResNet-101, layer avg_pool). VGG families win V4
with a score of .672 for VGG-19 (layer block3_pool).
The best models from the BaseNet baseline family of models
lag behind the winning models with a Brain-Score of .500 and
a behavioral score of .256 but still perform reasonably well on
V4 (.654) and IT (.592). Several observations for other model
families are also worth noting: while ANNs from the Incep-
tion architectural family improved on ImageNet performance
over subsequent versions, its Brain-Score decreased. Another
natural cluster emerged with AlexNet and SqueezeNet at the
bottom of the ranking: despite reasonable scores on V4 and
IT neural predictivity, their behavioral scores are sub-par.
Interestingly, models that score high on brain data are also not
the ones ranking the highest on ImageNet performance, sug-
gesting a potential disconnect between ImageNet performance
and fidelity to brain mechanisms. For instance, despite its
superior performance of 82.90% top-1 accuracy on ImageNet,
PNASNet only ranks 13th on the overall Brain-Score. Mod-
els with an ImageNet top-1 performance below 70% show a
strong correlation with Brain-Score of .92 (p < 10−14) but
above 70% ImageNet performance, there was no significant
correlation (p >> .05, cf. Fig. 1). To investigate this potential
disconnect further, we next analyzed the specific scores on
neural and behavioral data.
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neural predictivity behavioral top-1 accuracy
Brain-Score model V4 IT predictivity ImageNet

.549 densenet-169 .663 .606 .378 75.90

.544 cornet_s .650 .600 .382 74.70

.542 resnet-101_v2 .653 .585 .389 77.00

.541 densenet-201 .655 .601 .368 77.00

.541 densenet-121 .657 .597 .369 74.50

.541 resnet-152_v2 .658 .589 .377 77.80

.540 resnet-50_v2 .653 .589 .377 75.60

.533 xception .671 .565 .361 79.00

.532 inception_v2 .646 .593 .357 73.90

.532 inception_v1 .649 .583 .362 69.80

.531 resnet-18 .645 .583 .364 69.76

.530 nasnet_mobile .650 .598 .342 74.00

.528 pnasnet_large .644 .590 .351 82.90

.528 inception_resnet_v2 .639 .593 .352 80.40

.527 nasnet_large .650 .591 .339 82.70

.527 best mobilenet .613 .590 .377 69.80

.525 vgg-19 .672 .566 .338 71.10

.524 inception_v4 .628 .575 .371 80.20

.523 inception_v3 .646 .587 .335 78.00

.522 resnet-34 .629 .559 .378 73.30

.521 vgg-16 .669 .572 .321 71.50

.500 best basenet .652 .592 .256 47.64

.488 alexnet .631 .589 .245 57.70

.469 squeezenet1_1 .652 .553 .201 57.50

.454 squeezenet1_0 .641 .542 .180 57.50

Table 1: Brain-Scores and individual performances for state-of-the-art models

Scores on individual neural and behavioral bench-
marks. Previous studies observed that models with higher
classification performance tend to better predict neural
data (Yamins et al., 2014). Here we extend that work by
demonstrating that this performance-driven approach holds
in a broad sense when evaluated on multiple deep neural net-
works in a wide range of ImageNet performance regimes, but
fails to produce a network exactly matching the brain when
reaching human performance levels (see Fig. 1). On individual
scores, the correlation of ImageNet performance and Brain-
Score varies substantially (Fig. 2). For instance, V4 single site
responses are predicted best not only by VGG-19 (ImageNet
top-1 performance 71.10%) but also Xception (79.00% top-
1). Similarly, IT single site responses are predicted best by
DenseNet-169 (.606; 75.90% top-1) but even BaseNets (.592;
47.64% top-1) and MobileNets (.590; 69.80% top-1) are very
close to the same IT neural predictivity score. In contrast, the
correlation between ImageNet performance and behavioral
predictivity remains robust with AlexNet (57.50% top-1) or
BaseNets performing substantially worse than the best models.
However, the top-performing models on the behavioral score
are not the state-of-the-art models on ImageNet: ResNet-101
ranks the highest on behavioral score (.389) but has 77.37%
ImageNet top-1 performance, compared to PNASNet that
achieves higher ImageNet performance (82.90% top-1) but
a substantially lower behavioral score (.351). In fact, the
correlation between ImageNet top-1 performance and behav-

ioral score appears to be weakening, with models perform-
ing well on ImageNet exhibiting little correlation to behav-
ioral scores, suggesting that better consistency with behav-
ioral data might not be achieved by continuing the efforts
to push ImageNet performance higher. Overall, despite the
lack of clear trend at high ImageNet performance regimes,
the performance-to-neural correlation is .68 (p < 10−28) in
V4, .80 (p < 10−47) in IT, and performance correlates with
behavior at .93 (p < 10−91).

While all our current predictivity scores only summarize the
average, it is clear that individual image-wise predictions are
misaligned. In particular, out of the total 5,520 images, over
half of the images (3,388, 61.38%) are already relatively well
aligned between PNASNet (the best ImageNet model) and
humans, as measured by no more than a 1d′ difference be-
tween human and model predictions. A substantial number
of images (1,918, 34.75%) are easier for humans than mod-
els (∆d′ > 1), meaning that further performance gains will
simultaneously improve the behavioral score. However, on
some images (214, 3.88%), the model outperforms humans
(∆d′ < −1) which might be desirable in a typical machine
learning challenge but in fact hurts the model’s behavioral
score as it tends to make the model more misaligned from
humans.

We further analyzed the correlation of the neural scores to the
behavioral score to determine the need for all individual bench-
marks. We found that there was a moderate but not perfect
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Figure 2: Predictivities of all models on neural and behavioral benchmarks. We evaluated regions V4 and IT using the neural predictivity as well as behavioral recordings
using I2n. Current best models are: VGG-19 on V4, DenseNet-169 on IT and ResNet-101 on behavior. Notably, DenseNet-169, CORnet-S and ResNet-101 are strong models
on all three benchmarks. Noise ceilings are .892 for V4, .817 for IT and .497 for behavior. Error bars indicate s.e.m.

correlation (.66 for behavior-to-V4 and .86 for behavior-to-
IT) which provides justification for the full composite set of
benchmarks outlined here. Put another way, this result con-
firms that even these first neural scores provide additional
constraints on the mechanisms of the ventral stream beyond
our high-resolution behavioral score.
Current models still fall short of reaching benchmark ceilings:
The best ANN model V4 predictivity score is .663, which is
below the internal consistency ceiling of these V4 data (.892).
The best ANN model IT predictivity score is .604, which is
below the internal consistency ceiling of these IT data (.817).
And the best ANN model behavioral predictivity score is .378,
which is below the the internal consistency ceiling of these
behavioral data (.497).

Discussion
We here present an initial framework for quantitatively com-
paring any artificial neural network to the brain’s neural net-
work for visual processing. With even the relatively small
number of brain benchmarks that we have included so far,
the framework already reveals interesting patterns: It ex-
tends prior work showing that performance correlates with
brain similarity, and our analysis of state-of-the-art networks
yielded DenseNet-169, CORnet-S and ResNet-101 as the cur-
rent best models of the primate visual stream. On the other
hand, we also find a potential disconnect between ImageNet
performance and Brain-Score: many of the best ImageNet
models fall behind other models on Brain-Score, with the
winning DenseNet-169 not being the best ImageNet model,
and even small networks ("BaseNets") with poor ImageNet
performance achieving reasonable scores.
We do not believe that our initial set of chosen metrics is
perfect, and we expect the metrics to evolve in several ways:

By including more data of the same type used here. More
neural sites collected with even the same set of images will
provide more independent data samples, ensuring that models

do not implicitly overfit a single set of benchmarks. Moreover,
more data from more individuals will allow us to better esti-
mate between-participant variability (i.e., the noise ceiling),
establishing the upper bound of where models could possibly
be (see below).

By acquiring the same types of data using new images.
Presently, our datasets use naturalistic images, generated
by pasting objects on a random backgrounds. While these
datasets are already extremely challenging, we will more strin-
gently be able to test model ability to generalize beyond its
training set by expanding our datasets to more classes of
images (e.g., photographs, distorted images (Geirhos et al.,
2018), artistic renderings (Kubilius et al., 2018a), images
optimized for neural responses (Bashivan et al., 2018)).

By acquiring the same types of data from other brain re-
gions. The current benchmarks include V4, IT and behav-
ioral readouts, but visual stimuli are first processed by the
retina, LGN, V1 and V2 in the ventral stream. Including spik-
ing neural data from these regions further constrains models
in their early processing. Moreover, top-down modulation
and control warrants recordings outside the ventral stream in
regions such as PFC.

By adding qualitatively new types of data. Our current set
of neural responses consists of recordings from implanted elec-
trode arrays, but in humans, fMRI recordings are much more
common. Local Field Potential (LFP), ECoG, and EEG/MEG
could also be valuable sources of data. Moreover, good mod-
els of the primate brain should not only predict neural and
behavioral responses but should also match brain structure
(anatomy) in terms of number of layers, their order, connec-
tivity patterns, ratios of numbers of neurons in different areas,
and so on. Finally, to scale this framework to a more holis-
tic view of the brain, adding benchmarks for other tasks and
domains outside of core object recognition is essential.
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By providing better experimental estimates of the ceilings of
each component score. Note that it is still difficult to es-
tablish whether the ANN models are truly plateauing in their
brain similarity – as implied in the results presented above
– or if we are observing the limitations of our experimental
datasets. For instance, neural ceilings only reflect the internal
consistency of individuals neurons and, in that sense, are only
an upper bound on the ceiling. That is, those neural responses
are collected from individual monkeys, and it may be unrea-
sonable to expect a single model to correctly predict every
monkey’s neuron responses. A more reasonable ceiling might
therefore need to reflect the consistency of an average monkey,
leaving individual variabilities aside. However, in typical neu-
roscience experiments, recordings from only two monkeys are
obtained, making it currently impossible to directly estimate
these potentially lower ceilings.
Behavioral ceilings, on the other hand, might not be prone
to such ceiling effects as they are already estimated using
multiple humans responses (i.e. the "pooled" human data,
see Rajalingham et al. (2015, 2018)). However, reaching
consistency with the pooled human behavioral may not be
the only way that one might want to use ANN models to
inform brain science, as the across-subject variation is also an
important aspect of the data that models should aim to inform
on.

By developing new ways to compute the similarity between
models and data. Besides computing neural predictivity,
there are multiple possible ways and particular parameter
choices. Others have used for instance different versions
of linear regression (Agrawal et al., 2014), RDMs (Khaligh-
Razavi and Kriegeskorte, 2014; Cichy et al., 2016) or GLM
(Cadena et al., 2017). We see neural predictivity as the current
strongest form of comparing neural responses because it maps
between the two systems and makes specific predictions on
a spike-rate level. One could also use entirely new types
of comparison, such as precise temporal dynamics of neural
responses that are ignored here, even though they are likely to
play an important role in brain function (Wang et al., 2018), or
causal manipulations that may constrain models more strongly
(Rajalingham and DiCarlo, 2018).

By developing brain scores that are tuned separately for
the non-human primate and the human. Our current set of
benchmarks consist of recordings in macaques and behavioral
measurements in humans and models are thus implicitly as-
sumed to fit both of these primates. We do not believe that one
ANN model should ultimately fit both species, so we imagine
future versions of Brain-Score will treat them separately.

We caution that while Brain-Score reveals that one model is
better than another, it does not yet reveal why that is the case.
Due to current experimental constraints, we are not yet able
to use Brain-Score to actually train a model. Both of these are
key goals of our ongoing work.
To aid future efforts of aligning neural networks and the brain,
we are building tools that allow researchers to quickly get a
sense how their model scores against the available brain data

on multiple dimensions, as well as compare against other mod-
els. Researchers can use our online platform Brain-Score.org
to obtain all available brain data, submit new data and score
their models on standardized benchmarks. The online plat-
form provides an interface for submitting candidate models
which are then automatically run on the current version of all
benchmarks (code open-sourced at github.com/brain-score)
and notify the submitting user about scores.
By providing this initial set of benchmarks we hope to ignite
a discussion and further community-wide efforts around even
better metrics, brain data and models. In this respect, our field
is far closer to the beginning than the end, but it is important
to get started and this is our version of such a start. We
hope that Brain-Score will become a way of keeping track of
computational models of the brain in terms of "how close we
are" and quickly identifying the strongest model for a specific
benchmark.
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