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Abstract

For the assessment of functional interactions between distinct brain regions there is a
great variety of mathematical techniques, with well-known properties, relative merits and
shortcomings; however, the methods that deal specifically with task-based fluctuations in
interareal coupling are scarce, and their relative performance is unclear. In the present ar-
ticle, we compare two approaches used in the estimation of correlation changes between the
envelope amplitudes of narrowband brain activity obtained from magnetoencephalography
(MEG) recordings. One approach is an implementation of semipartial canonical correlation
analysis (SP-CCA), which is formally equivalent to the psychophysiological interactions tech-
nique successfully applied to functional magnetic resonance data. The other approach, which
has been used in recent electrophysiology studies, consists of simply computing linear corre-
lation coefficients of signals from two experimental conditions and taking their differences.
We compared the two approaches with simulations and with multi-subject MEG signals ac-
quired during a visuomotor coordination study. The analyses with simulated activity showed
that computing differences in correlation coefficients (DCC) provided better discrimination
between true coupling changes and spurious effects; on the other hand, SP-CCA resulted
in significant effects around the reference location which were not found with DCC, and
which may be due to field spread. Based on our findings, we recommend the use of DCC for
the detection of task-based changes in connectivity, as it provided better performance than
SP-CCA.
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1 Introduction

Electro- and magnetoencephalography (EEG and MEG, or E/MEG) are among the most
popular medical imaging modalities in studies of brain function and behavior. Especially
when compared with modalities such as functional magnetic resonance (fMRI) and positron
emission tomography (PET), the ability of E/MEG to measure direct electrical brain activ-
ity, coupled with their high temporal resolution (on the order of milliseconds) makes them
an attractive option for the functional neuroimaging community. The latter property, in
particular, allows an accurate analysis in both the time and the frequency domains of the
estimates of electric current densities.

One of the problems in Neuroscience to which E/MEG have been successfully applied,
and that has been drawing increasing attention among researchers within the community,
is functional connectivity, or the detection of interactions between spatially separated brain
regions caused by a given experimental condition (Brookes et al., 2014b; Schoffelen and
Gross, 2014; Hassan et al., 2014). Connectivity investigations based on EEG or MEG data
usually assess interactions between two areas in the brain by comparing a single quantity from
each area, such as amplitude envelope or phase within narrow, well-defined frequency bands,
which is obtained from spectral or spectro-temporal representations of brain current density
estimates. Some of the interaction measures implemented in recent findings dealing with
functional connectivity are: coherence, or the normalized cross-spectral density at a given
frequency (Gross et al., 2001; Nolte et al., 2004; Hipp et al., 2011); phase synchrony, or the
average difference between the instantaneous phases of two narrowband signals (Lachaux
et al., 1999; Palva et al., 2005; Fell and Axmacher, 2011; Belluscio et al., 2012); nested
oscillations, or the coupling between the amplitude of a high-frequency time series and the
phase of a low-frequency one (Canolty et al., 2006; Tort et al., 2010); and the correlation
between the power or the amplitude of time series within specific frequency bands (Liu
et al., 2010; Brookes et al., 2011). Regarding amplitude or power correlations, a recent
methodological development involves the simultaneous comparison of brain activity at several
frequencies between two locations using techniques from multivariate statistical inference
(Soto et al., 2010; Brookes et al., 2012, 2014a), which not only take advantage of the increased
sensitivity of multivariate analysis (Huberty and Morris, 1989), but also use some of its
properties to discard spurious correlations caused by field spread (Schoffelen and Gross,
2009).

Although reports on brain states during rest are becoming more and more popular [e.g.
de Pasquale et al. (2010); Boersma et al. (2011); Lansbergen et al. (2011); Hillebrand et al.
(2012); Marzetti et al. (2013)], typical functional connectivity studies look for correlations
between different areas in the brain during a specific cognitive task (visual, motor and so
on), sometimes using as subjects patients suffering from a given condition, such as autism
or epilepsy. In these studies, if one is interested in verifying the effects in connectivity that
can be exclusively attributed to the task (or condition) under analysis, data can be acquired
during rest (or from control subjects), and the comparison between the two experimental
conditions can be performed either qualitatively (Srinivasan et al., 2007; Hall et al., 2013;
Travis and Wallace, 1999) or with straightforward ANOVA models (Tal et al., 2013; Gootjes
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et al., 2006; Betti et al., 2013; Vardy et al., 2011; Bartolomei et al., 2006; Wada et al., 1998;
Peters et al., 2013; Bettus et al., 2008; Jiang and Zheng, 2006; Peled et al., 2001; Cao and
Slobounov, 2010). While these approaches for comparing conditions are capable of measuring
task- or condition-based modulations in coupling, they do not account for other effects that
might also be detected as fluctuations in correlations (such as variations in signal amplitude
across conditions), which might result in spurious effects.

In Soto and Jerbi (2015), we presented a procedure to find condition- or task-based mod-
ulations in functional connectivity in time series obtained from MEG data, while minimizing
the sources of spurious interactions mentioned in the previous paragraph. Our method was
based on psychophysiological interactions, or PPI (Friston et al., 1997; Gitelman et al., 2003;
O’Reilly et al., 2012), a technique that has been successfully applied in the computation of
coupling changes from fMRI data. PPI implements a multivariate analysis-of-covariance
model (MANCOVA), whereby the degree of linear relationship between two observation ma-
trices X and Y is estimated, allowing a third matrix Z (Seber, 1984; Worsley et al., 2004);
for the purposes of this study, observations X and Y refer to two different spatial locations
in the brain, and the data for these observations come from current density power estimates
at well-defined frequency bands, obtained from several repetitions of a MEG experiment
consisting of two conditions (e.g. task and rest); these matrices are arranged in such a way
that the coupling between them will be high if there is an increase or decrease of functional
connectivity between the two locations from one condition to another. Observation Z, on
the other hand, represents factors that might lead to a spurious coupling between X and Y,
such as fluctuations in current density strength and signal leakage (O’Reilly et al., 2012).
In preliminary tests with simulated and with real MEG recordings, PPI showed the poten-
tial of being a powerful tool for the analysis of task-based modulations in connectivity with
E/MEG.

In this work, we extend our investigation of the performance of PPI in the detection of
coupling changes with MEG signals, directly comparing it with univariate techniques that
have been recently applied to the same problem – e.g. by (Brookes et al., 2016). We perform
the comparison of our multivariate method with univariate techniques by means of simulated
current densities and of real MEG data acquired during a visuomotor coordination study
(Jerbi et al., 2007). The relative merits of both techniques will be ascertained based on
their ability for finding regions with statistically significant coupling modulations and for
identifying the signal frequency bands responsible for these strong effects.

2 Methods

2.1 Data collection

Let us consider that MEG data are acquired while a subject performs an experiment with
two conditions: the task condition and the rest or control condition – generalizations for
more than two conditions can be formulated based on analogous methods dealing with PPI
(McLaren et al., 2012). The experiment is repeated several times for each condition: the
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number of repetitions (trials) for condition 1 is ntrials,1, and for condition 2 is ntrials,2. The
ith trial from the jth condition – i.e. the ith repetition of the experiment for condition j,
j ∈ {1, 2} – will result in a data array Mij (nsensors×ntimepoints) whose rows contain the time
series of the measured magnetic fields at each MEG sensor. The relationship between Mij

and the brain activity array Sij (nsources×ntimepoints), assumed to consist of elemental electric
current sources (dipoles) constrained to the cortical surface and normally oriented to it, is
given by the following linear equation:

Mij = GSij + Nij, (1)

where G (nsensors × nsources) is known as the forward operator or lead field matrix, and Nij

represents noise. The lead field maps the brain current densities onto the sensor space,
and depends on the conductivity and geometry properties of the head; it can be estimated
with simplified spherical head models or with more realistic finite element methods (Wolters
et al., 2006; Mosher et al., 1999). There are several methods to obtain an estimate of
Sij from matrices Mij and G; here, we implement a Tikhonov regularized minimum-norm
inverse solution (Tikhonov and Arsenin, 1977; Okada, 2003):

Ŝij = (G′G + λI)−1G′Mij, (2)

where λ = 10−7 is a regularization parameter, I is the identity matrix, and G′ denotes the
transpose of matrix G. Matrix Ŝij is made of row vectors s̃ijs representing the estimated
current density time series at each location s in the brain. We chose regularized minimum-
norm imaging to compute Ŝ because its implementation is straightforward and because it
requires no assumptions with respect to the number of active brain locations, their size,
and how they interact; however, the methods described here are appropriate to any inverse
solution.

In this study, we are interested in measuring changes in interaction of signal energies
within specific frequency bands between distinct brain regions. With this goal in mind, we
compute the power spectral density (PSD) of the current density estimate s̃ijs at each spatial
location, then average the PSD over six frequency bands: delta (2− 4 Hz), theta (5− 8 Hz),
alpha (8 − 12 Hz), beta (15 − 30 Hz), low-gamma (30 − 60 Hz) and high-gamma (60 − 90
Hz). We chose these bands due to the functional role they play in the somatosensory cortex
(Jerbi et al., 2004), which is expected to be active in tasks such as the one carried out by
subjects during the acquisition of the real MEG data used here (more details below). Thus
each time series s̃ijs results in a row vector pijs with length nfreqs = 6 containing the energy
content of z̃ijs at the six frequency bands of interest. These vectors pijs will be the inputs
to our SP-CCA model.

2.2 Semipartial canonical correlation analysis

For ease of notation, we will omit the index s from now on (e.g. pijs = pij), since the
SP-CCA model will be applied to all spatial locations in the brain. Further, one of the
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locations in the brain is chosen as the reference location, and the activity at this reference
will be compared to that at all other locations. For a given location, we concatenate all
energy estimates from condition 1 (i.e. all pi1) to form matrix P1, and matrix P2 is formed
by concatenating all pi2. In a similar fashion, we create matrices Q1 and Q2 containing of
the energy estimates of the reference location for each condition. The observation matrices
used in SP-CCA are thus:

X =

[
P1

P2

]
; Y =

[
−Q1

Q2

]
; Z =

[
Q1 −1ntrials,1

Q2 1ntrials,2

]
, (3)

where 1N is defined as a N × 1 matrix whose elements are all ones. In our method, we
examine the linear relationship between X and Y, controlling for effects on Y of a third
matrix Z. Matrices X and Y are arranged in such a way that, for instance, an interaction
measure computed from them will be high if a given frequency pair (one from each location)
is strongly correlated in one condition, but strongly anti-correlated in the other. On the other
hand, the configuration of matrix Z seeks to attenuate effects that also yield high interaction
measures but that do not result from actual modulations in coupling: the term

[
Q′1 Q′2

]′
deals with strong correlations between the two locations that do not vary from one condition
to another, while the term

[
1′ntrials,1

1′ntrials,2

]′
compensates strong fluctuations in signal

power (O’Reilly et al., 2012).
The maximum semi partial canonical correlation between X and Y, controlling for Z, is

given by the expression:

ρ = maxa,b(Xa)′(Yob) s.t.

{
||Xa|| = 1
||Yob|| = 1,

(4)

where matrix Yo is the projection of Y onto the orthogonal complement of the subspace
spanned by Z. The solution to this maximization problem yields the following eigenvalue
equations: {

(X′X)−1(X′Yo)(Y
′
oYo)

−1(Y′oX)a = ρ2a
(Y′oYo)

−1(Y′oX)(X′X)−1(X′Yo)b = ρ2b,
(5)

thus the maximum eigenvalue of either (X′X)−1(X′Yo)(Y
′
oYo)

−1(Y′oX) or
(Y′oYo)

−1(Y′oX)(X′X)−1(X′Yo) is the maximum semipartial canonical correlation ρ, and
the corresponding eigenvectors, with size nfreqs×1, are known as the canonical vectors a and
b.

2.3 Difference of correlation coefficients

Let πu
i and π2

v be, respectively, the uth and vth columns of matrices P1 and P2 described in
the previous section; similarly, χ1

u and χ2
v are the uth and vth columns of matrices Q1 and

Q2 (u, v ∈ {1, 2, ..., nfreqs}). Then, in order to estimate the degree of task-based changes in
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coupling between two locations, we can compute the following statistic:

τ = max
u,v

∣∣∣∣ (π1
u)
′χ1

v

||π1
u|| · ||χ1

v||
− (π2

u)
′χ2

v

||π2
u|| · ||χ2

v||

∣∣∣∣ ; (6)

in other words, we calculate, for all possible combinations of frequency bands in the two lo-
cations under study, the difference between their (univariate) correlation coefficients for both
conditions, and take the maximum absolute value (Brookes et al., 2016). For the remainder
of this article, this method to assess interaction modulations will be called Difference of
Correlation Coefficients, or DCC.

2.4 Statistical thresholding

Applying the procedures described in subsections 2.2 and 2.3 to all locations in the brain
(the SP-CCA and DCC methods, respectively), we will have a brain map of ρ (or τ) statis-
tics, reflecting the degree of coupling changes between the reference and every other spatial
location. For either procedure, the first step to determine the locations with a statistically
significant effect is to convert the ρ or τ map into a map of p-values; each p-value is ob-
tained from the probability distribution of the computed statistic at the desired location,
and we find this distribution empirically with a nonparametric resampling method (Nichols
and Holmes, 2002; Pantazis et al., 2005). For the distribution of ρ, we create surrogate
observation matrices that are statistically equivalent to the original X, Y and Z shown in
equation (3) under the null hypothesis Hρ

0 of no coupling modulations (which also implies
that ρ = 0 under Hρ

0 ), obtain from the new matrices a surrogate statistic ρ̃, and repeat
these steps several times; the histogram of all surrogate ρ̃ plus the original ρ will form the
empirical probability distribution for the statistic. In our case, the surrogate models are
constructed by randomly shuffling the rows of matrix X, keeping Y and Z unchanged. We
proceed in a similar fashion to obtain the empirical distribution of τ , using equation (6)
to compute the surrogate statistics τ̃ but with matrices P̃1 and P̃2 instead of P1 and P2

(observations Q1 and Q2 are not altered). We create P̃1 by randomly shuffling the rows of

matrix U =
[

P′1 P′2
]′

and taking the first ntrials,1 rows – P̃2 is then given by the remaining
ntrials,2 rows of the randomized U.

A location will have significant changes in interaction with the reference if its p-value p
is lower than a threshold pα. The choice of pα must take into account the very large number
of statistical tests to be performed (as many as the number of locations in the brain), which
can inflate the number of false positives. The procedure we implement to compensate for
this undesired effect seeks to control the familywise error rate (FWER), or the probability of
at least one false positive among all locations under H0 (Nichols and Hayasaka, 2003). The
FWER thresholding procedure for a confidence level (1−α) (throughout this work, α = 5%)
consists of the following steps (Holm, 1979; Hochberg, 1988):

1. Order the location p-values from smallest to largest:

p(1) ≤ p(2) ≤ . . . ≤ p(nlocations); (7)
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2. Starting at k = 1, verify the following inequality, for increasing values of k:

p(k) ≤
α

nlocations − i+ 1
; (8)

3. Once a p-value p(K) is found for which the inequality above is violated, declare all
locations corresponding to the p-values p(1), p(2), . . . , p(K−1) statistically significant –
i.e. pα = p(K).

2.5 Contribution of individual frequencies to detected effects

Let us suppose that, having determined that there is a statistically significant change in
coupling between two spatial locations according to the SP-CCA method, we are interested
in verifying whether frequency band i at the reference location and frequency band j at the
other location contribute strongly to the detected effect. If xi and yj are, respectively, the
ith and jth columns in matrices X and Yo (used to compute the ρ statistic, according to
equation 5), then we can perform this verification simply by computing the absolute value
of the correlation coefficient between xi and yj:

ρi,j =

∣∣∣∣ x′iyj
||xi|| · ||yj||

∣∣∣∣ , (9)

which is then compared with ρα, the value of ρ corresponding to pα (i.e. the p-value used
for the FWER-correcting procedure described in subsection 2.4). (Carbonell et al., 2009;
Soto et al., 2016). If the DCC method was implemented instead of SP-CCA, the approach
is similar: for a given pair of frequency bands {i, j} at each location, we first find τi,j:

τi,j =

∣∣∣∣ (π1
i )
′χ1

j

||π1
i || · ||χ1

j ||
−

(π2
i )
′χ2

j

||π2
i || · ||χ2

j ||

∣∣∣∣ (10)

(i.e. the argument of the maximum operator in equation 6), and afterwards check whether
τi,j ≥ τα (the value of τ corresponding to pα).

3 Results

We employ synthetic MEG signals to compare the performances of SP-CCA with that of
DCC in terms of detection accuracy and robustness to noise, and illustrate the practical
implications of the choice of either method with MEG data obtained from 15 subjects during
a visuomotor coordination study – in Jerbi et al. (2004, 2007); Besserve et al. (2007) this
experiment is discussed in more detail. Briefly, the two conditions tested were: task (VM),
where the subjects attempted to control with a trackball the random rotations of a cube
appearing on a screen in front of them; and rest (R), where the subjects only looked at a
screen where a motionless cube appeared, and did not operate the trackball. The data were
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recorded during eight-minute runs, where the conditions were switched every 8-to-12 seconds;
the signals acquired during these runs that were not discarded due to movement artifacts
were then corrected for heart beat effects and divided into 1-second trials, which were the
inputs to our SP-CCA and DCC analyses (the average number of trials across subjects was
216 for the VM condition and 107 for R). The inverse procedures and time-frequency analysis
used here were performed with the open source software package BrainStorm (?).

3.1 Proof of concept: simulations with Gaussian noise

The simulated brain activity Sij used to compare SP-CCA with DCC had the spatial profile
shown in figure 1a. It consisted of four sources, two in the left hemisphere and two in the
right. Time courses in each source obeyed the following equations:

si,j,1(t) = ri,j,1 cos(2πfαt)
si,j,2(t) = ri,j,2 cos(2πfαt)
si,j,3(t) = ri,j,3 cos(2πfβt)
si,j,4(t) = ri,j,4 cos(2πfθt) + ri,j,5 cos(2πfγLt),

(11)

where fθ = 6.5Hz, fα = 10Hz, fβ = 22.5Hz, fγL = 45Hz and 0 ≤ t ≤ 1s. The squares
of amplitudes of the cosine waves ri,j,n, n ∈ {1, ..., 5}, vary randomly across trials and are
sampled from a multivariate Gaussian distribution with mean µ′ = [ 2 2 2 2 2 ]′ and
covariance matrices Σ1 and Σ2 depending on condition:

Σ1 =


1 σ σ −σ σ
σ 1 σ −σ σ
σ σ 1 −σ σ
−σ −σ −σ 1 −σ
σ σ σ −σ 1

 ; Σ2 =


1 −σ σ 0 0
−σ 1 −σ 0 0
σ −σ 1 0 0
0 0 0 1 0
0 0 0 0 1

 , (12)

for σ = 0.9. Among other effects, this simulation setting implies that there is alpha-alpha
positive correlation between sources 1 and 2 in one condition, which becomes negative cor-
relation in the other condition; that alpha and beta are correlated between sources 1 and
3, and the strength of the coupling does not change across conditions; and that there is
negative alpha-theta and positive alpha-low-gamma coupling between sources 1 and 4 only
in one of the two conditions.

We created 200 activity matrices Sij for each condition, which were then projected into
the sensor space according to equation (1), and contaminated with Gaussian noise, with
mean zero and standard deviation 2 × 10−3 (which represents noise with energy 100 times
higher than the mean energy of the simulated sources, when projected onto the sensor
space). Finally, we obtained estimates of the current density maps with the inverse operator
(equation (2)), created observation matrices as described in section 2.1, and computed ρ
and τ maps using the SP-CCA and DCC procedures, respectively (subsections 2.2 and 2.3).
The results of our computations are presented in figures 1b-1d: in figure 1b, we can see the
values of ρ for every spatial location in the brain when the reference location lies within
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source 1; similarly, figure 1c presents a brain map of values of τ with the same reference as
in figure 1b; and figure 1d displays the brain locations with statistically significant values
of ρ and of τ , based on the thresholding procedure described in section 2.4 According to
these maps, both methods were able to identify task-based variations in coupling between
the reference and regions around sources 2 and 4; these findings were consistent with our
simulation settings, since alpha-alpha coupling between sources 1 and 2 changed from positive
(in condition I) to negative (in condition II), and there was alpha-theta and alpha-low-gamma
coupling between sources 1 and 4 only in condition (I). However, while DCC yielded no other
significant activity, implementation of SP-CCA resulted in a few active locations near source
3, where there was alpha-beta coupling with the reference that did not vary with condition.

To find out the frequency bands at the reference and at the other locations that caused
the detected effects shown in figure 1d, we applied the post-hoc analysis discussed in sec-
tion 2.5 for the SP-CCA and the DCC approaches; we display the results of these tests in
figure 2. According to these maps, DCC was able to identify correctly the frequency bands
involved with the detected interaction modulations, and their signals (i.e. alpha-theta de-
crease and alpha-low-gamma increase between sources 1 and 4, and alpha-alpha decrease
between sources 1 and 2), but it also incorrectly found an alpha-theta contribution to the
significant effect detected in region 2, possibly due to signal leakage. On the other hand,
SP-CCA only identified an alpha-alpha decrease in coupling between sources 1 and 2.

In short, figures 1 and 2 indicate that DCC appears to be more reliable than SP-CCA
with respect to robustness against false positives, as only the latter identified significant
regions around source 3 (where there was no change in correlation), even though neither
method could single out accurately the frequency bands that caused significant changes in
coupling (DCC detected alpha-theta contributions around source 2, and SP-CCA did not
find any frequency responsible for the effects near source 4). In the next subsection, we
investigate more thoroughly the comparative performances of SP-CCA and DCC by means
of ROC analyses.

3.2 ROC analysis: simulations combined with experimental data

We further investigated the performance of SP-CCA with respect to detection accuracy and
robustness to noise with an ROC analysis – specifically, a method adapted from a variant of
ROC called free-response ROC (FROC) (Egan et al., 1961; Metz, 2006). As in subsection
3.1, we use simulated brain sources, but instead of Gaussian noise, we attempted to emulate
the noise properties usually found in MEG measurements by adding to our synthetic data
real human MEG signals, which act as background noise.

We started each of the ROC analyses performed here by creating 100 datasets, similar in
structure to the dataset used for the proof of concept in section 3.1. The 100 datasets, each
consisting of 200 MEG trials, were divided into two groups:

• Group 1 datasets had 100 trials belonging to condition (I) and 100 trials belonging
to condition (II). In condition (I), there are two activity sources in the brain whose
location was chosen randomly (with the condition that they be at least 5 cm apart from
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each other). The time series of the activity at the sources were cosine waves whose
power varied across trials and followed a Gaussian distribution with mean 2, variance
1 and correlation coefficient between them σ; the frequencies of the cosine waves were
chosen randomly among the central frequencies of the six bands of our study (as long as
the two frequencies were different). The trials of condition (II) were created as the ones
of condition (I), except that the frequency of the signal at the second source changed
from the one it had in condition (I), while still being different from the frequency of
the first source.

• Group 2 datasets also had 100 trials for condition (I) and 100 trials for condition (II),
and they were created as the trials for the group 1 datasets, but in this case the signal
frequencies at both sources remained the same across conditions – i.e. there was no
difference in brain activity between the two conditions.

The real MEG measurements we added to the simulated sources (after projecting them
onto the sensor level) came from a set of single-subject 231 trials acquired during the VM
condition of the visuomotor experiment briefly described at the beginning of section 3; to
each one of the 200 trials of simulated data (from any dataset), one randomly chosen MEG
trial was added. These new trials containing both synthetic and real MEG signals were
converted, first into the inputs to our SP-CCA and DCC models, then into ρ and τ maps
(having as reference a location within one of the sources), as we did in section 3.1. Finally,
we defined the true positive fraction (TPF) and the false positive fraction (FPF) for each
statistic map, based on these 100 p-value maps and for a given value of ϑ (0 ≤ ϑ ≤ 1),
according to the following:

• The TPF was given by the ratio of group 1 datasets where there was at least one spatial
location within 2 cm of the center of the other source (i.e. the source not chosen as
the reference) with ρ (or τ) greater or equal than ϑ;

• The FPF was given by the ratio of group 2 datasets where there was at least one spatial
location anywhere in the brain with ρ (or τ) greater or equal than ϑ.

Computing the TPF and the FPF for several values of ϑ gave us the ROC curve for the
corresponding datasets.

Figure 3 shows values of the areas under ROC curves (AUCs) obtained with the SP-CCA
and the DCC methods, where the value of the correlation coefficient σ between the signals
at the simulated sources was equal to 0.7 and for varying levels of the SNR – in this section,
the square of the SNR was the ratio of the average energy of the simulated sources projected
onto the sensor level (across trials, time and space) to the average energy of the 200 real
MEG trials. Similarly, figure 4 displays AUC values for varying values of σ and for SNR
equal to 1/100. According to these plots, DCC outperformed SP-CCA in almost all scenarios
– the only exception was the case where SNR = 0.001, a very noisy situation in which both
methods performed poorly. These results thus provide further evidence of the advantages
of using an univariate approach to detect coupling modulations, in terms of its ability to
discriminate between true brain activity and spurious effects.
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3.3 Experimental data

The results of the comparisons between SP-CCA and DCC with respect to the detection
of coupling changes in the VM experiment when a reference was located in the left motor
cortex are displayed in figure 5. In these images, the color coding for each spatial location
indicates the number of subjects where the value of ρ (or τ) was statistically significant for
that location: for instance, the highest value for a location in the maps on the left column
was 12, which means that at most 12 out of the 15 subjects analyzed had a significant ρ
(for the maps on the right column, on the other hand, the highest value across all locations
was 5). Based on these maps, we may notice that, with either method, almost all the brain
regions have a significant effect in at least one subject tested. Furthermore, although the
discrepancies between the methods are not very strong for locations in the right hemisphere
(i.e. the ρ and τ maps are active in about the same brain regions, and in comparable numbers
of subjects), there is a marked difference between SP-CCA and DCC in the left hemisphere,
particularly in the neighborhood of the reference location, where the number of subjects
with an effect becomes noticeably larger with SP-CCA than that obtained with DCC.

As for the frequency bands that are responsible for the identified effects, figures 6 and
7 show, for a selection of frequency band pairs, maps indicating how many subjects had
significant contributions from the pair under consideration. Specifically, the pairs chosen
for figure 6 are those that were active in more subjects than any other pair with SP-CCA
and that are associated with a task-based increase in coupling, while the pairs that appear
in figure 7 are also those present in the most subjects when SP-CCA is computed, but
associated with a task-based decrease. In both cases, we can see that DCC tends to be more
conservative than SP-CCA, as the active areas with the latter method are on the whole more
widespread (the main exception being the β − β decrease found in the right hemisphere).

4 Discussion

In this work, we performed a comparison between two approaches to identify task-based
modulations in functional interactions between two brain regions: semipartial canonical cor-
relation analysis (SP-CCA), and difference of correlation coefficients (DCC). Our analyses
with synthetic MEG signals showed that the latter method was more accurate in discrimi-
nating between true brain activity and spurious effects; as a consequence of this discrepancy
in performance between the two methods, the use of SP-CCA may result in an excessive
number of incorrectly detected brain locations, as our tests with data acquired during a
visuomotor coordination study suggest. However, in order to ascertain that these locations
detected by SP-CCA but not by DCC are in fact false positives, a more thorough investiga-
tion of the implications on brain activity of visuomotor coordination is necessary, possibly
by means of tools with better spatial resolution (such as ECoG, depth electrodes etc.)

As our simulations showed, particularly the results in section 3.1, one of the disadvantages
in using SP-CCA is its inability to identify brain locations where there are strong task-
based coupling fluctuations. In a tutorial article dealing with PPI (which is simply SP-CCA
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with a different mathematical formulation), O’Reilly et al. (2012) explain that this lack
of power is an unavoidable characteristic of the technique, because matrices Y and Z in
equation 3 are correlated by construction, and because SP-CCA seeks to identify only linear
relationships between X and Y that are not explained by Z; it is a drawback that does not
affect DCC, since this approach simply takes into account the linear relationships between the
corresponding columns of X and Y. O’Reilly et al. (2012) mention other possible sources of
degradation in the performance of PPI, such as nonlinearities and subject behavior (response
to errors, learning etc.); however, these are factors that may also affect the performance of
DCC, and the extent to which they impact either method is beyond the scope of the present
work.

A phenomenon that was not dealt with directly in our studies was spurious correlations
due to linear mixing of sources, caused by the poor spatial resolution of brain activity re-
constructed with E/MEG (Schoffelen and Gross, 2009). Here, we implicitly adopted the
simplifying assumption that linear mixing was constant across conditions, thus with any
method we employed to estimate differences in coupling, these artifacts would be canceled
out. Although our simulations with Gaussian noise and simple, narrowband sources (subsec-
tion 3.1) indicate that both methods are able to deal adequately with the spurious coupling,
the performance of the SP-CCA method in the ROC analysis (subsection 3.2) and the higher
number of subjects with strong changes in coupling near the reference location yielded by
SP-CCA (subsection 3.3) provide some evidence that this method may in fact not be as
reliable as DCC in discarding interactions due to field spread – and in situations, one must
remember, with brain activity and noise with much more complicated shapes and across
wider frequency bands. In any case, one should be careful when including procedures to
correct for linear mixing in the ρ and τ statistic maps, either due to methodological concerns
(e.g. how the correction procedure is affected by different trial numbers between conditions)
or because corrected brain maps lose in statistical power, since getting rid of linear mixing
effects tends to also eliminate true brain activation (Nolte et al., 2004; Soto et al., 2016).

In our investigations with real MEG signals, we analyzed data from multiple subjects, but
we did not execute any procedure to pool the data from them into a single group statistic
map, with either method; instead, we obtained thresholded ρ- or τ -maps individually for
each subject, and then simply counted, for any brain location, for how many of the 15
subjects that location was statistically significant. We proceeded thus because our main
goal with the VM data investigations was not to establish a definite connection between
brain electrophysiology and visuomotor coordination, but to demonstrate the differences
between SP-CCA and DCC when actual MEG time series were manipulated. Furthermore,
the statistical methods typically used for group analysis are not without interpretation issues:
for instance, popular approaches such as the minimum p-value (Tippett, 1931) and the
transformation formulas proposed by Fisher (1954) and by Stouffer et al. (1949) tend to be
too lenient (since a single subject with a very low p-value is enough to result in a strong
group effect), while more recent developments, where there is a strong multi-subject effect if
it appears in a pre-determined fraction of the subjects (Wilkinson, 1951; Heller et al., 2007),
are still dependent on a parameter whose choice of value is subjective. Even approaches such
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as Edgington’s method (Edgington, 1972), which in a sense deals with average effects, would
not be of use for our data, especially in the tests of individual contributions of frequency
bands, where no frequency band pair was significant in more than five of the fifteen subjects.
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Figure 1: Simulation results. (a) The spatial profile of the four simulated sources; the signals
in regions 1 and 2 lied in the alpha band, the signal in region 3 was within the beta band,
and there was theta and low-gamma activity in region 4; (b) Map of the SP-CCA statistic ρ
when the reference is in region 1 (indicated by the yellow dot); (c) Map of the DCC statistic
τ when the reference is in the region 1; (d) Map of statistically significant locations obtained
with SP-CCA only (red locations), DCC only (green locations), and both methods (blue
locations), with reference in region 1.

Figure 2: Brain maps, obtained from the simulated data used for the images in figure 1, of
spatial locations where there was a significant change in alpha-alpha coupling with SP-CCA
[column (a)], and in alpha-theta, alpha-alpha, and alpha-low-gamma with DCC [columns (b),
(c) and (d), respectively] (no other frequency band pairs yielded significant contributions to
the detected effects with either method). Purple locations indicate an increase in coupling,
and blue regions represent a decrease in coupling.
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Figure 3: Values of the areas under ROC curves (AUCs) for different values of the SNR, and
for σ = 0.7. Blue bars indicate SP-CCA, and yellow bars represent DCC.

Figure 4: Values of the areas under ROC curves (AUCs) for different values of the correlation
coefficient σ, and for SNR = 0.01. Blue bars indicate SP-CCA, and yellow bars represent
DCC.
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Figure 5: Multi-subject task-based modulations in coupling with the SP-CCA (left column)
and the DCC (right column) methods, obtained from the VM data. For a given spatial
location, its color represents the number of subjects where this location was statistically
significant when ρ or τ was computed.
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Figure 6: Brain locations where there the α − α (first and second rows) and β − β (third
and fourth rows) frequency band pairs contributed significantly to task-based increase in
coupling in at least one of the subjects analyzed during the VM experiment. The color
coding of the spatial locations represents the number of subjects where there was a strong
contribution of the frequency band pair under study.
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Figure 7: Brain locations where there the δ − δ (first and second rows) and α − α (third
and fourth rows) frequency band pairs contributed significantly to task-based decrease in
coupling in at least one of the subjects analyzed during the VM experiment. The color
coding of the spatial locations represents the number of subjects where there was a strong
contribution of the frequency band pair under study.
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