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Abstract 

Here we present a comprehensive map of the accessible chromatin landscape of the 
mouse hippocampus at single-cell resolution. Substantial advances of this work include the 
optimization of single-cell combinatorial indexing assay for transposase accessible chromatin 
(sci-ATAC-seq), a software suite, scitools, for the rapid processing and visualization of single-cell 
combinatorial indexing datasets, and a valuable resource of hippocampal regulatory networks at 
single-cell resolution. We utilized sci-ATAC-seq to produce 2,346 high-quality single-cell 
chromatin accessibility maps with a mean unique read count per cell of 29,201 from both fresh 
and frozen hippocampi, observing little difference in accessibility patterns between the 
preparations. Using this dataset, we identified eight distinct major clusters of cells representing 
both neuronal and non-neuronal cell types and characterized the driving regulatory factors and 
differentially accessible loci that define each cluster. We then applied a recently described co-
accessibility framework, Cicero, which identified 146,818 links between promoters and putative 
distal regulatory DNA. Identified co-accessibility networks showed cell-type specificity, shedding 
light on key dynamic loci that reconfigure to specify hippocampal cell lineages. Lastly, we carried 
out an additional sci-ATAC-seq preparation from cultured hippocampal neurons (899 high-quality 
cells, 43,532 mean unique reads) that revealed substantial alterations in their epigenetic 
landscape compared to nuclei from hippocampal tissue. This dataset and accompanying analysis 
tools provide a new resource that can guide subsequent studies of the hippocampus.  
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Introduction 

  A major goal in the life sciences is to map cell types and identify the respective genomic 
properties of each of the cell types in complex tissues. Traditional strategies that utilize intact 
tissue are limited to averaging of the constituent cell profiles. An alternative approach is to target 
specific cell populations via antibody-based or reporter gene labeling; however, these strategies 
are limited by the small number of markers that can be utilized during cell isolation, and the 
markers usually label more than one cell population within the tissue. Additionally, the selected 
markers must be known in advance. All of these limitations are exacerbated when the tissue of 
interest has a high degree of cellular complexity, as in the brain. To overcome these limitations, 
there has been a burst in development of unbiased single-cell genomics assays, leveraging the 
concept that each single cell can only occupy a single position in the landscape of cell types 
(Trapnell 2015). 

     This push into the single-cell space has largely centered on the use of single-cell 
transcriptional profiling, where high cell count strategies that produce enough information per cell 
to deconvolve cell types are typically deployed. While profiling the RNA complement has 
produced valuable information (Zeisel et al. 2018; Saunders et al. 2018), the ability to profile 
chromatin status, i.e. active versus inactive, has lagged behind, leaving open the question as to 
what extent accessible chromatin profiles are linked to cell specificity, particularly with respect to 
distal enhancer elements (Corces et al. 2016). 

Recently, progress has been made to ascertain chromatin accessibility profiles in single 
cells using ATAC-seq (Assay for Transposase-Accessible Chromatin) technologies. These 
strategies have been applied to myogenesis (Pliner et al. 2018), hematopoietic differentiation 
(Buenrostro et al. 2018), fly embryonic development (Cusanovich et al. 2018b), the mouse 
(Preissl et al. 2018) and human cortex (Lake et al. 2017), and most recently an atlas of multiple 
tissues in the mouse, though notably lacking the hippocampus (Cusanovich et al. 2018a). The 
core concept behind the methods utilized in several of these studies is a combinatorial indexing 
schema whereby library molecules are barcoded twice, once at the transposase stage and then 
again at the PCR stage. Initially developed for the acquisition of long-range sequence information, 
i.e. linked-reads for purposes resolving the haplotypes of genomic variants or for de novo genome 
assembly (Amini et al. 2014; Adey et al. 2014), this barcoding technology is the key component 
for single-cell combinatorial indexing ATAC-seq, or sci-ATAC-seq (Cusanovich et al. 2015). This 
platform has also been extended to profile other properties including transcription, genome 
sequencing, chromatin folding, and DNA methylation (Cao et al. 2017; Ramani et al. 2017; Vitak 
et al. 2017; Mulqueen et al. 2018; Yin et al. 2018). In this work, we optimized the sci-ATAC-seq 
assay for analysis of fresh and frozen hippocampal tissue samples to produce single-cell 
chromatin accessibility profiles in high throughput, with greater information content – as measured 
by unique reads per cell – when compared to previous high-throughput methods, and comparable 
to microfluidics-based technologies (Buenrostro et al. 2015). These improvements will also 
facilitate the use of this technology platform on frozen samples, enabling the assessment of 
banked tissue isolates. 

The hippocampus is critical to the formation and retrieval of episodic and spatial memory 
(Zola-Morgan et al. 1986; Smith and Milner 1981; O’Keefe and Dostrovsky 1971; Scoville and 
Milner 1957). Historically, cell types within the hippocampus have been broadly classified by their 
morphology (Ramon y Cajal 1911; Lorente de No 1934) and electrophysiological properties 
(Spencer and Kandel 1961b, 1961a; Kandel and Spencer 1961; Kandel et al. 1961). More 
recently, transcriptional profiling has demonstrated cell types can be identified by their 
transcriptional profiles (Lein et al. 2004; Cembrowski et al. 2016), and single-cell transcriptomics 
has also revealed potential subclasses within previously defined cell types (Habib et al. 2017; 
Zeisel et al. 2015). The defined classes of cells within the hippocampus and the existing single 
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cell transcriptome data allowed us to refine our sci-ATAC-seq method and provide the first single-
cell epigenomics profile of the murine hippocampus.  

Results 

Single-cell chromatin accessibility profiles from mouse hippocampus 

     We implemented an improved sci-ATAC-seq protocol on two fresh and two frozen mouse 
hippocampi to map the accessible chromatin landscape (Methods). Each sample was freshly 
isolated from an adult (P60) wild type mouse (C57-Bl6) and either processed immediately or flash 
frozen using liquid nitrogen. Nuclei were isolated and carried through the sci-ATAC-seq protocol 
(Methods, Fig 1A). Briefly, nuclei were distributed by Fluorescence Assisted Nuclei Sorting 
(FANS) using DAPI as a stain to select for intact, single nuclei. We deposited 2,500 nuclei into 
each well of a 96-well plate containing transposition reaction buffer followed by the addition of the 
transposase enzyme loaded with DNA sequencing adaptors containing barcodes unique to each 
well of the plate. The transposome complexes are able to freely enter into the nucleus and insert 
into regions of open chromatin, as in standard ATAC-seq, without disrupting nuclear scaffold 
integrity. We then pooled all 96 wells and performed FANS again to distribute 22 nuclei into each 
well of a new 96-well plate for subsequent PCR with primers containing additional sequence 
barcodes corresponding to each well of the PCR plate. Each resulting molecule produces a 
sequence read with two barcode sets – one for the transposase stage of indexing, and the second 
for the PCR stage – which enables the unique cell identity of the sequence read. 

In total, we produced 2,346 single cells passing quality control (≥1,000 and ≥25% unique 
reads present in called peaks) evenly represented across replicates (2 frozen, 2 fresh; 
Supplementary Table 1). Cells had a mean unique aligned read count of 29,201, which is notably 
higher than other high throughput single-cell ATAC-seq workflows to date (generally ~10,000). 
We observed a strong correlation in ATAC signal between the aggregate profiles of the four 
replicates (Pearson R > 0.99), indicating high reproducibility across preparations for both fresh 
and frozen tissue. Chromatin accessibility peaks were identified by the aggregation of all cells to 
produce an ensemble dataset containing all called peaks, resulting in a preliminary set of 93,994 
high-confidence peaks, with a mean of 36.4% of reads from each cell falling within these regions. 

     We constructed a read count matrix of our ensemble peaks and single cells from all 
conditions (Supplementary Data – InVivo.counts.matrix) by tallying the number of reads for each 
cell at each peak. We next utilized scitools to perform Latent Semantic Indexing (LSI), as 
previously described (Cusanovich et al. 2015, 2018b), with the exclusion of cells with reads at 
fewer than 1,000 sites and of sites with fewer than 50 cells exhibiting signal. The LSI matrix was 
projected into two-dimensional space using t-distributed Stochastic Neighbor Embedding (tSNE) 
for visualization, which revealed distinct domains occupied by clusters of cells. We then used a 
density based method (Ester et al. 1996) to identify nine major clusters (Fig. 1C), one of which 
was identified to be likely barcode collisions and removed from further analysis (Methods). A 
comparison of the proportion of cells assigned to each cluster with respect to fresh or frozen 
samples did not yield a significant difference (Χ2 = 9.85, p-value = 0.20; Fig. 1B, Supplementary 
Table 1), though increased proportions of interneurons and microglia were observed in the frozen 
preparation. This encouraging finding underscores the robustness of our sci-ATAC-seq workflow 
and will enable experiments for which only frozen samples are available. 

 To assign each of our identified clusters to a cell type, we took advantage of published 
single-cell RNA-seq data that produced sets of marker genes associated with cell types identified 
at the transcriptional level (Zeisel et al. 2015; Habib et al. 2017). Assuming that regulatory 
sequences proximal to these genes are likely be enriched for elements that drive cell-specific 
expression, cells should exhibit increased levels of chromatin accessibility for the set of peaks 
associated with the marker genes of their respective cell type. For each set of cell-type-specific 
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genes, we identified peaks 20 kilobasepairs (kbp) in either direction from the transcriptional start 
site. These peak sets were used to calculate the enrichment for accessible chromatin for each 
cell within these regions to produce a deviation z-score, similar to previously described methods 
(Buenrostro et al. 2015; Schep et al. 2017). We then visualized these scores on our tSNE 
projections, which enabled us to clearly identify a number of neuronal and non-neuronal cell types, 
including astrocytes (AST), two groups of pyramidal neurons (NR1 and NR2), interneurons (INT), 
oligodendrocytes (OLI), microglia (MRG), and oligodendrocyte progenitor cells (OPCs) (Fig. 1D). 
However, this enrichment-based strategy is heavily reliant on a robust set of marker genes that 
are presumed to lack expression in all other cell types. To complement this strategy we also 
turned to marker genes described previously in the literature that were not present in available 
single-cell RNA-seq datasets and assessed the chromatin accessibility at elements proximal to 
these genes (Fig. 1E, Supplementary Fig. 1). For example, the Glul gene, an established marker 
for astrocytes (Martinez-Hernandez et al. 1977; Fages et al. 1988) showed accessibility only in 
the population of cells we identified as astrocytes (Fig. 1E, left). Prox1, previously shown to be 
enriched in the dentate gyrus (Lein et al. 2004), is accessible predominantly in the dentate granule 
cell population (GRN, Fig. 1E, right). Markers for particular cell types were also consistent with in 
situ hybridization data from the Allen Brain Institute (Supplementary Fig. 1) and RNA-seq data 
from sorted cells (Cembrowski et al. 2016; Zhang et al. 2014). 

 Based on our cell type assignments, the number of cells in each population reflects the 
proportions seen within the intact hippocampus. For example, the two major cell types, by cell 
number according to stereological estimates, are the excitatory pyramidal cells and dentate 
granule cells, with each population consisting of approximately 400,000 cells per mouse 
hippocampus (Abusaad et al. 1999). Using cell type specific markers, it has been estimated that 
within subregions of the mouse hippocampus, there are 10 to 14 fold fewer astrocytes and 42 to 
74 fold fewer microglia compared to neurons (Kimoto et al. 2009), which is consistent with our 
observation of 14 fold and 41 fold fewer astrocytes and microglia, respectively (Supplementary 
Table 1). 

Global DNA binding motif accessibility 

 Chromatin accessibility maps largely represent the active (open) enhancer and promoter 
landscape. These regulatory elements typically harbor sets of motifs recognized by DNA binding 
proteins that in turn recruit histone modifiers, e.g. acetylases, deacetylases, methylases, to 
ultimately dictate the transcriptional status of genes. To assess the global activity of DNA binding 
proteins we utilized the recently-described software tool, ChromVAR (Schep et al. 2017), which 
aggregates the chromatin accessibility signal genome-wide at sites harboring a given motif, 
followed by the calculation of a deviation z-score for each cell. This score represents the putative 
activity level of the DNA binding protein that corresponds to the assessed motif, which we then 
visualized on our tSNE projections (Fig. 1F). Although motif accessibility for a particular DNA 
binding protein can be confounded by similar motifs or motifs that co-occur at the same regulatory 
loci, the ability to assess any given motif for accessibility provides a powerful tool to identify targets 
for subsequent analysis. 

In line with expectations, our cell type clusters showed enrichment for accessibility at DNA 
binding motifs concordant with the identified cell type (Fig. 1F, Supplementary Fig. 2). The 
analysis included the assessment of global accessibility for neuron-specific factors such NeuroD2, 
which associates with active chromatin marks (e.g. H3K27ac) in cortical tissue (Guner et al. 2017) 
and exhibited greater accessibility in the two pyramidal cell clusters (mean z-score (µz) = 1.49 and 
0.95 for NR1 and NR2 respectively, all other cell types µz ≤ -0.74). We also observed increased 
accessibility of NeuroD1, also associated with active chromatin (Pataskar et al. 2016), in a portion 
of one of the pyramidal neuron clusters (NR2, µz = 1.02) with less accessibility across glial 
populations (µz ≤ -2.10). While many studies have identified a role for Sox3 during neural 
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differentiation, consistent with a previous expression study (Cheah and Thomas 2015), we 
observed increased Sox3 accessibility in astrocyte (µz = 1.59), oligodendrocyte (µz = 2.85), and 
OPC populations (µz = 1.67), suggesting a glial role for this transcription factor in adulthood. Elf-
1, an ETS family member associated with activating interferon response in the hematopoietic 
lineage (Larsen et al. 2015), exhibited elevated accessibility in the microglial population (µz = 
2.64), which also respond to interferon in the brain (e.g. (Goldmann et al. 2015)). Of particular 
interest was the strong enrichment for CTCF motif accessibility in glial cell populations (AST µz = 
1.86, OLI µz = 2.22, OPC µz = 2.51, MRG µz = 1.96) and interneurons (µ = 2.27) when compared 
to granule cells (µz = -0.45) or pyramidal neurons (NR1 µz = -1.65, NR2 µz = -0.33), an observation 
that was reinforced by our subsequent differential accessibility analysis described below. 

Differential Accessibility by Cell Type 

We next sought to show that accessible regions could be identified according to cell type. 
To provide sufficient signal, we aggregated cells within clusters in their local neighborhoods as 
has been described previously (Cusanovich et al. 2018b) and then carried out a differential 
accessibility analysis for each cluster compared to the rest of the cells (Methods, Fig. 2A). The 
power to detect cell-type-specific accessibility loci was tied largely to the number of cells within 
each population. However, each group produced a substantial number of passing hits (q-value ≤ 
0.01, Log2 fold-change ≥ 1) ranging from 894 (OPCs) to 7,796 (granule cells). When assessing 
ATAC-seq signal for aggregated cells within each cell type at these sites, signal specificity was 
greatest for the two pyramidal neuron clusters with increased off-target signal for other non-
neuronal populations, which had less signal (Fig. 2B, left, Supplementary Fig. 3-5). 

We performed a motif enrichment analysis to identify DNA binding proteins that may bind 
within the differentially accessible regions (Fig. 2B, right). In contrast to the prior, global 
accessibility analysis, where all accessible loci were utilized to detect increased signal at sites 
harboring a given motif in each cell; here, we are detecting enrichment of motifs in the specific 
subsets of loci that were determined to be differentially accessible. This strategy revealed 
enrichment for binding by the Sox10 transcription factor in oligodendrocytes (Claus Stolt et al. 
2002) and by NeuroG2 in the dentate granule cells (Roybon et al. 2009). Concordant with our 
global analysis, CTCF was enriched in the interneuron population. This is unexpected because 
CTCF is considered a general factor for regulation of chromatin architecture. To confirm the 
presence of CTCF binding in regions of differential accessibility in interneurons, we used publicly 
available CTCF Chromatin Immunoprecipitation sequencing (ChIP-seq) data from adult mouse 
hippocampus (Sams et al. 2016). One of the top regions of differential accessibility in interneurons 
was in an intron in the gene encoding actin filament associated protein 1 (Afap1, Supplementary 
Fig. 6). The ChIP data revealed CTCF binding within the same intron flanking the accessible 
region. While there have been no studies focused on the function of CTCF specifically in 
interneurons, there is evidence CTCF may have a particular importance in this cell type. CTCF 
binding motifs were enriched in the accessible chromatin of affinity purified parvalbumin positive 
cortical interneurons but not in VIP positive interneurons or excitatory neurons (Mo et al. 2015) 
and in mice expressing one CTCF allele only inhibitory neurons exhibit memory impairment (Kim 
et al. 2018). The potential selective importance of CTCF in interneurons warrants further study. 

To further determine the utility of our method in assigning regulatory elements to cell types, 
we tested whether we could parse enhancers that had been identified in the literature as inducers 
of target genes in response to neuronal activity. We focused on the c-Fos gene that has been 
studied previously as a general reporter of neuronal activity throughout the brain. Specifically, five 
enhancers (E1-E5) have been characterized (Kim et al. 2010) for both regulation during neuronal 
activity and type of stimulation (Joo et al. 2015). Surprisingly, when we examined ATAC-seq 
signals at the five enhancers across cell types in hippocampus, we identified cell type specific 
patterns of accessibility. Notably, enhancers E1 and E3 were accessible only in neurons, while 
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E2 and E5 were accessible in all cell types (Fig. 2C). Further, enhancer E4 was accessible in 
group 2 but not group 1 pyramidal neurons and was also accessible in a small portion of dentate 
granule cells. Our findings suggest cell type specificity in stimuli responsiveness within the 
hippocampus, even between pyramidal cell subpopulations, opening the door to new studies of 
the basis of these signaling differences and demonstrating the utility of single-cell epigenomics 
over traditional bulk tissue assays. 

More generally, our differential accessibility analysis was able to identify new enhancers 
by comparison with chromatin marks known to be associated with enhancers (Gjoneska et al. 
2015). For example, when examining the most significantly differentially accessible loci for 
dentate granule cells, one of the top hits was a region marked by both H3K4me1 and H3K27ac, 
suggesting a putative enhancer upstream of the gene Slc4a4 (Supplementary Fig. 7). Slc4a4 
encodes a sodium/bicarbonate co-transporter involved in mediating both intracellular and 
extracellular pH (Svichar et al. 2011), and Slc4a4 expression is elevated in dentate granule 
neurons. While these accessible loci were enriched only in dentate neurons, several other 
accessible regions were identified in dentate granule cells as well as in the two pyramidal neuron 
populations, suggesting this gene is expressed in multiple cell types and, like c-Fos, may exhibit 
variable responses in different cell types. 

Cis regulatory networks in the hippocampus 

Many enhancer elements are distal from the transcriptional start site of the gene. This 
results in a severe limitation in our ability to interpret the effects of epigenetic changes at these 
elements as they relate to gene expression. To address this limitation, groups have developed 
experimental proximity-ligation strategies, such as High throughput chromatin conformation 
capture (HiC; Lieberman-aiden et al. 2009), as well as computational strategies that associate 
regulatory elements with one another based on co-accessibility patterns. The latter approaches 
have typically relied on large databases of DNaseI hypersensitivity or ATAC-seq data performed 
on bulk cell isolates (Thurman et al. 2012; Budden et al. 2015); however, the same concepts have 
recently been applied to single-cell ATAC-seq data using the Cicero algorithm (Pliner et al. 2018). 
Briefly, Cicero uses an unsupervised machine-learning framework to link distal regulatory 
elements to their prospective genes via patterns of co-accessibility in the single-cell regulatory 
landscape. It achieves this by aggregating cells in close proximity and calculating a regularized 
correlation matrix between loci to produce co-accessibility scores between pairs or regulatory 
elements. 

We applied Cicero to our hippocampus sci-ATAC-seq dataset to produce 487,156 links 
between ATAC-seq peaks at a co-accessibility score cutoff of 0.1 (Supplementary Data – 
InVivo.cicero_links.txt). Of these, 47,498 (10.5%) were links between two promoters, 146,818 
(32.4%) linked a distal regulatory element to a promoter, and 259,236 (57.2%) were between two 
distal elements. We next compared our Cicero-linked peaks with existing chromatin conformation 
data that had been produced on mouse cortical tissue (Dixon et al. 2012), as no hippocampus 
data sets are currently available; however, a majority of topological associated domains (TADs) 
are conserved across cell types (Dixon et al. 2012). Consistent with expectations, we observed a 
1.1 to 1.5 fold enrichment (Fig. 3A, p < 1x10-4 across all Cicero link thresholds out to 500 kbp, 
Methods) for linked peaks that occur within the same TAD over equidistant peaks present in 
different TADs, suggesting that the identified links are associated with higher-order chromatin 
structure. We then identified cis-co-accessibility networks (CCANs) using Cicero which employs 
a Louvain-based clustering algorithm, which can inform us about co-regulated chromatin hubs in 
the genome. Using a co-accessibility score threshold of 0.15 (based on high intra-TAD 
enrichment, Fig. 3A), we identified 3,243 CCANs, which incorporated 102,736 sites (mean 31.7 
peaks/CCAN).  
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To identify the enrichment of cell-type-specific CCANs, we first aggregated reads from 
cells within each cell type and calculated the fraction of cells that have signal within each peak of 
a CCAN. This assumes a uniform distribution of reads per cell across each cell type, which then 
allowed us to transform peak accessibility fractions across aggregate cell types into z-scores and 
then to average the signal within individual CCANs. The hierarchical clustering of the aggregate 
cell type populations reconstituted the relative clustering of the cell types (Supplementary Fig. 8). 
We further assessed cell type specific CCANs by projecting their relative similarity in two-
dimensional tSNE space and visualized them based on their enrichment to their highest matching 
cell type (Fig. 3B,C, Supplementary Fig. 9). This analysis revealed distinct sets of co-accessibility 
networks for each cell type, with common networks falling towards the center of the projection 
space. CCANs with greater numbers of peaks tended to be less cell type specific, likely due to 
the large number of genes that are encompassed by the CCAN, the majority of which are not cell 
type specific (Supplementary Fig. 10). This observation is also consistent with chromatin 
conformation literature where common sets of topological domains are present across cell types 
with fewer that are cell type specific (Dixon et al. 2012) (Supplementary Fig. 11). Furthermore, 
CCANs also largely aggregated based on whether they are enriched in neuronal or non-neuronal 
cell types. 

Included within our cell type specific CCANs, we observed a number of cell type marker 
genes. This included Prox1, a marker for dentate granule cells, which included 89 total 
accessibility sites and was associated with the correct population (Fig. 3D,E). While much of the 
CCAN did not exhibit cell type specificity, the region centered on Prox1 (with the highest co-
accessibility values) drove the assignment. To dissect out the major components of the larger 
CCAN, we used Cicero specifically on the dentate granule cells (Supplementary Fig. 12A). This 
revealed three distinct CCANs within the Prox1 region, with the central CCAN including the Prox1 
promoter, which exhibited the greatest specificity to the dentate granule cell cluster 
(Supplementary Fig. 12B). This suggests the possibility of larger chromatin networks with subsets 
of regulatory elements and genes joining or leaving the network based on cell type. Finally, we 
identified a number of CCANs that were overlapping that included mutually exclusive sets of 
peaks, suggesting two alternative folding patterns of chromatin within the regions dependent upon 
the cell type (Supplementary Fig. 13). 

In vitro neurons exhibit an altered epigenetic profile 

 To examine how well in vitro cultured hippocampal neuronal populations match their in 
vivo counterparts at the epigenetic level, we isolated hippocampal neurons from P0 pups and 
allowed them to mature for 16-18 days in vitro (DIV). At this stage, the neurons had extended 
long processes and expressed markers of mature neurons such as MAP2. We performed sci-
ATAC-seq as described above and produced 899 high-quality single-cell chromatin accessibility 
profiles passing our quality thresholds (Methods). Our mean unique read count per cell was again 
high when compared to currently published work at 43,532, which to the best of our knowledge, 
is the highest achieved for any high-throughput single-cell ATAC-seq strategy to date. We then 
performed peak calling on the ensemble of in vitro sci-ATAC-seq profiles, resulting in 111,005 
total peaks. Similar to our in vivo preparations, the ATAC-seq signal correlated well between the 
two replicates (Pearson R > 0.99). Subsequent filtering, LSI-tSNE, and clustering, as described 
for the in vivo preparation, revealed four distinct populations (Fig. 4A). Upon examination via 
marker gene and DNA binding motif accessibility enrichment, we determined one of the clusters 
to be the interneuron population (40.6% of cells), with the remainder being excitatory (59.4%). 

We performed peak calling on the combined reads from both the in vivo and in vitro 
experiments and merged these peaks with those called on each set individually to produce a 
combined peak call set comprised of 174,503 sites. It is important to note that much of the 
increase over the in vivo peak set was due to increased coverage at sites that may not have met 
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the calling threshold as opposed to peaks exclusive to the in vitro cultured neurons. We then 
performed LSI and tSNE on the resulting counts matrix using cells produced in both experiments. 
While the in vitro cultured glutamatergic neurons largely formed their own grouping independent 
of their in vivo counterparts, the inhibitory neurons from the in vitro preparation grouped more 
closely with the in vivo population (Fig. 4B). 

We next examined the global DNA binding motif accessibility of the combined population 
(Fig. 4C). The starkest differences between the in vivo and in vitro cell populations was in motifs 
associated with the AP-1 complex, i.e. Fos, Jun, ATF, and JDP families (µz = 4.32 and -1.72 for 
in vitro and in vivo respectively). The AP-1 complex plays a major role in stimulus response, 
including cell stress (Hess 2004), which may not be surprising for neurons grown and matured ex 
vivo. It has also been shown that AP-1 modulates chromatin during neuronal activation (Su et al. 
2017), suggesting the possibility of an elevated activity state in neuronal cultures compared to 
their in vivo counterparts; however, the decoupling of the many functional roles of the AP-1 
complex from one another using global accessibility is not currently possible. We also examined 
the motifs for several other transcription factors that are relevant to neuronal development. 
NeuroD1, discussed above, responsible for early differentiation (E14.5 ventricular proliferative 
zone) (Pataskar et al. 2016) and survival of neurons, exhibited shared accessibility enrichment in 
a subset of cells from both the in vivo and in vitro neuronal populations. Mef2c delineates early 
precursors of a subset of inhibitory interneurons (Mayer et al. 2018) and we observed shared, 
elevated Mef2c accessibility in the interneuron populations, with greater accessibility in the in vitro 
cells (µz = 3.91) over that of the in vivo interneurons (µz = 1.10). In contrast to NeuroD1 and Mef2c, 
NeuroD2 acts later in hippocampal development than NeuroD1 (Pleasure et al. 2000), is 
expressed in migrating granule neurons, and binds to a number of neuron-specific promoters. 
The DNA binding motif for NeuroD2 was globally more accessible in the in vivo neurons when 
compared to their in vitro counterpart (µz = 2.05 and µz = 0.05 for in vivo and in vitro respectively). 
This finding may reflect its later developmental appearance and that the main targets of NeuroD2 
are involved in layer-specific differentiation and axonal pathfinding, which are not likely to be 
occurring in vitro. 

Differential accessibility analysis comparing in vitro and in vivo counterparts shed further 
light on the epigenetic differences between the two populations (Fig. 4D). A comparison of the 
interneuron populations produced 4,356 and 7,575 peaks significantly differentially accessible in 
the in vivo (INT) and in vitro (VT2) populations, respectively (q-value ≤ 0.01, Log2 fold-change ≥ 
1). A motif enrichment analysis of these peak sets revealed the most significantly enriched motifs 
corresponded to NeuroD1 in the in vivo peaks (p = 1×10-24), which is interesting because NeuroD1 
global accessibility is low in both interneuron populations (Fig. 4C). Interneuron peaks specific to 
the in vitro population were significantly enriched for Atf3 (p = 1×10-815), which is not surprising in 
light of the above accessibility of AP-1 in the in vitro cell populations and its shared role in cell 
stress and interaction with the AP-1 complex (Hai and Curran 1991). We also examined 
differential accessibility between the most-closely grouped excitatory neuronal populations, which 
produced 1,761 and 2,964 for NR1 (in vivo) and VT1 (in vitro) respectively (q-value ≤ 0.01, Log2 
fold-change ≥ 1). The most significantly enriched motif in the in vivo peak set was Egr2 (p = 1×10-

90), again a transcription factor expressed highly in migrating neural crest cells (Wilkinson et al. 
1989) that  may be absent in an in vitro setting where cell migration is not pertinent. 

Discussion 

 A better understanding of the role of specific cell populations in hippocampal function is a 
necessary step in order to study disease processes that involve this region critical to memory and 
learning. Thus far, studies have used gene expression data from sorted populations (Cembrowski 
et al. 2016) and single cells (Zeisel et al. 2015; Habib et al. 2017) to identify subpopulations of 
cells and novel marker genes for the cells within the hippocampus. However, gene expression 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 4, 2018. ; https://doi.org/10.1101/407668doi: bioRxiv preprint 

https://doi.org/10.1101/407668
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

9 
 

data is typically graded across cell types with few cases of exclusive expression, making it difficult 
to detect significant change within a cell type. In contrast, chromatin accessibility is typically a 
binary signature and involves far more regulatory elements than there are genes, thus motivating 
the use of ATAC-seq methods for cell type deconvolution and assessment. 

Here, we provide the most in-depth epigenetic analysis of the hippocampus at single-cell 
resolution to date. Our sci-ATAC-seq protocol (Methods) has been optimized for primary cell 
culture and both fresh or frozen tissue and produces unique read counts per cell in the tens-of-
thousands, a full order-of-magnitude improvement over the initial sci-ATAC-seq publication 
(Cusanovich et al. 2015). The data sets released with this study can be readily analyzed using 
scitools (https://github.com/adeylab) to recreate the figures in this manuscript in addition to many 
more, such as the gamut of motif accessibilities that we assessed. This tool suite is designed to 
be complementary to other single-cell ATAC-seq analysis packages, such as ChromVAR and 
Cicero, and serves as an easy framework for integrating analyses and generating plots to assess 
data quality and facilitate biological interpretation. Scitools is also set up to directly feed sci-ATAC-
seq data into Monocle3 for pseudotemporal ordering applications not described in this work. 

We utilized our sci-ATAC-seq maps to identify the major cell types of the hippocampus, 
with sufficient depth and library complexity to profile less abundant cell types, such as microglia 
and oligodendrocyte progenitor cells. Our analysis of global motif accessibility revealed the 
expected enrichment of motifs associated with specific cell populations in addition to uncovering 
unanticipated findings, such as increased accessibility at CTCF motifs in interneuron and glial 
populations; a finding that was also observed in our differentially accessibility analysis. We also 
utilized our dataset to map cis co-accessibility networks, enabling the association of distal 
elements with promoters or other regulatory loci. Finally, we directly compared the accessibility 
profiles of neurons that were matured in vitro with their in vivo counterparts. This revealed a stark 
difference in the global accessibility for motifs associated with the AP-1 complex, which is involved 
in cell stress as well as neuronal activity. Future work to identify the cause and effect of elevated 
AP-1 complex activity is warranted to understand its impact on studies that utilize hippocampal 
neurons matured in vitro.  

We believe that the chromatin accessibility maps we provide in this work, including the 
profiling of in vitro cultured neurons, and the software tools we are releasing are a valuable 
resource for any groups studying the hippocampus or those that wish to analyze single-cell 
chromatin accessibility data.  
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Methods 

Isolation of hippocampus tissue 

All animal studies were approved by the Oregon Health and Science University Institutional 
Animal Care and Use Committee. Sixty day old C57BL/6J mice were deeply anesthetized using 
isofluorane. After decapitation the brain was removed and the hippocampus isolated and placed 
in ice-cold phosphate-buffered saline (pH 7.4).  

In Vitro culturing of hippocampal neurons 

Pups (P0) were killed by decapitation and the brains dissected in ice-cold Hanks Basal Salt 
Solution (HBSS, pH 7.4) with 25 mM Hepes buffer. Individual hippocampi were excised without 
the meninges and pooled by individual animal. The tissue was treated with 2% papain and 
80ng/ml Dnase I in HBSS at 37 °C for 10 min. Tissue pieces were rinsed three times with 
Hibernate A containing 2mM Glutamax and 1x B27 supplement. Neurons were dissociated 
carefully and filtered with a 0.4-μm mesh. Neurons were plated at a density of 1x106 cells per well 
of a six well dish coated with 50 μg/mL Poly-L-Lysine hydrobromide in boric acid buffer (50 mM 
Boric Acid, 12.5 mM Sodium Borate, decahydrate). The neurons were plated in Neurobasal A 
containing 1xB27 supplement and 2mM glutamax. After 2 hours, the media was changed to 
remove cell debris. Media half changes occurred every 3 days with fresh Neurobasal A containing 
1xB27 and 2mM glutamax. Cells were maintained at 37°C with 5% CO2 in a humidified incubator. 

Sci-ATAC-seq assay & sequencing 

Tissue was diced on ice using a sterile razor blade in freshly-prepared Nuclei Isolation Buffer 
(NIB: 500 µL 10 mM Tris-HCl pH .5, 100 µL 10 mM NaCl, 150 µL MgCl2, 500 µL 0.1% Igepal, 1 
unit Qiagen Protease Inhibitor, nuclease-free water to 50 mL) followed by dounce 
homogenization. For cultured cells, nculei were directly isolated by removing media, washing 
once with ice cold PBS, and then NIB added to cover the dish followed by incubation on ice for 5 
minutes, scraping using a tissue scraper, and then an additional 5-minute incubation on ice. For 
both tissue and cultured cells, nuclei were then pelleted and resuspended in 1 mL NIB with DAPI 
added to a final concentration of 5 mg/mL. Nuclei were then strained in a 35 µm strainer and 
sorted on a Sony SH800 Flow Sorter and deposited into 0.2 mL PCR plates containing 5 uL of 
2X TD buffer and 5 uL of NIB, with 2,500 nuclei deposited per well. Plates were placed on ice 
until transposition. Tagmentation was performed by the addition of 1 µL of 2.5 µM barcoded 
transposome (Amini et al. 2014) and incubated at 55°C for 15 minutes followed by placing the 
plate on ice to stop the reaction. All wells were then pooled using wide-bore pipette tips and DAPI 
added to a final concentration of 5 mg/mL. Tagmented nuclei were then strained and sorted again 
and 22 were deposited into each new PCR well containing 0.25 µL 20 mg/mL BSA, 0.5 µL 1% 
SDS, 7.75 µL nuclease-free water, 2.5 µL barcoded forward primer, and 2.5 µL reverse primer. 
Plates were kept on ice until all sorting was completed. After sorting, plates were incubated at 
55°C for 15 minutes to denature the transposase followed by placing the plate on ice and adding 
12 uL of PCR mix (7.5 µL NPM, 4 µL nuclease-free water, 0.5 µL 100X SYBR Green) and then 
PCR amplified using the following conditions: 72°C for 5:00, 98°C for 0:30, Cycles of [98°C for 
0:10, 63°C for 0:30, 72°C for 1:00, plate read, 72°C for 0:10] on a BioRad CFX real time 
thermocycler. Reactions were pulled when mid-exponential, typically 17-22 cycles. Post-
amplification 5 µL of each reaction was pooled and cleaned up using a Qiaquick PCR Purification 
column. Libraries were quantified using a Qubit fluorimeter, diluted to ~4 ng/µL and assessed on 
an Agilent Bioanalyzer HS Chip. Sequencing was carried out as previously described on a 
NextSeqTM 500 (research use only) using custom primers and chemistry (Vitak et al. 2017). 
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The scitools suite 

All initial analysis was performed with scitools, a custom software package we developed to help 
analyze sci-ATAC-seq data and other combinatorial indexing data (sci-). The toolset is a collection 
of commands to perform common functions for sci- datasets, including wrappers that utilize 
existing tools, including: bwa (Li and Durbin 2009), macs2 (Zhang et al. 2008), bedtools (Quinlan 
and Hall 2010), samtools, as well as R libraries: ggplot2, chromVAR (Schep et al. 2017), 
chromVARmotifs, cicero (Pliner et al. 2018), RtSNE, dbscan (Ester et al. 1996). Usage of scitools 
for any of these functions should cite the relevant utilities. Data produced for this study are 
available on GEO under accession GSE118987 as reads as well as data tables and metadata in 
the form of data.gz files which can be split into their components via “scitools split-data”. See 
Supplementary Note 1 document and Supplementary Figure 14 for additional details on datasets 
provided as well as the scitools documentation, which can be found at 
https://github.com/adeylab/scitools. 

Sci-ATAC-seq data processing 

BCL files were first converted to fastq files using bcl2fastq (2.19.0). We then demultiplexed our 
reads using scitools (fastq-dump, fastq-split) based on the two separate Tn5 tagmentation events 
on the P5 and P7 ends of the molecules and the following added unique PCR indexes on both 
sides. In order for a barcode to be considered a match each of these four indexes constituting a 
barcode had to be within two Hamming edit distances away from their expected counterpart. We 
aligned to the mm10 genome using the scitools fastq-align function within scitools, which mapped 
reads using bwa mem. Aligned reads were filtered based on a quality score cutoff of 10 and PCR 
duplicates removed in a barcode-aware manner using scitools bam-rmdup. We determined 
whether a barcode represented a cell as opposed it representing noise by using the mixed model 
approach previously presented (Vitak et al. 2017). Peaks were then called using scitools callpeak, 
which utilizes macs2 to identify peaks and then extend to 500 bp followed by peak merging and 
filtering of peaks that extend beyond chromosome boundaries. 

Latent semantic indexing and 2D embedding 

Count matrixes were generated using scitools counts to produce a matrix of read counts at cells 
(columns) by called peaks (rows). This matrix was then filtered using scitools filter-matrix to 
exclude rows with fewer than 10 cells having reads (-R 10), and columns (cells) with fewer than 
1000 rows with reads (-C 1000). The matrix was then carried through term-frequency inverse-
document-frequency transformation using scitools tfidf, followed by latent semantic indexing, 
retaining SVD dimensions 1-15 using scitools lsi. The resulting LSI matrix was used in scitools 
tsne which makes use of the RtSNE R package. All tSNE plots were generated using scitools 
plot-dims using an annotation file to encode cluster ID, sample ID, or other variables, including 
chromVAR motif deviation z-scores. 

Identifying transcription-facter-associated changes 

We applied the chromVAR (Schep et al. 2017) R package to our data to infer changes in global 
motif accessibility across our cell populations. This provides information on the putative binding 
of transcription-factors and consequently the possible ongoing biological processes in cell 
populations. The mouse_pwms_v1 motif set from the chromVARmotifs R package was used in 
this analysis. The bias corrected motif deviation scores were plotted on the tSNE embedded 2D 
coordinates with the scitools plot-dims -M option for visualization.   

Cell type dependent differential accessibility  

To accurately identify differentially accessible peaks we used the make_glasso_cds function from 
the Cicero (ver=,0.0.0.9000) package to create clusters of k=50 cells based on their the low 
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dimensional t-SNE coordinates. We then selected clusters with 99% cell type purity and 
aggregated accessibility profiles. We posited that the aggregate profiles would provide the 
replicates required for the DEseq2 R package, which in turn internally corrects for technical biases 
such as assay efficiency. With this method we tested (using the inherent nBinomWaldTest) for 
differentially accessible sites between cell types against all other cell types combined. We 
corrected for multiple testing at q=0.01 and further filtered differentially accessible sites by 
removing peaks accessible at q=0.2 in any of the other cell types. We also note that scitools 
aggregate-cells is also capable of aggregating cells in reduced dimensional space for purposes 
of differential accessibility analysis. We then applied Homer (http://homer.ucsd.edu/homer/motif/) 
to identify potential de novo and known regulators of chromatin accessibility within the cell type 
dependent differentially accessible sites. We used all accessible peaks as background and the 
mm10 findMotifsGenome command.  

Identifying cis-regulatory networks in the hippocampus 

We used the recently described Cicero package (Pliner et al. 2018) to identify cis-co-accessibility 
networks (CCANs). This method uses the patterns of co-accessibility in sci-ATAC-seq data to link 
distant regulatory elements with their target genes. It achieves this by first grouping cells together 
into "local neighborhoods" based on their coordinates in low dimensional t-SNE space and 
creating aggregate accessibility profiles from their single-cell chromatin accessibility matrixes. 
The aggregate counts are then bias corrected for technical factors and a raw site-to-site 
covariance matrix is calculated for overlapping windows across the genome. At this point the 
algorithm uses a graphical LASSO model, to calculate a regularized correlation matrix that applies 
increasing penalty based on the genomic distance between two sites. Finally, the overlapping 
covariance matrixes are collapsed resulting in a matrix of co-accessibility scores that links sites 
across cell neighborhoods. CCANs are constructed using the Louvain community detection 
algorithm that creates subgraphs from the network of linked sites. This is done based on the 
values from the co-accessibility score matrix that are above a given threshold. We used a p=0.15 
threshold cutoff for and identified 2,066 chromatin networks which incorporated 47,805 sites of 
our in vivo cell populations. 

Fold enrichment for links within annotated TADs (Dixon et al. 2012) was performed by calculating 
the proportion of distance-matched (±25 kbp of specified 50 kbp distance interval) intra-TAD links 
over inter-TAD links at a range of co-accessibility score cutoffs (0.05 to 0.25 at 0.05 intervals). 
10,000 permutations were then performed for each distance bin by randomly assigning two 
distance-matched peaks as linked and retaining the same total number of links for each co-
accessibility cutoff and then calculating the fold intra-TAD enrichment as described above. 

Cell type specific cis-regulatory networks 

We aimed to assign cis-co-accessibility networks to cell types using their relative 
accessibility across these groups. We approached this by first calculating the fraction of cells of 
each cell type that have signal at a peak. We then assumed that the distribution of reads per cell 
across these cell types is close to uniform, which allowed us to aggregate the z-scored read 
fractions of peaks within our CCANs. We finally z-scored the resulting matrix across the CCANs 
and then visualized the separation of CCANs by cell type by bi-clustering and plotting the heatmap 
using the complexHeatmap (ver=1.17.1) R package. We also visualized CCAN cell type 
specificity by using tSNE on the z-scored group read fractions to embed CCANs in 2D. We 
assigned the cell type to each of the CCANs based on the highest z-scored value. We next 
identified CCANs that contain at least one of the genes (Prox1, Dsp, Ociad2, Dkk3, Glul, Gfap, 
Mog, Cldn11, C1qa, Wfs1, Mobp, Pdgfra) shown to be differentially accessible in our data. We 
intersected +/-80 kbp regions before and after transcription start sites of these genes with the 
CCANs using bedtools intersect. We plotted the CCANs around genes where the cell type 
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assigned to the CCANs matched the cell type specificity of the gene using the cicero 
plot_connections function. We used chromVAR to further validate the relative enrichment of 
CCANs by using CCAN peaks as motif input files. We used scitools plot dims -M option to 
visualize the deviation scores for the CCANs on the tSNE coordinates. We have to note that in 
order for this method to work, peaks within the CCANs had to be accessible across multiple cell 
types, so we decided to use only CCANs with ≥ 10 peaks for this analysis. We finally included a 
more in-depth analysis of CCAN 174 centered around Prox1. We called CCANs just within 
Granule cells and identified three different sub CCANs, with the core of the original CCAN 174 
showing even higher specify in the chromVAR deviation scores plots (Supplementary Fig. 11). 
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Figure 1. sci-ATAC-seq of the murine hippocampus. (A) sci-ATAC-seq workflow. Two indexes are 
incorporated into library molecules for each cell enabling single-cell discrimination. (B) LSI-tSNE projection 
of single cells colored by tissue preparation method. Little variation in tSNE space is observed between 
fresh or frozen starting material. (C) LSI-tSNE projection of cells colored by assigned cluster and cell type. 
(D) Enrichment of accessibility of proximal regulatory elements for marker genes as identified by single-cell 
RNA-seq (Zeisel et al. 2015) and DroNc-seq (Habib et al. 2017) for each cell. The microglial population is 
enlarged for visibility. Black arrows indicate the cell cluster associated with the marker gene set. (E) sci-
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ATAC-seq read plots at Glul (astrocyte marker gene) and Prox1 (dentate granule cell marker gene). (F) 
ChromVAR global motif deviation z-scores for each cell for select motifs. Dashed lines and values 
correspond to mean values of cell populations. 

 

 

 

Figure 2. Differential accessibility analysis between cell types. (A) Volcano plots –log10(q-value) (y-
axis) versus log2 accessibility signal fold change (x-axis) showing all peaks. Each comparison is for the 
indicated cell population versus all other cell types. Significant peaks (number indicated, q-value ≤ 0.01, 
log2 fold change ≥ 1) are in black. (B) ATAC-seq signal plots for the top differential accessible peaks for 
each cell type. The most significantly enriched motif for each set is shown on the right along with the 
corresponding p-value and closest matching known motif. (C) c-Fos locus with enhancers E1-5 highlighted 
to show cell-type-specific utilization. 
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Figure 3. Cis co-accessibility analysis using Cicero. (A) Cicero links at several co-accessibility score 
thresholds are heavily enriched for links that contain peaks present in the same topological associated 
domain (TAD) as determined by Hi-C methods (Dixon et al. 2012). The enrichment decreases at greater 
distances (x-axis). (B) tSNE projection of CCANs colored by the cell type with the greatest accessibility for 
the CCAN. Each point represents an individual CCAN. Networks generally group by cell type. CCAN 174 
which includes the Prox1 gene shown below in (D) is indicated with an arrow. (C) Accessibility z-scores for 
CCANs for granule cells and microglia. (D) Cis co-accessibility network (CCAN) ID 174 including the Prox1 
promoter (dentate granule marker gene). (E) CCAN 174 has the greatest accessibility signal in cells 
identified as dentate granule cells. 
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Figure 4. Comparison of the accessible chromatin landscape of in vitro cultured neurons with in 
vivo obtained profiles. (A) LSI-tSNE projections of in vitro obtained cells reveals four clusters, one of 
which exhibits interneuron patterns (VT2) and the remaining excitatory neurons (VT1,3-4). (B) LSI-tSNE 
projection of the combined in vivo and in vitro datasets colored by independently called clusters. Excitatory 
neurons in the two conditions generally cluster separately, with interneurons more closely associated. (C) 
ChromVAR global motif deviation z-scores for select motifs for each cell. Dashed lines and values 
correspond to mean values of cell populations. (D) Differential accessibility analysis between in vivo and in 
vitro interneurons (top, INT vs. VT2, respectively) and between two closest excitatory neuron populations 
between in vivo and in vitro conditions (NR1 and VT1, respectively). ATAC-seq signal is shown for the top 
differentially accessible loci with the top three motifs and corresponding p-values and matching motifs to 
the right. 
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Cluster Tissue Cells

Percent 

(of tissue)

Frozen 5 n/a

Fresh 10 n/a

Frozen 238 29.86%

Fresh 499 34.13%

Frozen 66 8.28%

Fresh 61 4.17%

Frozen 104 29.86%

Fresh 169 11.56%

Frozen 251 31.49%

Fresh 496 33.93%

Frozen 25 n/a

Fresh 47 n/a

Frozen 33 4.14%

Fresh 89 6.09%

Frozen 25 3.14%

Fresh 18 1.23%

Frozen 60 7.53%

Fresh 91 6.22%

Frozen 20 2.51%

Fresh 39 2.67%

Total Frozen 827 35.25%

Total Fresh 1519 64.75%

Astrocytes

Microglia

Oligodendrocytes

OPCs

Noise

Granule Cells

Interneurons

Neurons1

Neurons2

Collisions

Supplementary Table 1: Cell Type Composition
Proportion of cells assigned to each cluster for the In Vivo dataset along with the fresh vs.

frozen breakdown.

2

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 4, 2018. ; https://doi.org/10.1101/407668doi: bioRxiv preprint 

https://doi.org/10.1101/407668
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Table 2: Differentially Accessible Peaks
The top 10 differentially accessible (see Methods) peaks corresponding to each cluster. Plots

for these can be found in Supplementary Fig. 4.

Chrom. Start End Chrom. Start End Chrom. Start End

chr2 12,805,030 12,805,581 chr19 23,330,204 23,331,209 chr10 83,906,604 83,907,477

chr18 13,157,877 13,158,511 chr2 169,049,869 169,050,512 chr12 100,073,051 100,073,764

chr19 24,665,688 24,666,194 chr15 94,011,340 94,012,637 chr18 75,544,174 75,544,677

chr8 24,303,072 24,303,600 chr19 18,368,387 18,369,139 chr13 56,581,977 56,583,211

chr14 11,231,939 11,232,458 chr9 97,883,149 97,883,765 chr18 75,541,370 75,541,889

chr1 190,306,260 190,306,838 chr6 55,836,835 55,837,355 chr9 25,230,456 25,231,009

chr1 190,642,627 190,643,179 chr18 78,243,805 78,244,339 chr17 8,350,898 8,351,641

chr5 88,830,139 88,830,687 chr3 65,884,483 65,885,067 chr2 127,627,327 127,628,521

chr1 55,828,229 55,828,748 chr10 111,308,849 111,309,852 chr14 34,590,699 34,591,715

chr10 48,010,760 48,012,230 chr1 127,541,771 127,542,290 chr9 25,240,906 25,241,521

chr2 158,610,479 158,611,273 chr3 50,421,595 50,422,393 chr5 65,434,477 65,435,230

chr2 71,529,369 71,529,901 chr10 18,359,980 18,360,766 chr2 125,723,709 125,725,049

chr11 88,028,257 88,028,867 chr2 102,620,556 102,621,235 chr9 56,868,193 56,868,694

chr2 22,621,845 22,622,763 chr14 65,889,584 65,890,606 chr6 30,572,647 30,573,201

chr6 55,398,876 55,399,381 chr14 121,113,651 121,114,302 chr7 79,729,178 79,729,709

chr5 124,206,256 124,206,918 chr1 154,139,439 154,140,079 chr14 57,534,993 57,535,499

chr5 31,589,699 31,590,705 chr16 18,083,199 18,083,957 chr4 106,317,513 106,318,014

chr2 36,011,161 36,011,981 chr1 182,483,531 182,484,443 chr3 51,749,422 51,750,382

chr5 35,985,506 35,986,014 chr5 33,705,059 33,705,607 chr1 172,064,528 172,065,243

chr19 15,052,684 15,053,503 chr12 25,239,950 25,241,190 chr6 146,955,683 146,956,269

chr18 15,008,128 15,008,636 chr7 67,445,504 67,446,168

chr9 22,030,329 22,030,831 chr7 126,746,073 126,747,014

chr8 40,455,798 40,456,317 chr15 27,702,515 27,703,332

chr7 84,576,178 84,576,680 chr7 80,078,688 80,079,367

chr13 73,912,658 73,913,254 chr15 59,728,185 59,728,766

chr2 46,330,878 46,331,408 chr7 145,111,444 145,112,140

chrX 145,341,895 145,342,781 chr4 129,782,344 129,783,082

chr6 89,050,828 89,051,367 chr13 83,571,978 83,572,659

chr10 54,551,634 54,552,521 chr17 88,581,421 88,581,940

chr3 74,734,781 74,735,299 chr7 120,851,508 120,852,400
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Supplementary Figure 1: Marker Gene Dashboards
Marker gene dashboards (A-N) contain three plots and additional information. For each

dashboard the gene name can be found in the upper right with the specified cell type below

in parentheses. The literature reference for why the gene was selected is included below the

gene title. The top left plot is a ‘read plot’ of the region around the gene (+/- 100,000 bp) with

genes in the region plotted at the top followed by rows for each cell with unique reads in the

region colored by the cluster identity. To the right of the read plot is an immunohistochemistry

image from the Allen Brain Atlas for the specified gene. Lastly, the bottom panel is a genome

browser view showing the aggregated cluster sci-ATAC-seq profiles at a zoomed in region

around the marker gene along with mouse hippocampus H3K4me3 and H3K27ac ChiP-seq

peaks obtained from the ENCODE project. Black arrows on the read plot and genome viewer

screenshot indicate cluster-specific signal and the corresponding cluster in the legend of the

read plot.
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A) Gfap
(Astrocytes)

PMID: 7952264

Brain Pathol. 1994 Jul;4(3):229-37. 
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B) Glul
(Astrocytes)

PMID: 14400 

Science. 1977 Mar 25;195(4284):1356-8

PMID: 24137157

Front Endocrinol (Lausanne). 2013 Oct 

16;4:144. 

6

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 4, 2018. ; https://doi.org/10.1101/407668doi: bioRxiv preprint 

https://doi.org/10.1101/407668
http://creativecommons.org/licenses/by-nc-nd/4.0/


C) Wfs1
(CA1 Neurons)

PMID: 24336151 

Nat Neurosci. 2014 Feb;17(2):269-79. doi: 

10.1038/nn.3614
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D) Dsp
(Dentate Granule

Cells)

PMID: 15084669

DOI:     10.1523/JNEUROSCI.4710-03.2004
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E) Prox1
(Dentate Granule

Cells)

PMID: 22791897 

Development. 2012 Aug;139(16):3051-62. doi: 

10.1242/dev.080002

9
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F) Col19a1
(Interneurons)

PMID: 19937713 

J Comp Neurol. 2010 Jan 10;518(2):229-53
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G) Dkk3
(Pyramidal

Neurons)

PMID: 27113915

Elife. 2016 Apr 26;5:e14997.

doi: 10.7554/eLife.14997
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H) Ociad2
(Pyramidal

Neurons)

PMID: 27113915

Elife. 2016 Apr 26;5:e14997.

doi: 10.7554/eLife.14997
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I) C1qa/c
(Microglia)

C1qa

C1qc

PMID: 26982357

Immunity. 2016 Mar 15;44(3):505-515

13
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J) Cx3cr1
(Microglia)

PMID: 25258010

Glia. 2015 Apr;63(4):531-548

Note: Coronal section (no sagittal available)
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K) Cldn11
(Oligodendrocytes)

PMID: 10225958

J Cell Biol. 1999 May 3;145(3):579-88
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L) Mog
(Oligodendrocytes)

PMID: 2649509

J Neuroimmunol. 1989 May;22(3):169-76. 
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M) Mobp
(Oligodendrocytes)

PMID: 17065439

J Neurosci. 2006 Oct 25;26(43):10967-83.
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N) Pdgfra
(Oligodendrocyte

Progenitor Cells)

PMID: 18849983  

Nat Neurosci. 2008 Dec;11(12):1392-401. 

doi: 10.1038/nn.2220
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A

B
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B (cont)

20

Supplementary Figure 2: Global motif profiles for cell types
A) ChromVAR mean deviation scores (y-axis) for each motif for each cell type. Color

indicates the variability score for the motif as reported by ChromVAR. B) Top 30 motifs with

the highest deviation z-scores as shown in A. Color indicates the ranking within the cluster.

Polygon plots were utilized to confer similar shapes of top motif accessibility between

clusters.
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Supplementary Figure 3: DA Peak ATAC-seq Signal
ATAC-seq signal for the top 1,000 differentially accessible peaks for each cell type are shown

as in Fig. 2 but sorted according to peaks with the top signal versus significance of

differential accessibility.
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Supplementary Figure 4: Differentially Accessible Peaks
The top 10 differentially accessible (Supplementary Table 2, see Methods) peaks

corresponding to each cluster (A-H) are plotted along with the sci-ATAC-seq reads present

within the region +/- 50,000 basepairs of the identified DA peak (centered).
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A) Astrocyte
(Top 10 DE Peaks)
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B) Granule Cells
(Top 10 DE Peaks)
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C) Interneuron
(Top 10 DE Peaks)
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D) Microglia
(Top 10 DE Peaks)
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E) Neurons 1
(Top 10 DE Peaks)
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F) Neurons 2
(Top 10 DE Peaks)

28

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 4, 2018. ; https://doi.org/10.1101/407668doi: bioRxiv preprint 

https://doi.org/10.1101/407668
http://creativecommons.org/licenses/by-nc-nd/4.0/


G) Oligodendrocyte
(Top 10 DE Peaks)
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H) Oligodendrocyte

Progenitor Cells
(Top 10 DE Peaks)
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Supplementary Figure 5: Top DA peaks between NR1 and NR2 excitatory 

neuron cell types
ATAC-seq signal for the top 1,000 DA peaks is plotted for each cell type along with the top

three motifs associated with each peak set and their corresponding p-value and closest

matching motif.
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Supplementary Figure 6: Afap1 locus
Read plot generated by scitools showing a peak highly enriched in interneurons that is

flanked by CTCF ChIP-seq peaks.
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Supplementary Figure 7: Slc4a4 locus
Read plot generated by scitools showing the putative cell-type-specific enhancer of Slc4a4

that is differentially accessible in the dentate granule cell population. ChIP-seq peaks from

Gjoneska et. al. (2015) are shown below the gene track in black.
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Supplementary Figure 8: Hierarchical clustering of CCANs by cell type 

enrichment
Hierarchical clustering of enrichment z-scores for peaks contained with in each CCAN with

respect to cell type.
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Supplementary Figure 9: CCAN cell type enrichments on tSNE projections
Enrichment for CCAN’s within each cell type is plotted as in Fig. 3, but for each of the eight

major clusters.
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Supplementary Figure 10: CCAN peak counts
tSNE of CCANs by cell type specificity (as in Figure 3), but shaded by peak membership

count. CCANs with greater numbers group towards the center and are less-cell type specific

overall. This is likely due to modular CCANs where certain portions of CCANs are cell-type-

specific that link up with other, more universally established CCANs, as in the Prox1

example.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 4, 2018. ; https://doi.org/10.1101/407668doi: bioRxiv preprint 

https://doi.org/10.1101/407668
http://creativecommons.org/licenses/by-nc-nd/4.0/


37

Supplementary Figure 11: Additional cell-type-specific CCANs
Left: plots of the CCANs near cell-type-specific marker genes. Right: Accessibility enrichment

across cells.
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Supplementary Figure 12: Dissection of CCAN 174 (Prox1)
A) CCAN 174 as determined by Cicero performed on all cell types (top). The CCAN is large

and likely contains links that are not cell-type specific. When Cicero is carried out only on the

dentate granule cell population, the larger CCAN is split into three distinct networks. B) The

cell-type specificity for the granule-specific CCAN (274) centered on Prox1 is more

accessible than the adjacent CCAN that does not exhibit cell type specificity (278).
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Supplementary Figure 13: Mutually exclusive CCAN
A) Example of a mutually-exclusive set of CCANs that includes the astrocyte marker gene

Gfap. CCAN 695 (pink) and 694 (blue) overlap one another in genome positions; however,

they are comprised of mutually-exclusive peak sets, suggesting two alternative chromatin

conformations. B) The mutually exclusive CCAN peak sets have negative correlations with

peaks from one another’s network.
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B

Supplementary Figure 14: Scitools analysis and data access workflow
A) Detailed breakdown of all analyses performed by scitools in this study, and general best-

practice guidelines for processing sci-ATAC-seq data using scitools. B) scitools data-split

command to extract data files associated with this study from the GEO archive.
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Supplementary Note 1: Data & Software Description 

We have released our data in a format compatible with the scitools software suite, which can be 

found at https://github.com/adeylab/scitools. For more information on scitools commands and 

usage, refer to user manual provided at the GitHub site. 

To extract associated data, run the following command: 

$ scitools data-split [dataset].data.gz 

This will produce a set of files for each of the data sets with self-descriptive titles: 

File InVitro InVivo Comb. Description 

Cluster_Identity    Cluster assignments 

Tissue    Tissue assignments 

Counts    Counts matrix (unfiltered) 

scRNA_Marker_Deviations 
   

Linarsson lab marker gene set 
deviations 

Dronc_Marker_Deviations 
   

Regev Lab Dronc-seq gene set 
deviaitons 

ChromVAR_Deviations    Motif deviations 

ChromVAR_Mean_Deviations    Mean motif deviations by cluster 

tSNE_Dimensions    LSI-tSNE 2D dimensions 

UMAP    LSI-UMAP 2D dimensions 

IRLBA    IRLBA 50 dimensions 

IRLBA_tSNE    IRLBA-tSNE 2D dimensions 

Called_Peaks    Called peaks 

Cicero_Links    Cicero peak correlations (all) 

Cicero_CCANs    CCANs from Cicero links 

Color_Specification    Color coding for plotting 
 

Scitools commands can then be run to reproduce figures in the manuscript. Below are several 

examples: 

1) Plotting tSNE projections of cells: 

$ scitools plot-dims –A [dataset].Cell_Type.annot [dataset].tSNE.dims 

2) Plotting the chromVAR deviation scores onto tSNE dims: 

$ scitools plot-dims –M [dataset].ChromVAR_DevZ.matrix 

[dataset].tSNE.dims 

The counts matrix is also produced by the data-split command which can be used to run other 

scitools functions, for example: 

1) Performing latent semantic indexing: 

a. Filter matrix: 

$ scitools matrix-filter –C 1000 –R 50 [dataset].Counts.matrix 

b. Tfidf transform: 

$ scitools tfidf [dataset].Counts.matrix 

c. Perform LSI: 

$ scitools lsi [dataset].tfidf 
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d. Perform tSNE: 

$ scitools tsne [dataset].tfidf.LSI.matrix 

2) Alternative dimensionality reduction strategies: 

a. On the tfidf matrix, perform irlba: 

$ scitools irlba [dataset].tfidf 

b. Perform tSNE: 

$ scitools tsne [dataset].tfidf.irlba.matrix 

To list additional commands that can be run on the datasets, run the following: 

$ scitools list 
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