
Title:
Tree-sequence recording in SLiM opens new horizons for forward-time simulation of whole
genomes
Running Title: Tree-sequence recording in SLiM

Authors:
Benjamin C. Haller ‡  
Dept. of Biological Statistics and Computational Biology  
Cornell University, Ithaca, NY 14853, USA

Jared Galloway  
Institute of Ecology and Evolution  
University of Oregon, Eugene, OR 97403, USA

Jerome Kelleher  
Big Data Institute, Li Ka Shing Centre for Health Information and Discovery  
University of Oxford  
Oxford, OX3 7FZ, UK

Philipp W. Messer *  
Dept. of Biological Statistics and Computational Biology  
Cornell University, Ithaca, NY 14853, USA

Peter L. Ralph ‡ *  
Institute of Ecology and Evolution  
University of Oregon, Eugene, OR 97403, USA

‡ Corresponding authors  
* Joint senior authors

Corresponding Authors:
Benjamin C. Haller, bhaller@benhaller.com
Peter Ralph, plr@uoregon.edu

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 4, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

Abstract
There is an increasing demand for evolutionary models to incorporate relatively realistic
dynamics, ranging from selection at many genomic sites to complex demography, population
structure, and ecological interactions. Such models can generally be implemented as individual-
based forward simulations, but the large computational overhead of these models often makes
simulation of whole chromosome sequences in large populations infeasible. This situation
presents an important obstacle to the field that requires conceptual advances to overcome. The
recently developed tree-sequence recording method (Kelleher et al., 2018), which stores the
genealogical history of all genomes in the simulated population, could provide such an advance.
This method has several benefits: (1) it allows neutral mutations to be omitted entirely from
forward-time simulations and added later, thereby dramatically improving computational
efficiency; (2) it allows neutral burn-in to be constructed extremely efficiently after the fact,
using “recapitation”; (3) it allows direct examination and analysis of the genealogical trees along
the genome; and (4) it provides a compact representation of a population’s genealogy that can be
analyzed in Python using the msprime package. We have implemented the tree-sequence
recording method in SLiM 3 (a free, open-source evolutionary simulation software package) and
extended it to allow the recording of non-neutral mutations, greatly broadening the utility of this
method. To demonstrate the versatility and performance of this approach, we showcase several
practical applications that would have been beyond the reach of previously existing methods,
opening up new horizons for the modeling and exploration of evolutionary processes.

Keywords
pedigree recording, coalescent, background selection, genealogical history, selective sweeps, tree
sequences

Introduction
Forward simulations are increasingly important in population genetics and evolutionary biology.
For example, they can be useful for modeling the expected evolutionary dynamics of real-world
systems (Fournier-Level et al., 2016; Cotto et al., 2017; Matz et al., 2018; Ryan et al., 2018), for
discovering the ecological and evolutionary mechanisms that led to present-day genomic patterns
in a species (Enard et al., 2014; Nowak et al., 2014; Arunkumar et al., 2015; Patel et al., 2018),
for testing or validating empirical and statistical methods (Haller and Hendry, 2013; Caballero et
al, 2015; Ewing et al., 2016; Haller and Messer, 2017a), and for exploring theoretical ideas about
evolution (Haller et al., 2013; Assaf et al., 2015; Mafessoni and Lachmann, 2015; Champer et. al,
2018), among other purposes. Because of this broad utility, there is a growing desire to run
simulations with increased realism in a variety of areas: longer genomic regions up to the scale
of full genome sequences, large populations, selection at multiple loci with linkage effects,
complex demography, ecological interactions with other organisms and the environment, explicit
space with continuous landscapes, spatial variation in environmental variables, spatial
interactions such as competition and mate choice between organisms, and so forth.

However, this type of realism comes at a price, in both processing time and memory usage.
Since computational resources are finite, this can often make it difficult or, in practical terms,

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 4, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

impossible to run some models. Advances in computing power have gradually extended the
boundaries of what is possible, as have performance improvements due to improved forward
simulation software (Messer, 2013; Thornton 2014; Haller and Messer, 2017b), but
computational overhead continues to hold back progress in the field by limiting the level of
realism that can be attained in models.

From this perspective, the recently developed pedigree recording or “tree-sequence recording”
method (Kelleher et al., 2018) is potentially transformative. Kelleher et al. (2018) have shown
that, perhaps counterintuitively, the recording of all ancestry information for the entire
population can actually improve the runtime by orders of magnitude. These gains in efficiency
are made possible by the succinct tree sequence data structure (or “tree sequence”, for brevity)
that lies at the heart of the msprime coalescent simulator (Kelleher et al., 2016), subsequently
refined in Kelleher et al. (2018). The tree sequence data structure is a concise encoding of the
correlated genealogies along a chromosome resulting from evolution in sexually reproducing
populations (Figure 1).

!
Figure 1. An example tree sequence for a model of five extant genomes, with a chromosome ten base positions

long. Each interval between x axis ticks is a genomic interval with a distinct ancestry tree. The leaves of
each tree [0–4] represent the extant genomes, whereas the internal nodes [5–12] represent ancestral
genomes from which the extant genomes descend. The pattern of ancestry at adjacent sites is typically
highly correlated, as seen here. Coalescence has been achieved for the first, second, and fourth intervals,
but the third interval has not yet coalesced; the tree for that interval therefore has multiple roots. See
Kelleher et al. (2016, 2018) for further discussion of the tree sequence data structure.

The sequence of trees along a genome has been studied for some time (Hudson, 1983), and is
closely linked to the concept of an “Ancestral Recombination Graph” or ARG (Griffiths, 1991;
Griffiths & Marjoram, 1997). The use of the term “ARG” has historically been ambiguous,
however, sometimes referring to the stochastic process generating these trees, rather than the
resulting tree sequence itself, so we use the term “tree sequence” here to refer to this sequence of
trees in the particular representation described by Kelleher et al. (2016, 2018). Precisely the
same tree sequence data structure can be used to record each generation’s parent–child
relationships. This data structure will then record who each individual inherited each section of
chromosome from, for every individual that ever lived. However, there is a massive amount of
redundancy in this information, since many of the individuals simulated in the past will leave no
descendants in the extant population. The key insight of Kelleher et al. (2018) was to provide an
efficient algorithm to remove this redundancy by periodically “simplifying” the tree sequence.
This combination – the tree sequence data structure and an efficient algorithm for simplifying it –

9

75

12

1 0 4 2 3

8
75

9

0 4 1 2 3

75

0 4

8

1 2 3

10

56

11

3 1 4 0 2

10530

Genome coordinates
8

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 4, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

allows complete genealogies for all extant individuals to be recorded efficiently in forward
simulations for the first time.

The most immediate advantage of recording a tree sequence during forward simulation is that
it allows neutral mutations to be omitted entirely; neutral mutations can simply be overlaid onto
the tree sequence after forward simulation has completed, because by definition they do not
affect the genealogies. This provides an immense efficiency benefit, since neutral mutations then
only need to be added along those branches of the tree from which the individuals of interest at
the end of the simulation have inherited; all other ancestral branches, which typically comprise
the vast majority of the full tree, can be ignored since they do not contribute to those individuals.
Given that many forward simulations spend the large majority of their time managing neutral
mutations, with considerable bookkeeping overhead in each generation, neutral mutation overlay
following forward simulation has been shown to improve performance by an order of magnitude
or more while producing provably statistically identical results (Kelleher et al., 2018).

A second advantage of recording genealogies is that the recorded tree sequence from a forward
simulation can be used as the basis for the construction of a neutral “burn-in” history for the
simulated population after forward simulation is complete, using (usually much faster)
coalescent simulation. The burn-in period of a simulation can be immensely time-consuming,
often taking much longer than the simulation of the evolutionary dynamics that are actually of
interest; the overhead of burn-in can therefore present a large obstacle for many models. With a
method that we call “recapitation”, we can leverage the information in the tree sequence to
prepend a coalescent simulation of the burn-in period, speeding up the burn-in process by many
orders of magnitude.

A third important advantage is that the pattern of ancestry and inheritance is in itself very
useful. For many statistics of interest, and in particular for inferring specific events that occurred
in the past, sequence-based data from mutations is essentially an extra layer of noise over the
signal of interest contained in the genealogies. Direct access to the precise genealogical history
of the simulated population allows the signal to be analyzed without the noise, gaining
significant statistical power. An expanding set of open-source tools makes it possible to load,
analyze, and even manipulate a recorded tree sequence using simple Python code, allowing
open-ended flexibility in analysis.

A fourth compelling advantage is that the recorded tree sequence files are very small and
enable very efficient calculation of population-genetic statistics (Kelleher et al. 2016, 2018). The
files output from even the largest simulations are rarely bigger than a few hundred megabytes,
and may be tens of thousands of times smaller than alternatives such as VCF and Newick.
Despite this high level of compression, tree sequences can be processed very efficiently;
statistics of interest such as allele frequencies within cohorts can often be computed
incrementally, leading to very efficient algorithms (Kelleher et al. 2016). Calculation of statistics
of this sort from simulated data can be very time-consuming, especially when long genomes are
involved and many replicate simulation runs have been performed, so the ability to speed up
such calculations is quite important.

Given these advantages, we have worked to integrate tree-sequence recording into SLiM 3, a
new major release of the free, open-source SLiM simulation software package (http://

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 4, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

messerlab.org/slim/). It is now possible to enable tree-sequence recording in any SLiM model
with a simple flag set in the model’s script, and then to output the recorded tree sequence at any
point in the simulation. In addition, we have extended the original tree-sequence recording
method (Kelleher et al. 2018) to allow for the recording of mutations during forward simulation.
This allows the tree-sequence output format, a .trees file, to be used in SLiM as a way of
saving and then restoring the state of a simulation while preserving information about ancestry,
and allows the mutations that occurred during forward simulation to be accessed later in Python-
based analyses.

To illustrate the large advantages provided by tree-sequence recording, and to show how to
take advantage of those benefits when using SLiM for forward simulation, we will present four
practical examples of the method. In the first example, we will show the impressive
performance benefits that can be achieved with tree-sequence recording compared to a classical
forward simulation. The second example will use tree-sequence recording to efficiently simulate
background selection near genes undergoing deleterious mutations, quantifying the expected
effect of background selection on levels of neutral diversity by measuring the heights of trees in
the recorded tree sequence. Our third example will be a model of admixture between two
subpopulations, showing how to use the recorded tree sequence in calculating the mean true local
ancestry at every position along a chromosome. Finally, the fourth example will illustrate how
the “recapitation” method allows msprime to be used to extremely efficiently add a “neutral
burn-in” history to a completed SLiM simulation of a selective sweep, by coalescing the
simulation’s initial population backward in time.

Examples
Examples were executed on a MacBook Pro (2.9 GHz Intel Core i7, 16 GB RAM) running
macOS 10.13.5, using Python 3.4.8, R 3.5.0, SLiM 3.1, msprime 0.6.1, and pyslim 0.1.
Reported times were measured with the Python timeit package. Peak memory usage for SLiM
runs was assessed with SLiM’s -m command-line option. The timing comparison (Figure 2) was
executed on the same hardware, with macOS 10.13.4, R 3.4.3, SLiM 3.0, and msprime 0.6.0,
using the Un*x tool /usr/bin/time for timing (summing the reported user time and system
time); we believe the times measured would not change significantly with the newer software
versions. The full source code for the examples and timing tests, including timing and plotting
code that is omitted here, may be found at https://github.com/bhaller/SLiMTreeSeqPub. These
examples use the matplotlib (Hunter, 2007) and numpy (Oliphant, 2006) packages for Python.

Example I: A simple neutral model
Our first example is a model of a neutrally evolving chromosome of length L = 108 base

positions, with uniform mutation rate µ = 10−7 and recombination rate r = 10−8 (both expressed as
the event probability per base per generation), in a panmictic diploid population of size N = 500,
running for a duration of 10N = 5000 non-overlapping generations. The SLiM configuration
script for this basic model is very simple:

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 4, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

initialize() { 
 initializeMutationRate(1e-7); 
 initializeMutationType("m1", 0.5, "f", 0.0); 
 initializeGenomicElementType("g1", m1, 1.0); 
 initializeGenomicElement(g1, 0, 1e8-1); 
 initializeRecombinationRate(1e-8); 
}  
1 { 
 sim.addSubpop("p1", 500); 
}  
5000 late() { 
 sim.outputFull("ex1_noTS.slimbinary", binary=T); 
}

This sets up a single “genomic element” spanning the full length of the chromosome, with
neutral mutations of type m1 generated at the desired rate, and with the desired recombination
rate. In generation 1 a new subpopulation of the desired size is created, and the model runs to
generation 5000, after which it outputs the full simulation state. The SLiM manual provides
additional explanation of these concepts (Haller and Messer, 2016). This model took 211.9
seconds to run, and reached a peak memory usage of 443.8 MB.

Tree-sequence recording can easily be enabled for this model with a call to
initializeTreeSeq():

initialize() { 
 initializeTreeSeq(); 
 initializeMutationRate(0); 
 initializeMutationType("m1", 0.5, "f", 0.0); 
 initializeGenomicElementType("g1", m1, 1.0); 
 initializeGenomicElement(g1, 0, 1e8-1); 
 initializeRecombinationRate(1e-8); 
}  
1 { 
 sim.addSubpop("p1", 500); 
}  
5000 late() { 
 sim.treeSeqOutput("ex1_TS.trees"); 
}

Note that we have now also set the mutation rate to zero; SLiM no longer needs to model
neutral mutations because they can be overlaid in a later step more efficiently. A .trees file is
output at the end of the run, instead of calling SLiM’s outputFull() method, so that the
recorded tree sequence is preserved. In all other respects these models are identical. This is
typical of adapting a SLiM model to use tree-sequence recording: in general, the aim is to
remove the modeling of neutral mutations while preserving other aspects of the model verbatim.

After simulation has completed, neutral mutations are overlaid upon the saved tree sequence.
The full model – running the SLiM model and then doing the final mutation overlay step – can
be executed with a simple Python script:

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 4, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

import subprocess, msprime, pyslim 
 
Run the SLiM model 
subprocess.check_output(["slim", "-m", "-s", "0", "ex1_TS.slim"]) 
 
Overlay neutral mutations 
ts = pyslim.load("ex1_TS.trees")  
mutated = msprime.mutate(ts, rate=1e-7, random_seed=1, keep=True)  
mutated.dump("ex1_TS_overlaid.trees")

This script uses the msprime Python package to overlay neutral mutations upon the recorded
tree sequence. The result is precisely the same, statistically, as if the neutral mutations were
included in the forward simulation, except that the vast majority of the bookkeeping work in
each generation is avoided because mutations only need to be overlaid upon the ancestral
genomic regions that persisted to the end of the simulation.

Note that pyslim is used to load the .trees file; this package provides a bridge between SLiM
and msprime, and should generally be used to load and save .trees files in Python if the files are
coming from or going to SLiM. The pyslim package extends the msprime tree sequence class by
adding support for SLiM’s metadata annotations to the tree sequence, providing an interface for
reading or modifying that metadata as well as for generating SLiM-compliant .trees files that
contain the required metadata. The .trees files output by SliM can be read directly by msprime,
but the returned object will have reduced functionality compared to those returned by pyslim.

The total time to execute this Python code is 4.37 seconds, almost 50 times faster than the
model without tree-sequence recording. Most of the runtime (4.09 seconds) is spent running the
SLiM model; the final mutation overlay by msprime is extremely fast. The peak memory usage
during the SLiM run is 145.8 MB, less than one-third of the memory usage of the model without
tree-sequence recording. Tree-sequence recording can often reduce memory usage, since the tree
sequence data structure is quite compact compared to SLiM’s in-memory representation of the
neutral mutations that would be segregating in such a model. Tree sequences are also very
compact on disk; the final .trees file here, with mutations overlaid, takes about 8.9 MB, as
compared to 84.2 MB for the ex1_noTS.slimbinary file from the SLiM model without tree-
sequence recording, 559 MB for a Newick file, and 366 MB for a VCF file – even though
the .trees file contains ancestry information not included by the SLiM and VCF formats.

The speedup produced by this tree-sequence recording method can vary dramatically
depending upon the details of the simulation; all of the work to track neutral mutations is
eliminated, but new work is added involving the recording of all the recombination events that
go into producing the tree sequence. In general, the largest speedup will be observed with very
long chromosomes with many neutral mutations when the recombination rate is not too high;
indeed, when modeling a very short chromosome the overhead of tree-sequence recording can
outweigh the savings from omitting neutral mutations. It may thus be worthwhile to check the
runtime of both methods to obtain the best performance for a particular model; however, the time
required to process the results of a simulation should also be taken into account, as the tree-
sequence format can provide significant advantages during post-simulation analysis.

To further illustrate the performance benefits of tree-sequence recording, we conducted a set of
timing comparisons between SLiM without tree-sequence recording, SLiM with tree-sequence

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 4, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

recording, and msprime’s coalescent simulation method. These comparisons involved essentially
the same model as shown above: a neutral panmictic model of diploids with non-overlapping
generations, with a population size N = 500, recombination rate r = 10−8 per base position per
generation, and mutation rate µ = 10−7 per base position per generation. The chromosome length
L was varied over {105, 106, 107, 108, 109, 1010}, with ten runs of each model at each value of L
using different random seeds. The number of generations varied with L (details below). The
msprime coalescent was run both with a final haploid sample size n equal to the full population
size (n = 2N), and with a much smaller sample size (n = 2N/100); in both cases, Ne = N was used.
To verify that tree-sequence recording produced results equivalent to the coalescent, we checked
that the mean TMRCAs for the L = 1010 runs for the two methods did not differ significantly
(p = 0.7791).

!
Figure 2. A speed comparison between SLiM without tree-sequence recording, SLiM with tree-sequence

recording and mutation overlay, and msprime’s coalescent simulation for a simple neutral model (Example
1; see text for model description). Each point represents the mean runtime across 10 replicates using
different random number seeds; bars showing standard error of the mean would be smaller than the size of
the plotted points in all cases. Runs for SLiM without tree-sequence recording (filled blue diamonds) were
not conducted for L = 1010 because the memory usage was prohibitive, so a linear extrapolation is shown
(hollow blue diamond). Runs for SLiM with tree-sequence recording and mutation overlay (filled green
circles) are subdivided here to show the runtime for SLiM alone, prior to mutation overlay (hollow green
circles), illustrating that the time for mutation overlay is negligible. The runtimes for the msprime
coalescent for a full population sample of n = 2N = 1000 (filled red squares) and for a sample of size
n = 2N/100 = 10 (hollow red squares) are both shown. Note that the x and y axes are both on a log scale.

The average runtimes obtained are shown in Figure 2. As L increased, the benefit of tree-
sequence recording compared to SLiM without tree-sequence recording became increasingly
large, topping out at a performance improvement of more than two orders of magnitude for
L = 109 and L = 1010. Coalescent simulations with msprime were much faster than the tree-

chromosome length

tim
e

(s
ec

on
ds

)

105 106 107 108 109 1010

10
−1
10
0
10

10
2
10
3
10
4
10
5
10
6

SLiM (extrapolated)
SLiM treeSeq
SLiM treeSeq (pre-overlay)
msprime coalescent (n = 2N)
msprime coalescent (n = 2N /100)

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 4, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

sequence recording method, as expected, except at L = 1010, where msprime’s speed was
comparable to that of SLiM with tree-sequence recording. It appears that SLiM with tree-
sequence recording would be faster for L larger than 1010. The number of events the coalescent
must simulate is quadratic in L, empirically, but with a small leading coefficient such that
msprime is quite fast even for reasonably large chromosome sizes (Kelleher et al. 2016). With
very large values of L, however, this O(L2) term begins to dominate and SLiM with tree-
sequence recording becomes faster. This may be chiefly of theoretical interest, since L = 1010 is
already a very long chromosome (approximately three times the length of the full human
genome). It is also noteworthy that the msprime coalescent is only marginally faster for a sample
of n = N/100 than for a full population sample of n = N; as more samples are added to a gene
tree, the new samples tend to attach to already existing branches quite quickly (Kingman, 1982).

Although the coalescent remains an order of magnitude faster for most practical purposes, it
can only be used in a few simple scenarios such as this; for models that require forward
simulation, tree-sequence recording offers large performance benefits over more traditional
forward simulation techniques. It is also worth noting that the coalescent is only an
approximation of the Wright–Fisher model, and will diverge from it under certain conditions
(Wakeley et al., 2012; Bhaskar et al., 2014) – one such condition being a sample size that is no
longer small compared to the population size, as is the case for our n = N msprime runs here.
Forward simulation may therefore be preferable in order to obtain exact results under such
conditions.

How long do we run it? In general, it is desirable to run forward-time simulations “until
convergence” – until the effects of the starting configuration are forgotten. This occurs (in most
situations) when all genealogical trees have coalesced, meaning that at every position in the
genome a common ancestor to the entire final generation has appeared. In practice, models are
often run for 10N generations, a rule of thumb that is thought to suffice in most cases. However,
this is a thorny problem: longer chromosomes tend to require longer for coalescence, simply
because with more sites it is more likely that coalescence takes exceptionally long at some site.
In the simulations of Figure 2, we ran each simulation for the expected number of generations
required for coalescence at that value of L, which increased linearly with log(L), from about 3N
for L = 1e5 to 15N for L = 1e10. This sufficed to make the comparison between SLiM and
msprime “fair”, but a better practical solution, recapitation, will be shown in Example 4. We
determined the expected number of generations empirically by running the same model 500
times at each value of L with “coalescence detection” enabled (by passing checkCoalescence=T
to initializeTreeSeq()). The mean and other summary statistics for each value of L (Table S1)
agree with expectations from extreme value theory (Berman, 1964), with the expected time until
coalescence growing roughly as 1000 log(L) − 10000.

Example II: Background selection
Our second example is a model of background selection, a term which describes the effect that

purifying selection against deleterious mutations imposes on genetic variation at linked sites.
Such purifying selection should be particularly common in genic regions, where many genomic
positions should be subject to selective constraints. This background selection, like many types

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 4, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

of linked selection more generally, is expected to produce a “dip in diversity” in the surrounding
non-coding regions, with a signature of decreasing genetic diversity with decreasing distance to
the nearest gene (Charlesworth et al. 1993; Hudson 1994; Sattath et al., 2011; Elyashiv et al.,
2016). Here is a SLiM model that uses tree-sequence recording to model this scenario:

initialize() { 
 defineConstant("N", 10000); // pop size 
 defineConstant("L", 1e8); // total chromosome length 
 defineConstant("L0", 200e3); // between genes 
 defineConstant("L1", 1e3); // gene length 
 initializeTreeSeq(); 
 initializeMutationRate(1e-7); 
 initializeRecombinationRate(1e-8, L-1); 
 initializeMutationType("m2", 0.5, "g", -(5/N), 1.0); 
 initializeGenomicElementType("g2", m2, 1.0); 
  
 for (start in seq(from=L0, to=L-(L0+L1), by=(L0+L1))) 
 initializeGenomicElement(g2, start, (start+L1)-1); 
}  
1 { 
 sim.addSubpop("p1", N); 
 sim.rescheduleScriptBlock(s1, 10*N, 10*N); 
}  
s1 10 late() { 
 sim.treeSeqOutput("ex2_TS.trees"); 
}

This model sets up a chromosome that consists of genes of length L1 = 1 kb, separated by non-
coding regions of length L0 = 200 kb. The total chromosome length is L = 108 bases, and 496
genes fit within it. The model uses a mutation rate of r = 10−7 for deleterious mutations that can
arise within the genes; no other mutations are modeled. The deleterious mutations are given
selection coefficients drawn from a Gamma distribution with mean −5/N and shape parameter
α = 1 (modeling a scenario of moderately deleterious mutations with 2Ns = −10 on average). We
assume co-dominance with h = 0.5. A population of size N = 10000 is started in generation 1,
and the model runs until generation G = 10N (the output event, s1, is rescheduled dynamically to
that generation).

We can run this model and then conduct post-run analysis with a Python script:

import os, subprocess, msprime, statistics, pyslim 
import matplotlib.pyplot as plt 
import numpy as np 
 
Run the SLiM model and load the resulting .trees file 
subprocess.check_output(["slim", "-m", "-s", "0", "ex2_TS.slim"]) 
ts = pyslim.load("ex2_TS.trees").simplify() 
 
Measure the tree height at each base position 
height_for_pos = np.zeros(int(ts.sequence_length)) 
for tree in ts.trees(): 
 mean_height = statistics.mean([tree.time(root) for root in tree.roots]) 
 left, right = map(int, tree.interval) 
 height_for_pos[left: right] = mean_height 
 
Convert heights along the chromosome into heights at distances from a gene 
height_for_pos = height_for_pos - np.min(height_for_pos) 
L, L0, L1 = int(1e8), int(200e3), int(1e3)  
gene_starts = np.arange(L0, L - (L0 + L1) + 1, L0 + L1) 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 4, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

gene_ends = gene_starts + L1 - 1  
max_distance = L0 // 4  
height_for_left_distance = np.zeros(max_distance) 
height_for_right_distance = np.zeros(max_distance) 
for d in range(max_distance): 
 height_for_left_distance[d] = np.mean(height_for_pos[gene_starts - d - 1]) 
 height_for_right_distance[d] = np.mean(height_for_pos[gene_ends + d + 1]) 
height_for_distance = np.hstack([height_for_left_distance[::-1], 
 height_for_right_distance]) 
distances = np.hstack([np.arange(-max_distance, 0), np.arange(1, max_distance + 1)]) 
 
Make a simple plot 
plt.plot(distances, height_for_distance) 
plt.show()

The first line after the import statement runs the SLiM model; this took 15643 seconds (4.35
hours) to execute. This is not short – it is still a fairly complex model! – but it is far shorter than
the alternative, a SLiM model without tree-sequence recording and including neutral mutations
in the non-coding regions. That alternative model would take ~83 hours, by extrapolation –
probably a conservative estimate, since the model had not yet reached mutation–selection
balance and was still slowing down when its timing was measured. The use of tree-sequence
recording here results, then, in a relatively modest speedup of 19 times. This makes sense, since
the model with tree-sequence recording still must keep track of a very large number of
segregating deleterious mutations. However, it is worth noting that the final result from this
alternative model would provide far less statistical power, since inference from it would be based
only upon the observed pattern of neutral mutations in one run, rather than the actual pattern of
ancestry at each chromosome position; to provide the same power, this alternative model would
likely have to be run many times or use a much higher mutation rate.

The rest of the code conducts post-run analyses. First, the .trees file from the SLiM run is
read in with pyslim.load() as in the previous example; here, however, we call simplify()
(Kelleher et al. 2018) upon the loaded tree sequence, which requires some explanation. SLiM
automatically retains, in the tree sequence, nodes corresponding to the original ancestors of each
subpopulation that was created with addSubpop(). This is done for various reasons, including
allowing ancestry to be more easily traced and enabling recapitation (see Example 4). When
SLiM saves a .trees file, these ancestors are present in the tree sequence but are not marked as
“samples”, and will therefore disappear after a simplify() operation. In many cases these
ancestors are harmless, as in Example 1; in fact, in Example 1, calling simplify() to remove
them would mean that mutations would be overlaid only back to the point of coalescence, rather
than to the beginning of forward simulation. Here, however, since we want to measure the
heights of trees in the tree sequence, these ancestors would complicate things for us; all trees
would be rooted in those ancestors, at the beginning of forward simulation. We therefore call
simplify() to remove them (when the model has coalesced below them; they are retained when
still in use by the tree sequence). Example 4 will delve into this matter further.

Next, a vector containing the mean tree height at each base position (height_for_pos) is
constructed by walking through the tree sequence to find the set of trees representing the
ancestry of every individual in the final generation at a given position. The mean tree height is a
metric of the time to the most recent common ancestor at a given base position, and thus of

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 4, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

diversity at that base position; background selection will tend to reduce the mean tree height,
thereby lowering the expected levels of diversity at a locus.

An aside: there can be a set of trees for a given position, rather than just a single tree, if the
forward simulation was not run sufficiently long for coalescence to have occurred at every
position in the genome. In msprime this is modelled by allowing trees to have multiple roots.
Each root represents the most recent common ancestor of some subset of the extant population at
that location in the genome. Since the model here ran for 10N generations, we can hope that it
has coalesced at most or all positions; but unless a model is explicitly run out to coalescence (or
recapitated), it is always possible that multiple roots will exist, and so robust code ought to
handle that case by looping over the roots for each tree as we do here.

These mean tree heights along the chromosome are then converted to mean tree heights at
distances from the nearest gene (height_for_distance), taking into account the somewhat
complex genetic structure of the model. Finally, the relationship between distance to the nearest
gene and tree height is plotted. These analyses took 12.39 seconds to complete. Note that
neutral mutations were never simulated at all; the analysis is based upon the tree sequence itself,
not upon the distribution of neutral mutations.

A plot of the results can be seen in Figure 3, showing the well-known “dip in diversity”
realized here through simulation. As the distance to the nearest gene decreases, diversity dips
due to the background selection exerted by selection against deleterious mutations within the
gene.

!
Figure 3. Mean diversity (as measured by mean tree height) as a function of distance from the nearest gene

(Example 2). The center of the x-axis (red line) represents a distance of zero, immediately adjacent to a
gene; moving away from the x-axis center to the left/right represents moving away from the nearest gene to
the left/right respectively. The pattern of decreased diversity near a gene is the “dip in diversity” due to
background selection.

-50000 0 50000

25
00
0

35
00
0

distance from gene

m
ea

n
tre

e
he

ig
ht

 (g
en

er
at

io
ns

)

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 4, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

Example III: True local ancestry mapping
Our third example involves mapping the true local ancestry at every position along a

chromosome in a two-subpopulation admixture model with adaptive introgression at two
partially linked loci. This is an important dynamic in all sorts of biological systems, from
human–Neanderthal admixture to hybrid zones between divergent bird populations; one often
wishes to be able to find which ancestral population each chromosomal region traces back to.
The SLiM model looks like this:

initialize() { 
 defineConstant("L", 1e8); 
 initializeTreeSeq(); 
 initializeMutationRate(0); 
 initializeMutationType("m1", 0.5, "f", 0.1); 
 initializeGenomicElementType("g1", m1, 1.0); 
 initializeGenomicElement(g1, 0, L-1); 
 initializeRecombinationRate(1e-8); 
}  
1 late() { 
 sim.addSubpop("p1", 500); 
 sim.addSubpop("p2", 500); 
 sim.treeSeqRememberIndividuals(sim.subpopulations.individuals); 
  
 p1.genomes.addNewDrawnMutation(m1, asInteger(L * 0.2)); 
 p2.genomes.addNewDrawnMutation(m1, asInteger(L * 0.8)); 
  
 sim.addSubpop("p3", 1000); 
 p3.setMigrationRates(c(p1, p2), c(0.5, 0.5)); 
}  
2 late() { 
 p3.setMigrationRates(c(p1, p2), c(0.0, 0.0)); 
 p1.setSubpopulationSize(0); 
 p2.setSubpopulationSize(0); 
}  
2: late() { 
 if (sim.mutationsOfType(m1).size() == 0)  
 {  
 sim.treeSeqOutput("ex3_TS.trees"); 
 sim.simulationFinished(); 
 }  
}  
10000 late() { 
 stop("Did not reach fixation of beneficial alleles."); 
}

The initialize() callback sets up tree-sequence recording with a mutation rate of µ = 0 and
a recombination rate of r = 10−8 along a chromosome of length L = 108. Although the mutation
rate is zero, a mutation type m1 is defined representing beneficial mutations with a selection
coefficient of s = 0.1; mutations of this type will be added in generation 1.

In generation 1 we create two subpopulations, p1 and p2, of 500 individuals each; these are the
original subpopulations that will admix. We tell SLiM to remember these individuals forever as
ancestors in the tree sequence, with treeSeqRememberIndividuals(), because we want them to
act as the roots of all recorded trees so that we can establish local ancestry using them. Note that
this is not strictly necessary, since (as discussed in Example 2) SLiM automatically retains the
root ancestors for each population; we could rely upon that, and we would be fine as long as we
did not simplify() after loading the tree sequence in Python. The use of

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 4, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

treeSeqRememberIndividuals() has been shown here for purposes of illustration, however,
since some models may wish to remember non-root individuals for analysis. Next, we add a
beneficial mutation at 0.2L in p1, and another at 0.8L in p2; the expectation is that by the end of
the run all individuals will be recombinants that carry both of these mutations. Finally, we create
subpopulation p3 and tell SLiM that it will be composed entirely of migrants from p1 and p2 in
equal measure.

By the end of generation 2, subpopulation p3 has received its offspring generation from p1 and
p2 as intended, so we can now remove p1 and p2 from the model and allow p3 to evolve. At this
stage, all individuals in p3 are still unmixed, having been generated from parents in either p1 or
p2, but beginning in generation 3 they will start to mix.

Finally, we have some output and termination code. If both m1 mutations fix, they are
converted to Substitution objects by SLiM, and when that is detected the model writes out a
final .trees file and terminates. If we reach generation 10000 without that happening, the
admixture failed, and we stop with an error. This model is conceptually similar to recipe 13.9 in
the SLiM manual (Haller and Messer, 2016), but has been converted to use tree-sequence
recording, so you can refer to the manual’s recipe for additional commentary.

We can run this model from a Python script and do post-run analysis, as we did in Example 2:

import os, subprocess, msprime, pyslim 
import matplotlib.pyplot as plt 
import numpy as np 
 
Run the SLiM model and load the resulting .trees file 
subprocess.check_output(["slim", "-m", "-s", "0", "ex3_TS.slim"]) 
ts = pyslim.load("ex3_TS.trees").simplify() 
 
Assess the true local ancestry at each base position 
breaks = np.zeros(ts.num_trees + 1)  
ancestry = np.zeros(ts.num_trees + 1)  
for tree in ts.trees(sample_counts=True): 
 subpop_sum, subpop_weights = 0, 0  
 for root in tree.roots: 
 leaves_count = tree.num_samples(root) - 1 # subtract one for the root 
 subpop_sum += tree.population(root) * leaves_count 
 subpop_weights += leaves_count 
 breaks[tree.index] = tree.interval[0]  
 ancestry[tree.index] = subpop_sum / subpop_weights 
breaks[-1] = ts.sequence_length 
ancestry[-1] = ancestry[-2]  
 
Make a simple plot 
plt.plot(breaks, ancestry) 
plt.show()

The first line after the import statement runs the SLiM model, which completes in just 0.416
seconds, with peak memory usage of 55.6 MB; since it tracks only two mutations, and typically
terminates by generation 150 or so, it is very quick.

The equivalent SLiM model to achieve true local ancestry mapping without tree-sequence
recording has to model a mutation at each base position, as can be seen in recipe 13.9 in the
SLiM manual (Haller and Messer, 2016). A direct comparison is not possible, because recipe
13.9 scaled up to a chromosome length of L = 108 would take an estimated 7.2 days to run, and

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 4, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

worse, would require 8.1 TB (terabytes) of memory. Those estimates are derived from the
pattern of performance observed for recipe 13.9 with L = 5×105, L = 106, and L = 2×106 (the
upper limit on our test machine due to memory usage), extrapolated out to L = 108.
Implementing this model with tree-sequence recording therefore reduces the runtime by a factor
of more than 1.35 million, and reduces the memory usage by a factor of more than 160,000.

Similar to Example 2, the post-run analysis walks through the tree sequence, but in this case,
computes the mean true local ancestry (the fractional ancestry from subpopulation p1 versus p2)
for each tree. This is done by finding the roots for the tree, assessing the subpopulations of
origin of those root individuals, and averaging those together weighted by the number of
descendants from each root. A simple plot is then produced. In this example, the analysis took
62.2 seconds; the analysis runtime is relatively long because the trees here typically have many
roots, so the inner loop is executed a great many times.

The final plot of true local ancestry by chromosome position is shown in Figure 4. The mean
true local ancestry at the points where the beneficial mutations were introduced into p1 and p2
has to be 100% p1 and 100% p2, respectively, since both beneficial mutations fixed by the end of
the run. At other points along the genome there is more variation, but with a general pattern of
being more completely admixed at the chromosome ends and middle, with gradations toward the
absolute p1 and p2 points. Since this is a single run of the model, the pattern is quite stochastic;
an average across many runs of this model could produce a smooth plot if desired, and since it
takes only a couple of minutes to execute the pipeline here, that would be very quick to do. This
method of calculating true local ancestry could be used by any SLiM model with tree-sequence
recording, so models with more complex demography, under any scenario of selection and
mating, with any recombination map, etc., could just as easily be explored.

!
Figure 4. Mean true local ancestry at each position along the chromosome (Example 3). The red vertical bars

indicate the positions at which beneficial mutations were originally introduced into p1 and p2. The
beneficial mutations, which both fixed, are points where the true local ancestry is 100% p1 or p2. True
local ancestry regresses toward equal admixture with increasing distance from those fixed points.

0e+00 1e+08

chromosome position

an
ce

st
ry

 p
ro

po
rti

on

p1
p2

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 4, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

Example IV: Neutral burn-in for a non-neutral model
Our final example illustrates a solution to the problem of neutral burn-in. In many

applications one wishes to execute a non-neutral forward simulation beginning with an
equilibrium amount of extant neutral genetic diversity, and the simulation needed to generate that
pre-existing diversity, typically called the model “burn-in”, can take quite a long time – often
much longer than it takes to execute the non-neutral portion of the simulation. For a model with
a long chromosome or large population size, this burn-in can be so long as to limit the practical
scale of the simulations that can be conducted. One solution to this is a “hybrid” approach, in
which a forward simulation is initialized with the result of a (much faster) coalescent simulation
(similar to Bhaskar 2014). This is now possible using tree sequences in SLiM, but we go a step
further: even a great deal of the work done in a coalescent simulation of this burn-in period is
unnecessary. All of the genealogical branches that go extinct are irrelevant; all that matters are
those segments of ancestral genomes from which the final generation inherits. With tree-
sequence recording, one can simulate only the histories of those segments, saving an immense
amount of computation relative to a forward-time burn-in simulation.

Here we will look at a fairly large model (N = 105; L = 106) that evolves under neutral
dynamics until coalescence (the neutral burn-in), after which follows some relatively brief non-
neutral dynamics (a selective sweep). Running the burn-in period for this model in SLiM would
take an exceedingly long time, given the scale of the model, as we will see below. A better idea
is to use what we call “recapitation”: we can run the SLiM model forward from an initial state
that conceptually follows burn-in, and then use msprime to generate after the fact the coalescent
history for the initial individuals of the forward simulation. This can be done without simulating
neutral mutations, but if neutral mutations are desired as an end product of the simulation, they
can be overlaid at the end as in Example 1.

We begin with the SLiM model, which simulates the introduction and sweep to fixation of a
beneficial mutation. For simplicity, we will select a run of the model that happens to result in
fixation, rather than using a recipe that is conditional upon fixation; the random number seed
specified in the Python script below should produce that outcome. The SLiM model:

initialize() { 
 initializeTreeSeq(simplificationRatio=INF); 
 initializeMutationRate(0); 
 initializeMutationType("m2", 0.5, "f", 1.0); 
 m2.convertToSubstitution = F;  
 initializeGenomicElementType("g1", m2, 1); 
 initializeGenomicElement(g1, 0, 1e6 - 1); 
 initializeRecombinationRate(3e-10); 
}  
1 late() { 
 sim.addSubpop("p1", 100000); 
}  
100 late() { 
 sample(p1.genomes, 1).addNewDrawnMutation(m2, 5e5); 
}  
100:10000 late() { 
 mut = sim.mutationsOfType(m2); 
 if (mut.size() != 1)  
 stop(sim.generation + ": LOST"); 
 else if (sum(sim.mutationFrequencies(NULL, mut)) == 1.0)  

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 4, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

 {  
 sim.treeSeqOutput("ex4_TS_decap.trees"); 
 sim.simulationFinished(); 
 }  
}

This specifies a simple model with population size N = 105 diploid individuals, chromosome
length L = 106 base positions, and a recombination rate of r = 3×10−10 per base position per
generation, without mutation. It runs to generation 100 and then introduces the sweep mutation
(the delay before introduction is just to provide separation between the simulation start and the
start of the sweep in the plot produced below). When the sweep mutation is found to have fixed,
it then outputs a .trees file and stops. It specifies an infinite “simplification ratio” in the call to
initializeTreeSeq() so that simplification happens only once, at the point when the .trees
file is written out at the end; with this large of a model simplification takes a significant amount
of time, so this optional setting speeds the model up somewhat at the price of a higher peak
memory footprint.

As in previous examples, we will run this from a Python script that does post-run analysis:

import os, subprocess, msprime, pyslim 
import numpy as np 
import matplotlib.pyplot as plt 
 
Run the SLiM model and load the resulting .trees file 
subprocess.check_output(["slim", "-m", "-s", "2", "ex4_TS.slim"]) 
ts = pyslim.load("ex4_TS_decap.trees") # no simplify! 
 
Calculate tree heights 
def tree_heights(ts): 
 heights = np.zeros(ts.num_trees + 1)  
 for tree in ts.trees(): 
 if tree.num_roots > 1: # not fully coalesced 
 heights[tree.index] = ts.slim_generation 
 else:  
 root_children = tree.children(tree.root) 
 real_root = tree.root if len(root_children) > 1 else root_children[0]  
 heights[tree.index] = tree.time(real_root) 
 heights[-1] = heights[-2] # repeat the last entry for plotting with step 
 return heights 
 
Plot tree heights before recapitation 
breakpoints = list(ts.breakpoints()) 
heights = tree_heights(ts) 
plt.step(breakpoints, heights, where='post')  
plt.show() 
 
Recapitate 
recap = ts.recapitate(recombination_rate=3e-10, Ne=1e5, random_seed=1)  
recap.dump("ex4_TS_recap.trees")  
 
Plot tree heights after recapitation 
breakpoints = list(recap.breakpoints()) 
heights = tree_heights(recap) 
plt.step(breakpoints, heights, where='post')  
plt.show()

After the import, we run the SLiM model (which takes 46.05 seconds) and load the .trees file
it saves out. We then immediately make a plot of mean tree heights along the chromosome. This

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 4, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

is similar to what we did in Example 2, but here it requires some extra finesse because we did not
simplify the tree sequence after loading it as we did then. To perform recapitation, we cannot
first simplify – we need the ancestral individuals that started the SLiM simulation to remain in
the tree sequence, so that recapitation can build upon them correctly. For this reason, every root
in the loaded tree sequence has the same time, corresponding to the beginning of the forward
simulation. The code in the tree_heights() function corrects for that, getting the height of the
child of the root if the forward simulation has coalesced below the original ancestor. This
provides the red line in Figure 5, showing that the area immediately around the introduced
mutation has coalesced at the time of the introduction (due to hitchhiking), but that the remainder
of the chromosome has not yet coalesced and thus has a tree height corresponding to the start of
forward simulation. These uncoalesced plateaus are what we will fix with recapitation.

!
Figure 5. Mean tree height (on a cube-root-scaled y-axis) at each position along the chromosome, before and

after recapitation (Example 4). The red line shows mean tree heights prior to recapitation; the region
surrounding the introduced sweep mutation coalesces at the start of the sweep, whereas the plateaus outside
that region are uncoalesced and have a height corresponding to the start of forward simulation (100
generations earlier). The black line shows heights after recapitation; the uncoalesced plateaus have now
been coalesced backward in time, producing tree heights as long as a million generations in the past.

The next step, then, is to perform the recapitation. This process works backwards from the
tree sequence information recorded by SLiM, constructing a full coalescent history for all of the
individuals alive at the end of the run. Since the non-neutral dynamics eliminated much of the
genetic diversity from the population as it existed at the beginning of forward simulation, this
coalescence requires very little work – much less than even a normal coalescent simulation for
this population size would require. In the example run discussed here, the process took 0.41
seconds. If neutral mutations are desired, they can then be overlaid on the recapitated tree
sequence following the method of Example 1; that code is not shown again here, but that
operation took another 0.58 seconds (with µ = 10−7).

Finally, we plot the mean tree heights for the recapitated tree sequence; this produces the black
line in Figure 5. The uncoalesced plateaus have now coalesced to times as far as a million

0e+00 1e+06

chromosome position

m
ea

n
tre

e
he

ig
ht

 (g
en

er
at

io
ns

)

1
1e
4

1e
5

1e
6

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 4, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

generations in the past. This plot nicely illustrates the classical sweep pattern in which regions
closer to the position of the sweep tend to coalesce more recently, due to hitchhiking, than
regions farther away (Maynard-Smith and Haigh, 1974).

Simulating the neutral burn-in period in SLiM instead, with neutral mutations occurring at a
rate of µ = 10−7, would take an estimated 114.7 hours (from extrapolation; this is a very
conservative estimate since the model was nowhere near mutation–drift balance when times were
measured). Recapitation and neutral mutation overlay, with a total time of 0.99 seconds,
therefore sped up the burn-in process in this example by more than 400,000 times.

Recapitation is clearly much faster than conducting burn-in with forward simulation, then; it
should be faster than a rescaled forward simulation model too (since rescaling can generally not
be taken that far without introducing problematic artifacts), and faster even than constructing the
burn-in state with the coalescent (since recapitation is based upon the coalescent but handles far
fewer events). Recapitation provides other benefits as well, since it means that neutral burn-in
can be deferred until after forward simulation is complete, and can even be conducted as an
afterthought on existing model output. It also allows the non-neutral forward simulation to run
without a burn-in history needing to be loaded (likely making it faster and leaner), and allows
one to avoid the question of how many generations must be simulated for complete burn-in. It is
worth noting that the coalescent (and thus recapitation) does not produce identical results to
forward simulation of a Wright–Fisher model, but the differences are small and are mostly in the
pattern of the most recent branches (Wakeley et al., 2012; Bhaskar et al., 2014); using
recapitation as an approximation for neutral forward simulation should therefore produce
practically identical results as long as the forward portion of the simulation runs for at least a few
generations. Similarly, although spatial models differ substantially from the standard coalescent,
this difference is mostly seen in the more recent portion of the trees; lineages that have “mixed”
across the species range without coalescing behave statistically like lineages in a randomly
mating population (Wilkins, 2004; Matsen and Wakeley, 2006). Recapitation with an
unstructured coalescent should therefore be a good approximation to pre-existing diversity in a
spatial simulation as well.

Note that constructing a burn-in history with recapitation is only equivalent to a period of
forward simulation if the burn-in period is completely neutral. If a non-neutral burn-in to
equilibrium is needed, the best approach is probably to run the burn-in period in SLiM with tree-
sequence recording turned on and neutral mutations turned off (thus avoiding the cost of
simulating the neutral mutations during burn-in, as in Example 1). If a neutral burn-in is desired,
but the neutral mutations are then needed by the non-neutral portion of the simulation (perhaps
because some of the neutral mutations become non-neutral due to an environmental change), one
might simulate the burn-in period with the coalescent in msprime (including mutation), and then
save the result as a .trees file using pyslim; one could then read that .trees file into SLiM to
provide the initial state for further simulation. These techniques go beyond what we have space
to illustrate here, but the manual for SLiM 3 provides further recipes showing the use of tree-
sequence recording. Since it is possible to move simulation data with full ancestry records back
and forth between msprime and SLiM, one can imagine many ways to combine the two to
leverage their strengths while avoiding their weaknesses.

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 4, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

Discussion
We have integrated support for tree-sequence recording (Kelleher et al., 2018) into the popular

SLiM forward simulation software package. Tree-sequence recording can now be enabled in any
SLiM simulation, and the results output to a .trees file that can be loaded into Python for
further simulation or analysis using the msprime package (a part of the tskit framework). We
have also extended the tree-sequence recording method to allow the recording and output of
mutations that arise during forward simulation.

We provided four examples demonstrating the power of the tree-sequence recording method.
The first example, of a simple neutral model, showed how to enable tree-sequence recording
with a few trivial modifications to a SLiM model’s script. The second example illustrated the
use of recorded tree sequences in post-simulation analysis in Python to estimate the characteristic
reduction in neutral diversity expected around functional regions due to background selection.
The third example mapped the mean true local ancestry along the chromosome in a model of the
admixture of two subpopulations, again using post-simulation Python analysis. Finally, our
fourth example illustrated the use of msprime to “recapitate” a SLiM run, using the coalescent to
construct a neutral burn-in period after the completion of forward simulation.

All of these examples illustrated the large performance benefits that can be achieved with tree-
sequence recording. Indeed, for very large neutral simulations our timing comparison indicated
that the speedup due to tree-sequence recording can exceed two orders of magnitude, and can put
the performance of forward simulation on par with an efficient coalescent-based simulation such
as msprime. Similarly, compared to standard forward simulation methods, using recapitation to
construct a neutral burn-in period provided a speedup of more than five orders of magnitude
(Example 4), and using the tree sequence to obtain true local ancestry information provided a
speedup of more than six orders of magnitude (Example 3).

Although we have not made use of it in these examples, SLiM records substantial metadata in
the tree sequence it outputs about genomes, individuals, and mutations. This includes sex, age,
and spatial location of remembered individuals, and times of origination and selection
coefficients of mutations. This information, along with the tree sequence, could enable
substantially more detailed dissection of evolutionary trajectories. Access to this SLiM metadata
is mediated by the new pyslim package that bridges SLiM and msprime.

Tree-sequence recording is not a panacea. Models that do not involve neutral mutations will
not realize a speed benefit from tree-sequence recording’s ability to defer neutral mutation
overlay; in fact, they will run more slowly, since the overhead of recording will not be
compensated by eliminating neutral mutation simulation. Models that involve a very high
recombination rate relative to the mutation rate may also not see a speed benefit from tree-
sequence recording, since tracking the recombination breakpoints can become very time-
consuming in this case; informal tests indicate that this occurs when the recombination rate is
more than three orders of magnitude larger than the mutation rate, however, so it may not be a
practical concern for most models. Even if simulation performance is not improved, the ancestry
information provided by the tree sequence may still speed up analysis or provide additional
statistical power. In short, whether and how to use tree-sequence recording will depend closely

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 4, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

upon the details of both the model and the planned post-run analysis. These considerations were
discussed further in Kelleher et al. (2018).

Although tree-sequence recording is not appropriate in every model, the examples we have
presented demonstrate that the performance gains it provides can make simulations possible that
would previously have been beyond reach, opening up new horizons for exploration. The
software packages used here – SLiM, msprime, Python, R – are all free and open-source, and the
examples and analyses shown here are all available on GitHub. We hope that the practical
examples we have provided will raise the level of awareness among evolutionary biologists
regarding this exciting new method.

Acknowledgements
Thanks to Kevin Thornton and Dom Nelson for helpful discussions. This work was supported
by funding from the College of Agriculture and Life Sciences at Cornell University, Predator
Free 2050 (grant SS/05/01), and the NIH (grants R21AI130635 and R01GM127418) to PWM;
by funding from the Sloan Foundation and the NSF (under DBI-1262645) to PLR; and by the
Wellcome Trust (grant 100956/Z/13/Z) to Gil McVean for JK.

References
Arunkumar, R., Ness, R.W., Wright, S.I., and Barrett, S.C. (2015). The evolution of selfing is

accompanied by reduced efficacy of selection and purging of deleterious mutations.
Genetics 199(3), 817-829.

Assaf, Z.J., Petrov, D.A., and Blundell, J.R. (2015). Obstruction of adaptation in diploids by
recessive, strongly deleterious alleles. PNAS 112(20), E2658-E2666.

Berman, S.M. (1964). Limit theorems for the maximum term in stationary sequences. Ann. Math.
Statist. 35(2), 502–516.

Bhaskar, A., Clark, A.G., and Song, Y.S. (2014). Distortion of genealogical properties when the
sample is very large. PNAS 111(6), 2385–2390.

Caballero, A., Tenesa, A., & Keightley, P.D. (2015). The nature of genetic variation for complex
traits revealed by GWAS and regional heritability mapping analyses. Genetics 201(4),
1601–1613.

Charlesworth, B., Morgan, M.T., and Charlesworth, D. (1993). The effect of deleterious
mutations on neutral molecular variation. Genetics 134(4), 1289–1303.

Champer, J., Liu, J., Oh, S.Y., Reeves, R., Luthra, A., Oakes, N., Clark, A.G., and Philipp W.
Messer, P.W. (2018). Reducing resistance allele formation in CRISPR gene drive. PNAS
(early access), 1–6. DOI: https://doi.org/10.1073/pnas.1720354115

Cotto, O., Wessely, J., Georges, D., Klonner, G., Schmid, M., Dullinger, S., Thuiller, W., and
Guillaume, F. (2017). A dynamic eco-evolutionary model predicts slow response of
alpine plants to climate warming. Nature Communications 8, 15399.

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 4, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

Elyashiv, E., Sattath, S., Hu, T. T., Strutsovsky, A., McVicker, G., Andolfatto, P., Coop, G. &
Sella, G. (2016). A genomic map of the effects of linked selection in Drosophila. PLoS
Genetics 12(8), e1006130.

Ewing, G.B., and Jensen, J.D. (2016). The consequences of not accounting for background
selection in demographic inference. Molecular Ecology 25(1), 135–141.

Enard, D., Messer, P.W., and Petrov, D.A. (2014). Genome-wide signals of positive selection in
human evolution. Genome Research 24(6), 885–895.

Fournier-Level, A., Perry, E.O., Wang, J.A., Braun, P.T., Migneault, A., Cooper, M.D., Metcalf,
C.J.E., and Schmitt, J. (2016). Predicting the evolutionary dynamics of seasonal
adaptation to novel climates in Arabidopsis thaliana. PNAS 113(20), E2812–E2821.

Griffiths, R.C. The two-locus ancestral graph. In: Basawa, I.V., Taylor, R.L., eds. Selected
Proceedings of the Sheffield Symposium on Applied Probability, 1989. Hayward,
California: Institute of Mathematical Statistics, 1991: 100–117.

Griffiths, R.C., and Marjoram, P. (1997). An ancestral recombination graph. In: Donnelly P.,
Tavare S., eds. Progress in Population Genetics and Human Evolution. Berlin, Germany:
Springer-Verlag, 1997: 257–270.

Haller, B.C., and Hendry, A.P. (2013). Solving the paradox of stasis: Squashed stabilizing
selection and the limits of detection. Evolution 68(2), 483–500.

Haller, B.C., R Mazzucco, R., and Dieckmann, U. (2013). Evolutionary branching in complex
landscapes. American Naturalist 182(4), E127-E141.

Haller, B.C., and Messer, P. W. (2016). SLiM: An Evolutionary Simulation Framework. URL:
http://benhaller.com/slim/SLiM_Manual.pdf

Haller, B.C., and Messer, P.W. (2017a). asymptoticMK: A web-based tool for the asymptotic
McDonald–Kreitman test. G3: Genes, Genomes, Genetics 7(5), 1569–1575.

Haller, B.C., and Messer, P.W. (2017b). SLiM 2: Flexible, interactive forward genetic
simulations. Molecular Biology and Evolution 34(1), 230–240. DOI: http://dx.doi.org/
10.1093/molbev/msw211

Hudson, R.R. (1983). Properties of a neutral allele model with intragenic recombination.
Theoretical Population Biology 23(2), 183–201.

Hudson, R.R. (1994). How can the low levels of DNA sequence variation in regions of the
Drosophila genome with low recombination rates be explained? PNAS 91(15), 6815–
6818.

Hunter, J.D. (2007). Matplotlib: A 2D graphics environment. Computing In Science &
Engineering 9(3), 90–95.

Kelleher, J, Etheridge, A.M., and McVean, G. (2016). Efficient coalescent simulation and
genealogical analysis for large sample sizes. PLoS Computational Biology 12(5):
e1004842. DOI: https://doi.org/10.1371/journal.pcbi.1004842

Kelleher, J., Thornton, K.R., Ashander, J., and Ralph, P.L. (2018). Efficient pedigree recording
for fast population genetics simulation. bioRxiv, DOI: http://dx.doi.org/10.1101/248500

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 4, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

Kingman, J.F.C. (1982). On the genealogy of large populations. Journal of Applied Probability
19, 27–43.

Mafessoni, F., and Lachmann, M. (2015). Selective strolls: fixation and extinction in diploids are
slower for weakly selected mutations than for neutral ones. Genetics 201(4), 1581–1589.

Matsen, F.A., and Wakeley, J. (2006). Convergence to the island-model coalescent process in
populations with restricted migration. Genetics 172(1), 701–708.

Matz, M.V., Treml, E.A., Aglyamova, G.V., and Bay, L.K. (2018). Potential and limits for rapid
genetic adaptation to warming in a Great Barrier Reef coral. PLoS Genetics 14(4),
e1007220.

Maynard-Smith, J., and Haigh, J. (1974). The hitch-hiking effect of a favourable gene. Genetics
Research 23(1), 23–35.

Messer, P.W. (2013). SLiM: Simulating evolution with selection and linkage. Genetics 194(4),
1037–1039.

Nowak, M.D., Haller, B.C., and Yoder, A.D. (2014). The founding of Mauritian endemic coffee
trees by a synchronous long-distance dispersal event. Journal of Evolutionary Biology
27(6), 1229–1239.

Oliphant, T.E. (2006). A guide to NumPy. U.S.A.: Trelgol Publishing.
Patel, R., Scheinfeldt, L.B., Sanderford, M.D., Lanham, T.R., Tamura, K., Platt, A., Glicksberg,

B.S., Xu, K., Dudley, J.T., and Kumar, S. (2018). Adaptive landscape of protein variation
in human exomes. Molecular Biology and Evolution (early access), msy107. DOI:
https://doi.org/10.1093/molbev/msy107

Ryan, S.F., Deines, J.M., Scriber, J.M., Pfrender, M.E., Jones, S.E., Emrich, S.J., and Hellmann,
J.J. (2018). Climate-mediated hybrid zone movement revealed with genomics, museum
collection, and simulation modeling. PNAS 115(10) E2284-E2291.

Sattath, S., Elyashiv, E., Kolodny, O., Rinott, Y., and Sella, G. (2011). Pervasive adaptive protein
evolution apparent in diversity patterns around amino acid substitutions in Drosophila
simulans. PLoS Genetics 7(2), e1001302.

Thornton, K.R. (2014). A C++ template library for efficient forward-time population genetic
simulation of large populations. Genetics 198(1), 157–166.

Wakeley, J., King, L., Low, B.S., and Ramachandran, S. (2012). Gene genealogies within a fixed
pedigree, and the robustness of Kingman’s coalescent. Genetics 190(4), 1433–1445.

Wilkins, J.F. (2004). A separation-of-timescales approach to the coalescent in a continuous
population. Genetics 168(4), 2227–2244.

Data Accessibility
SLiM 3 is available online at https://messerlab.org/slim/. It is open source, under the GPL 3.0
license, and its source code is on GitHub at https://github.com/MesserLab/SLiM.
msprime is available online at https://pypi.org/project/msprime/. It is open source, under the
GPL 3.0 license, and its source code is on GitHub at https://github.com/tskit-dev/msprime.

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 4, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

pyslim is open source, under the MIT license, and is available on GitHub at https://github.com/
tskit-dev/pyslim.
The examples and performance assessments presented in this paper are available on GitHub at
https://github.com/bhaller/SLiMTreeSeqPub.

Author Contributions
We have used the CRediT taxonomy for contributions (https://casrai.org/credit/).
BCH: Conceptualization, Investigation, Methodology, Software, Validation, Visualization,
Writing – Original Draft Preparation, Writing – Review & Editing.
JG: Conceptualization, Methodology, Software, Writing – Review & Editing.
JK: Conceptualization, Methodology, Software, Validation, Visualization, Writing – Review &
Editing.
PWM: Conceptualization, Funding Acquisition, Supervision, Writing – Review & Editing.
PLR: Conceptualization, Funding Acquisition, Methodology, Software, Supervision, Validation,
Writing – Review & Editing.

Supplemental Tables
Table S1. Mean coalescence time, in generations, for a simple neutral model (Example 1; see text for model

description). The mean, standard deviation (SD), standard error of the mean (SEM), and relative standard
error (SE%) are shown across 500 replicates for each value of L simulated. Note that the relative standard
error of the mean is below 2.5% in all cases, and below 1% for the largest values of L, so any error in the
estimated mean coalescence times should not substantially affect the results shown in Figure 2. (It might
seem simpler to have used SLiM’s coalescence-detection feature to terminate the timing comparison runs
directly; however, coalescence detection requires tree-sequence recording to be enabled, making it unusable
in the SLiM runs that did not use tree-sequence recording. Also, coalescence detection entails additional
performance costs that would have skewed the comparison; we expect that many models will not use
coalescence detection, so its overhead should not be included in the timing comparison.)

L mean SD SEM SE%

105 2708.8 1497.7 67.0 2.47%

106 4743.0 1672.6 74.8 1.58%

107 7897.6 1597.5 71.4 0.90%

108 10647.4 1485.5 66.4 0.62%

109 13310.4 1379.4 61.7 0.46%

1010 15771.0 1354.3 60.6 0.38%

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted September 4, 2018. ; https://doi.org/10.1101/407783doi: bioRxiv preprint

https://doi.org/10.1101/407783
http://creativecommons.org/licenses/by-nd/4.0/

