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Abstract

Sensory neurons often have variable responses to repeated presentations of the
same stimulus, which can significantly degrade the information contained in those
responses. Such variability is often shared across many neurons, which in principle
can allow a decoder to mitigate the effects of such noise, depending on the structure
of the shared variability and its relationship to sensory encoding at the population
level. Latent variable models offer an approach for characterizing the structure of
this shared variability in neural population recordings, although they have thus far
typically been used under restrictive mathematical assumptions, such as assuming
linear transformations between the latent variables and neural activity. Here we
leverage recent advances in machine learning to introduce two nonlinear latent
variable models for analyzing large-scale neural recordings. We first present a
general nonlinear latent variable model that is agnostic to the stimulus tuning
properties of the individual neurons, and is hence well suited for exploring neural
populations whose tuning properties are not well characterized. This motivates
a second class of model, the Generalized Affine Model, which simultaneously
determines each neuron’s stimulus selectivity and a set of latent variables that
modulate these stimulus responses both additively and multiplicatively. While these
approaches can detect general nonlinear relationships in shared neural variability,
we find that neural activity recorded in anesthetized primary visual cortex (V1) is
best described by a single additive and single multiplicative latent variable, i.e.,
an “affine model”. In contrast, application of the same models to recordings in
awake macaque prefrontal cortex discover more general nonlinearities to compactly
describe the population response variability. These results thus demonstrate how
nonlinear latent variable models can be used to describe population variability, and
suggest that a range of methods is necessary to study different brain regions under
different experimental conditions.
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1 Introduction

The activity of sensory cortical neurons is highly variable in response to repeated presentations
of the same stimulus [1, 2]. This single-neuron response variability has the potential to limit the
information about the stimulus, since multiple stimuli could in principle elicit the same number of
spikes. Nevertheless, at the population level this single-neuron variability would have minimal impact
on sensory coding if it were due to noisy biological processes independent to each neuron [3], since
averaging responses across a population would result in an unbiased estimate of the stimulus [4].
However, early work demonstrated that variability was instead shared among pairs of neurons (noise
correlations; [4]), motivating both experimental [5] and theoretical [6] research into understanding
the structure and implications of this shared variability for population coding.

Recently, data from a wide variety of recording modalities has demonstrated that a large portion of this
variability in cortex is not only shared among pairs of neurons, but among much larger populations
as well [7, 8, 9, 10, 11, 12, 13, 14, 15]. The shared variability in these large cortical populations
has been successfully modeled using latent variable methods, where a small number of factors, or
latent variables, drive neural activity across the entire population [16]. Many popular latent variable
methods such as Principal Component Analysis and Factor Analysis assume a linear mathematical
form, where the activity of each latent variable contributes to neural responses independently of the
other latent variables. These methods, in addition to reproducing the population activity, can account
for salient features of noise correlations [14]. However, linear methods cannot account for higher-
order correlations, which may play an important role in population coding in cortex [17, 18, 19, 20].
It is therefore necessary to characterize this higher-order statistical structure of shared variability
with nonlinear latent variable models, which serves as a first step to understanding the impact of this
structure on population coding.

A large fraction of the recent work analyzing the structure of shared variability in large neural
populations (both linear and nonlinear) has been performed on activity recorded from primary visual
cortex (V1), where sensory-driven neural responses to drifting gratings are relatively well understood.
In this context, shared variability in V1 responses has been modeled using a single additive latent
variable that modulates neural activity across the entire population [9, 14], and also modeled using a
multiplicative, rather than additive, latent variable that acts as a gain on the stimulus-driven response
[8]. More recently, the “affine” model of Lin et al. (2015) – and the related multi-gain model
of Arandia-Romero et al. (2016) – combined both additive and multiplicative latent variables to
account for neural variability, which described more of the population response than either latent
variable alone. However, fitting multiplicative latent variables is non-trivial, and thus far restrictive
assumptions have been used to fit these models to data. As a result, it is currently unclear whether
any of the proposed models are the best model of population response variability in V1, or simply the
best under these assumptions. For example, it is possible that another form of nonlinear interaction
between the stimulus response and latent variables would be more appropriate than a multiplicative
gain, or that multiple gain terms should be included [13].

To address these questions, we introduce a general nonlinear latent variable modeling framework that
infers latent variables by transforming the high-dimensional neural activity into a low-dimensional set
of latent variables through the use of neural networks. In the simplest case, when this transformation
is a linear projection, and a separate linear projection maps the latent variable activity to the predicted
neural activity, the resulting model is closely related to PCA and FA [21]. When these transformations
are nonlinear, the result is a general nonlinear latent variable model, which can model arbitrary
nonlinear interactions between the latent variables. We then show how this framework can be
modified to include the affine model, and extended to create a generalized version of the affine
model with an arbitrary number of additive and multiplicative latent variables. By fitting these two
classes of nonlinear latent variable models to population recordings from anesthetized monkey V1,
we find that the population response variability is well described by the affine model, where one
multiplicative and one additive latent variable can generally capture most of the variance of the more
general models. We also fit these models to population recordings from awake macaque prefrontal
cortex (PFC), and find that, unlike anesthetized V1, the affine model is not sufficient to capture most
of the shared variability. Thus, this novel approach to fitting nonlinear latent variable models provides
a new means to compare constrained latent variable models to more general models of population
response variability, and takes a step towards elucidating the nonlinear computations that underlie
neural activity.
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Figure 1: The structure of the Stacked Rectified Latent Variable Model (SRLVM). A: The
SRLVM is a neural network that predicts the population activity ri using the measured population ac-
tivity yi. The high-dimensional measured population activity is transformed into a lower-dimensional
set of latent variables zi using an encoding function fenc, which is learned from the data with a neural
network (green box). A decoding function fdec is simultaneously learned with a separate neural
network (purple box) to transform the latent variables into the predicted population activity. The
RLVM models fenc and fdec as single-layer neural networks, whereas the SRLVM models fenc and
fdec as multi-layer neural networks, allowing for more complex, nonlinear transformations of the
data. All neural network layers are fully connected. B: Fits of the RLVM and SRLVM to simulated
data generated using a nonlinear combination of four latent variables. The SRLVM is able to capture
most of the variance using four latent variables, whereas the RLVM needs more latent variables to
capture the effect of the nonlinear interactions. Error bars are standard error of the mean over ten
cross-validation folds.

2 Results

2.1 A general framework for fitting nonlinear latent variable models

Latent variable models aim to describe the high-dimensional activity of many neurons using a low-
dimensional set of latent variables. A linear latent variable model predicts the activity of each neuron
as a linear combination of the latent variables, so that the vector of predicted neural responses ri on
trial i is given by

ri = Wzi + b (1)

where zi is the vector of latent variables, W is a matrix mapping the latent variables to the predicted
responses, and b is a vector of biases. Linear latent variable models such as Principal Component
Analysis (PCA) and Factor Analysis (FA) – and variations thereof (e.g. dPCA [22]) – are finding
widespread use in neuroscience due to the ease of fitting these models to neural data, their inter-
pretability, and their flexibility [16]. However, relationships between latent variables and the activity
of different neurons can be highly nonlinear due to the discrete nature of the spike generation process
(among other factors), and linear latent variable models are often used to analyze neural data only after
activity has been averaged over repeated trials. Thus, while linear approaches have provided insights
about the nature of neural computations during particular tasks (e.g. [23, 24]), a deeper understanding
of how neural activity is structured during single trials, for example to study neural activity during
decision-making tasks or during learning, will require nonlinear latent variable methods.

A nonlinear latent variable model predicts the activity of each neuron as some nonlinear transformation
fdec of the latent variables (fdec “decodes” the latent variables), so that the vector of predicted
responses is given by

ri = fdec(zi) (2)

The two challenges in fitting nonlinear latent variable models are (1) defining and fitting the nonlinear
function fdec; and (2) inferring the latent variables zi, which will depend on the function fdec. We
tackle both of these challenges with the use of neural networks (Fig. 1A). The arbitrary nonlinear
function fdec in equation 2 is modeled with a multi-layer neural network, which can in principle
approximate any high-dimensional nonlinear function [25]. To produce the latent variables zi, we
transform the vector of observed spike counts yi into a low-dimensional representation using another
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arbitrary nonlinear function fenc (which “encodes” the neural activity into the latent variables), also
modeled with a multi-layer neural network:

zi = fenc(yi) (3)

The parameters of the model - the weights and biases of each neural network layer in fenc and fdec -
can then be learned from experimental data by maximizing the log-likelihood of the model predictions
ri under an appropriate noise distribution (see Methods), and the value of the latent variables on each
trial can be computed using equation 3. The resulting model is also referred to as an “autoencoder”
neural network in the machine learning literature [26], since the full network attempts to reconstruct
its inputs.

If the latent variable model defined in equations 2 and 3 is restricted so that fenc and fdec are simple
affine transformations (a linear transformation with an additional bias term), and the zi are constrained
to be nonnegative through the use of pointwise nonlinearities in the hidden layer, the resulting model
is the Rectified Latent Variable Model (RLVM) of Whiteway & Butts [21]. We then denote the more
general, nonlinear latent variable model, where fenc and fdec are multi-layer neural networks, as the
“Stacked” RLVM, or SRLVM.

One benefit of the added complexity of the SRLVM is that it can recover nonlinear, low-dimensional
structure more parsimoniously than the RLVM. To illustrate this point, we generated the activity of a
population of 50 neurons using a nonlinear combination of just four latent variables (see Methods),
and fit both models to the data (Fig. 1B). The performance of the RLVM increases as more latent
variables are added, even past four (the true dimensionality of the data). This behavior arises because
the inferred latent variables of the RLVM must account not only for the activity of the true latent
variables, but for the nonlinear interactions between them as well. The SRLVM, on the other hand,
is able to model those nonlinear interactions with a neural network. As a consequence, it is able to
explain more of the population variability than the RLVM without the additional latent variables. The
SRLVM is thus able to fully and compactly capture the nonlinear subspace, aiding in further analysis
and visualization.

2.2 Nonlinear models better describe V1 population response variability

In order to compare the ability of the RLVM and SRLVM to predict neural responses in experimental
data, we fit these models to large population recordings made publicly available by the Kohn Lab [27].
This dataset contains Utah array recordings from primary visual cortex (V1) of three anesthetized
macaques (Monkeys 1-3 in Figs. 2, 4, 6) in response to drifting gratings in 12 equally spaced
directions (see Methods for details). We chose this dataset because previous work studying trial-to-
trial variability in V1 has shown that a significant amount of this variability is shared among neurons,
and has been observed in the context of noise correlations between pairs of neurons [5], and using
latent variable approaches [9, 8, 14, 11, 15].

The first question that we asked is how many linear latent variables are necessary to describe the
responses across the neural population. Of course, some of the shared activity is due to the stimulus
(i.e. explainable by each neuron’s tuning curve), which will be represented as latent variables inferred
by the RLVM, and the remainder is defined as the trial-to-trial variability (Fig. 2A, B). To determine
how much of the trial-to-trial variability our models explain, instead of using R2 as a measure for
goodness of fit we adopt the Quality Index (QI) introduced in Lin et al. The QI is a scaled version of
R2 (see Methods), such that QI = 0 for models that describe as much variability as the tuning curve,
and QI = 1 for perfect prediction (Fig. 2C). We found that the RLVM was able to explain a substantial
portion of the trial-to-trial variability using a small number latent variables (Fig. 2D, blue curves).
These results are similar to what we would find with PCA, since the two models share the same cost
function [21]. Though the RLVM also incorporates regularization terms which can in principle help
with overfitting, we did not find this to be much of a problem given the large number of trials in these
datasets (2400 per session).

As with the simulated data, a more compact description of population responses should be possible
with a nonlinear latent variable method - given that the data contain nonlinear interactions. To
demonstrate this, we then fit the SRLVM. Indeed, the cross-validated performance of the SRLVM is
better than that of the RLVM for a given number of latent variables (Fig. 1D). Similar to the example
simulation shown in Fig. 1B, the nonlinear latent variables not only offer a more compact description
of population response variability, but are able to explain more of that variability as well.
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Figure 2: Performance of the RLVM and SRLVM on population data from anesthetized
macaque V1. A: An illustration of the trial-to-trial variability in an example neuron. Left: The
observed spike counts (black dots) versus grating direction, along with the expected spike counts from
the PSTH (gray dots). The PSTH predictions are not able to capture the large amount of trial-to-trial
variability. Right: The expected spike counts from the RLVM (with four latent variables; blue dots),
which display much more variability. Points have been horizontally jittered in both plots for clarity.
B. The expected spike count versus observed spike count for a single grating direction, demonstrating
that the trial-to-trial variability in the observations is well captured by the RLVM. C: The Quality
Index (QI) compares the predictive ability of a given model (here, the RLVM) to that of the mean
stimulus response (PSTH). A high QI results when the model captures a much larger proportion
of the variance than the PSTH. A low QI can either result from a poor model, or when the model
explains little more than the PSTH. The RLVM R2 versus the PSTH R2 demonstrates the ability of
the RLVM to capture trial-to-trial variability across all three datasets. Note that many neurons whose
activity are poorly captured by the PSTH can be well predicted by the RLVM. The neuron used in A,
B is outlined in black. D: Mean QI over neurons and cross-validation folds, plotted as a function of
the number of latent variables in the RLVM (blue line) or SRLVM (red line). All datasets are best
described by a relatively small number of latent variables.
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Despite the compact representation achieved with the SRLVM, a main limitation in this context is
that it is agnostic to the stimulus tuning of individual neurons, and as a result the inferred nonlinear
latent variables will combine the stimulus response with shared variability that is not stimulus-
driven. This mixing leads to issues of interpretability if we are interested in studying the relationship
between stimulus tuning and sources of shared variability. The SRLVM is potentially even more
difficult to interpret because it then uses a neural network to nonlinearly transform those mixed latent
variables into the predicted responses. As a result, even though the SRLVM can better capture the
statistical structure of the data, the resulting model yields latent variables that are difficult to relate to
experimentally observable or controllable variables. Nevertheless, the superior performance of the
SRLVM suggests that there are indeed nonlinearities present in the data, and as a consequence this
model can be used to inform hypotheses about the nature of those nonlinearities.

2.3 A neural network-based affine model

One way to improve interpretability of the models is to posit an explicit nonlinear interaction between
the stimulus response and the latent variables. One such example of an explicit nonlinearity is
multiplication, which previous models have used to capture gain-like modulation of responses to
simple stimuli in V1 [8, 11, 15]. This model, which we will refer to as the “multiplicative model”,
describes the predicted activity of neuron n on trial i, rni , in response to a drifting grating at angle
theta, as

rni = (1 + wngi)fn(θ) (4)
where fn(θ) is the average stimulus response for neuron n, gi is the multiplicative gain term that
changes from trial to trial (which is shared across the entire population), and wn is the coupling
weight of neuron n to the gain term. When combined with an additive term, the resulting model
describes the predicted response as

rni = (1 + wngi)fn(θ) + vnhi (5)
where hi is an additive offset that, like gi, changes from trial to trial and is shared across the entire
population, and vn is the coupling weight of neuron n to this term. The existence of nonlinearities
makes inference of the latent variables much more challenging, and in order to fit these models some
of the previous work incorporated particular constraints. For example, Goris et al. introduced a model
similar to that in equation 4, with a uniform coupling weight (wn = 1) across all neurons; Lin et al.
introduced the model in equation 5 as the “affine” model, and again enforced a uniform coupling to
the gain term (wn = 1); finally, Arandia-Romero et al. introduced the “multi-gain” model, where the
wn’s and vn’s are unconstrained, but the multiplicative and additive latent variables are constrained
to be equal (gi = hi).

Here we can use the framework for inferring latent variables introduced in the previous section to
fit the affine model in equation 5, imposing no constraints on either the coupling terms or the latent
variables. [We will henceforth refer to the model of Lin et al. as the “constrained” affine model.] Our
method uses neural networks to transform the observed spike count vector yi into each of the latent
variables gi and hi, so that

gi = fmult(yi) (6)
hi = fadd(yi) (7)

where fmult and fadd represent (in general) different neural networks, each with an arbitrary number
of layers (Fig. 3). As with the SRLVM, all parameters – the weights and biases of the neural
networks, and the coupling weights wn, vn, for all n - can be fit simultaneously by maximizing the
log likelihood of the model (see Methods), and the value of the latent variables can be computed
using equations 6 and 7.

With this ability to fit the fully unconstrained affine model, we first asked how this model compared to
some of the constrained versions introduced previously in the literature. One possible outcome is that
the constrained model performs equivalently to, or better than, the unconstrained model (potentially
due to overfitting of the unconstrained model), a result that supports the validity of the constraints.
The other possibility, then, is that the constrained model performs worse than the unconstrained one,
in which case the constraints limit the model’s ability to capture the full structure of the data and are
not supported by the experimental observations.

We found that the unconstrained affine model outperformed both the additive (Fig. 4A, p<5e-10
for each of the three monkeys, two-sided sign test) and multiplicative models (Fig. 4B, p<5e-10
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Figure 3: The structure of the Generalized Affine Model (GAM). The GAM is a nonlinear latent
variable model that explicitly models multiplicative and additive interactions between latent variables
and the stimulus response of each neuron. A neural network is used to transform the measured
population activity yi into multiplicative gain signals gi (green network). These signals are shared
across the entire population and modulate the output of the stimulus response for each individual
neuron (red box) according to a set of coupling weights wn for each neuron n. A separate neural
network transforms the measured population activity into additive signals hi (purple network), which
are also shared across the population, and added to the modulated stimulus response according to
a set of coupling weights vn for each neuron n. F [] is an optional spiking nonlinearity that can be
applied at the output to arrive at the predicted population activity ri.

for each of the three monkeys). Furthermore, the unconstrained affine model outperformed the
constrained affine model (Fig. 4C, p<5e-5 for each of the three monkeys). These results demonstrate
that the more general model structure of the unconstrained affine model is indeed able to capture
more structure in the data, though the effect was small (Fig. 4C, inset).

Given the superior performance of the unconstrained affine model, we next asked how well it
compared to the SRLVM. We first looked at the SRLVM with two latent variables (SRLVM-2), the
same number used by the unconstrained affine model. We found that the unconstrained affine model
outperformed the SRLVM-2 (Fig. 4D, p<5e-10 for each of the three monkeys, two-sided sign test).
This result is perhaps unsurprising, given that the SRLVM latent variables must capture both the
stimulus response and the trial-to-trial variability of the neural population. However, increasing the
number of SRLVM latent variables to four (after which the SRLVM begins to overfit; see Fig. 2D)
results in no significant difference between the unconstrained affine model and the SRLVM (Fig. 4E,
p>0.05 for each of the three monkeys, two-sided sign test). Therefore, we find that the two latent
variables of the affine model provide a more compact description of the data than the SRLVM. This
example clearly demonstrates how models incorporating an explicit form of nonlinear interaction
can be compared to more general models such as the SRLVM to understand the extent to which the
hypothesized nonlinearity (in this case, multiplication) is able to capture the statistical structure of
the neural responses.

2.4 Prefrontal cortex is best described by many additive and multiplicative latent variables

We were surprised that the nonlinear latent variable models did not find more sources of shared activity
in V1. Thus, to both test the ability of the nonlinear latent variable models to find many nonlinear
latent variables, and to demonstrate that an affine model (with single additive and multiplicative
latent variables) should not work in general, we used these models to analyze a more complex dataset
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Figure 4: Performance of additive, multiplicative and affine models in V1 data. A comparison
of the cross-validated performance of the models on individual neurons across three datasets (dataset
indicated by color). Each point is the mean QI over 10 cross-validation folds. A: Comparison of the
affine model, with one multiplicative and one additive latent variable, to the strictly additive model.
Inset: A histogram of the difference between the QI of the affine model and the QI of the additive
model (∆QI). Zero is indicated with the solid black line, median difference across all neurons is
indicated with the dashed black line. B: Comparison of the affine model to the strictly multiplicative
model. C: Comparison of the affine model to the constrained affine model of Lin et al., which requires
all neurons to have the same coupling weight to the multiplicative latent variable. D(E): Comparison
of the affine model to the SRLVM with two (four) latent variables.

from macaque prefrontal cortex, made publicly available by the Kiani lab [28, 29]. This dataset
contains Utah array recordings from three macaques performing a perceptual discrimination task
with a random dot motion stimulus of fixed duration (see Methods for details).

We found that both the RLVM and SRLVM were able to explain significantly more variability than the
affine model (Fig. 5A), in stark contrast to the results from anesthetized V1. A further difference in
these results is that the PFC data requires many more latent variables. Even if we restrict the SRLVM
to two latent variables, to match the number in the affine model, there is still a large performance
gain in two of the three monkeys. It is possible, however, that two additive latent variables, or two
multiplicative latent variables, could capture more variability than one of each.

To address this question, we extended the affine model by allowing an arbitrary number of additive
and multiplicative latent variables, which we call the Generalized Affine Model (GAM):

rni =

(
K∑

k=1

wk
ng

k
i + bn

)
fn(θ) +

M∑
m=1

vmn h
m
i (8)

Each neuron is allowed to have its own coupling to each of the M additive latent variables, and a
different coupling to each of the multiplicative latent variables; the unconstrained model is recovered
from equation 8 when M = K = 1. Model fitting is performed in exactly the same way as before,
by maximizing the log-likelihood of the model predictions.

We found, using the GAM, that a large number of additive and multiplicative latent variables were
necessary to describe the PFC population response variability (Fig. 5B). However, the SRLVM was
typically able to capture more variance using the same number of latent variables, especially for small
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Figure 5: Performance of GAMs on awake PFC data. A: Performance of the affine model (dashed
black line) and the optimal GAM (solid black line; see panel B), plotted against the RLVM and
SRLVM. The affine model does not perform nearly as well as the other models. The optimal GAM
performs approximately as well as the SRLVM, but uses many more latent variables. B: Mean QI
over neurons and cross-validation folds for the GAM across a range of additive and multiplicative
latent variable combinations. The affine model is outlined (dashed black line) as well as the GAM
with the highest QI (“optimal GAM”; solid black line; ∗∗p < 0.005, • > 0.05, two-sided sign test
on the mean compared to the affine model). A large number of additive and multiplicative latent
variables can describe much more variability than the affine model, in contrast to the V1 data (see Fig.
6). C: Comparison of the SRLVM and GAM for a given number of latent variables; for example, a
GAM with three latent variables could have 3/0, 2/1, 1/2 or 0/3 additive/multiplicative latent variables.
Especially for small numbers of latent variables the SRLVM describes population activity better
than the GAM, regardless of the latent variable combinations. GAM points are jittered to display
overlapping data points, and error bars have been omitted for clarity. The SRLVM curves are the
same as those in panel A.

numbers of latent variables (comparing, for example, three SRLVM latent variables to one additive
and two multiplicative GAM latent variables; Fig. 5C). This result demonstrates that the SRLVM
can provide a more compact description of activity than the GAM, and motivates the search for a
different explicit form of nonlinear interactions in this data.

2.5 V1 remains well-described by the affine model

We were also interested in fitting the GAM to the V1 data, where we previously found that the affine
model performed comparably to the more flexible SRLVM. Would the GAM be able to explain
even more variance? Perhaps unsurprisingly, we found that the best cross-validated models included
multiple additive and multiplicative latent variables (Fig. 6A). However, the number of additional
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Figure 6: Performance of GAMs on anesthetized V1 data. A: Same conventions as Fig. 5B. Only
a small number of GAM latent variables are needed to describe the variability, unlike the PFC dataset
(compare to Fig. 5B). B: Performance of the affine model (dashed black line) and the optimal GAM
(solid black line), plotted against the RLVM and SRLVM (same curves as Fig. 2D). The affine model
performs almost as well as the optimal GAM, and as well as or better than the SRLVM across all
three monkeys, indicating that this model can provide a parsimonious description of the population
response.

latent variables in the optimal models was small (1-3 for both types), and the difference was not large
in magnitude (Fig. 6B, solid and dashed black lines). This result indicates that the affine model,
with a single additive and multiplicative latent variable, is indeed a good description of population
response variability in this anesthetized V1 dataset.

3 Discussion

We introduced a new framework for fitting nonlinear latent variable models to neural data, which is
based on using neural networks to transform high-dimensional neural activity into low-dimensional
latent variables, and developed two new models within this framework. The first model, the Stacked
Rectified Latent Variable Model (SRLVM), is a multi-layer autoencoder neural network that we
used as a general nonlinear latent variable model, which is agnostic to the stimulus tuning of the
neurons and does not require an explicit form of nonlinear interaction among the latent variables (Fig.
1A). The second model, the Generalized Affine Model (GAM), extends several previous models of
neural population responses [8, 9, 11, 14, 15]. The GAM allows for an arbitrary number of additive
and multiplicative latent variables, which are shared across the entire population, and modulate the
stimulus response of each neuron (Fig. 3). For both the SRLVM and the GAM, our model fitting
framework allows us to fit all parameters and infer all latent variables simultaneously.

We applied these new models to population recordings from anesthetized macaque V1, and found
that the GAM was better able to explain the variance of the population responses with fewer latent
variables than the SRLVM (Fig. 6B). The optimal GAM explained only slightly more variance than
an affine model with a single additive and single multiplicative latent variable (Fig. 6B), suggesting
that the affine model is a good description of population response variability in this dataset. However,
we found the opposite situation in awake macaque PFC, where the SRLVM provided a more compact
description of the data than the GAM, and far outperformed the affine model (Fig. 5). These results
demonstrate that more general, unconstrained nonlinear latent variable models like the SRLVM can
provide a benchmark to test how well more structured nonlinear models (like the affine model) fit the
data, and can thus aid in the generation and testing of new hypotheses about the nature of computation
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in populations of neurons. Furthermore, our comparison between V1 and PFC shows that a range of
nonlinear methods will be necessary to study different brain regions under different experimental
conditions.

Several other examples of nonlinear latent variable models based on autoencoder neural networks
exist in the literature on neural data analysis, but differ from our models in the prior assumptions
placed on the latent variables. The SRLVM and the GAM both assume that the latent variables at
time t are strictly a function of the observed neural data at time t, and as such there is no notion of
dynamics in our models: the data can be randomly permuted in time with no effect on the model
fits. The fLDS model developed in [30] models the latent variables with a linear dynamical system
(LDS) prior, such that the value of the latent variables at time t are a linear combination of the latent
variables at time t − 1. LFADS (Latent Factor Analysis via Dynamical Systems) [31] is another
model based on the autoencoder, and uses a more general recurrent neural network to model the
dynamics of the latent variables. However, our aim in this work was not to study dynamics (either
linear or nonlinear), but to study the nonlinear transformations that take place between the latent
variables and the observed neural activity. To simplify this endeavor we only modeled spike counts
on a per-trial basis, and extending our work to higher time resolution (where dynamics likely play a
larger role) is a direction for future investigation.

One of our main findings was that the PFC data required many more dimensions to describe neural
variability than the V1 data. This result could be due to several different factors, and likely others
we do not consider here. First of all, the PFC data was recorded in awake animals performing a
behavioral task, unlike the V1 data. Because of this, we cannot make precise statements about
how much the difference is due to the awake versus anesthetized state, and how much is due to the
different computational requirements of the corresponding tasks. The PFC data was recorded during
the execution of a perceptual decision making task, which intuitively places more demands on neural
function than passively viewing a stimulus, and might therefore result in higher dimensional neural
activity. [32] formalized this intuition and showed that, at least in the linear setting, increased task
complexity does indeed result in higher-dimensional neural activity.

However, it is possible that the differing dimensionalities we observed in these datasets is not related
to task complexity at all, and instead related to other non-experiment-related activity present in
an awake behaving animal. Recent work has demonstrated that behavioral variability can drive a
large proportion of the variability in rodent cortex, enough even to mask the task-related activity
[33, 34]. It is possible that much of the variability we captured with our models in the PFC data is
linked with behavior not directly related to the task (i.e. orofacial movements), which is absent in
the anesthetized V1 data, although it is currently unclear to what extent activity in primate cortex is
similarly dominated by behavior. Fortunately, it is straightforward to incorporate external predictors
of activity such as behavior into both the SRLVM and GAM, and so both of these models can be used
to study variability while controlling for non-task-related behavior.

Another advantage that our modeling framework offers (specifically the GAM) is the ability to fit
the stimulus responses simultaneously with the latent variables. In all previous work that we have
considered here, as well as this work, the datasets contain neural responses to low-dimensional stimuli
that could be characterized with simple tuning curves. The GAM expands the range of stimulus sets
that can be used since it can incorporate arbitrarily complex stimulus processing models, including
Generalized Linear Models [35] and more complicated, nonlinear models like the Nonlinear Input
Model [36] or convolutional neural networks [37, 38, 39, 40, 41, 42]. This ability can, for example,
allow for the investigation of neural variability during tasks that include more naturalistic stimuli.

Latent variable models such as the SRLVM and the GAM will be increasingly useful for exploring
the increasing number of large-scale datasets provided by multi-electrode recordings and two-
photon imaging. These models, when used correctly, can capture meaningful structure in the data
that can guide our understanding of the principles that underlie brain structure and function, and
suggest additional experimental investigations [43]. To fully describe the richness of neural activity,
these models must able to capture nonlinear relationships; to be useful, they must be easily fit to
experimental data. The SRLVM and GAM fulfill both of these requirements, and are also easily
extendable, allowing them to adapt to changing analysis demands as experimental neuroscience
continues to provide datasets of unprecedented size and complexity.

11

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 30, 2018. ; https://doi.org/10.1101/407858doi: bioRxiv preprint 

https://doi.org/10.1101/407858
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 Methods

4.1 Experimental data

V1 dataset. We analyzed electrophysiology data from the Kohn Lab, which has been made publicly
available at http://dx.doi.org/10.6080/K0NC5Z4X. Spiking activity was recorded with a Utah
array in primary visual cortex from three anesthetized macaques, in response to full-contrast drifting
gratings with 12 equally-spaced directions, presented for 1280 ms (200 repeats). Full details can be
found in [44]. Spike counts were analyzed using a single 500 ms time bin per trial (500 ms to 1000
ms after stimulus onset). Spike counts were square-rooted before fitting the models to stabilize the
variance and reduce the influence of neurons with high firing rates, as in [45].

PFC dataset. We analyzed electrophysiology data from the Kiani Lab, which has been made
publicly available at http://www.cns.nyu.edu/kianilab/Datasets.html. Spiking activity
was recorded with a Utah array in area 8Ar of the prearcuate gyrus from three macaques as they
performed a direction discrimination task. On each trial the monkey was presented with a random
dot motion stimulus for 800 ms, and after a variable-length delay period the monkey reported the
perceived direction of motion by saccading to a target in the corresponding direction. The coherence
of the dots and their direction of motion varied randomly from trial to trial. Spike counts were
analyzed using a single 700 ms time bin per trial during the stimulus presentation (100 ms to 800 ms
after stimulus onset). As with the V1 data, spike counts were square-rooted before fitting the models.

4.2 Simulated data

We simulated the firing rate rnt for each of N = 50 neurons as a weighted sum of three stimulus
signals {smt }3m=1, multiplicatively modulated by a gain signal gt

rnt = (1 + βngt)f(αn
1 s

1
t + αn

2 s
2
t + αn

3 s
3
t ) (9)

where f(x) = max(0, x). This resulted in population activity that was fully described in a four
dimensional space. The three stimulus signals and gain signal were each low-pass filtered white noise
signals, and each neuron had its own unique coupling weights to the three stimulus signals (αn

k ’s) and
the gain signal (βn’s). The output of the simulation is a continuous-valued firing rate, rather than the
resulting spiking activity or two-photon activity, in order to more clearly elucidate model behavior
under ideal conditions.

4.3 Modeling details

We performed all model fitting using 10-fold cross-validation, where the data are divided into
10 equally-sized blocks, with nine used for training and one for testing, with 10 distinct testing
blocks. All reported measures of model performance were calculated using testing data. We used
L2 regularization in all of our models to prevent overfitting to the training data, which required
fitting a hyperparameter governing the strength of the regularization (e.g. λ in equation 12 below).
For each fold, we fit the models to the training data using a range of hyperparameter values (six
values logarithmically spaced between 10−5 and 100), and selected the value that resulted in the best
performance on the held-out testing fold.

SRLVM. The SRLVM predicts the observed spike count vector of N neurons on trial i, yi ∈ RN ,
using a smaller set of latent variables zi ∈ RM , where typically M � N . The SRLVM constrains
the latent variables to be some encoding function fenc of the observed spike counts, so that

zi = fenc(yi) (10)

The population activity is then coupled to the latent variables with the decoding function fdec, so that
the predicted response vector ri of the model is

ri = fdec(zi) (11)

We implemented both fenc and fdec with feed-forward neural networks, which used rectified linear
(ReLU) activation functions f(x) = max(0, x) as the pointwise nonlinearities in all hidden layers.
For all SRLVMs we used three hidden layers, with 10-X-10 number of units, where X corresponds to
the number of latent variables. The RLVM has only a single hidden layer corresponding to the latent
variables (and thus both fenc and fdec are implemented as affine transformations).
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To simultaneously fit the weights θW and the biases θb in the networks defining fenc and fdec,
we maximized the log-likelihood of the predicted responses under the Gaussian distribution (with
identity covariance matrix), which is equivalent to minimizing the mean square error [46] between
the observed spike counts yi and the predicted responses ri, across all I trials. [Note that it is also
possible to use the Poisson log-likelihood as the loss function, which we did not do owing to the large
time bins and high spike counts.] We included regularization terms on the network weights to prevent
overfitting, so that the final loss function for the model is defined as

LSRLVM =
1

2I

I∑
i=1

∥∥yi − ri
∥∥2
2

+ λq(θW ) (12)

where q(·) is the regularization term that we take to be the L2 norm on the weights, governed by the
hyperparameter λ. Equation 12 was optimized using the L-BFGS optimization routine [47].

We performed layer-wise initialization of the weights in the encoding network by using varimax-
rotated principal components of the observed responses {yi}Ii=1, and initialized weights in the
decoding network as transposes of those in the encoding network, which we found to produce models
with consistently better cross-validation performance than other initialization schemes (data not
shown).

GAM. The GAM models neural responses using three terms: (1) the stimulus response; (2) one or
more gain terms that are shared across the population and multiplicatively modulate the stimulus
response; and (3) one or more additive terms that are likewise shared across the population. We define
the full model for the predicted response rni of neuron n on trial i in several steps.

We first define a stimulus model fn(si) for each neuron n such that fn maps si, the vector of
stimulus values on trial i, to a rate for each i. fn could be as simple as a one-dimensional tuning
curve or a peri-stimulus time histogram (PSTH), or any arbitrary feed-forward stimulus processing
model like a GLM [35], NIM [36] or convolutional neural network [37, 38, 39, 40, 41, 42]. In
this work, we modeled the stimulus response of each individual neuron in both datasets using an
L2-regularized form of the tuning curve, which can be fit using a penalized form of linear regression
(ridge regression). We denote the parameters of the stimulus models {fn}Nn=1 as θstim. For this basic
stimulus model, then, the GAM estimates the firing rate rni as

rni = F [cn + fn(si)] (13)

where cn is an overall offset term and F [·] is an optional pointwise spiking nonlinearity (which we
take to be linear in our analyses).

Next we define latent variables gi ∈ RK that have an explicitly multiplicative effect on the stimulus
processing (Fig. 3 only illustrates a single multiplicative latent variable, but more than one can be fit
using this framework). These latent variables are shared across the entire population, though each
neuron has its own weight wk

n to each of the K latent variables gki :

rni = F

[
cn + u

(
K∑

k=1

wk
ng

k
i + bn

)
fn(si)

]
(14)

where bn is a bias term and u(·) is a static nonlinearity. We use u(x) = 1 + x to fit the models in this
work, though other functions like u(x) = exp(x) are also suitable [13].

Inference of the latent variables is performed by using a neural network fmult to nonlinearly map the
observed population response yi into the latent variables:

gi = fmult(yi) (15)

We denote the parameters for the multiplicative latent variables (wk
n, bn, and the weights and biases

of fmult) as θmult.

Finally, we allow the GAM to have additive latent variables hi ∈ RM as well, in order to capture
activity that cannot be accounted for by the modulated stimulus model of equation 15. Like the
multiplicative latent variables, these additive latent variables are shared across the population, but
each neuron has its own weight vmn to each of the M latent variables hmi

rni = F

[
cn + u

(
K∑

k=1

wk
ng

k
i + bn

)
fn(si) +

M∑
m=1

vmn h
m
i

]
(16)
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Inference of the additive latent variables likewise uses a neural network,

hi = fadd(yi) (17)

and we denote the parameters for the additive latent variables (vmn and the weights and biases of fadd)
as θadd.

We implemented both fmult and fadd with affine transformations; including hidden layers, such that
the transformation from observed activity to latent variables is nonlinear, did not result in substantive
model improvements (data not shown), likely due to the increased number of parameters and relative
lack of data.

To fit the parameters {θstim, θmult, θadd} of the GAM we define the loss function to be the penalized
negative log-likelihood LGAM under the Gaussian noise model (as with the SRLVM):

LGAM =
1

2I

I∑
i=1

∥∥yi − ri
∥∥2
2

+ λstimq(θstim) + λaddq(θadd) + λmultq(θmult) (18)

where the q(·) are regularization terms that we take to be the L2 norm on the weights, governed by the
hyperparameter λ. The parameters θmult and θadd are initialized using the varimax-rotated principal
components of the observed responses {yi}Ii=1; θstim is initialized by fitting the desired stimulus
processing model fn (equation 13) to each neuron individually and using the resulting parameters. To
train the full model we hold θstim fixed and simultaneously optimize θmult and θadd using the L-BFGS
optimization routine [47].

4.4 Evaluating model performance

To quantify the goodness-of-fit of the different models we employed the coefficient of determination
across the full population, defined as

R2 =
1

N

N∑
n=1

[
1−

∑
i(y

n
i − rni )2∑

i(y
n
i − ȳn)2

]
(19)

where ȳn is the average value for neuron n across all trials.

To actually evaluate model performance of the SRLVM we performed a version of the leave-one-
out method introduced in [45]: first the full model is fit to all of the training data, and then for
cross-validation the estimated population activity rni on trial i for neuron n is calculated as

rni = [fdec(fenc(y
−n
i ))]n (20)

where y−n
i is the population activity on trial i with the value for neuron n set to zero. The prediction

rni is calculated in this way for each value of i and for each neuron n, and all such values are then
combined for the final prediction {ri}Ii=1. This procedure results in low cross-validation performance
if any single neuron dominates the activity of a latent variable. The same procedure is used for GAMs,
so that

rni = F

[
cn + u

(
wT

n fmult(y
−n
i ) + bn

)
fn(si) + vT

n fadd(y−n
i )

]
(21)

where wn and vn are the multiplicative and additive coupling terms for neuron n collected into
vectors.

To compare the performance of the SRLVM and GAM, we compare the R2 of the given latent
variable model (“MODEL”) with the R2 of the stimulus model (“STIM”):

QI =
R2

MODEL −R2
STIM

1−R2
STIM

(22)

This measure will be equal to zero when the latent variable model explains as much variability as the
stimulus model, and one when the model predicts the neural activity perfectly.
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