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Shared ancestry among individuals results in correlated traits and these dependencies need to be accounted for
in probabilistic inference. In strictly asexual populations, the covariances have a particularly simple block-like
structure imposed by the phylogenetic tree. Ho and Ane showed how this block-like structure can be exploited
to efficiently invert covariance matrices and fit linear models on trees in linear time. In this short note, I use
these methods to estimate evolutionary rates and to find the root of the tree that optimizes the time-divergence
relationship. The algorithm is implemented in TreeTime and can be used to estimate evolutionary rates and their
confidence intervals with computational cost scaling linearly in the number of tips.

Individuals related by a phylogenetic tree and share ances-
tral lineages to various degrees: All individuals share the his-
tory prior to the most recent common ancestor (MRCA) and
each split in the tree partitions the populations into groups that
subsequently evolve independently along different paths. Any
heritable property that changes through time along branches
of the tree is therefore correlated among individuals. Closely
related individuals tend to have similar properties and biggest
differences will be found among individuals whose MRCA
lived far in the past. Such phylogenetic correlations are com-
mon confounders in inference from sequence data, for ex-
ample in contact map prediction from covarying amino acids
(Dunn et al., 2008), genome wide association studies (Price
et al., 2010), or in the analysis of quantitative traits in com-
parative phylogenetics (Freckleton, 2012). Correction of pop-
ulation structure and phylogenetic correlations generically re-
quires inversion of the covariance matrix of the trait among
individuals in the population.

In general, matrix inversion is a computationally expen-
sive operation, but (Ho et al., 2014) have shown that tree-
structured covariance matrices can be inverted recursively.
Furthermore, linear models don’t require matrix inversion but
can be fit in linear time by recursively calculating weighted
moments that account for covariation. The purpose of this
note is to give a simplified albeit less general derivation of
this algorithm and use it to estimate evolutionary rates from
serially sampled sequence data.

Divergence from the root of the tree, i.e. the number of
mutations per genome length L that accumulated in the sam-
pled individuals since the MRCA of the entire sample (aka
root-to-tip distance, d), is a simple example of a property with
strong phylogenetic correlation. According to the molecular
clock hypothesis, one expects di to increase linearly in time as
di ≈ β(ti−TMRCA), where β is the evolutionary rate (Zuck-
erkandl and Pauling, 1965). The actual values di of a specific
tip i will fluctuate around the expectation β(ti − TMRCA)
since mutations accumulate stochastically, e.g. according to
a Poisson process. Divergences of closely related tips are
strongly correlated because they share most of their history,
while divergences of tips that only merge at the root are in-
dependent. The root-to-tip distances are sums of independent
contributions of branches pi in the tree connecting the tip to

the root. The mean and variance of divergence di can be ex-
pressed as

〈di〉 =
∑
k∈pi

β∆tk 〈δd2i 〉 =
∑
k∈pi

σ2
k , (1)

where ∆tk is the length of the branch in calendar time and σ2
k

is the variance in divergence on a branch of length ∆tk (in the
simplest Poisson model σ2

k = β∆tk/L). Divergences of dif-
ferent tips i of the tree, however, are clearly not independent
observations and the covariance of di and dj is given by

cij = cov(di, dj) =
∑

k∈pi∩pj

σ2
k (2)

where the sum runs over all branches k in the intersection pi∩
pj of the paths to the root of tips i and j. Fig. 1 shows this
covariance matrix for a small example. The covariance matrix
has a block like structure where each block corresponds to
a branch in the tree that adds an identical contribution to all
pairs of its descendants. This property naturally generates the
three-point structure defined by Ho et al. (2014).

This covariation complicates inference from tree-structured
data. A common objective is to estimate the evolutionary rate
β and TMRCA of measurably evolving populations such as
rapidly evolving RNA viruses (Drummond et al., 2003b). The
simplest approach would be to regress the root-to-tip distances
di against sampling data ti of all available tips by minimizing
the squared deviation

R =
1

2

∑
i

(di − (α+ βti))
2 (3)

where α = −β/TMRCA (Drummond et al., 2003a; Paradis
et al., 2004; Rambaut et al., 2016; Sagulenko et al., 2018; To
et al., 2016; Volz and Frost, 2017). However, it is obvious
that different data points (tips of the tree) are not independent
observations and that simple least-squares regression will give
noisy estimates of the evolutionary rate β or the TMRCA with-
out meaningful confidence intervals.

Instead, the di from all nodes are drawn approximately
from a multivariate Gaussian distribution with covariance ma-
trix C given by Eq. (2). An approximately most likely clock
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rooted tree covariance weight

FIG. 1 Covariance induced by a phylogenetic tree. The closer two tips are in the tree (left), the stronger are correlations among quantities
that evolve along the tree (middle, darker colors). In an inference problem, tips need to be down-weighted if they are strongly correlated with
other tips. The weight of a tip i is denoted by ri in the text and is shown in the column on the right. The tip with the longest terminal branch
has the largest weight ri.

model should therefore minimize

χ2 =
1

2

∑
ij

εihijεj . (4)

where hij ,H is the inverse of the covariance matrix C and
εi = di − α − tiβ are the residuals. (Note that this ignores
the prefactor involving determinant of C, but this prefactor is
insignificant for sufficiently large dat sets.) Solving for α, β
that minimize χ2 is straightforward but requires inversion of
a potentially large covariance matrix which is a computation-
ally expensive operation. Most implementations for matrix
inversion scale as O(n3) with the rank n of the matrix. Fur-
thermore, the position of the root is typically unknown and the
optimal model parameters have to be determined along with
an optimization of the root. Naively, this would require repeat-
ing matrix inversion and model estimation for many choices
of the root. The typical approach to circumvent this prob-
lem is to estimate to model and tree topology jointly by com-
putationally expensive sampling of parameter and tree space
(Drummond et al., 2012).

As Ho et al. (2014) have shown, covariance matrices that
have the tree-structure defined in Eq. (2) can be inverted recur-
sively in O(n2) operations. Furthermore, model parameters
that minimize χ2 can be obtained in O(n) operations with-
out ever inverting the full matrix. And the recursive nature of
the problem allows to evaluate the optimal model parameters
for every possible choice of the root simultaneously without
any additional computational burden. I will first rederive the
recursive matrix inversion for a specific choice of root, then
show how this calculation be efficiently done for every possi-
ble choice of root, and finally show how χ2 can be minimized
without explicit calculation of the inverse covariance matrix
for a linear model.

Tree-covariance matrix inversion

Due to the structure of the covariance in Eq. (2) induced by
the tree, C can be inverted recursively (Ho et al., 2014). Con-
sider first only the correlation Cp between leaves of node p
induced by the child-subtrees of node p, see Fig. 2. Relative to
node p, leaves that descend from the different child branches
of p are uncorrelated and Cp has two (or more, one for each
child) blocks on the diagonal. These blocks are sum of the
analogous partial correlation matrices Cci of the children ci
and the variation σ2

ci associated with the branch leading to
child i:

Cp =

(
Cc1 + σ2

c1 0
0 Cc2 + σ2

c2

)
. (5)

Inverting this matrix is cheap for two reasons: (i) the matrix
is block diagonal, hence its inverse is the block diagonal of the
inverse of its blocks. (ii) the individual blocks are a sum of a
matrix with known inverse (calculated in the analogous step
for child nodes) and a constant. The inverse of a the sum of a
matrix with known inverse and constant can be calculated us-
ing the Sherman-Morrison-Woodbury Formula (Hager, 1989):

(A + uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u
(6)

In our case, the outer product uvT is simply a product of vec-
tors whose elements are all equal to the variance added on
the branches leading to the children. Hence the inverse of an
individual blocks of Cp corresponding to child c is

(σ2
c + Cc)

−1 = Hc −
σ2
crcrc

T

1 + σ2
csc

(7)
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FIG. 2 Illustration of the recursive inversion algorithm. Each in-
ternal node p is dressed with a covariance matrix Cp and its inverse
Hp (not shown) of divergence of its leaves relative to p. These matri-
ces can be calculated recursively from the analogous quantities of the
children and the branch variances σ2

ci , see Eq. (5) and Eq. (7). The
covariance matrix of all leaves in the outgroup can be calculated in
an analogous manner. Instead of the child nodes, this matrix includes
one block for each sister clade s and one block for the outgroup of
the parent node. To calculate the total leaf-covariance (or its inverse)
for a choice of root – indicated by an arrow – at position x along the
branch p, Cp and Ĉp (or Hp and Ĥp) have to be combined in one
matrix with additional variance σ2

p(x) and σ2
p(1− x).

where Hc is the inverse of Cc, rc =
∑
j h

c
ij is the row or

column sum of the symmetric matrix Hc and sc is the sum
of all elements of Hc. This recursive update can be com-
puted in O(n2c) operations where nc is number of leaves of
the child c. In case the child node ci is a terminal node, the
respective block diagonal is the scalar σ−2c . By traversing the
tree from its leaves to root, each internal node can be dressed
with a covariance matrix of its leaf nodes until we obtain the
full covariance matrix between all leaves at the root. For a
balanced tree, there are O(log n) levels in the tree and the
computational cost is dominated by the last operation at the
root. Hence the overall computational complexity is O(n2).
For a maximally unbalanced tree, the O(n2) operation has to
be done O(n) times such that the overall complexity in this
worse case scenario is O(n3).

Speed and accuracy

To get a sense of the numerical accuracy and the empirical
scaling of the time required for recursive matrix inversion, I
generated trees and the associated covariance matrices from a
Kingman coalescent process. I inverted these matrices using
the matrix inversion routing in the numpy.linalg pack-
age and using the recursive algorithm outlined above. The
recursive algorithm clearly scales more favorably with matrix
size and is faster for matrices larger than 500 × 500. The

simply python/numpy implementation is dominated by tree-
traversal and memory allocation up to the matrix size of about
1000× 1000 and scales as ∼ n2 afterwards. Optimized mem-
ory management would likely reduce runtime. The standard
matrix inversion scales as ∼ n3 as expected.

The numerical accuracy of the recursive algorithm is lower
than that of numpy.linalg.inv. Individual elements of
C ·H differ by about 10−13 from the identity matrix for ma-
trices of rank n = 1000 while these residuals are about 5-fold
lower for numpy.linalg.inv.

Simultaneous calculation of H for every choice of root

Our discussion above singled out a specific node as the root
of the tree. In general, however, the root is not known and to
determine a plausible root χ2 is optimized with respect to the
position of the root on the tree. Minimizing χ2 directly would
require repeated calculation of H for various choices of the
root. However, in analogy to message-passing approaches for
inference on trees (Mézard and Montanari, 2009), the inverse
covariance matrix can be calculated for every node of the tree
in one post-order followed by one pre-order tree traversal.

Assume we have calculated the inverse ‘leaf-covariance
matrices’ Hp for each internal node p in a post-order traver-
sal as described above. We can now calculate the ‘outgroup-
covariance matrices’, that is the covariance Ĉ of all outgroup
leaves of node p relative to the base the branch p and its in-
verse Ĥ, see Fig. 2. This calculation is analogous to Eq. (7):
Instead of the children of the node, the individual blocks are
formed by the covariance matrices of the sister clades Cs and
the outgroup-covariance matrix of the parent node Co, see
Fig. 2.

With the two inverse covariance matrix Hp and Ĥp of tips
on either end of branch p, we can now calculate the inverse
covariance matrix for an arbitrary choice of root along the
branch by again using Eq. (7) with the outgroup and in-group
as children, see Fig. 2.

Efficient linear regression with tree-like covariance
matrices

If the only objective is to minimize χ2 with respect to model
parameters, the matrix inverse is not necessary and the optimal
model parameters can be determined in linear time as shown
by (Ho et al., 2014). Differentiating Eq. (4) with respect to β
and α, one finds:

0 = −
∑
ij

tihijεj = −tihijdj + βtihijtj + αtiri

0 = −
∑
ij

hijεj = −rjdj + βrjtj + αs
(8)

where repeated indices imply summation and ri and s are the
column sum and complete sum of hij as before. Straightfor-
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FIG. 3 Speed and accuracy: While standard matrix inversion scales as n3 with rank of the matrix, the recursive algorithm scales much more
favorably. In fact, up to n = 1000 the simply python/numpy implementation is dominated by tree-traversal and allocation and has not reached
the asymptotic ∼ n2 scaling yet. The right panel shows the numerical accuracy of matrix inversion quantified as n−2∑

ij

∣∣δij −∑k cikhkj

∣∣.
The recursive inverse is less accurate than numpy.linalg.inv but behaves similarly when the rank of the matrix changes.

ward algebra yields

α =
rj(dj − βtj)

s
(9)

β =
tihijdj − tirirjdj

s

tihijtj − tirirjtj
s

(10)

for the intercept and for the slope of the regression. The form
of these expression is analogous to ordinary least squares re-
gression β = 〈diδti〉/〈δt2i 〉 and α = 〈di〉 − β〈ti〉. The quan-
tities

∑
i tiri and

∑
i diri are essentially weighted averages

of times and divergences with weights ri (after dividing by
s =

∑
i ri) . These weights ri are lower if tip i is strongly

correlated with several other tips j, see Fig. 1. The quantity
tihijtj and tihijdj , in turn, are analogs of second moments
of time and distance. Since the matrix hij has block diagonal
structure, these weighted sums can again be calculated recur-
sively from the independent contributions of the children. The
weighted sum at node p of sampling times obeys

τp =
∑
i

tiri =
∑
c∈p

τc
1 + σ2

csc
(11)

where τc is the equivalent sum of the child c. The only
quantity that explicitly depends on the covariance matrix is
the normalization sc which obeys he recursive update sp =∑
c∈p sc/(1 + σ2

csc). These relations are analogous to those
by Ho et al. (2014).

The divergence dpi of tip i, one the other hand, depends
on the reference node p. As the recursion moves up the tree

towards the root, we can express the dpi of tip i by the con-
tribution of the branch `c leading to child node c and the dci.
The weighted sum therefore can be expressed as

δp =
∑
i

dpiri =
∑
c∈p

δc + sc`c
1 + σ2

csc
(12)

The second order quantities can be calculate analogously

Tp = tihijtj =
∑
c

Tc −∑
ij∈c

σ2
cτ

2
c

1 + σ2
csc

 (13)

The situation is slightly more complicated for tihijdj since as
before the dj change as we add another branch.

Φp =
∑
ij

tihijdpj =
∑
c

∑
ij∈c

tihij(dcj + `c)

=
∑
c

[
Φc + τc`c − σ2

c

τc(δc + sc`c)

1 + σ2
csc

] (14)

After evaluating these equations recursively in a post-order
traversal, the quantities at the root node are the full weighted
averages τ =

∑
i riti etc. With these quantities in place, the

optimal slope and intercept for a given choice of the root are
given by

β =
Φ− τδ/s
T − τ2/s

α = (δ − βτ)/s

(15)
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If the assumption that divergences are distributed as multi-
variate Gaussian is correct, the covariance matrix of the esti-
mates is given by the inverse of the Hessian:[

dχ2

dα2
dχ2

dαdβ
dχ2

dαdβ
dχ2

dβ2

]
=

[
s τ
τ T

]
(16)

The covariance of the estimates can therefore be expressed as
in terms of three scalar quantities that are already calculated.[

σ2
α cov(β, α)

cov(β, α) σ2
β

]
=

1

T s− τ2

[
T −τ
−τ s

]
(17)

To obtain accurate estimates with tight confidence intervals,
the weighted variance in tip dates T /s − τ2/s2 needs to be
large, as one would intuitively expect.

Optimizing the position of the root

The optimal root will rarely be an existing node, but will
typically be an intermediate point on an existing branch at dis-
tance `x and `(1− x) between two nodes, see Fig. 2.

In analogy to the calculations for the covariance matrix,
we can calculate the quantities δ̂p, τ̂p, T̂p and Φ̂p for all tips
in the outgroup of branch p. If the variance σ2

p is linear in
branch length, we can then calculate the weighted averages
τ(x), δ(x), T (x) and Φ(x) for any x by treating the outgroup
and the in-group as two child nodes with branch length x`p
and (1− x)`p. The resulting conditions are polynomial equa-
tions in x that don’t seem to have a convenient solution but
are easily solved numerically.

Practical issues

We have so far assumed that the variance contributions of
the branches are known. However, these contributions are
proportional to elapsed calendar time along the branch which
is not known a priori. What we are given is branch length
measured in the expected number of mutations which is pro-
portional to time but fluctuates. Equating one with the other
leads to systematic biases since less diverged parts of the tree
will be associated with smaller variance such that they exert
undue influence on the total estimate. This problem can be
addressed with more complicated non-linear optimziation or
by first estimating a time-scaled phylogeny using a rough rate
estimate and then refining this estimate using branch length as
measured in calendar time.

Fits of divergence time relationships with covariance aware
methods can be sensitive to outliers that violate model as-
sumptions. Since closely related tips are down-weighted due
to their presumed covariation, outlier sequences have a larger
weight in the covariance aware fit than in a simple least square
fit. If the outliers are due to sequencing errors, culture adapta-
tion, or similar artifacts, they should be removed.

Lastly, the accumulation of mutations is typically much
more lumpy than predicted by a Poisson model. To improve
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FIG. 4 Accounting for the covariance structure of reduces variation
in estimates of the TMCRA and the evolutionary rate β. The fig-
ure compares results from simple least-squares regression with mini-
mization of χ2 as defined in Eq. (4) on simulated data. Estimates that
account for correlations in divergence among tips are more accurate.

stability of the rate estimation, it is advisable to include some
extra variance in root-to-tip distance for each terminal branch
in the model.

Accounting for covariance reduces noise

To empirically investigate the improvement achieved when
accounting for the covariance structure when estimating the
rate of evolution and the time TMRCA of the most recent
common ancestor, I simulated evolution in population of size
N = 100 under a neutral Wright-Fisher model using FFPop-
Sim (Zanini and Neher, 2012). I sampled 200 individuals over
a period of T = 2N generations, and recorded the true tree
of the entire sample including the TMRCA. I reconstructed
phylogenetic trees using IQ-TREE (Nguyen et al., 2015) and
estimated the substitution rate and TMRCA using either root-
to-tip vs time regression with naive least-squares or χ2 min-
imization. Accounting for the covariance structure dramati-
cally reduced the noise in the estimates, see Fig. 4.

Implementation

The algorithm to invert covariance matrices and per-
form regression on trees is implemented as a class
TreeRegression in TreeTime. Estimation of root-to-tip
regression and clock rate estimation is exposed as a com-
mandline tool treetime clock. The output of this com-
mand when applied to a set of influenza virus NA sequences
is shown in Fig. 5. The corresponding data set is part of the
collections of treetime examples and tutorials .

Discussion

Phylogenetic correlations are a natural consequence of ver-
tical descent and heritability and act as confounders in infer-

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 4, 2018. ; https://doi.org/10.1101/408005doi: bioRxiv preprint 

https://github.com/neherlab/treetime_examples
https://doi.org/10.1101/408005
http://creativecommons.org/licenses/by/4.0/


6

1970 1980 1990 2000 2010
date

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16
ro

ot
-to

-ti
p 

di
st

an
ce

y = + t
= 3.09e-03+/- 4e-04

root date: 1964.2+/- 1.88
ignored tips

FIG. 5 Optimized divergence vs time regression for 200 influenza
A/H3N2 NA sequences as produced by treetime clock.

ence problems. But in the simple case of additive accumula-
tion of variance along branches, these phylogenetic correla-
tions can be readily taken into account. The recursive block
like structure of the covariance matrix allows inversion us-
ing the Sherman-Morrison-Woodbury formula that has been
used in a number of related problems (Hager, 1989). Ho et al.
(2014) have shown that analogous algorithms hold for mod-
els in which variance does not accumulate linearly in time by
saturates, e.g. in an Ornstein-Uhlenbeck process.

Here, I showed how the algorithm by Ho et al. (2014) can
be used to simultaneously evaluate all possible choices for the
root of the tree and estimate evolutionary rates. I included a
slightly simplified and extended re-derivations of the recursive
matrix inversion and linear model fit by Ho et al. (2014) here
in the hope that they are helpful.
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Appendix A: The value of the objective function

The objective function at optimal α and β is given by

2χ2 =
∑
ij

(di − (βti + α))hij(dj − (βtj + α))

= D − 2(βΦ + αδ) + β2T + 2αβτ + α2s

= D − δ2/s− (Φ− δτ/s)2

T − τ2/s

(A1)

where D is defined in analogy to T and Φ

D = dihijdj =
∑
c

∑
ij∈c

(dci + `c)(h
c
ij − σ2

c

rcircj
1 + σ2

csc
)(dcj + `c)

=
∑
c

[
Dc + 2`cδc + `2csc − (δ2c + 2δc`csc + `2cs

2
c)

σ2
c

1 + σ2
csc

]
(A2)

Here Dc is the analogous quantity of the child and the full D
can be calculated recursively as before.
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