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Abstract 

Background 
Estimates of current global rabies mortality range from 26,000 to 59,000 deaths per annum. Although 

pre-exposure prophylaxis using inactivated rabies virus vaccines (IRVs) is effective, it requires two to 

three doses and is regarded as being too expensive and impractical for inclusion in routine childhood 

immunization programmes. 

Methodology/ Principal Findings 
Here we report the development of a simian-adenovirus-vectored rabies vaccine intended to enable 

cost-effective population-wide pre-exposure prophylaxis against rabies. ChAdOx2 RabG uses the 

chimpanzee adenovirus serotype 68 (AdC68) backbone previously shown to achieve pre-exposure 

protection against rabies in non-human primates. ChAdOx2 differs from AdC68 in that it contains the 

human adenovirus serotype 5 (AdHu5) E4 orf6/7 region in place of the AdC68 equivalents, enhancing 

ease of manufacturing in cell lines which provide AdHu5 E1 proteins in trans. 

We show that immunogenicity of ChAdOx2 RabG in mice is comparable to that of AdC68 RabG and 

other adenovirus serotypes expressing rabies virus glycoprotein. High titers of rabies virus neutralizing 

antibody (VNA) are elicited after a single dose. The relationship between levels of VNA activity and 

rabies glycoprotein monomer-binding antibody differs after immunization with adenovirus-vectored 

vaccines and IRV vaccines, suggesting routes to further enhancement of the efficacy of the adenovirus-

vectored candidates. We also demonstrate that ChAdOx2 RabG can be thermostabilised using a low-

cost method suitable for clinical bio-manufacture and ambient-temperature distribution in tropical 

climates. Finally, we show that a dose-sparing effect can be achieved by formulating ChAdOx2 RabG 

with a simple chemical adjuvant. This approach could lower the cost of ChAdOx2 RabG and other 

adenovirus-vectored vaccines.  
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Conclusions/ Significance 
ChAdOx2 RabG may prove to be a useful tool to reduce the human rabies death toll. We have secured 

funding for Good Manufacturing Practice- compliant bio-manufacture and Phase I clinical trial of this 

candidate.  

Author summary 

Rabies was, after smallpox, the second human disease for which an efficacious vaccine was developed, 

by Pasteur in 1885. Although it is eminently preventable, with highly efficacious vaccines available for 

both humans and animals, it still causes considerable mortality in low and middle-income countries. 

It is a particular problem in areas with the weakest healthcare and veterinary infrastructure, where 

achieving prompt post-exposure vaccination or high-coverage dog vaccination are challenging. 

Here, we report the development of a new candidate rabies vaccine, designed to enable low-cost 

single-dose pre-exposure human rabies prophylaxis in such settings. ChAdOx2 RabG is based upon a 

simian adenovirus-vectored candidate previously shown to achieve protection after a single dose in 

non-human primates, now modified to allow clinical-grade bio-manufacture. We show that it induces 

a potent immune response in mice, that this response can be further enhanced by clinically-relevant 

adjuvant, and that we can stabilise it such that it can withstand temperatures of up to 45 °C for a 

month.  We will be performing a clinical trial of this candidate in the near future. 
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Introduction 

Despite the development of an efficacious rabies vaccine by Pasteur in 1885, estimates of current 

global annual rabies mortality range from 24,000 to 59,000 (1-3). Among the neglected tropical 

diseases, the burden of mortality due to rabies is exceeded only by that due to leishmaniasis (1). Across 

large and populous areas of Africa and Asia, rabies-attributable mortality rates exceed 1 per 100,000 

people per year (3). More than 200 million individuals live in countries with rabies-attributable 

mortality rates exceeding 5 per 100,000 per year, corresponding to a lifetime risk of death due to 

rabies exceeding 0.1% (3). Such death rates exceed those attributable to some diseases included in 

the Expanded Programme on Immunization (EPI) and/or supported by Gavi. Calculations suggest that, 

in such settings, a highly-effective, simple to deliver pre-exposure prophylactic intervention costing 

less than USD 4 per recipient would have a cost per death averted of less than USD 4000 and a cost 

per DALY of less than USD 200, competitive with Gavi-funded interventions (4).  

Most human cases of rabies are the result of dog bites (5). There is a strong argument for investment 

in dog vaccination: feasibility and cost-effectiveness of rabies control and human rabies elimination 

by dog vaccination has been demonstrated in some low and middle income country (LMIC) settings 

(6, 7). However, the countries with the highest rabies incidence are those which are least developed 

and most politically unstable, including Somalia, the Democratic Republic of the Congo, and 

Afghanistan. It remains doubtful whether adequate coverage (>60% in a canine population which 

turns over approximately every two years (7)) is achievable in such settings. Similarly, implementation 

of a robust programme of human post-exposure prophylaxis (PEP) is likely to be challenging in such 

settings. Following a dog bite, PEP is needed urgently and requires repeated vaccination and the 

administration of expensive rabies immune globulin (RIG). Achieving continuous local availability of 

PEP to meet such urgent yet unpredictable and intermittent demand is substantially more challenging 

than implementing intermittent planned mass vaccination campaigns. Concerns about the complexity 

of implementation of such an ‘as-needed’ intervention were the basis of Gavi’s 2013 decision not to 
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fund PEP, despite analysis suggesting that the cost per death averted could compare favourably to 

that of other Gavi-funded interventions; review of this decision is expected in the near future (4).  

Licensed human rabies vaccines are all based upon inactivated rabies virus (IRV), and may be used 

either for pre-exposure prophylaxis (PrEP) as well as PEP. PrEP regimes have until recently involved 

three doses of IRV vaccine spread over 28 days with typical costs of around USD 25 per vaccinee (8). 

The WHO recently endorsed the use of a PrEP regime involving intradermal administration of two 

smaller doses on each of two visits, separated by seven days: such intradermal regimes can reduce 

cost to USD 2 – 4 per vaccinee, but still require a total of four injections over two visits and are not 

licensed in some countries (9, 10). Although there are data suggesting that IRVs can be stable for a 

few weeks at 37 °C,  their regulator-approved labels mandate refrigerated storage at 2-8 °C (11-14).  

As a result of these cost and delivery characteristics, rabies PrEP is not included in routine childhood 

immunization programmes in most rabies-endemic areas (15).  

It is recommended that previous PrEP recipients who then receive a dog bite should still receive PEP, 

but this ‘post-PrEP PEP’ is an abbreviated and much cheaper course of two vaccinations without RIG. 

Importantly, data suggest that PrEP alone - without any PEP – can achieve protective antibody titers 

lasting many years (16, 17). This suggests that PrEP may provide substantial benefit even in contexts 

in which the reliable availability of PEP cannot be assured. Given the substantial proportion of children 

in rabies-endemic areas who receive dog bites and for whom PEP is then indicated (estimated to 

exceed 30% across a typical childhood in some areas  (8)), it is estimated that routine PrEP could be 

not only more effective but cost-saving relative to PEP-based strategies in many contexts, particularly 

if the cost of PrEP is beneath USD 4 per child (8, 18).  

Child-population-wide PrEP is thus an attractive intervention in areas in which Expanded Programme 

on Immunization (EPI) vaccines are delivered but which have otherwise limited capacity for reliable 

urgent PEP or for control of rabies-transmitting animals. This role for mass PrEP has been recognised, 
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for example, in the Peruvian Amazon: in this setting, vampire bat rabies is problematic and difficult to 

control, access to PEP is limited, and a PrEP programme appears to have been successful (15). 

Here, we have set out to develop a tool intended to enable cost-effective PrEP against rabies within 

routine population-wide immunization programmes. The immunological mechanism of vaccine-

induced protection against rabies is well characterised. A virus neutralizing antibody (VNA) titer 

exceeding 0.5 international units per milliliter (IU/mL) is accepted as a marker of adequate 

immunization (19). This threshold is widely thought to signify clinical protection: indeed, in animal 

challenge studies, 100% protection is achieved at 0.1-0.2 IU/mL, with incomplete but substantial 

protection at even lower titers (20). Simian adenovirus-vectored vaccines are an attractive platform 

technology for induction of antibody responses, circumventing the problem of pre-existing anti-vector 

antibody to human adenovirus serotypes and readily manufacturable at large scale and low cost (21, 

22). A chimpanzee adenovirus serotype 68 (AdC68)-vectored rabies vaccine and the ability of a single 

low dose of this vaccine to achieve long-lasting protection against rabies challenge in non-human 

macaques has previously been reported (23, 24). We now describe the development of a closely-

related simian-adenovirus-vectored rabies vaccine, ChAdOx2 RabG, which is suitable for good 

manufacturing practice (GMP)-compliant production. We also describe additional approaches which 

may make this particularly suitable for use in low-income settings, namely thermostabilisation of the 

vaccine and dose-sparing adjuvantation. ChAdOx2 RabG may prove to be suitable for PrEP in highly 

rabies-endemic settings which have adequate infrastructure to achieve appreciable levels of 

childhood immunization coverage (25) but which currently lack capacity for reliable dog vaccination 

or PEP. 
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Methods 

Plasmid and adenovirus production 
Plasmid pC68 010-Rabgp comprising the E1- and E3-deleted AdC68 genome with the full-length ERA 

strain rabies glycoprotein coding sequence under a human cytomegalovirus immediate-early (HCMV-

IE) promoter was constructed based on a virus obtained from ATCC (ATCC VR-594, Genbank accession: 

FJ025918.1). The wildtype AdC68 was propagated in HEK 293 cells and purified by CsCl gradient 

centrifugation, followed by viral genomic DNA purification as described. To generate the E1-deleted 

AdC68 molecular clone, the 5’ right inverted terminal repeat (ITR) was amplified by PCR and cloned 

into the pNEB193 vector. Using restriction enzyme sites that are unique in assembly but not 

necessarily unique to the full AdC68 genome, approximately 2.6 Kb of the E1 region between SnaBI 

and NdeI sites (from 455bp to 3028bp) were removed and replaced with a linker which contains the 

rare enzyme sites of I-CeuI and PI-SceI. The resultant was the pC68 000 plasmid. To delete the E3 

domain, a 3.6 kb fragment was excised using AvrII and NruI (from 27793bp to 31409bp): briefly, the 

pC68 000 was digested by AvrII, the 5.8kb fragment was subcloned into a pUC19-like backbone 

(generating pXY-AvrII), and NruI was used to excise a 1.4 kb fragment (generating pXY-E3 deleted). 

Later, pXY-E3 deleted (insert donor) was digested with AvrII and SpeI and the insert was ligated into 

pAdC68 000, to produce plamid pC68 010.  The HCMV-IE promoter – rabies glycoprotein cassette was 

inserted as previously reported (23), generating pC68 010-Rabgp (differing from previously published 

constructs, notably in the deletion of the E3 region). 

To construct a vector for transient mammalian expression of rabies glycoprotein and as a precursor to 

adenovirus vector production, the full-length coding sequence was PCR amplified from pC68 010-

Rabgp using oligonucleotides providing flanking Acc65I (5’) and NotI (3’) restriction enzyme sites. This 

permitted restriction-enzyme mediated cloning of the PCR product into pENTR4 LPTOS, a plasmid 

providing HCMV-IE promoter with intron A and tetracycline operator elements (26, 27). This transgene 

is referred to henceforth as SPrab-Gnative, or simply ‘G’. 
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A codon-optimized version of the ERA strain glycoprotein gene in which the viral signal peptide was 

replaced by that of the human tissue plasminogen activator (tPA) was synthesized by ThermoFisher 

and cloned into pENTR4 LPTOS similarly; this transgene is referred to henceforth as SPtPA-Gopt. A third 

pENTR4 LPTOS plasmid in which the codon-optimized gene was preceded by the viral signal peptide 

was generated by InFusion cloning (Takara); this transgene is referred to henceforth as SPrab-Gopt. 

To produce the ChAdOx2 RabG adenoviral vector, Gateway LR recombination (ThermoFisher) was 

then used to transfer the SPrab-Gnative transgene cassette into the ChAdOx2 parent bacterial artificial 

chromosome (BAC) (21). Adenoviral destination vectors for the expression of RabG by AdHu5, 

chimpanzee adenovirus serotype 63 (ChAd63) and ChAdOx1 were produced similarly, using previously 

described viral backbones (28, 29) and a full-length non-codon-optimized glycoprotein gene, with the 

exception that the transgene used was derived from the SAD B19 strain (Addgene plasmid 15785, a 

kind gift of Miguel Sena-Esteves (30)). SAD B19 and ERA were both derived from the Street Alabama 

Dufferin (SAD) isolate; their glycoprotein genes differ at only 4 of 524 amino acid loci (31). 

AdHu5, AdC68-010, ChAd63, ChAdOx1, and ChAdOx2 adenoviruses were produced from the plasmids/ 

BACs described above (and subsequently titered) by the Jenner Institute Viral Vector Core Facility, as 

previously described (26).  

Prior to genetic stability studies, ChAdOx2 RabG was subjected to two rounds of plaque picking. Virus 

was then propagated on adherent HEK293 cells (Oxford Clinical Biomanufacturing Facility proprietary 

cell bank) for five passages, prior to caesium chloride (CsCl) purification, phenol-chloroform DNA 

extraction and enzymatic restriction analysis, as previously described (32).  

 

Assessment of G expression in transiently transfected cells 
G expression from the three ERA G transgene constructs in mammalian cells was assessed by flow 

cytometry. Two or three independent DNA preparations of each pENTR4 LPTOS plasmid were 

produced and transfected into HEK293E cells (National Research Council, Canada) using 25kDa linear 
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polyethylene-imine (Polysciences), as previously described (33). Identical cells were incubated either 

with serum from AdHu5 RabG-immunized mice, or with naïve mouse serum (negative control), and 

then with Alexa488-conjugated goat-anti-mouse secondary antibody (ThermoFisher). The ratio of 

median fluorescence intensity (MFI) in fully-stained versus negative controls was used to quantify 

glycoprotein expression.  

Expression of codon-optimized G constructs (Gopt, i.e. SPtPA-Gopt and SPrab-Gopt) was compared to that 

of the base-case construct (SPrab-Gnative) by dividing the Gopt MFI ratio by that obtained in the same 

experiment with SPrab-Gnative. 

 

Ethics statement 
All animal work was performed in accordance with the U.K. Animals (Scientific Procedures) Act 1986, 

and was approved by the University of Oxford Animal Welfare and Ethical Review Body (in its review 

of the application for the U.K. Home Office Project Licenses PPL 30/2889 and P9804B4F1).  

 

Animals, vaccine preparation and immunization 
Female CD-1 outbred mice (Harlan, Charles River and Envigo) were used throughout. Mice were 

housed in a specific-pathogen-free facility and were 6-7 weeks old at the initiation of each experiment.  

  

All adenovirus vaccine doses were calculated on the basis of infective unit (IU) titers, but viral particle 

(VP) titers and hence particle : infectivity (P:I) ratios were also measured. In viral preparations used 

for mouse immunization, P:I ratios were 23 for AdHu5, 132 for ChAd63, 65 for ChAdOx1, 63 for AdC68, 

and 173 for ChAdOx2. 

 

AddavaxTM was purchased (Invivogen). SWE, a non-branded squalene-in-water emulsion was prepared 

at the Vaccine Formulation Laboratory in Lausanne, using a GMP-compatible manufacturing process 

as previously described (34). Both adjuvants were used at a dose of 25 µL per mouse, mixed by  
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vortexing for two seconds with the appropriate adenovirus dose (diluted to 25 µL in phosphate 

buffered saline [PBS]) 1-2 hours prior to administration. 

 

As comparators, we used two IRV vaccines. RabipurTM (Novartis) consists of a liquid formulation of 

unadjuvanted inactivated Flury LEP strain virus, produced on purified chick embryo cells (PCEC), 

licensed for human use, and with a potency of >2.5 IU/mL in the NIH mouse potency assay. Nobivac 

RabiesTM (MSD Animal Health) consists of a liquid formulation of aluminium phosphate adjuvanted 

inactivated Pasteur strain virus, produced on BHK-21 cells, licensed for animal use, and with a potency 

of >2 IU/mL. 

 

Vaccine doses used for each experiment are set out in the corresponding figure legends. All 

vaccinations were diluted in PBS to a total volume of 50 µL (with the exception of the highest doses 

of RabipurTM and Nobivac RabiesTM [Figure 2] which were administered undiluted in 100 µL). Vaccine 

was administered intramuscularly, split equally between the gastrocnemius muscles of each hind limb. 

 

 

Virus neutralizing antibody (VNA) assay 
Coded serum samples were assayed for VNA. 

For data shown in Figure 2, the fluorescent antibody virus neutralization (FAVN) assay was performed 

at the Animal and Plant Health Agency (APHA) as previously described, with quadruplicate serum 

dilutions and pre-determined acceptance criteria for virus dose as measured by back titration (35). 

For data shown in Figure 3, the rapid fluorescent focus inhibition test (RFFIT) was performed at the 

Wistar Institute, again as previously described (36), using MNA cells. 

Both assays used the CVS-11 reference virus strain and the WHO international reference standard to 

derive titers expressed in IU/mL. The two methods are known to correlate closely (35).  
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ELISA 
To produce soluble rabies glycoprotein (RabGsol) for ELISA plate coating, the sequence encoding amino 

acids 1-453 of the SAD B19 strain G protein (MVPQ...DLGL) was PCR amplified from Addgene plasmid 

15785 (as above). The primers used added a 5’ Acc65I site and 3’ sequence encoding a C-tag and NotI 

site (37), enabling cloning into pENTR4 LPTOS (as described above for adenovirus generation). This 

plasmid was then transfected into Expi293 cells using Expifectamine (both from ThermoFisher), in 

accordance with the manufacturer’s instructions. RabGsol protein was purified using a CaptureSelect 

C-tag column (ThermoFisher). 

 

ELISA was performed as described previously (38). In brief, plates were coated with RabGsol protein 

(100 ng/well in 50 µL PBS). Dilutions of test sera (in triplicate) and a standard curve produced using 

serial dilutions of an in-house reference serum pool from mice immunized with AdHu5 RabG, were 

added to the plate. Washing, secondary Ab binding, final washing, and detection were all as previously 

described (38), with the exception that the secondary Ab used was alkaline-phosphatase–conjugated 

goat anti-mouse IgG (Sigma-Aldrich). OD405 was quantified using ELx800 or Clariostar plate readers 

(Bio-Tek and BMG respectively). Results were expressed in arbitrary antibody units (AU), defined using 

the in-house reference standard, by interpolation of OD405 readings on the standard curve. Negative 

control sera (from mice immunised with AdHu5 expressing ovalbumin(39)) gave no detectable 

response. 

 

Thermostabilisation 
Sugar-matrix thermostabilisation (SMT) was performed essentially as previously described (40). In 

brief, adenovirus was formulated in thermostabilisation buffer (0.4M trehalose, 0.1M sucrose). Virus 

was applied to Whatman Standard-14 paper (GE Healthcare) at a ratio of 50 µL/cm2. The virus-loaded 

paper was then dried for 48 hours in a glovebox (Coy Laboratory Products) at room temperature (24 

+/- 2 °C) and controlled humidity (% relative humidity <5%) before being transferred to airtight vials.  
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Moisture content of the dried product was measured by Karl-Fischer analysis using an 851 Titrando 

coulometer equipped with 860 Thermoprep oven (Metrohm), in accordance with the manufacturer’s 

instructions. The mass of water measured per cm2 of product was used to estimate percentage 

moisture content of the sugar glass, based upon the calculated 9.3mg mass of solute present in 50 µL 

of the thermostabilisation buffer. 

 

As a comparator for the stability of SMT product, virus was formulated in the liquid buffer ‘A438’ (10 

mM Histidine, 7.5% sucrose, 35 mM NaCl, 1 mM MgCl2, 0.1% PS-80, 0.1 mM EDTA, 0.5% (v/v) Ethanol 

pH 6.6) (41).  

 

Thermostabilised vaccine was reconstituted by the addition of 500 µL/cm2 of phosphate buffered 

saline and vortexing for 2 seconds. The IU titer of recovered virus was measured as described for 

adenovirus production.  

 

Data analysis 
Prism 7 software (Graphpad) was used for data analysis and production of graphs. Statistical analyses 

are described in full where reported in the Results section and Figure legends. All analyses used log10-

transformed ELISA and VNA data; where negative ELISA results were obtained, they were assigned an 

arbitrary value of 3 AU (just below the detection limit) to permit log10 transformation and analysis.  
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Results 

ChAdOx2 RabG is a simian adenovirus-vectored rabies vaccine suitable for GMP 

manufacturing and clinical development 
A promising AdC68-vectored rabies vaccine has previously been described (23, 42). ChAdOx2 RabG 

differs from the previously reported vaccine in the following respects: 

1. In addition to deletion of the E1 region, the E3 region of the adenovirus has been deleted. The 

E3 region is non-essential in vitro but encodes protein products involved in subversion of the 

host immune response and viral persistence (43). Its deletion is customary in the majority of 

adenoviruses used in clinical studies and will  strengthen confidence in the relevance to the 

current vaccine of the growing body of literature regarding safety of E1- and E3- deleted 

adenovirus vectors. 

2. The promoter used is the Intron A-containing HCMV-IE promoter which we have previously 

reported to enhance immunogenicity relative to a non-intron containing version of the 

promoter (27). 

3. The promoter includes tetracycline operator elements, resulting in repression of transgene 

expression in cell lines expressing the tetracycline repressor protein (32). The use of such ‘tet-

repressing’ cell lines in some GMP manufacturing facilities minimises transgene-induced 

effects upon adenoviral growth, enhancing the predictability of viral growth characteristics 

and minimising selective pressure for the outgrowth of mutant viruses (32).   

4. The ChAdOx2 vector backbone contains the AdHu5 E4 orf6/7 region in place of the AdC68 

equivalents. Adenoviral E4 orf6 protein forms a complex with the E1B 55K protein; the 

complex has multiple functions in viral growth (44). Replacement of non-AdHu5 vectors’ E4 

orf6 sequence with the AdHu5 equivalent has previously been shown to enhance viral yield in 

cell lines supplying AdHu5 E1 proteins (29, 45). We have previously reported that ChAdOx2 

virus yields are 2 to 10-fold higher than those with AdC68 (21).  
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We also explored the possibility of modifying the RabG transgene by codon optimisation for 

mammalian cells and the incorporation of the human tissue plasminogen activator signal peptide. We 

have previously observed enhanced levels of transgene expression and immunogenicity upon making 

similar changes to transgenes in other adenovirus vectored vaccines. In the case of RabG, we observed 

no beneficial impact of such changes upon transgene expression (Figure 1A-B). ChAdOx2 RabG thus 

uses the unmodified transgene (SPrab-Gnative, henceforth simply ‘G’). 

 

FIGURE 1 CAPTION 
Figure 1: Choice of G transgene construct and demonstration of genetic stability 

Panel A shows level of cell-surface expression of rabies glycoprotein after transient transfection of cells 

with the SPrab-Gnative and SPrab-Gopt expression plasmids; legend indicates the combination of plasmid 

and staining conditions indicated by each line. Histograms are shown to illustrate the derivation of the 

data represented in Panel B: those shown here are the median results for each plasmid of three 

transfections with independent DNA preparations.   

Panel B summarizes G expression levels from the three tested constructs. Each point represents an 

independent transfection using an independent DNA preparation; line indicates median for each 

construct. SPtPA-Gopt and SPrab-Gopt were tested in separate experiments, each including the SPrab-Gnative 

as a comparator. Because absolute fluorescence data are not comparable between experiments 

(fluorescence intensity varies between experiments despite using the same conditions), expression was 

calculated using MFIs, normalized to the SPrab-Gnative MFI used in each experiment (see Methods), 

Separate SPrab-Gnative data are thus shown for each comparison, and similarly, for clarity, SPtPA-Gopt data 

is not shown in panel A. 

Panel C shows the banding pattern of restriction-enzyme digested ChAdOx2 RabG DNA following the 

five-passage genetic stability study. Banding patterns were as expected. With Hind III: bands of 21974, 

4451, 3349, 2645 base pairs (bp) were seen; a predicted 562bp band was faintly visible but not seen 

here; a predicted 96bp fragment was, as expected, not visible. With KpnI: bands of 14510, 9370, 3223, 

2644, 2329 and 960bp were seen. With SalI: pairs of fragments of 10711 and 9563bp and of 4845 and 

4787bp were seen as doublets; fragments of 1656 and 897bp were seen individually; a predicted 474bp 

band was faintly visible but not seen here; and a predicted 145bp fragment was, as expected, not 

visible. 
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To ensure suitability for manufacture in non-transgene-repressing cells (which are often used for GMP 

manufacture but in which production of some adenoviruses is frequently problematic (32)), we 

assessed virus yield in HEK293A cells (ATCC). In two independent preparations results were as follows: 

1. Yield of 5.0x1012 VP / 9.0x1010 IU (P:I ratio = 54) from 5x107 cells 

2. Yield of 1.9x1013 VP / 2.1x1011 IU (P:I ratio = 92) from 1.5x108 cells 

Yield was thus approximately 1x105 VP per cell, favourably comparable to our experience with other 

viruses (even in transgene-repressing cells), and with yields reported in the literature for other 

adenoviruses (46). 

Following 5 passages in HEK293A cells, CsCl purification and DNA extraction, enzymatic restriction 

analysis demonstrated a banding pattern consistent with the starting virus sequence (Figure 1C). 

Although this clearly does not rule out point mutations, it does confirm genetic stability of the vector 

to the level required for GMP-compliant manufacture for early phase clinical trials.  

 

ChAdOx2 RabG elicits rabies virus neutralizing antibody in mice 
To assess the immunogenicity of our adenovirus-vectored vaccine candidates, we immunized mice 

with one of a range of adenovirus serotypes expressing rabies glycoprotein, or one of the licenced 

IRVs RabipurTM (unadjuvanted) and Nobivac RabiesTM (alum-adjuvanted). For each vaccine, dose-

response was assessed. In the case of the adenoviruses, the highest dose tested was 1x108 IU (c. 5x109 

VP, dependent upon P:I ratio). This is around 1/10 of a typical human dose of 5x1010 VP. In the case of 

the IRVs, the highest dose tested was similarly 1/10 of the manufacturer’s recommended human or 

dog/cat dose, i.e. >0.25 IU for Rabipur and >0.2 IU for Nobivac: this was the highest dose which could 

be given within the constraints of a 100 µL intramuscular injection volume. 

Vaccines were assessed in two groups in separate experiments. In an initial exploratory experiment, 

(prior to the availability of the ChAdOx2 vector), we assessed AdHu5, ChAd63, ChAdOx1 and the IRVs. 

Induction of RabGsol-binding antibody, as measured by ELISA, was higher for the adenovirus vectors 
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than for the IRVs, regardless of the dose used (though it should be noted that all vaccines were given 

as a single dose rather than the repeated dosing used for IRVs in humans) (Figure 2A). While responses 

to the IRVs did not rise beyond the initial timepoint (4 weeks), the adenovirus-vectored vaccines 

induced antibody responses which gradually rose over 12 weeks (Figure 2B). We previously observed 

a similar kinetic with AdC68.rabgp in macaques (23). In this initial experiment, VNA was assessed at 

week 12 for the highest-dose groups. All vaccines induced high VNA titers (Figure 2C). Interestingly, 

the relationship between RabGsol-binding antibody ELISA response and VNA titer was markedly 

different for adenovirus-vectored vaccines and IRVs (Figure 2D). 

FIGURE 2 CAPTION 
Figure 2: Immunogenicity of first-generation adenovirus-vectored rabies vaccines and IRVs 

In all panels, points indicate results from individual mice; lines in panels A-C indicate/connect group 

medians. 

Panel A shows ELISA-measured antibody induction at 4 weeks post-immunization by AdHu5, ChAd63, 

and ChAdOx1 adenovirus-vectored rabies vaccines as compared to Rabipur and Nobivac IRVs.  

Panel B shows kinetic of antibody responses induced by ChAdOx1 (1x107 IU dose group) and Rabipur 

(1/50 recommended human dose group); similar kinetics were seen for adenovirus-vectored vaccines 

and IRVs respectively, across different doses and vaccine subtypes (data not shown). For paired two-

tailed t-test comparing week 4 and week 12 responses, p=0.002 for ChAdOx1; p=0.58 for Rabipur.  

Panel C shows VNA titers measured from week 12 samples in the groups receiving the highest doses of 

each vaccine (1x108 IU i.e. c. 1/10 typical human dose for adenovirus-vectored vaccines, 1/10 

human/dog dose for IRVs).  

Panel D shows relationship between ELISA-measured antibody levels and VNA titers. Filled symbols 

indicate adenovirus-vaccinated mice; open symbols indicate IRV-vaccinated mice. Solid line indicates 

fitted linear regression trend-line for adenovirus-vaccinated mice; dashed line indicates fitted 

regression trend-line for IRV-vaccinated mice. p=0.008 for identical intercept of the two lines, analysed 

by ANCOVA (no significant difference in slopes [p=0.65]). 

 

  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 4, 2018. ; https://doi.org/10.1101/408013doi: bioRxiv preprint 

https://doi.org/10.1101/408013
http://creativecommons.org/licenses/by/4.0/


Wang et al Simian-adenovirus-vectored rabies vaccine Page 19 of 30 

In a subsequent experiment, we compared the immunogenicity of the ChAdOx2 RabG vector with 

AdC68.010.rabgp. Differences between the ChAdOx2 RabG vector, the previously reported 

AdC68.rabgp vector (24) and AdC68.010.rabgp are described above; the removal of E3 from 

AdC68.010.rabgp is not expected to affect immunogenicity. Mice receiving 1x107 IU ChAdOx1 RabG 

were included as a group for bridging/ comparison with the previous experiment. ELISA and VNA 

responses induced by ChAdOx2 RabG were significantly higher than those induced by 

AdC68.010.rabgp (Figure 3).  Interestingly the dose-response relationships differed markedly, with 

similar responses to the two vectors at high dose (1x108 IU), but substantially stronger responses to 

ChAdOx2 than AdC68.010 at lower doses. 

 

FIGURE 3 CAPTION 
Figure 3: Immunogenicity of ChAdOx2 and AdC68.010 adenovirus-vectored vaccines 

Panel A shows ELISA-measured antibody induction by ChAdOx2, AdC68.010 and ChAdOx1 adenovirus-

vectored rabies vaccines. ChAdOx2 and AdC68.010 vaccines were given at a range of doses, as 

indicated on the x-axis. Serum was collected four weeks after immunization. 

Panel B shows VNA results for the same samples shown in panel A.  

In both panels, points indicate results from individual mice; lines indicate group medians.** indicates 

p=0.002, * indicates p=0.01 for comparisons of ELISA and VNA responses by two-tailed Mann Whitney 

test. 

 

  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 4, 2018. ; https://doi.org/10.1101/408013doi: bioRxiv preprint 

https://doi.org/10.1101/408013
http://creativecommons.org/licenses/by/4.0/


Wang et al Simian-adenovirus-vectored rabies vaccine Page 20 of 30 

A dose-sparing effect can be achieved by formulation of adenovirus-vectored rabies 

vaccines with a chemical adjuvant 
Chemical adjuvants are widely used with protein and killed-virus vaccines, both to induce stronger 

immune responses and to achieve an antigen-dose-sparing effect. The cost-of-goods of adenovirus-

vectored vaccines is likely to be relatively low (as a result of the development of high-yielding scalable 

manufacturing processes). Nonetheless, any reduction in the adenovirus dose required to achieve a 

protective response would be valuable as it could enhance the cost-efficacy of population-wide 

vaccination campaigns in low-income settings. We therefore sought to explore whether responses to 

our adenovirus-vectored rabies vaccines could be enhanced using a chemical adjuvant. We have 

previously reported that co-administration of adenovirus-vectored vaccines with certain adjuvants 

could enhance CD8+ T cell responses but, in contrast with others’ observations, we had not seen such 

effects upon antibody responses to viral vectors in the absence of co-administered protein antigen 

(39, 47, 48).  

Here, we focussed upon squalene oil-in-water adjuvants which, to our knowledge, have not previously 

been explored in combination with adenovirus-vectored vaccines. In particular, we evaluated 

AddavaxTM (Invivogen) and SWE (produced at VFL, Lausanne, Switzerland): both of these have a 

composition similar to MF59 (previously developed by Novartis and now marketed by GSK), which has 

been given to millions of people in licensed vaccines and has an excellent safety record (49). We 

observed a beneficial impact of such squalene emulsion adjuvants upon immunogenicity of our 

vaccines in each of three independent experiments, together encompassing ChAdOx1, ChAdOx2, 

AddavaxTM and SWE (Figure 4). The enhancement in ELISA response at doses ≥1x106 IU was small 

(statistically significant increases of c. 2-fold in antibody titer in two experiments- Figure 4A-B; not 

detectable in one of the three experiments- Figure 4C, right-hand side). A more marked benefit of 

adjuvant was apparent when very low doses of vaccine (≤5x104 IU) were used (Figure 4C, left-hand 

side and Figure 4D); remarkably, in the presence of adjuvant, 11/12 mice sero-converted with a dose 

of 5x103 IU (approximately 100,000-fold below a typical human adenovirus-vectored vaccine dose). 
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These data suggest that the use of squalene oil-in-water emulsions with this vaccine- or indeed other 

adenovirus-vectored vaccines- may achieve either a modest increase in immunogenicity at high dose, 

or perhaps more likely a substantial dose-sparing and hence cost-reducing effect. 

 

FIGURE 4 CAPTION 
Figure 4: Adjuvantation of ChAdOx1 RabG and ChAdOx2 RabG 

Panel A shows effect upon ELISA-measured antibody responses of addition of AddavaxTM to ChAdOx1 

RabG. p=0.02 for effect of adjuvant by 2-way ANOVA performed upon log10-transformed data.  

Panel B shows effect upon ELISA-measured antibody responses of addition of AddavaxTM to ChAdOx2 

RabG. Data for mice not receiving the adjuvant is as shown for ChAdOx2 in Figure 3A. p=0.03 for effect 

of adjuvant by 2-way ANOVA performed upon log10-transformed data.  

Panel C shows effect upon ELISA-measured antibody responses of addition of SWE to ChAdOx2 RabG. 

Data shown combines results from three mouse cohorts: cohort A at doses 5x103, 5x104 and 5x105 IU; 

cohort B at doses 5x103 and 5x104 IU; cohort C at doses 1x106 to 1x108 IU. Each experiment included 6 

mice at each dose level, hence 12 individual results are shown for doses 5x103 and 5x104 IU. Stars 

indicate significant effect of adjuvant at a single dose level, pooling all data (p=0.05 at dose = 5x103 

IU, p=0.01 at dose = 5x104 IU, both by two-tailed Mann-Whitney test). 2-way ANOVA was not 

performed across the full dose-range in view of the lack of adjuvant effect at high dose (i.e. a dose-

adjuvant statistical interaction).  

Panel D shows the data from all mice receiving the 5x103 and 5x104 IU doses in cohorts A and B. This is 

the same data shown in panel C, but separating the two cohorts to show consistency of effect across 

experiments. P=0.0002 for effect of adjuvant by 3-way ANOVA performed upon log10-transformed 

data, with P=0.001 for effect of dose and P=0.0006 for effect of experiment; in keeping with the 

consistent trend of effect of adjuvant between doses and experiments, no statistical interaction 

between parameters was observed. 

Throughout, points indicate results from individual mice; lines indicate group medians. All results 

shown are from serum samples collected 4 weeks after immunization. Units are arbitrary. 
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ChAdOx2 RabG can be thermostabilized 
We have previously described a simple method for thermostabilization of adenovirus-vectored 

vaccines by formulating the virus in a disaccharide-based solution and drying it onto a fibrous pad (40, 

50). The materials required for this SMT technique are inexpensive (<USD 0.10 per dose) and the 

method is suitable for adaptation to GMP production. In-process losses of viral infectivity are close to 

zero. Other reported approaches to adenoviral thermostabilization include optimisation of liquid 

buffers (51, 52), lyophilization (53) and spray-drying (54, 55). To our knowledge, SMT is the only 

method reported to achieve adenoviral stability at temperatures in excess of 40 °C, such as may be 

encountered during ambient-temperature distribution in some low-income countries.  

The SMT technique has not previously been applied to AdC68 or ChAdOx2 vectors. Here, we tested 

the ability of the technique to stabilize our ChAdOx2 RabG vector. Water content of the vitrified sugar-

glass in the SMT product was 3.7% (median, n=3, range 3.4-3.8%). We observed excellent stability over 

1 month at 45 °C, considerably out-performing virus formulated in the liquid buffer A438 (41): median 

log10 IU titer loss was 0.4 in the SMT product (Figure 5). No viable virus remained detectable in the 

A438. We are not aware of any other liquid buffer formulation which out-performs A438 for the 

stabilization of species E adenoviruses such as AdC68/ChAdOx2.  

 

FIGURE 5 CAPTION 
Figure 5: Sugar-matrix thermostabilization of ChAdOx2 RabG 

ChAdOx2 RabG was dried using the SMT method or formulated in A438 liquid buffer before being 

stored at the indicated temperature for 30 days. IU titer was measured after drying (for SMT 

formulation) or after storage. Titer loss during storage was calculated by comparison to the titer of 

virus stored at -80 °C (in liquid formulation). Points indicate independent samples (i.e. separate vials); 

line indicates median for each condition. 
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Conclusions 
Global rabies mortality remains unacceptable for a disease which is technically straightforward to 

prevent- there is no immunological mystery regarding how to achieve protection against rabies. The 

obstacles to its control are primarily practical and economic. It is clear that increased effort and 

investment in existing methods of canine rabies control is both necessary and likely to prove 

productive. Nonetheless, the fact that rabies disease is concentrated in the least developed parts of 

the least developed countries poses significant challenges. In some such settings, there may be a role 

for pre-exposure vaccination of children against rabies, enabled by established infrastructure for the 

delivery of other childhood immunizations. We have therefore aimed to develop a technology which 

may render such an approach practical and cost-effective.  

Here, we have built upon recent encouraging data with a closely related vaccine (23) to develop an 

iteratively improved candidate, ChAdOx2 RabG. We have shown that this has suitable genetic stability 

for GMP manufacture (Figure 1 and Results) and have preliminary indications of yield favourably 

comparable to other adenoviruses reported in the literature (46). Scalable adenovirus manufacturing 

platforms capable of producing virus titers exceeding 1x1012 VP per mL of culture have been developed 

(22, 56); this corresponds to a yield of 20 doses per mL at the typically-used human dose of 5x1010 VP, 

or 1000 doses per mL at the dose of 1x109 VP at which AdC68.rabgp was protective in macaques (23). 

Such productivity is likely to be compatible with low-cost manufacturing. 

In mice, a single dose of ChAdOx2 RabG reliably induced rabies virus neutralizing antibody (Figure 3). 

Responses to ChAdOx2 RabG compared favourably to those to AdC68.010 rabgp, the latter being 

closely related to the vector which achieved robust protection in a macaque-rabies challenge study 

(23). It is unclear why ChAdOx2 RabG appeared to outperform AdC68.010 rabgp at low vector doses; 

of the differences between the vectors, the one most likely to explain differing immunogenicity (as 

opposed to differing manufacturing characteristics) is the altered (intron-A containing) promoter used 

in ChAdOx2 RabG, which has previously been shown to enhance immunogenicity of other 

adenoviruses (27). 
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Our hope is that the ability of adenoviruses to achieve reliable, single-dose seroconversion in humans 

(57, 58) will enable ChAdOx2 RabG to achieve similar results in clinical trials, and hence to offer a 

single-dose alternative to existing PrEP regimes. We note though that the relatively slow kinetic of 

acquisition of antibody responses after ChAdOx2 RabG immunization (Figure 2B) may make the 

candidate less suitable for use in the PEP context, when urgent seroconversion is needed; indeed 

results were disappointing when AdC68.rabgp was used for PEP in non-human primates (23). 

We were interested to observe that the relationship between ELISA-measured antibody and VNA 

titers differed for adenovirus-vectored and IRV vaccines (Figure 2D). Importantly, satisfactory VNA 

activity was achieved by the adenovirus-vectored vaccines (Figure 2C). Nonetheless, this altered 

relationship suggests that the adenovirus-vectored vaccines may be inducing a considerable amount 

of antibody which is detected by ELISA (i.e. binds soluble glycoprotein) but which does not neutralize 

the virus. Secreted soluble G (lacking the transmembrane domain) is known to adopt a conformation 

differing from that of the pre-fusion native G trimer, notably in that soluble G is predominantly 

monomeric (59). The antigen expressed by the adenovirus vectors is the full length (transmembrane-

domain-containing) glycoprotein and would therefore be expected to form trimers on the surface of 

vector-infected cells. The epitopes displayed to B cells by such cells are still likely to differ from those 

displayed by rabies virions, not least in their spatial arrangement and, perhaps, steric accessibility of 

membrane-proximal regions. This observation suggests that, despite the good VNA results achieved 

with the current adenovirus-vectored vaccines, there may yet be scope for improvement in their 

efficacy, for example by engineering of the expressed antigen to focus the B cell response towards 

neutralizing epitopes. 

 

We are encouraged by the observation that a dose-sparing effect may be achievable by formulating 

ChAdOx2 RabG with a squalene oil-in-water emulsion. Such adjuvants have an excellent clinical safety 

record and there are no longer intellectual property barriers to their use in most countries (49, 60). , 

Their raw materials cost cents per dose; manufacturing processes are published and sufficiently simple 
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for transfer to academic or small commercial manufacturing organisations (34). The effect we have 

observed in mice is modest yet statistically significant and consistent across experiments with 

different vectors. Assessing whether such an effect is seen in humans would be relatively simple and 

low in cost, given access to existing GMP-grade adjuvant and adenovirus-vectored vaccine. Attainment 

of a 5 or 10-fold virus-dose-sparing effect using an inexpensive adjuvant could make a significant 

difference to the economic case for adoption of this or other adenovirus-based vaccines in low-

resource settings. 

 

As well as manufacturing cost, a further obstacle to vaccine delivery in such settings is the 

maintenance of a cold chain. This is particularly pertinent when considering the deployment of a live 

(albeit replication-deficient) viral-vectored vaccine. We have therefore sought to ‘build in’ 

thermostability from the early stages of development of the ChAdOx2 RabG candidate. Here, we 

demonstrated stabilization of ChAdOx2 resulting in ability to withstand 45 °C for 1 month with modest 

infectivity loss (0.4 log10-fold). This modest loss would be expected to have minimal effect upon 

immunogenicity (eg see the shallow dose-response curves in Figure 3A), but does suggest caution 

regarding longer-term storage at such temperatures. In its current form, SMT is probably adequate to 

allow adenovirus-vectored vaccines to meet the requirements for distribution via the WHO’s 

‘controlled temperature chain’ (CTC) programme (i.e. maintenance of compliance with product 

specification after a single exposure to at least 40 °C for a minimum of 3 days just prior to 

administration) and/or use with chromogenic vaccine vial monitors (61, 62). There remains scope for 

further improvement of the SMT approach to enable true long-term ambient-temperature storage of 

such vaccines: we are currently pursuing a number of optimization strategies. 

 

We have recently secured funding for GMP bio-manufacture and Phase I clinical trial of ChAdOx2 RabG 

in both liquid and SMT formulations.  We hope ChAdOx2 RabG may eventually enable low-cost rabies 
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PrEP in low-income settings. It may also have a role in PrEP for travellers to such settings (potentially 

facilitating clinical development by providing a ‘dual market’ in high-income as well as low/middle-

income countries). The SMT technology is applicable to multiple adenovirus-vectored vaccines and 

other vaccine platforms (40, 50); we thus hope that, as well as developing a tool with potential for 

rabies control, this trial will advance a technology with broad utility for the delivery of vaccination to 

the millions of individuals who live in resource-poor settings.  
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