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Summary 

Dopamine (DA) released from VTA neurons in response to external cues or rewards 

may represent a learning signal. Here we introduce a spatial task where a reward-predicting 

cue instructs mice to navigate to a specific location. Simultaneous in vivo single-unit recordings 

revealed that DA neurons multiplexed an internal representation of the animal’s goal-directed 

actions (locomotion, licking, distance) with phasic responses to cue and reward. Neuronal 

activity discriminated between rewarded and failed trials, generating an error signal even in the 

absence of external cues. Following a contingency change, mice readily learned to move to a 

different location, which became impossible, if the internal error signal was jammed by 

optogenetic stimulation. We conclude that a multiplexed  internal representation of the task 

modulates VTA DA neuron activity, engaging a learning process that leads to the behavioral 

adaptation of goal directed action. 
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Introduction 

Navigating through their environment, animals encounter salient stimuli that can shape 

actions based on previous rewards or punishments. When contingencies change, the behavior 

needs to be adapted rapidly by updating the relevant associations. Prediction of reward based 

on prior outcome contributes to the learning process to optimize behavioral performance. 

Midbrain dopamine (DA) neurons can support learning of cue-reward associations by encoding 

the reward prediction error (RPE) (Schultz et al., 1997). Unexpected rewards evoke a large 

phasic response in DA neurons. If a reward-predicting cue reliably precedes reward delivery, 

the phasic response shifts to the salient cue and the burst evoked by the now predicted reward 

decreases. These responses scale with value (Tobler et al., 2005), probability (Fiorillo et al., 

2003), timing between events (Hollerman and Schultz, 1998) and if preceded by several stimuli, 

the RPE signal shifts to the earliest reliable reward-predicting cue (Schultz et al., 1993). The 
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hidden states inferred from previous training or subjective valuation impact on the RPE 

computation (Starkweather et al., 2017).  

 

The activity of midbrain DA neurons also correlates with additional behavioral 

parameters.  For example, DA neurons can code for motivation (Hamid et al., 2016), action 

initiation (Syed et al., 2015), distance to reward (Howe et al., 2013) or judgment of time between 

stimuli (Soares et al., 2016). There is evidence for specialization according to the anatomical 

location of the neuron. For example, VTA DA neurons support cue-associated Pavlovian 

conditioning (Saunders et al., 2018) while substantia nigra pars compacta (SNc) cells trigger 

action initiation and invigorate movement (Alves et al., 2018; Panigrahi et al., 2015). Based on 

single cell optical recordings, reward predictions and activity related to motor output may be 

encoded by distinct populations of DA neurons (Howe and Dombeck, 2016). Alternatively, it 

has been hypothesized that the phasic component of DA neuron firing encodes the RPE while 

more sustained changes in tonic firing in the same cell would encode movement vigor or 

motivation (Niv et al., 2005). 

 

DA neuron functions are often derived from experimental readouts at the population 

level such as fast-scan cyclic voltammetry or bulk fluorescence imaging of calcium indicators 

(e.g. fiber photometry) in target regions or the entire midbrain population. For technical reasons, 

single-unit electrophysiological recordings have been carried out in restrained or head-fixed 

animals, precluding the exploration of the interplay between locomotion and RPE computation, 

the variable timing between relevant events and the perceived probability.  

 

To overcome these limitations, we have designed a spatial learning task where a 

mouse had to search for a rewarded zone while freely moving around the arena. The only way 

to identify this zone was to stop inside for several seconds, which would trigger a CS. Once the 

CS presented, the animal could then collect the reward and engage in the next trial. Comparing 

failed and successful trials, we were able to observe the difference in neural responses and 

disentangle RPE from several parameters associated with locomotion. To this end, while mice 

executed the task, we performed single-unit recordings of the ventral tegmental area (VTA) and 
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simultaneously monitored RPE and locomotion. We found that VTA DA neurons exhibited 

phasic responses to salient events but also computed a representation of goal-directed actions, 

reliably modulating their firing rate to reflect motor output. This signal discriminated between 

rewarded and error trials even when animals failed to elicit cues due to incorrect behavior, 

thereby demonstrating that it was internally generated by the animal. Finally, we establish a 

link of causality by optogenetically jamming this error signal with tonic firing, which precluded 

the mouse to adapt to the changing contingency. Thus, VTA DA neurons are causally involved 

in learning not only from external cues but also from the outcome of goal-directed actions, both 

of which are multiplexed in the same cell. 

 

Results 

In the spatial task a reward-predicting light stimulus taught the mouse to go to a 

defined, but unmarked location of the operant chamber to obtain a reward (Fig.1A). During a 

pre-training phase, mice were conditioned to a standard CS-US paradigm, associating a 

randomly occurring 4s light stimulus (CS) to the availability of a liquid reward (US, fat solution; 

5% of lipofundin). The reward was available for 4s after the light stimulus had been switched 

off and was only delivered if the mouse licked against a drinking spout during this time window. 

The first lick occurring during the reward window triggered an opening of the valve which 

delivered a single drop to the animal (Fig. 1B, top). Once this association had been learned, 

we switched to the cue-guided spatial task, where the CS would be given after the mouse had 

spent 2s in a small (4x4cm), unmarked zone of the operant chamber. The reward zone (RZ) 

was such that the animal had to remain still while waiting for the CS and then move to the spout 

to collect the reward (Fig. 1B, below). If the mouse left the RZ too early or failed to lick, no 

reward was delivered (error trial). Mice rapidly associated their spatial position to the CS and 

optimized their locomotor pattern over days (Fig. 1C-D). As a consequence the number of RZ 

entries and the reward rate increased with each session (Fig. 1E-F). Compared to pre-training 

sessions, where the number of rewards was limited by the random inter-trial interval imposed 

by the experimenter, in the spatial task the maximum reward rate was limited only by the 

duration of the executed sequence (approx. 10s) and the animal’s performance. Once mice 

had located the RZ, they produced highly reproducible locomotor output and followed specific 
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spatial trajectories between the zone and the drinking spout (Suppl. Video S1). Across all 

training phases, mice were video-tracked at 20Hz and all relevant behavioral events time-

stamped (Fig. 1D). 

 

We carried out the spatial task in DAT-cre mice (n=10) injected with virus expressing 

cre-dependent channelrhodopsin (ChR2) and implanted with a 16-channel optrode mounted 

into a microdrive (Fig. 2A). We recorded n=161 extracellular single-units in the VTA (plus 

several neurons above and below the VTA, Fig. S1A & Star methods) and found a large variety 

of spiking patterns, regardless of the learning stage and even when comparing simultaneously 

recorded neurons (Fig. 2B). To quantify the firing rate changes with behavior, we used a 

receiver-operating characteristic (ROC) (Cohen et al., 2012). Because precise timing between 

events was not determined by the task but largely depended on the animal’s behavior, 

recordings were aligned to 5 individual events of interest (CS, US, lick burst onset, speed peak 

and acceleration peak). After a dimensional reduction using independent component analysis 

(ICA) in combination with the mean firing rate of each cell, a hierarchical clustering was applied 

to group the neurons based on their spiking patterns (Fig. 2D-E). Nine clusters emerged, out 

of which one (#7) contained 80 neurons with phasic responses to CS and US suggestive of DA 

neurons. In fact, when an optogenetic identification procedure was applied (Fig. 2C), all positive 

neurons (n=17) fell into cluster #7, thus confirming their identity as DA neurons. By contrast, 

non-DA neurons showed sustained firing aligned to specific time points of the trial or were 

activated during specific motor output such as licking or locomotion. Compared to previous 

studies in head-fixed animals (Cohen et al., 2012; Sadacca et al., 2016), our analysis revealed 

clusters reflecting motor output in non-DA neurons, which were modulated by locomotor speed 

or  acceleration (cluster 3 & 4; n=6 & 25 neurons) or licking (cluster 1 & 2; n=4 & 3 neurons). 

Continuous spike density functions (cSDF) of the remaining clusters could not easily be 

attributed to individual behaviors and exhibited more complex structures (Fig. 2E). 

 

The most prominent features of the DA neuron population were the large, phasic CS- 

and US-evoked responses (Fig. 3A). We expected that as the mice learned to associate the 

cue to the reward the US would decrease (Schultz et al., 1993). Surprisingly, in 31% (25/80 
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neurons), the response to the predicted US was significantly larger than the CS response, 

whereas 46% (37/80 neurons) showed larger responses to the CS than to the US (Wilcoxon 

rank sum test, p<0.05). Furthermore, the distribution of response amplitudes measured in 

optogenetically identified DA neurons (5/17 with USresp>CSresp vs. 11/17 with 

CSresp>USresp; Wilcoxon rank sum test, p<0.05) was similar to responses across all recorded 

DA neurons (Fig. 3B). Remarkably, the two optogenetically identified neurons in Fig. 3A, one 

showing predominantly responses to the CS whereas the second cell showed much larger 

responses to the US, were recorded simultaneously i.e. during the same behavior and at the 

same learning stage.  

 

In parallel, 51/80 of DA neurons also showed slow ramping or decreasing firing rates 

(Fig. 3C, top) when modulated by goal-directed actions (Fig. 3C-D; Fig. S2D for more 

examples) during task execution (Fig. 3C,D,F). This modulation was more pronounced between 

CS and US (58/80 DA neurons modulated between CS-US vs 27/80 DA neurons outside CS-

US) and contrasted with non-DA neurons where modulation was often observed outside the 

CS-US window (75/81 non-DA neurons modulated between CS-US vs 70/81 non-DA neurons 

outside CS-US) (Fig. 3F). To further isolate motor responses from CS or US responses, we 

repeated the same analysis after excluding any motor events occurring closer than 1250ms to 

either of these two events. Putative DA neurons and identified neurons showed similar 

response profiles (Fig. S2E) 

 

We next sought to estimate how many factors contributed to the firing pattern of a given 

neuron. We applied an encoding approach using a regularized Poisson generalized linear 

model (GLM) (Fig. 4A) to the entire, continuous session taking into account all monitored 

behavioral variables and external events: CS, US, distance to reward, in/out of RZ, licks, 

acceleration and speed (Fig 4B). We then evaluated the contribution of each variable by 

calculating the correlation between the actual neural signal and the encoder prediction. 

 

DA neurons typically required 3-4 contributors to explain their firing pattern based on 

both external events and licking and locomotion parameters (Fig. 4C; Fig. S3 & Star methods). 
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We then ranked them according to the probability of their contribution (Fig. 4D) and confirmed 

the contribution of each variable by removing them one by one while monitoring the decrease 

in correlation between the recorded signal versus the prediction (Fig. 4E). This confirmed that 

DA neurons multiplexed external events and actions. When comparing the decoding 

performance of the GLM within the CS-US window and outside the CS-US, we found a stronger 

correlation for the former (Fig. 4F). This indicates that salient, reward-predicting events provide 

a time window during which goal-directed actions are closely monitored by DA neurons. 

 

We next had a closer look at error trials, during which the mouse made timing mistakes 

and failed to trigger the CS but still approached and licked against the drinking spout to test for 

reward availability. This allowed us to compare successful trials to error trials with similar motor 

output (Fig. 5A, left). When monitoring the neural activity of DA neurons (Fig. 5A, right), we 

found striking differences in both, the averaged trial histogram as well as in individual trials 

during a one hour session. This contrast was most prominent when neural activity was aligned 

to transitions of goal directed actions, such as lick bursts or locomotion. Therefore we compared 

successful and error trials at the time of zone entry, when the mouse left the zone and at lick 

burst on- and offset. 

 

This analysis revealed significant differences in the neural activity when comparing 

successful and failed trials. Even when no CS or US occurred during error trials, neurons 

exhibited an internally generated error signal aligned to the mouse’s actions. In VTA DA 

neurons, it consisted not only of decreased phasic firing but was turned into a negative error 

signal further emphasized by pauses occurring in the tonic firing (Fig 5A). 31/80 (41%) of DA 

neurons showed a significant increase in spike pause probability in at least one of the events 

(10/80 for enter zone event ,18/80 for leave zone event, 15/80 for lick burst onset and 19/80 for 

lick burst offset) in failed trials compared to successful trials (Fig. 5B-C). Discriminating neurons 

were not necessarily specific to a single event (Fig. 5D). 

 

To establish a link of causality, we designed experiments during which we would 

modulate the negative error signal and monitor the impact on the performance with a 
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contingency change (change of location of the RZ). We either applied an optogenetic 

stimulation during the activity pause in error trails or enhanced the pause through optogenetic 

inhibition. To this end, we injected DAT-cre mice (n=12) bilaterally with virus expressing either  

cre-dependent channelrhodopsin (ChR2) (n=5) or archaerhodopsin (eArch3.0) (n=3) (Fig.6A). 

We used DAT-cre animals injected with virus expressing green fluorescent protein as controls 

(n=4). In fully trained mice, the spatial task would initially run normally with RZ1 activating the 

CS. After 20 min, the RZ switched to a different location (RZ2). ChR2-mice that returned to RZ1 

would receive an optogenetic stimulation simulating DA neuron tonic firing to jam the pause 

present during error trials. Animals injected with eArch3.0 received a 500 ms orange light 

stimulation, to enhance the negative error signal in order to facilitate the learning of the new 

contingency. eYFP-injected control mice received either of these stimulation patterns at random 

(Fig.6C). 

 

ChR2-mice that received the optogenetic stimulation, persevered in RZ1 after RZ2 was 

introduced, while control mice started to search for RZ2 and successfully triggered the CS 

within the second 20min block (Fig.6B). The number of times that the CS was triggered was 

significantly lower in stimulated ChR2-mice along with a reduction of rewards (Fig.6D). There 

was no significant improvement in performance with eArch3.0-inhibition. It is possible that the 

pause already occurring in the internal negative error signal could not be enhanced. The rapid 

adaptation to the changing contingency in control mice further supports that the natural error 

signal is already optimized, leading to a ceiling effect. 
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Discussion 

Our single-unit recordings in freely moving mice show that RPE and motor related 

activity are not segregated by anatomical regions or confined to specialized cells but instead 

encoded by different firing modes in a given VTA DA neuron. In other words, we provide 

experimental evidence for multiplexed signaling in DA neurons and show that the RPE signal 

and movement related firing take advantage of the different firing modes of DA neurons to be 

processed in parallel and that they are modulated in an outcome-dependent manner thus 

contributing to the learning of a new contingency. 

 

Multiplexing as an efficient mean to transmit complex information by a single channel, 

for example by dividing the frequency or time domain. Frequency-division multiplexing has 

been proposed for DA neuromodulation on theoretical grounds (Hiroyuki, 2014; Niv et al., 2007; 

Oster et al., 2015; Schultz, 2007) but experimental evidence remains scarce and although 

conjunct encoding of reward- and movement-related signals exist (Barter et al., 2015; Puryear 

et al., 2010), formal identification of neuronal cell-types remain elusive.  

 

Multiplexing may arise from the convergence of many inputs onto VTA DA neurons, 

which receive inputs from motor control (M1, M2) and general locomotor regions (diagonal band 

of Broca, medial septal nucleus, pedunculopontine nucleus, laterodorsal tegmentum) 

(Fuhrmann et al., 2015; Watabe-Uchida et al., 2012; Xiao et al., 2016) and inputs shaping the 

RPE computation. The latter are believed to be more widely distributed, neurons contributing 

to the positive RPE signal have been found in striatum, ventral pallidum, subthalamic nucleus, 

pedunculopontine nucleus and lateral hypothalamus (Tian et al., 2016). For the negative error 

signals, the lateral habenula has emerged as the main input (Matsumoto and Hikosaka, 2007; 

Tian and Uchida, 2015). Interestingly specific inputs can differentially affect individual firing 

modes in DA neurons thereby precisely addressing a single channel of the multiplexed signal 

(Floresco et al., 2003). Without surprise, optogenetic manipulations of VTA DA neurons have 

revealed strong behavioral effects, which may be explained by the many information streams 

treated in parallel (Beier et al., 2015; Lammel et al., 2008, 2011, 2012; Xiao et al., 2016).  

 

Kremer et al. Multiplexed DA

9

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 4, 2018. ; https://doi.org/10.1101/408062doi: bioRxiv preprint 

https://doi.org/10.1101/408062


 

Our data shows that the firing patterns of individual DA neurons contain much task-

related information, which may serve as a learning signal. This may be reflected in the 

observation that the RPE component did not show an extinction of the US response. Even in 

expert animals, we found a large fraction of neurons with a response that was stronger to the 

predicted US than to the CS. This was not due to different stages of learning, as all mice had 

fully associated the CS with the availability of the US before they were introduced to the spatial 

task. Moreover, during recording sessions where several DA neurons were monitored, we 

found DA neurons showing large responses to the US next to DA neurons that did not respond 

to the US. Fig. 3A shows such an example of two simultaneously recorded and optogenetically 

identified DA neurons, at the same learning stage and during the same behavior (see also Fig. 

2B for 3 simultaneously recorded DA neurons). We also found examples of both responses 

during the pre-training phase (Fig. S2A), ruling out the possibility that the RZ interfered with the 

RPE computation.  

 

A possible explanation for this non-canonical phasic response to a predicted reward 

might be the variable time interval between CS and US. This would mean that compared to a 

setting where strict probabilities and timing between events are imposed by the experimenter, 

more natural behaviors maintain a phasic DA response to rewards. 

 

The phasic DA signal has been proposed to contain two components, early responses 

(0-250ms) correspond to a saliency response when the event is detected, the second 

component (250-500ms) represents the value of the event that occurred (Nomoto et al., 2010). 

In our study, CS responses have both, early and late components, whereas US responses 

predominantly occurred during the early 250ms window (Fig S2C), which may reflect a saliency 

and a value component for the former and an exclusive saliency signal for the latter. This 

suggests that the detection of both, CS and US, are important in challenging tasks, whereas 

the CS carries the value prediction of the upcoming US (Fig S2B). 

 

The movement-related information encoded by DA neurons may also contribute to 

learning. Using peri-event analysis (Alves et al., 2018) and a generalized linear model approach 
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(Allen et al., 2017), we found a mixture of external events and goal-directed actions predicting 

the neural signal of VTA DA neurons consistent with task-related modulation in DA firing rates 

described in monkeys while performing a forelimb reaching task (Schultz, 1986). This was in 

contrast to non-DA neurons whose firing patterns could largely be explained by motor output. 

The fact that motor output alone did not reliably modulate the spiking of DA neurons but rather 

tracked specific actions during relevant time windows such as the CS-US time-interval, further 

suggests that it represents a learning signal. This is in line with optogenetic manipulations 

where direct stimulation of VTA GABAergic neurons show disruption of motor output (Van 

Zessen et al., 2012), whereas phasic firing of VTA DA neurons reinforces action rather than 

driving motor output (Tsai et al., 2009). In SNc DA neurons, transient increases in firing have 

been observed before action initiation and optogenetic stimulation promoted movement 

initiation (Alves et al., 2018). We found brief as well as sustained increases or decreases in 

spiking upon motor output, following action initiation and the modulation was dependent on the 

outcome of the individual trial (successful versus failed trial), all indicating that VTA DA neurons 

track performance of goal-directed actions. Actions occurring during failed trials produced 

significant decreases in spiking and increased the probability for neurons to produce a pause. 

Pausing in VTA DA neurons mediate a negative RPE in a Pavlovian task (Chang et al., 2015), 

which we causally linked to learning from contingency changes. The negative prediction error 

signal may thus not be limited to event evaluation but also involves action evaluation.  

 

Depression in DA neuron firing has been observed in monkeys at the time of expected 

reward delivery during learning of a visual discrimination task (Hollerman and Schultz, 1998), 

suggesting that such an error learning signal may have escaped studies where animals are 

overtrained or errors not taken into account, although they could contribute to learning. 

Moreover, when the experimenter strictly controls cues and rewards, the animal cannot 

influence the outcome of a trial and will not be able to assign a value to an action. In our spatial 

task, the animal can build a model of the task structure and continuously improve future 

outcomes by adjusting its actions. DA signaling has been proposed to underlie this type of 

action selection (Costa, 2011; Nakahara and Hikosaka, 2012). Another analogous situation 

may apply to songbirds, which during song learning, when presented with a distorted auditory 
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feedback, produced a similar negative performance signal in VTA DA neurons (Gadagkar et 

al., 2016). 

 

But how might the signal then be de-multiplexed? Downstream of the VTA, cell-type 

specific changes in nucleus accumbens (NAc) can occur during learning (Atallah et al., 2014). 

In fact D1- and D2-receptors expressed on individual medium spiny neurons differentially 

regulate synaptic plasticity of afferent glutamate transmission (Shen et al., 2008; Yagishita et 

al., 2014), which has been proposed to underlie reinforcement learning (Schultz, 1998). As D1- 

and D2-receptors have different affinities, it makes them ideal candidates to decode a 

multiplexed DA-signal (Dreyer et al., 2010; Marcott et al., 2014), and differentiate between the 

phasic and tonic spiking. In line with this interpretation does closed-loop stimulation of either 

D1- or D2-striatal medium spiny neurons (MSNs) during movement execution bi-directionally 

shift specific parameters of the stimulated movement (Yttri and Dudman, 2016). Similar 

mechanisms could underlie the optimization of task-related parameters in ventral striatum 

during goal-directed actions. Similar DA-dependent mechanisms have been reported in other 

downstream areas of the VTA: stimulation of VTA DA projections to prefrontal cortex showed 

opposing effects between phasic and tonic stimulation (Ellwood et al., 2017) and functional 

imaging studies in humans have implicated the posterior medial frontal cortex in learning from 

errors and showed that it was dopamine and D2-receptor dependent (Klein et al., 2007). 

 

Our results may also have translational implications. Presentation of salient cues to 

patients with Parkinson’s disease can improve symptoms, for example by overcoming freezing 

of gait (Gilat et al., 2018; Ginis et al., 2017). If elevated DA levels constitute an underlying 

mechanism, then our data indicate that adding cues may recruit otherwise silent VTA DA 

neurons, which are less affected by neurodegeneration than SNc neurons (Surmeier et al., 

2017) and could partially compensate in regions where SNc and VTA projections overlap. 

Another implication might be that in substance abuse, where pharmacological jamming of the 

error signal by the drug in addition to environmental cues could drive the persistent 

consumption despite negative consequences and lead to addiction (Keiflin and Janak, 2015; 

Pascoli et al., 2015).  

Kremer et al. Multiplexed DA

12

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 4, 2018. ; https://doi.org/10.1101/408062doi: bioRxiv preprint 

https://doi.org/10.1101/408062


 

Acknowledgments 

We would like to thank Anthony Holtmaat and Alexandre Pouget for helpful comments 

on the manuscript and all members of the Lüscher lab for stimulating discussions. This work 

was supported by the Swiss National Science Foundation (SNSF; FNS310030B_170266) and 

by the European Research Council (ERC; UE7-MESSI-322541). 

 

Author contributions 

Y.K. & C.L. designed the experiments. Y.K. & C.R. trained the animals. Y.K. built the 

set-up, performed the surgeries and recordings. Y.K. and C.R. performed the histology and 

confocal imaging. Y.K., J.F. and C.R. analyzed the data. Y.K., J.F. and C.L. wrote the 

manuscript. 

 

Declaration of interests 

The authors declare no competing interests. 

 
  

Kremer et al. Multiplexed DA

13

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 4, 2018. ; https://doi.org/10.1101/408062doi: bioRxiv preprint 

https://doi.org/10.1101/408062


CS US

zone

A B

C D

random
ITI

CS (light)
4s

reward window
4s

zone
2s

CS (light)
4s

reward window
4s

pre-training

spatial task

licks
US

E

-2 0 2 4
0

1

2

3

4

5

R
ew

ar
ds

 / 
m

in

-2 0 2 4
0

2

4

6

8

10

Zo
ne

 e
nt

rie
s 

/ m
in pre pre

Speed (cm/s)0 26

Se
ss

io
n 

0
Se

ss
io

n 
5

Session # Session #

40

0

5

0

10

0

0 2 4-2
Time (s)

Sp
ee

d
(c

m
/s

)
Li

ck
s

(H
z)

U
S (#
)

CSzone reward
window

Figure 1

Kremer et al. Multiplexed DA

14

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 4, 2018. ; https://doi.org/10.1101/408062doi: bioRxiv preprint 

https://doi.org/10.1101/408062


 

Figure 1. The cue-guided spatial task. 

(A) Schematics of the operant chamber for training and single-unit recordings. The reward zone 

(RZ) is highlighted for illustration but invisible for the mice that had to make the association 

between their spatial position and the CS. 

(B) During pre-training, mice had to associate a randomly occurring 4s light cue (CS) to the 

availability of a liquid reward (US). The first lick performed during a 4s reward window received 

a single drop of fat solution (top). Once this association had been learned, we switched to the 

spatial task, during which mice had to wait for 2s in the RZ to trigger the CS which indicated 

that the reward could be collected (below). 

(C) Track plots constructed from 10.000 video frames (~6-7 min) showing the locomotor pattern 

of the same mouse at the first and 6th session.  Note that the animal optimized its trajectories 

maximizing the reward rate. 

(D) Behavioral variables recorded during session 5 shown in panel (C). Individual licks, 

locomotion and US distribution during the reward window aligned to the CS. The greyed area 

indicates the 2s period spent inside the RZ. 

(E) Behavioral performance of all mice (n=10). Sessions -2 & -1 correspond to the last two pre-

training sessions. During the spatial task, all mice learned the association between the RZ and 

the CS, increasing the time spent inside the RZ as well as the number of rewards received 

(mean ± s.e.m.).  
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Figure 2. Emergence of action-related neuronal clusters in freely moving mice. 

(A) Schematics of the single-unit recordings. Custom-made optrodes were implanted into the 

left VTA of adult DAT-cre mice that were injected with virus expressing floxed ChR2. 

(B) Example of four simultaneously recorded units. Left: raster plots for each individual neuron. 

Right: average spiking histogram aligned to the CS showing the diversity of firing patterns 

during the same session along with the speed of the mouse, its spatial position and licking 

(below). 

(C) Optogenetic identification of DA neurons. Left: 5ms blue light pulses at 5, 10 and 20 Hz. 

Neurons exhibiting a response rate ≥0.8 spikes/pulse during the 6 ms window after light onset 

and showing a waveform correlation ≥0.85 were identified as light-responsive (bin size 

opto=1ms).  

(D) auROC  spiking profiles around events of interest as well as the mean firing rate (FR) were 

used to reveal functional clusters of single-units. All optogenetically identified neurons fell into 

cluster 7, which exhibited large phasic responses around CS and US. 

(E) Average continuous spike density function (cSDF) aligned to the CS (mean ± s.e.m.) for 

each functional cluster highlighted response patterns with clear modulation to task-related 

actions such as locomotion (clusters 3, 4), licking (clusters 1 & 2) as well as more complex 

behaviors (clusters 5, 6, 8 & 9). Colors of the bounding boxes correspond to colors of the 

clusters in the dendrogram in panel (D). 
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Figure 3. DA neurons exhibit phasic responses to CS and US and simultaneously encode 

motor parameters. 

(A) Two optogenetically identified DA neurons, simultaneously recorded, one showing 

canonical RPE responding exclusively to the CS (top) while the second neuron exhibited also 

a large response to the predicted US (below; bin size opto=1ms; bin size PSTH=25ms). 

(B) Left: Average response histograms of all neurons to CS (top) and US (below) showing large 

average responses to both events. Right: Average US vs CS responses during the 500ms post-

event window for all DA neurons (bin size PSTH=25ms). Black arrows highlight the neurons in 

(A). 

(C) Example of an optogenetically identified DA neuron exhibiting sustained increased firing 

during locomotion and licking. Top: average histogram (bin size=50ms). Raster plots show 

rewarded trials sorted in chronological order (top), by time interval between locomotion onset 

(magenta dots) preceding zone entry and CS (middle) and by time interval between locomotor 

onset and CS between CS and US (below). Below left: Histograms show average firing aligned 

to locomotion onset (bin size PSTH=100ms; bin size opto=1ms). 

(D) Response detection on the same neuron, using the firing rate aligned to locomotion onset, 

speed peak and lick burst onset. Rows indicate spiking to all events (top), outside CS-US 

(middle) and between CS-US (below). Black arrows indicate time of significant response to the 

event of interest (STAR methods).  

(E) Distribution of non-DA and DA neurons modulated by motor parameters, cells for 

locomotion onset or speed were grouped together. 

(F) Distribution of non-DA and DA neurons modulated by locomotor parameters confined to the 

time interval between CS and US or outside this time window. 
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Figure 4. DA neurons reflect multiplexed action components during task execution. 

(A) Schematics of our encoding approach. All recorded variables were used to construct the 

encoder and to predict the firing of each neuron individually. Then the correlation between the 

prediction and the neural signal was used to assess the contribution of each behavioral variable 

by either adding or removing them one-by-one from the input to the encoder. 

(B) Two example DA neurons: the z-scored recorded signal (white histogram) is compared to 

the encoder’s prediction (purple line). All external events (vertical lines) and behavioral 

variables (below; triangles: licks; heat map: speed; blue: presence in zone) are also indicated. 

(C) For non-DA and DA neurons, we first defined the contributing variables required to reach 

90% of the maximum correlation (also see Fig.S3 & Star methods). The plot shows the 

correlation between the recorded neural signal and the signal predicted using only those 

variables as a function of the number of contributors. 

(D) Ranking of input variables according to the average probability to be among the strongest 

contributors of individual neurons and grouped by cell-type. The higher the value, the more 

often the variable is among the most informative contributors. Input variables are displayed in 

decreasing order with respect to the optogenetically identified DA neurons. 

(E) Average loss in amount of correlation for each variable when individually removed from the 

input plotted as a function of the cell type. The higher the value, the more information is lost 

(and the more important the contributor) when the variable is removed from the input. 

(F) Scatterplot comparing the average correlation between the CS-US vs outside CS-US time 

interval. Note that the neural activity is better predicted between the CS-US interval compared 

to outside the CS-US interval, indicating encoding of behavioral variables during task execution. 

Plotted in brown are the shuffled controls for each neuron representing the average correlation 

between the predicted signal and 100 randomly shifted neural recordings.  
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Figure 5
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Figure 5. Action related spiking of DA neurons discriminates between successful and 

failed  trials. 

(A) Successful vs failed trial analysis of one example session. Left: trial-by-trial analysis of 

behavioral modules used to define successful (left) and failed (right) trials in temporal order as 

performed during the session. Below: lick rate, speed and the animal’s distance to the RZ (blue) 

and to the spout (red) averaged across success and fail trials. Grey bars on lick and speed 

histograms represent US and CS distribution respectively. Right: Neuronal activity of a DA 

neuron split into successful and failed trials as defined from the behavioral analysis. Below: 

average spiking histogram, z-scored tonic & bursting activity and probability of being in a spike 

pause. All plots are aligned to the lick burst offset (bin size=250ms). 

(B) Left: Success vs fail discrimination of all DA neurons (n=80). Significantly discriminating 

neurons are represented by their auROC change in spiking, burst firing, tonic firing and pausing. 

Black arrows highlight the example neuron in (A). Neurons whose activity did not change 

significantly are represented in green (Wilcoxon two-sided rank sum tests with a=0.05). Right: 

Discrimination of non-DA neurons is shown for their spiking (n=81) (burst/tonic/pause modes 

were undefined for non-DA neuron). 

(C) Left: Number of DA neurons significantly discriminating success vs fail trials either with an 

increase or a decrease in the corresponding firing modality. The negative error signal, which 

manifests as a pause in the tonic activity, is carried by 22% of DA neurons (18/80 for leave 

zone event, 15/80 for lick burst onset and 19/80 for lick burst offset). Right: Spiking modulation 

for non-DA neurons. 

(D) Left: Number and distribution of actions, which significantly modulate DA neurons in a 

specific firing modality. Right: Same representation for non-DA neurons. 
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Figure 6
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Figure 6. Optogenetic jamming of the error signal prevents learning from mistakes. 

(A) Experimental rationale. Expert mice were first exposed to the regular spatial task. After 20 

mins, the location of the RZ was moved from location 1 (RZ1) to location 2 (RZ2). During correct 

trials, no optogenetic stimulation occurred, but when the mouse returned to RZ1 (now 

unrewarded) optogenetic stimulation or inhibition was delivered at the time the CS would have 

been presented. ChR2-mice received 5x 5ms blue light pulses to fill the pause with optogenetic 

tonic firing, eArch3.0-animals received 500ms of continuous orange light to enhance the pause.  

(B) Track plots of 1 control (eYFP) and 1 stimulated (ChR2) animal exhibiting similar 

performance and behavior during the 20 min baseline period left. Once the change in location 

of the zone had occurred, the control mouse quickly explored the chamber to activate the CS. 

A brief tonic optogenetic stimulation jamming the error signal prevented learning. 

(C) Average optogenetic stimulation rate received per animal, indicating how often animals 

returned to the unrewarded RZ1. 

(D) Normalized reward rate for each animal during baseline and during stimulation periods. The 

ChR2-group showed a significant decrease in reward rate due to the jamming of the error signal 

(Wilcoxon rank sum test; p=0.03 for the ChR2 group; p=0.40 and p=0.49 for eArch3.0 and 

control animals respectively). 
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STAR METHODS 

KEY RESOURCES TABLE 

CONTACT FOR REAGENT AND RESOURCE SHARING 

Further information and requests for reagents may be directed and will be fulfilled by the Lead 

Contact, Prof. Christian Lüscher (christian.luscher@unige.ch). 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Animals 

All experiments were reviewed by the institutional ethics committee and approved by the 

relevant authorities of the Canton of Geneva. Animals were housed individually after 

implantation to avoid damage to the optrode. During training, they were food-restricted to a 

single pellet of chow per day (~2g). The animal’s weight did not drop below 85%. All animals 

used in this study were adult DAT-cre mice. Only males were used for the electrophysiological 

recordings because of the weight of the optrode implant. For optogenetic experiments, male 

and female mice were trained. 

 

METHOD DETAILS 

Surgical procedures and viral injections 

For recordings, adult male DAT-cre mice (n=10) were implanted with a custom-built 16-channel 

optrode mounted into a microdrive (Anikeeva et al., 2011). 16 NiCr-microwires were assembled 

into an electrode bundle, glued to a 250 µm large NA (0.66) optic fiber (Prizmatix) and mounted 

into the microdrive assembly. The tips were electroplated in gold solution containing multi-wall 

carbon nanotubes (1mg/ml)(Ferguson et al., 2009) to reach a resistance of 100-150 kW using 

the NanoZ impedance tester. The completed implant did not exceed 2g in weight. During the 

surgery, mice were anesthetized using isoflurane (~2%), the scalp was injected with lidocaine 

and the skull exposed. Three skull screws were inserted and a craniotomy performed above 
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the VTA. The dura was carefully removed and 400-600nl of cre-dependent ChR2 were slowly 

injected into the VTA (AP: -3.2 ± 0.2; ML: 0.8 ± 0.2; DV: -4.2). Then, the optrode was lowered 

slowly into the brain using a micromanipulator and implanted just above the VTA (AP: -3.2 ± 

0.2; ML: 0.8 ± 0.2; DV: -3.8 to -4.0).  The space between the brain surface and the implant was 

first sealed using silicone elastomer (Kwik-Cast, WPI), then secured using super glue and 

dental cement. The ground electrode was inserted into the posterior part of the contralateral 

hemisphere devoid of brain vessels. 

For optogenetic causality experiments, adult male and female DAT-cre mice (n=12) underwent 

the same surgical procedures. Then they were injected and implanted bilaterally into the VTA 

(AP: -3.2; ML: ±1.75; DV: -4.2 injection; DV: -4.0 fiberoptic implant; at an angle of 20°) with 

either 400-600nl of cre-dependent ChR2 (n=5), eArch3.0 (n=3) or eYFP (n=4) and large NA 

fiber optic implants (Plexon). 

Behavioral training  

After the surgery, animals were given at least one week to recover. For recording experiments, 

DAT-cre mice were progressively food-restricted down to 1 pellet of chow per day to reach 

approximately 85-90% of their initial weight. During one habituation session in the behavioral 

apparatus (MedAssociates) they located the drinking spout and had free access to the fat 

solution (solution of lipofundin 5% in water). Then mice started pre-training to associate a light 

cue (CS) with the availability of a liquid reward (US). If during the reward window mice licked 

against a custom-made piezo-based lickometer, they obtained a single drop of liquid reward. 

The analog piezo lickometer signal was sent to an Arduino board which applied a threshold 

and simultaneously sent a digital signal to the MedAssociates software and to our 

electrophysiology recording system for high temporal resolution timestamping of lick detection 

(Plexon). Lick bursts were defined as starting when the inter-lick interval (ILI) dropped below 

0.5s and ended once the ILI exceeded 2s. The duration of the CS was 4s and the reward 

window lasted 4s. Both remained unchanged across all training stages. During pre-training, the 

average random inter-trial interval between two consecutive CSs was increased across pre-

training sessions from an average of 45s to 65s during the last session. Animals underwent 

pre-training until they exhibited good success rates (>0.8) of US per CS while simultaneously 

reducing their licking between subsequent cues. During both, the pre-training and the spatial 
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task, AnyMaze (Stoelting) or CinePlex (Plexon), were used to online video track the animal’s 

position (defined by its center of gravity). A 4x4 cm zone was defined inside the 22x22 cm 

operant chamber. Digital signals were sent to MedPC (MedAssociates) to trigger the light cue 

and reward delivery, if the mouse spent 2s inside the reward zone as required by the task. 

Additionally, all zone entries, licks, CSs and USs were recorded with high temporal resolution 

by our electrophysiology recording system. 

Electrophysiological recordings and spike sorting 

We started recordings during the last pre-training sessions when mice reached the criterion to 

move to the spatial task. If a neuron exhibited DA-like firing patterns or responded to the opto-

identification protocol, the mouse was switched to the spatial task on the next day. Neuronal 

activity was recorded at 40 MHz sampling rate and all behavioral variables timestamped by our 

recording system (Plexon, Omniplex Neural Data Acquisition System). To allow for 

unrestrained locomotion and to reduce weight, we used a dual LED and 16-channel 

commutator (Plexon) and the distance between the headstage and the commutator was 

optimized for each animal. Recording sessions lasted 60-90 minutes, simple online sorting was 

performed to monitor recording quality. For analysis, offline spike sorting was performed using 

WaveClus (Quiroga et al., 2004). A frequency of 150Hz was used to separate the wideband 

signal into LFP and spike bands. Positive or negative thresholds were applied depending on 

the observed waveforms. Spike sorting results were visually  inspected, the optimal 

temperature parameter in WaveClus selected and minimal manual correction applied. Only 

units with a L-ratio<0.05 were further analyzed (Hill et al., 2011). After each session, the 

microdrive was used to lower the optrode by ~50µm and the same procedure applied on the 

next day. Once the electrode had crossed the VTA along the dorso-ventral direction, animals 

were killed and perfused to recover the location of the electrode track (Fig S1C). Cell-type 

specific expression of ChR2 was also verified (Fig S1B). 

Optogenetic identification of single-units 

After each recording session and before the optrode was lowered for the next day, we delivered 

blocks of 10 pulses of 5ms using a LED (Plexbright LED modules, Plexon driven by an A.M.P.I. 

Master-8 stimulator) at frequencies of 1, 2, 5, 10 and 20 Hz. Light intensities ranged from 1- 

5mW before the optrode. Light evoked spikes were detected during a 6ms window after light 
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onset. A single-unit was validated as an optogenetically identified DA neuron if its response 

rate was ≥0.8 and the correlation between the average light-evoked waveform and the average 

of all other spike waveforms produced during the entire recording session was ≥0.85. 

Optogenetic causality experiments 

For optogenetic manipulation experiments, mice were implanted and trained as described 

above. During the training to the spatial task, they were bilaterally connected to habituate to the 

fibers. The mice were recorded using AnyMaze (Stoelting Co.) or Cineplex software (Plexon) 

and events time-stamped to a synchronized recording system (Omniplex; Plexon). The 

behavioral apparatus was controlled by custom scripts in MedPC (MedAssociates). 

Mice were not stimulated optogenetically until the test day and each mouse experienced the 

switch in reward zones only once during the test session. After the first 20 minutes of the regular 

spatial task on reward zone 1 (RZ1), the zone was automatically switched to reward zone 2 

(RZ2) without any hint to the animal. After this switch, mice would receive the CS after 2s spent 

in RZ2 and optogenetic stimulation if they returned and stayed 2s in RZ1. For inhibition 

experiments, the light stimulus was delivered bilaterally by 2 LEDs (Plexbright LED modules; 

Plexon) mounted on a commutator and consisted of 500ms continuous light stimulation of 

550nm light (power: 8-10mW) whereas in stimulation experiments 5Hz tonic firing was 

mimicked using 5 pulses lasting 5ms of 465nm blue light (power: 10-12mW). Both light 

stimulation protocols were delivered to the animal only if it stayed for 2s in the unrewarded RZ1 

after the switch in location. Mice were given 20 minutes to locate RZ2 after which the test was 

finished. 

Heat maps were generated by dividing the field of view into a 50x50 grid and accumulating all 

spatial coordinates into this grid. This matrix was then normalized, smoothed using a Gaussian 

filter and a hyperbolic arcsine function applied to enhance contrast. To normalize for different 

behavioral performances between animals, reward rates during the test day were normalized 

using the reward rates from the day preceding the test day. 

Post-mortem histology & imaging 

After the optrode had crossed the VTA, mice were sacrificed with a lethal injection of 

pentobarbital (150mg/kg) and perfused with 4% of paraformaldehyde in cold PBS. After fixation, 
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the optrode was slowly retracted using the microdrive and the brain extracted. Coronal brain 

slices of the VTA were cut 80-120-µm thick. 

To quantify the specificity of ChR2-expression, slices were immunostained for tyrosine 

hydroxylase (TH). Briefly, slices were permeabilized with 0.1% Triton in TBS-Tween 20 (TBST), 

blocked using 1% BSA in TBST and incubated with primary anti-TH antibody (dilution 1:500; 

Millipore AB152). 24h later, slices were rinsed and incubated with secondary antibody (dilution 

1:500; Millipore AP182C) diluted in 1% BSA TBST for 1-2h. After each step, samples were 

washed with TBST.  

After mounting using Fluoroshield mounting medium with DAPI (Abcam), low-resolution 

imaging was performed using either a 5x/NA 0.25 or 10x/NA 0.45 objective in a slide scanner 

(Mirax or AxioScan Z1; Zeiss). High-resolution stacks were acquired in a confocal fluorescence 

microscope (Nikon A1r Spectral 40x/NA1.3 or Zeiss LSM800 using 40x/NA1.4). In recorded 

animals, the electrode track could easily be located in 1-3 brain slices and was mapped to the 

stereotaxic coordinates of the slice where the track was most prominent. For cell counting, 

confocal high-resolution imaging stacks (z-steps of 2.5µm) were acquired, then cells expressing 

ChR2 and those stained for TH were counted manually using ImageJ. 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Event-related neuronal responses 

For each neuron, spikes were binned into a regular time grid of 250ms time bins. Neurons with 

a mean firing rate <1Hz as well as maximal firing rate <3Hz were excluded leaving us with 214 

neurons. For each neuron, we constructed five event-related profiles around CS (cue), US 

(valve), the mouse’s licks, speed and acceleration. The increase or decrease of each time bin 

from the baseline (defined for each event as [-3.5;-3.25] for the cue, [2.5;3.0] for valve, [-1.0;-

0.75] for lick, [-2.0;-1.75] for the speed and the acceleration) was quantified using an area under 

a receiver-operating characteristic curve (auROC) method (Cohen et al., 2012). auROC values 

are between 0 and 1, values <0.5 indicate a decrease, while values >0.5 reflect increases in 

firing relative to the baseline. To visualize the absolute neuronal firing rate, for each neuron we 

also computed the corresponding continuous spike density function (cSDF) by convolving the 
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spikes with an excitatory post-synaptic potential (ePSP) kernel (Wallisch et al., 2014) using the 

algorithm proposed by the Schall Lab (Hanes et al., 1995). 

Clustering of neuronal firing patterns 

Prior to the clustering, we applied a dimensional reduction to each set of auROC profiles using 

an independent component analysis (ICA) (fastICA Matlab package). Mean firing rate was 

added to the 18 combined ICA components for each neuron. Then, we applied a hierarchical 

clustering with the standardized Euclidean distance metric and ward linkage method. The 

clustering quality was assessed with the silhouette index and Cophenetic correlation coefficient. 

We identified the putative dopamine (DA) cluster by the typical phasic responses to CS and US 

and without using the optogenetic identification during the clustering. All optogenetically 

identified DA neurons (n=17) were assigned to this cluster, thus confirming its identity. Since 

our optrode was moved across the VTA, we further refined our set of neurons to those located 

in the VTA by selecting single-units only between the first and the last session containing a DA 

neuron. This resulted in 161 VTA neurons. We repeated the clustering procedure on the 

resulting set of VTA neurons which yielded the 9 clusters in Fig. 2D. 

Action related modulation of neuronal spiking 

To determine which neurons were significantly modulated by goal-directed actions (licking and 

locomotion), we analyzed peri-event time histograms around lick burst onsets, locomotion 

onsets and speed peaks (Alves et al., 2018). In a window of [-5;5] seconds around these time 

points, spikes were averaged in a sliding window of 100ms shifted by 1ms steps. The baseline 

was defined as the [-5;-4] time interval. If the neuronal activity during the response window ([-

0.5;0.5] for locomotion onset, [0;0.5] for speed peak and lick burst onset) exceeded 3 standard 

deviations and remained above for at least 50ms, the neuron was considered significantly 

modulated by the action. When a minimum time interval was imposed between external events 

(CS and US) and action onsets, we first removed all movement-related time points closer than 

1250ms to an external event (CS and US) and the same analysis was applied to the remaining 

behavioral events. 

Definition of DA neuron firing modes 

Since in the freely moving condition, we found elevated firing rates compared to head-fixed 

animals, we could not directly apply the 80/160ms rule (Grace and Bunney, 1984) to separate 
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spike bursts from tonic firing. We adapted the 80/160 rule by first calculating the mean inter-

spike interval (ISI) across the entire session. The onset was then defined by the first interval 

shorter than a 1/3 of the mean ISI and the offset was detected by using an interval twice as 

large as the onset threshold. This resulted in burst detection thresholds similar to previous 

studies when DA neurons fired at 4-5Hz, but scaled for neurons with increased firing rates. All 

spikes not attributed to a spike burst were tagged as tonic spikes. To detect spike pauses, we 

plotted the histogram of ISIs of all tonic spikes (ISItonic), fitted a Gaussian in the interval [0;3] of 

this distribution and the time at which the difference between the fit and the actual distribution 

was largest, was used as the threshold for pause detection. If this threshold was smaller than 

2<ISItonic>, it was set to 2<ISItonic>. In subsequent analyses, time bins were considered to be in 

a pause if they were between the spike starting a pause and the spike ending a pause. 

Encoding analysis of the spiking 

To determine which events and behaviors contributed most to the spiking output, we applied a 

Generalized Linear Model (GLM) to predict spiking using a linear-nonlinear-Poisson (LNP) 

model (Paninski et al., 2007). 

To improve between session comparison, this analysis was restricted to a homogeneous 

subset of 21 sessions (117 out of the 161 neurons). The design matrix contained seven 

covariates, three events (cue, valve and zone) and four behaviors (licks, speed, acceleration 

and distance to reward) resampled using a 250ms bin size as for the spiking. The presence 

inside the reward zone was represented in a binary vector as were cue and valve events, 

indicated by binary events lasting 2 bins. The remaining continuous variables (licks, speed, 

acceleration and distance to reward) were normalized and z-scored. We used a sliding window 

of 10 bins to predict the spiking at a given time bin. To avoid over-fitting due to the large number 

of parameters used to predict the spiking, we resorted to a Lasso and elastic-net regularization 

(glmnet for Matlab). Pearson’s correlation coefficient was used to compare the recorded and 

predicted spiking. To determine the contribution of each behavior, we used 3 different 

approaches (Fig. S3). 

Firstly, for each neuron, the prediction was performed for each of the possible 127 combinations 

of the seven covariates (i.e. 7+21+35+35+21+1 from 1 to 7 covariates). In the design matrix, 

removed covariates were set as their mean over the entire session and the regressors 
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constructed from all seven covariates. We selected the combinations displaying the maximum 

correlation for each number of covariates and counted the number of times each covariate 

appeared in these best combinations. We estimated the occurrence probability of each 

covariate from this histogram by normalizing it with the total number of occurrences (from 1 to 

7 covariate we get 1+2+3+4+5+6+7=28 possible occurrences). We also determined the 

minimum number of covariates (or contributors) necessary to cross 90% of the largest value 

between the previously computed maximum correlations. 

Secondly, we looked at the relative loss in correlations after removing a single variable from 

the input to the model constructed from all seven covariates, by computing: 

Relative loss in correlation = (correlation7covariates-correlation6covariates)/correlation7covariates. 

Finally, we also computed the relative loss by considering only six covariates for the fit (i.e. 

constructing the design matrix and regressors with six covariates only).  

To compare the difference between CS-US and outside CS-US, we extracted corresponding 

periods from recorded and predicted spiking and calculated the median correlations for these 

two sets. We temporally shuffled the neural signal 100x by a randomized time offset (50-500s) 

to check that the prediction is better than chance level (threshold of 2.326 standard deviations 

to the shuffled distribution) and only neurons meeting this criterion were used in the main figure. 

Behavioral modules 

To more precisely characterize behaviors during each session, we defined 7 modules based 

on the recorded behavioral variables: at rest, (slow) move, run, licks, rewarded licks, run toward 

zone and run toward reward. Transition points between resting and moving periods used a 

threshold of 2.1cm/s. We then computed the mean speed value for move intervals and used a 

move-run threshold of 2.8 cm/s thereby defining the resting, moving and running modules. Lick 

bursts were detected as described above, starting with a ILI ≤ 0.5s (lick burst onset) and ending 

when ILI ≥ 2s (lick burst offset). We defined rewarded lick bursts as those whose onsets were 

occurring between a CS and a US. All other lick bursts were considered as unrewarded lick 

bursts. Finally, we computed the distance to the reward and to the zone in order to further 

specify if run modules were directed towards the zone or towards the reward. 
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Comparing neural signal underlying correct and false trials 

Correct trials lasted approximately 10s, the mouse entered the zone, waited for 2s in the zone 

until the CS turned on, then ran toward the valve where the US was delivered between 4-8s 

after the CS. The mouse spent a few seconds near the spout to consume the reward and then 

returned to the zone. We sought to detect failed trials that had motor output which was similar 

to correct trials but during which neither CS nor US were delivered. For example, mice 

frequently left the zone before the CS came on, ran toward the spout, licked but did not receive 

the reward. Using the behavioral modules defined above, we defined false trials with similar 

speeds and trajectories to correct trials. In a failed trial, we required the time from the run toward 

the zone to the run toward the valve to last at least 3s to avoid the case when mice just randomly 

crossed the zone and ran to the valve. To be included in failed trials, mice had to lick and test 

for reward delivery. Similarly, we used these same behavioral modules to identify correct trials 

and subsequently validated the procedure using the CS- and a US-events, showing that this 

procedure was capable of extracting correct and false trials based on similar motor output. 

Using the definition of successful and failed trials, we then compared their associated neural 

signal (spike, tonic, burst spiking and pause) around 4 events of interest (zone entry, zone exit, 

lick burst onset and lick burst offset). We applied an auROC analysis (Brodersen et al., 2010) 

to compare the mean signal in false trials to activity in correct trials for the four events. The 

response windows for the different events were: zone entry [-0.75;1.5], zone exit [-0.5;1], lick 

burst onset [0;1] and lick burst offset [-0.75;0.25]). To determine if the relative change was 

significant, we performed a Wilcoxon two-sided rank sum test (a=0.05). While for DA neurons 

the analyses were carried out on all spikes, tonic firing, burst spiking and pauses, non-DA 

neurons were analyzed only with all spikes. All analyses were performed using custom written 

code in Matlab (Mathworks).  
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