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Abstract 1

Modularity is a ubiquitous topological feature of structural brain networks at various scales. While a variety of 2

potential mechanisms have been proposed, the fundamental principles by which modularity emerges in neural 3

networks remain elusive. We tackle this question with a plasticity model of neural networks derived from a 4

purely topological perspective. Our topological reinforcement model acts enhancing the topological overlap 5

between nodes, iteratively connecting a randomly selected node to a non-neighbor with the highest topological 6

overlap, while pruning another network link at random. This rule reliably evolves synthetic random networks 7

toward a modular architecture. Such final modular structure reflects initial ‘proto-modules’, thus allowing 8

to predict the modules of the evolved graph. Subsequently, we show that this topological selection principle 9

might be biologically implemented as a Hebbian rule. Concretely, we explore a simple model of excitable 10

dynamics, where the plasticity rule acts based on the functional connectivity between nodes represented by 11

co-activations. Results produced by the activity-based model are consistent with the ones from the purely 12

topological rule, showing a consistent final network configuration. Our findings suggest that the selective 13

reinforcement of topological overlap may be a fundamental mechanism by which brain networks evolve toward 14

modular structure. 15

Introduction 16

Modularity, the presence of clusters of elements that are more densely connected witch each other than with 17

the rest of the network, is a ubiquitous topological feature of complex networks and, in particular, structural 18

brain networks at various scales of organization [1]. 19

Modularity was among the first topological features of complex networks to be associated with a systematic 20

impact on dynamical network processes. Random walks are trapped in modules [2], the synchronization of 21

coupled oscillators over time maps out the modular organization of a graph [3] and co-activation patterns of 22

excitable dynamics tend to reflect the graph’s modular organization [4–6]. At an abstract level, modularity in 23

the brain is thought to be important for information processing, the balance segregation and integration as well 24

as system evolvability in the long temporal scale, among others [1]. More concretely, the modular organization 25

of brain networks forms the substrate of functional specialization (e.g., sensory systems [7]), contributes to the 26

generation and maintenance of dynamical regimes (e.g., sustained activity [8] and criticality [9]), and supports 27

the development of executive functions [10]. Thus, modularity is a key component of structural brain networks 28

with important functional consequences. 29

While a number of potential mechanisms have been proposed for the creation of modules [11–13], the 30

fundamental generative principles of the emergence of brain modules remain elusive, both algorithmically, in 31

terms of the necessary topological changes for generating them, as well as with respect to a plausible biological 32

implementation, that is, the realization of such topological changes through physiological mechanisms. 33

Generative models constitute a common approach to the study of the formation of global patterns of brain 34

connectivity [14], where, broadly speaking, networks are allowed to grow in size and/or density according to 35
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specific rules. These models might be either based on theoretical assumptions, such as developmental time 36

windows [15] and non-linear growth [16], constrained by experimental criteria, for instance, including geometric 37

and topological features found in empirical connectivity data [17], or based on dynamical factors, such as 38

the level of synchronization between nodes [18]. Given the well accepted role of synaptic plasticity in brain 39

development and activity-dependent adaptation [19], other perspectives focus on changes driven by such local 40

plasticity mechanisms in physiologically more realistic models. A considerable proportion of this work aims at 41

explaining empirically observed distributions of physiological parameters at the cellular scale, such as synaptic 42

weights [20], and only a few studies have paid attention to topological aspects, such as the proportion of local 43

motifs [21]. Some of the mentioned modeling studies showed an emergence of modular network structure and 44

attempted to provide an underlying mechanism based on the reinforcement of paths between highly correlated 45

nodes [22]. Yet, the problem of a topological gradient, along which network changes should occur during the 46

rewiring process in order to promote the emergence of modules, was not explicitly investigated. 47

Addressing this challenge, the present study proposes a generative principle of structural modular networks 48

through topological reinforcement (TR). This rewiring rule, derived from a purely topological perspective, 49

constitutes a plausible underlying mechanism leading to the formation of modules. Fundamentally, this 50

rewiring mechanism is based on the topological overlap (TO) [23]. The origin of the TO concept stems from 51

applications of set theory to nodes graph in network analysis, which became established as a relevant approach 52

for quantifying the similarity of nodes in terms of their common network neighborhoods; for instance, for a 53

review focusing on bipartite graphs see [24]. TO is closely related to the matching index [7,25], see also [26,27], 54

an adaptation of the Jaccard index to neighborhoods of nodes in a graph. Higher-order variants of this quantity 55

have also been discussed in the literature [28]. 56

Prompted by the exploration of network motifs (that is, few-node subgraphs which are often statistically 57

enriched in real networks, see [29,30]) the interplay of different topological scales in a graph has become an 58

object of intense research. In particular, several studies have shown that global network properties, such as 59

hierarchical organization [31] or modularity [32], can systematically affect the composition of networks in terms 60

of local topology or network motifs, see also [33]. Intriguingly, that line of research inspires the complementary 61

possibility: a systematic iterative selection on local network structures may conversely install, or at least 62

enhance, certain global network properties. This is the conceptual approach we set out to explore here, where 63

our topological reinforcement rule iteratively enhances the local topological overlap. 64

As a further step, we explore a plausible dynamical implementation of the topological reinforcement. We 65

used an excitable network model, the SER model, in which the discrete activity of network nodes is described 66

by susceptible, excited and refractory states, representing a stylized neuron or neural population. In this case, 67

the plasticity acts in a Hebbian-like fashion based on the functional connectivity (FC) derived from coactivation 68

patterns of network nodes. The results confirm a correspondence between the two plasticity modalities, which 69

speaks in favor of the dynamical implementation representing a biologically plausible mechanism through 70

which topological reinforcement may take place in real systems, thus representing a fundamental model of the 71

emergence of modular brain networks. 72

Results 73

Starting from initial random configurations, we evolved networks according to the TR rule. Topological 74

reinforcement was based on the TO between nodes of a network. At each rewiring step, a randomly selected 75

node was connected to a non-neighbor with the highest TO, while pruning another link with random uniform 76

probability, in order to preserve network density. 77

Random networks evolve towards modular, small-world organization 78

TR reliably evolved synthetic random networks toward high modularity (Fig 1). Moreover, due to increased 79

clustering, the final networks had a small-world organization (S1 Fig). The results were robust across multiple 80

runs and multiple initial network realizations (S2 Fig). We also explored the effect of network size and density 81

on the TR rule (Fig 1). The results were consistent, showing similar scaling curves across conditions, which 82

speaks for the robustness of TR in generating modular networks. 83
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Fig 1. Emergence of modular network organization from topological reinforcement. (Top) Exam-
ple of network evolution resulting from topological reinforcement, starting from a random network. Layouts
are generated according to the Fruchterman-Reingold force-directed algorithm. Nodes are consistently colored
according to the final modular structure. (Middle) Evolution of the modularity (Q); number of modules as a
function of the number of rewiring steps (mean and standard deviation across 500 simulation runs). (Bottom)
Final modularity (left) and number of modules detected (right) for different network sizes (N) and densities
(λ) (mean and standard deviation across 50 independent graph realizations).

Final network structure reflects initial network organization 84

TR appeared to amplify weak ‘proto-modules’ already present in the initial random graph. The similarities 85

between the initial and final network structures were investigated in terms of Pearson correlation and partitions 86

overlap between networks; see Methods section and Fig 2 for details. 87

Statistical analysis across multiple runs showed a significant similarity and partition overlap between the 88

final graphs and the initial one (Fig 3 A). Moreover, the results also showed a consistent pattern of final 89

modular organization (Fig 3 B). The module agreement of final networks across multiple runs (P ) displayed 90

pairs of nodes with high probability (beyond chance) to end up in the same module. Fig 3 B shows the mean 91

intra-module density of the initial random graph according to different partitions. The distribution of the mean 92

intra-module density according to the modules detected in the agreement P coincides fairly well with the mean 93

intra-module density of the partitions detected on the graph itself. In contrast, intra-module density from 94

partitions coming from a null model is centered around 0.1, that is, the graph density (i.e., probing density of 95
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Fig 2. Modules agreement and ‘proto-modules’. Schematic representation of the procedure for probing
the existence of ‘proto-modules’ in the initial graph and the relationship between initial and final network
structure (see Methods for details).
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Fig 3. Relationship between initial and final network structures.(A) Initial adjacency matrix (left)
reordered according to the modular partition of the agreement P . Similarity (middle) and partition overlap
(right) between all pairs of initial and final networks, and the corresponding null distributions. (B) Agreement
matrix across multiple runs (P , left) reordered according to its modular partition. Histogram of the P values
and of the corresponding null model (middle). Distributions of the intra-modular density of the initial network
(right). Average intra-module density of the initial network according to different types of module partitions.
The procedure was repeated 500 times for each type of partition. As a reference, the mean intra-module density
of the final network modules are also plotted (average and standard deviation). (C) Initial agreement matrix
(Pinit, left) reordered according to the modular partition of P . Similarity (middle) and partition overlap (right)
between Pinit and P and the corresponding null distribution.
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randomly chosen groups of nodes). 96

In the random graphs used as initial condition, no variations in link density are expected (since, by definition, 97

connection probability is uniform for all pairs of nodes). Importantly, that is the case on average across graph 98

realizations, but, due to stochastic variations and finite-size effect, individual graphs might contain groups of 99

nodes with slightly higher density of edges than expected. We refer to these groups as ‘proto-modules’. In 100

order to highlight these modules, a module detection algorithm was applied multiple times on the initial graph 101

and a module agreement matrix was built (Pinit). The correspondence between the initial and final network 102

structures is also evident comparing the final agreement P with its analogous on the initial graph Pinit (Fig 3 103

C). The similarity (as measured by correlation) between both agreements is high. Additionally, we generated 104

a set of partitions from P and another set of partitions from Pinit, and quantified the overlap between all 105

possible pairs of partitions Pinit-P . We observed a significant overlap between the partitions from Pinit and 106

those from P . Furthermore, the results were robust across multiple initial network realizations (S3 Fig). 107

Biological implementation of topological reinforcement 108

In the brain, the topological reinforcement may be implemented through various plausible activity-based models. 109

We explored one such model, in which the activity of network nodes was described by discrete susceptible, 110

excited and refractory states, the SER model, representing a stylized neuron or neural population. TR when 111

transposed into biological context simply corresponds to the so-called Hebbian rule, where we substituted FC 112

for TO, see Methods section for details. 113

In order to explore the FC-based rule and its relation to TR, we exploited an interesting feature of the SER 114

model: for a given graph topology, the relationship between TO and FC varies according to the parameters 115

of the model (transition probabilities f , p in the stochastic case and the initial conditions e, s, r in the 116

deterministic case; for details, refer to [6]). Thus, after exhaustive evaluation of the possible constellations 117

for each case, we found: first, that the FC-based rule was also able to generate a modular network structure. 118

Importantly, a sufficiently high similarity (as measured by correlation) between TO and FC within the initial 119

configuration was a necessary condition for modularity emergence, as illustrated by the sharp transition from 120

the non-modular to the modular regime (Fig 4); second, the results produced by the FC-based plasticity were 121

consistent with the ones from TR, both in terms of final network configurations and their module partitions 122

(Fig 5). Fundamentally, this indicates that, provided the correlation between TO and FC is high enough, the 123

Hebbian rule acts indirectly as topological reinforcement. 124

initial TO-FC final modularity

st
o

ch
as

ti
c

(t
ra

ns
iti

on
 p

ro
ba

bi
lit

es
)

d
et

er
m

in
is

ti
c

(in
iti

al
 c

on
di

tio
ns

)

Fig 4. Biological implementation of the topological reinforcement. Parameter space exploration of
the stochastic (top) and deterministic (bottom) SER model. Similarity (measured by correlation) between TO
and FC in the initial graph (left), final modularity (middle) expressed as the difference between the mean final
modularity value and the modularity of the initial random graph (across multiple (500) community detection).
(Right) Scatter plot of the relationship between both quantities. Note logarithmic scale for the stochastic case.
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Fig 5. Correspondence between the topological reinforcement and the Hebbian rule. Similarity
between P from the topological reinforcement and from the Hebbian rule using the stochastic (top) and
deterministic (bottom) SER models. Pearson’s correlation coefficient was computed to summarize the similarity
between both rules across the parameter spaces. Scatter plots represent the relationship for a selected setting
(white dots in the heatmaps).

Discussion 125

The importance of segregation in the brain is supported by numerous studies [1, 34]. However, there is a lack 126

of general mechanisms explaining the emergence of brain modularity. In the present study, we proposed an 127

explicit mechanism of reshaping local neighbourhoods through topological reinforcement that might act as a 128

fundamental principle underlying the emergence of modules in brain networks. 129

Given accumulated evidence that global network properties can systematically affect the composition of 130

local network structure such as motifs [31–33], we propose a complementary bottom-up approach that is 131

acting locally in order to shape global features. Our proposed mechanism is in line with empirical data where 132

’homophily’ appears as an essential feature of brain connectivity. At the micro scale, it has been shown that 133

the probability to find a connection between a pair of neurons is proportional to the number of their shared 134

neighbours [35]; while, at the macro scale, the strength of connections between brain regions tends to be the 135

higher the more similar their connectivity profiles are [36]. 136

Our results show that local reinforcement reliably and robustly produces modular network architectures over 137

time, accompanied by the small-world property. Additionally, the final modular organization of the networks 138

seems to correspond to groups of nodes in the initial networks that have higher than average connection density. 139

As such, our rewiring mechanism acts as an amplification of these proto-modules, similarly to a previously 140

reported effect in weak modular weighted networks evolving under a Hebbian rule based on chaotic maps 141

synchronization [37]. 142

We extended the framework of topological reinforcement by introducing a plausible biological implementation. 143

Our dynamical model choice, the SER model, offers the advantage of capturing essential characteristics of 144

stylized neuronal activity while being easily tractable. This minimalistic excitable network model has a rich 145

history across disciplines and in particular in neurosciences [38–42], where it can capture non-trivial statistical 146

features of brain activity patterns [43, 44]. This model has also been used to study the impact of network 147

topology, such as modules, hubs and cycles, on network activity patterns [5,44,45]. A relative-threshold variant 148

(requiring a certain percentage of a node’s neighbors to be active, in order to activate the node) was explored 149

in [46] and [47]. The deterministic limit of the model (p→ 1, f → 0) has been analyzed in [48] and in much 150

detail in [6]. 151

In the biological implementation, the topological reinforcement rule was reformulated by using functional 152

connectivity as a surrogate of TO. The results were consistent with TR, indicating that the biological 153

implementation appears to indirecly act at the topological level. In other words, the FC served as a proxy 154
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of TO, and therefore Hebbian reinforcement led indirectly and ultimately to the topological reinforcement 155

of a modular network organizatiion. The explanation for this finding is based on the fact that, for suitable 156

dynamical regimes and structural architectures, FC is positively correlated with TO in excitable networks [6], 157

which is intuitive if one considers that common inputs may promote correlations. Our results are in line with 158

recent theoretical work on the contribution of specific network motifs to higher order network organization, 159

in which the reinforcement of connections between neurons receiving common inputs led to the formation of 160

self-connected assemblies [49]. Hence, our Hebbian plasticity scenario exploited the correspondence between 161

TO and FC as it could be observed with the exploration of different SER parameter constellations. These 162

parameters promote different relations between TO and FC, and we found that such a dependence systematically 163

predicted the emergence (or not) of modular networks. 164

Previous computational studies have shown that evolutionary algorithms of network connectivity optimizing, 165

for example, functional complexity (defined as balance between segregation and integration) can lead to modular 166

network formation [50]. Such findings point to the relevance of modularity as a crucial organization principle 167

underlying complex functional brain processes. Nevertheless, these models do not provide a biologically inter- 168

pretable and implementable mechanism, since the explicit global optimization function (functional complexity) 169

which might be relevant at the evolutionary scale, cannot be directly interpreted as biological mechanisms 170

shaping brain connectivity. 171

In the sense of biological plausibility, activity-based plasticity models (e.g., based on Hebbian plastiticy) 172

constitute a more directly interpretable approach. Previous studies have used a variety of neural activity 173

models ranging from abstract representations, such as chaotic maps [51] and phase oscillators [52], to more 174

physiologically realistic models, such as neural masses [53] and spiking neuron [54] models. In general, Hebbian 175

reinforcement led to the formation of modular architectures, consistent with our results for the excitable 176

model. The open question for this type of models concerns the specific underlying topological changes that 177

they promote, since these studies focus on the implementation of the phenomenon (based on the activity) and 178

not on the algorithmic level (the topological dimension). Both explanatory levels interact in non-trivial ways. 179

Indeed some of these models even showed that final topological features (e.g., number of modules) might purely 180

depend on properties of the dynamical model [37]. In other words, they do not provide insights about a general 181

mechanism specifying which topological changes might be necessary for the emergence of modular structure. 182

An alternative approach is provided by generative models, where typically an objective function governs 183

the insertion of links and/or nodes during simulations. Recent works has shown that including homophily 184

as a factor to determine connection probability (and after proper data-driven parameter tuning) makes it 185

possible to account for a great deal of functional [55] as well as structural [17] topological features of real 186

large-scale brain networks. While these studies provide a valuable basis for confirming the importance of 187

TO as an essential feature and reducing the dimensionality of brain connectivity by few model parameters, 188

disentangling the mechanistic nature of the phenomena (e.g., modularity emergence) turns out to be non-trivial, 189

since information about the final state is explicitly built-in in the generative model already. Moreover, how the 190

generative function is actually implemented in real systems is out of the scope of this kind of modeling. 191

In summary, as expected for any modeling approach, there exists a complementarity between generative 192

and activity-based models, in which they trade-off description and mechanistic explanations and a gap remains 193

for explaining on how they link to each other. Our contribution represents an attempt to address this gap; 194

first, by providing an explicit topological mechanism of module formation (generative mechanism); second, 195

by trying to reconcile such an abstract level of analysis with the biological implementation, by means of an 196

activity-based variation of the model. 197

The present results are subject to several methodological considerations, for example, the absence of 198

geometric factors in the model. Although the brain is a spatially embedded system and physical constrains 199

play a fundamental role constraining brain connectivity [11], the focus of our study was on the topological 200

determinants of the formation of brain networks. We aimed at avoiding the situation in which geometric 201

constrains, such as the distance-dependent probability of connection used in previous studies [56], introduce 202

already by themselves a clustered connectivity, thus potentially overriding the changes based on the topology 203

itself. Regarding the plausible biological implementation, we chose a simple abstract model for computational 204

tractability. It would be interesting to compare our framework with more biologically realistic dynamical 205

models, such as networks of spiking neurons. 206
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Conclusions 207

Our findings suggest a selective reinforcement of the topological overlap as a plausible mechanism by which 208

brain networks evolve toward a modular organization. Moreover, under appropriate conditions, functional 209

connectivity might act as a proxy, or a dynamical representation, of TO. Thus, biological-inspired plasticity 210

rules, such as the Hebbian rule, indirectly promote modularity. To our knowledge, these findings constitute 211

a first topologically mechanistic explanation of modules formation in complex brain networks and its link 212

to a physiologically plausible realization. Despite of the simplicity of our framework, we trust it to carry a 213

conceptual value that contributes to the long challenging path of understanding the fundamental principles of 214

brain organization. 215

Methods 216

Networks 217

We considered synthetic undirected networks without self-connections of size N = 100 nodes and average 218

connectivity λ = 10 (equivalently, a density of 0.1). The networks were represented by a symmetric adjacency 219

matrix A, where aij = 1, if nodes i and j are connected, 0 otherwise. Initial networks were generated according 220

to the classical Erdös-Rényi model [57]. 221

We explored the robustness of the plasticity rule across various network realizations and multiple runs 222

(using the same initial network). We generated 100 synthetic random initial graphs and performed 500 runs for 223

each of them. In order to study the scaling properties of our model, we also evaluated graphs with different 224

average connectivity (between 6 and 20 by step of 2) and size (between 60 and 500 by step of 40). 225

Topological reinforcement 226

Topological reinforcement was based on the topological overlap measure. TO represents the neighborhoods’ 227

similarity of a pair of nodes by counting their number of common neighbors [23]: 228

toij =

∑
k aikakj + aij

min(
∑
k aik,

∑
k akj) + 1− aij

. (1)

At each rewiring step, the rule connects a randomly selected node that is neither disconnected nor fully 229

connected with a non-neighbor with the highest TO, while pruning another link with uniform probability, 230

hence preserving graph density. 231

For computational efficiency, the rewiring was applied by inserting simultaneously one link on N
2 random 232

different nodes at each step, and pruning the same number of links at random, so that 2N2 = N links were 233

reallocated at each rewiring step, with statistically equivalent results as when only two links (one insertion, one 234

pruning) per step were modified. 235

In order to compare the results across different graph sizes and densities, we computed the length of each 236

run, r, by fixing the average number of rewiring per link, K, r = λNK
2N/2 = λK. Throughout the manuscript K 237

= 3. 238

Excitable model 239

We used a three-state cellular automaton model of excitable dynamics, the SER model. The activity evolves 240

according to the following synchronous transition rules: 241

� S → E, if at least one neighbour is excited; or with probability f (spontaneous activation); 242

� E → R; 243

� R → S, with probability p (recovery). 244

In the deterministic SER scenario, i.e., f = 0 and p = 1, for each network and initial condition setting, the 245

activity time windows consisted of 5 000 runs of 30 time steps each and FC was averaged over runs. The initial 246

conditions were randomly generated, covering the full space of possible proportions of states. 247
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In the stochastic SER scenario, i.e., f > 0 and p < 1, for each parameter setting (f, p), the activity time 248

window consisted of one run of 50 000 time steps. The initial conditions were randomly generated with a 249

proportion of 0.1 nodes excited, while the remaining nodes were equipartitioned into susceptible and refractory 250

states. 251

Functional connectivity 252

To analyze the pattern of excitations in the SER model, we computed the number of joint excitations for 253

all possible pairs of nodes. The outcome matrix is the so-called coactivation matrix, a representation of the 254

functional connectivity of the nodes: 255

cij =
∑
t

1E(xti)1E(xtj), (2)

where xti ∈ S,E,R being the state of node i at time t, and 1E the indicator function of state E. FC was 256

then normalized to scale values between 0 and 1: 257

fcij =
cij

min(cii, cjj)
. (3)

Biological implementation - Hebbian rule 258

When transposing the topological reinforcement into a biological context, using a plausible model of brain 259

dynamics, it turns out that the rule corresponds to the well known Hebbian rule, where we substituted FC for 260

TO. 261

We used SER model for a simulation run after which FC was derived and the rewiring was applied: a 262

random node was selected and connected to a non-neighbor node with maximum FC, while a link was selected 263

randomly with uniform probability and pruned. As for the topological reinforcement and for computational 264

efficiency, the rewiring was applied simultaneously on N
2 different nodes at each step. In order to keep the 265

final networks comparable, the total number of rewiring steps was the same for both plasticity modalities, as 266

defined above. 267

According to the SER scenario, stochastic or deterministic, we evaluated the model for different parameter 268

constellations or initial conditions, respectively. For one initial graph, we studied each possible combination of 269

parameter constellation/initial condition by performing 150 simulation runs and the final graph measures were 270

averaged across runs. 271

Network analysis 272

Synthetic graph realizations, basic graph properties (clustering, path length, small-world), community detection, 273

matrix reordering and graph layouts were performed using the Brain Connectivity Toolbox [58] (Python version 274

0.5.0; github.com/aestrivex/bctpy) and NetworkX [59]. For a given graph, communities were extracted by 275

means of the Louvain algorithm that attempts to maximize the modularity of the network, using the so-called 276

Q value [60]. 277

Similarity between networks and agreements was assessed by means of the Pearson correlation between their 278

connectivity matrices. Overlap between partitions was probed based on the normalized mutual information 279

between the communities [61]. 280

Module agreement and ’proto-modules’ 281

From a given initial network, multiple simulation runs (500) were performed and the community detection 282

algorithm was applied on each final graph to find a partition of the nodes into communities. Then, an agreement 283

matrix P was computed across all final partitions, where pij quantifies the frequency with which nodes i and j 284

belonged to the same community across partitions. Finally, the community detection algorithm was applied 285

100 times on P , yielding a representative set of final partitions of the nodes into non-overlapping communities 286

given an initial graph (Fig 2). 287

In order to probe the structure of each initial graph and find potential ‘proto-modules’, we applied the 288

community detection on the initial graph. Due to the weak signal of random graphs, the stochasticity and 289
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associated degeneracy of classical community detection algorithms, a consensus clustering was employed to 290

generate stable solutions. For each random initial graph, the community detection algorithm was applied 500 291

times, then a agreement matrix was computed, named Pinit, and finally the community detection algorithm 292

was applied 100 times on this agreement matrix yielding a representative set of (stable) partitions of the initial 293

graph (Fig 2). 294

Statistical assessments 295

In order to assess the significance of the results, null network models were generated. When comparing networks 296

in terms of similarity (by Pearson correlation),a null model was generated by randomly rewiring a given graph 297

(once per link), while preserving the degree distribution [62]. Two null models where used when comparing 298

networks in terms of partition overlap. For comparison of individual runs (initial vs. final structures or initial 299

vs. final agreements), we simply used a rewired initial graph as explained above instead of the actual one 300

that was used as initial condition for the run. As null model for the comparison of agreement matrices, a null 301

agreement Pnull was constructed by first shuffling the individual partitions (i.e., conserving the number of 302

modules and their sizes, but randomly altering the nodes affiliation) and then computing the agreement across 303

them. Thus, such a null model generates the expected distribution of agreement values that would occur purely 304

by chance for a given number of nodes and modules of given sizes. 305
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S1 Fig. Evolution of the mean clustering coefficient, characteristic path length and small-world 307

index (S). Results are expressed as mean and standard deviation across 500 simulation runs as a function of 308

the number of rewiring steps. 309
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graph instance

A

B

S2 Fig. Robustness of results for different initial random graph instances, final networks char- 310

acteristics. (A) The heat maps show a summary of the results for 100 different initial random graph instances 311

used as initial condition. For each one, 500 simulation runs were performed. For each final graph, modular- 312

ity (Q), characteristic path length, mean clustering coefficient and and small-worldness coefficient (S) were 313

computed. Each column of the heat map represents the distribution of values obtained across 500 simulations 314

carried out with the same initial random graph instance. (B) Examples of final adjacency matrices of individual 315

runs with different network sizes (N) and densities (λ). 316
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graph instance

A

B

C

D agreements similarity

S3 Fig. Robustness of results for different initial random graph instances, correspondence 317

between initial and final networks. (A-C) The heat maps show a summary of the results for 100 different 318

initial random graph instances used as initial condition. Each column of the heat maps represents the 319

distribution of values obtained across 500 simulations carried out with the same initial random graph instance. 320

(A) Distribution of the correlation values between all pairs of initial and final networks. (B) Partition overlap 321

between all pairs of initial and final networks (quantified as normalized mutual information, NMI). (C) Partition 322

distance between initial (Pinit) and final (P ) agreements. (D) Similarity between Pinit and P agreements, the 323

scatter plot (left) shows the values over 100 different random graph instances used as initial condition, and the 324

histogram (right) represents the Pearson’s correlation coefficient between all pairs of Pinit-P . 325
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