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Abstract

During human evolution, individuals interacted mostly within small groups that
were connected by limited migration and sometimes by conflicts. Which preferences,
if any, will prevail in such scenarios? Building on population biology models of spa-
tially structured populations, and assuming individuals’preferences to be their private
information, we characterize those preferences that, once established, cannot be dis-
placed by alternative preferences. We represent such uninvadable preferences in terms
of fitness and in terms of material payoffs. At the fitness level, individuals can be re-
garded to act as if driven by a mix of self-interest and a Kantian motive that evaluates
own behavior in the light of the consequences for own fitness if others adopted this
behavior. This Kantian motive is borne out from (genetic or cultural) kin selection.
At the material-payoff level, individuals act as if driven in part by self-interest and
a Kantian motive (in terms of material payoffs), but also in part by other-regarding
preferences towards other group members. This latter motive is borne out of group re-
source constraints and the risk of conflict with other groups. We show how group size,
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the migration rate, the risk of group conflicts, and cultural loyalty shape the relative
strengths of these motives.

Keywords: strategic interactions, preference evolution, evolution by natural selec-
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1 Introduction

Preferences are fundamental to economic theory.1 If preferences are transmitted across
generations and if they affect the expected survival and reproduction– the fitness– of their
bearer: which preferences are likely to be favored by evolution and which preferences are
likely to disappear? Analysis of the long-term evolution of preference distributions can help
understand the proximate drivers and motivation of human behavior in social and economic
interactions (Hirshleifer, 1977, Bergstrom, 1996, Binmore 1998, Robson, 2001, Newton, 2018,
Alger andWeibull, 2019). Here we build on previous work on strategy evolution in structured
populations (Lehmann, Alger, and Weibull, 2015) by studying preference evolution in such
populations.

For more than a million years, our ancestors most likely lived in groups of hunter-gatherers
(probably ranging from 5 to 150 grown-ups), extending beyond the nuclear family (Grueter,
Chapais, and Zinner, 2012, Malone, Fuentes, and White, 2012, van Schaik, 2016, Layton,
O’Hara, and Bilsborough, 2012). This population structure, whose defining features are
small group size and limited migration between groups (i.e., not all individuals migrate),
is thus part of the environment of evolutionary adaptation of the human lineage (e.g., van
Schaik, 2016). Analysis of the long-term evolution of preferences should thus take such pop-
ulation structure into account. We here do exactly that, and we ask how such structural
features as group size, migration rates between groups, and the risk of conflicts between
groups, determine the qualitative nature of the preferences that evolution favors. Combin-
ing the economics paradigm of utility-maximizing behavior with methods from population
genetics, we obtain predictions about the nature of individuals’preferences and motivations
in the canonical model of evolution in structured populations, the so-called island model
of migration originally due to Wright (1931, 1943). The model allows us to examine both

1Throughout this paper we use concepts and terminology that are standard in economics, and model
behavior as a choice of action (or stream of actions) from a set of feasible actions, where this choice is guided
by a striving to maximize some goal (utility) function. The utility function together with the information
and the constraints imposed by the environment are thus what biologists would call the proximate causes
driving behavior. Furthermore, by contrast to the evolutionary biology literature where the terms “altruism”
and “spite”are used to refer to the fitness consequences of a behavior on the actor and others, in economics
they are used to describe the proximate causes behind behaviors. Thus, in economics, an individual who
has a utility function which puts a positive weight on another individual’s material well-being is altruistic;
and an individual who has a utility function which puts a negative weight on another individual’s material
well-being is spiteful. For further discussion of the meaning of these terms in different academic disciplines,
we refer to West, Griffi n, and Gardner (2007) and Bshary and Bergmüller (2008).
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genetic and cultural transmission of preferences in such structured populations.

The island model is a textbook evolutionary biology model (see, e.g., Cavalli-Sforza and
Bodmer, 1971, Frank 1998, Rousset 2004, Hartl and Clark, 2007), which formally captures
in a tractable and stylized way the fact that all natural populations, human or otherwise,
are structured into small groups (or bands, or villages) connected to each other by limited
migration (or dispersal). Limited migration causes limited genetic and/or cultural mixing in
the population, and this results in several individuals from the same group possibly having
a recent common ancestor. For example, suppose that a genetically transmitted new trait
suddenly appears in one individual. In the next generation, multiple carriers of the new
trait may coexist in the same group. Hence, the immediate descendants of the initial mutant
are more likely to interact with each other than are individuals sampled at random from
the whole population. Such assortative matching, induced by limited migration, even when
the mutant trait is rare in the population at large, tends to favor mutant behaviors that
promote the survival and/or reproductive success of others in their group. The reason is
that such behavior is more likely to benefit other mutants than it would be if all offspring
always migrated and matching therefore would be uniformly random (Hamilton, 1964, 1971,
Grafen, 1985, Frank, 1998, Rousset 2004). This is the so-called mechanism of kin selection in
evolutionary biology (Maynard Smith, 1964).2 In the biology literature, assortative matching
between pairs of individuals is usually quantified by the coeffi cient of relatedness—which
indicates the likelihood that interacting individuals share a common ancestor—a quantity
that depends on such features of the population structure as group size and migration rates.

By the same token, however, individuals who share a local common ancestor are also more
likely to expose each other to fitness externalities, than are randomly selected individuals
from the overall population. Indeed, through the local interactions, which occur in islands
of finite size, related individuals may harm or enhance each other’s fitnesses (think of young
siblings fighting over candy, or individuals teaming up to fight off a common enemy), and
such externalities have an impact on selected traits (Hamilton, 1971, Schaffer, 1988, Frank,
1998, Rousset 2004). As assortative matching and local fitness externalities can, in general,
not be separated, their joint effects need to be taken into account in order to understand the
evolutionary success of traits under limited dispersal, a question that has received much at-
tention in the evolutionary biology literature (see e.g. Hamilton, 1967, and Taylor, 1992,a,b,
for pioneering and paradigmatic examples, and Frank, 1998, and Rousset, 2004, for general
theoretical treatments).

While clearly relevant for the understanding the evolution of traits relevant in human
social interactions, the evolutionary biology literature is yet of limited direct value for econo-
mists, because in the bulk of these analyses: (a) the focus is on the evolution of strategies,
not preferences, (b) predictions are derived at the level of basic fitness components, such as
reproduction and survival, and not at the level of the material payoffs obtained in strategic

2A necessary and suffi cient condition for kin selection to take place is that an evolving genetic (or cultural)
trait tends to more strongly affect the survival and/or reproduction of individuals who are genetically (or
culturally) related to the actor than under uniform random matching (Michod, 1982, p.20). This is true
whether or not relatives recognize each other. Our analysis will be based on the assumption that they cannot
recognize each other.
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interactions, (c) transmission is genetic instead of cultural, while cultural evolution is also
relevant for the understanding of human behavior. Our model enriches the analysis in all of
these dimensions.

We propose a framework in line with that of economists and game theorists, and model the
following thought experiment that takes place in a large population over an infinite sequence
of demographic time periods. The population is structured into a large number of groups or
islands of equal size. Within each group or island, individuals engage in a strategic interaction
in which all individuals’strategy choices may affect the material payoffs to all participants.
The strategic interaction is modelled as a game in material payoffs, and the game may be
arbitrarily complex and may take place over many stages within each demographic time
period. By material payoff we mean a one-dimensional summary measure, like income (or
calories). The expected material payoffs, realized in a demographic time period, in turn
determine the fitness of each individual in the population in that demographic time period.
An individual’s fitness is defined as the expected number of individuals in the following
time period who have acquired their trait from him or her. If transmission is genetic, an
individual’s fitness is the number of his surviving offspring and the individual himself if he
survives. If transmission is cultural, an individual’s fitness is the number of individuals in
the next time period who acquired their cultural trait from this individual. Offspring may
migrate to other groups or islands, or stay in their natal group or island. Many different
transmission scenarios are covered by this model framework. For instance, generations may or
may not be overlapping, islands may wage wars against each other, traits may be transmitted
culturally from parent to child or by imitation of materially successful individuals, etc.

In all our scenarios, genetic and cultural, the population is initially homogenous; all
individuals are ex ante identical. Suddenly, a different, mutant heritable trait spontaneously
appears in exactly one individual. The original, resident trait is uninvadable if there exists
no mutant trait, such that the initial mutant produces enough descendants for its trait to
be maintained in the population in the long run.

To study preference evolution, we let the heritable traits be continuous utility functions,
defined over all strategy profiles that are possible in the material game that represent the
interaction on each island. Together with the individual’s (probabilistic) belief about other
group members’ strategy choices, an individual’s utility function guides his or her choice
of strategy in the local interaction. We evaluate a utility function’s fitness consequences
for its carriers in terms of the expected material payoffs that result in all (Bayesian) Nash
equilibria under incomplete information, that is, when each individual’s utility function is
his or her private information, but individuals’ beliefs about each others’ strategies are
consistent with some (Bayesian) Nash equilibrium. We ask if there exist utility functions
that are uninvadable in the sense that any mutant utility function does worse, in terms of its
carriers’expected material payoffs, than the residents, in all equilibria. Thus bridging the
gap between economics and biology, we obtain links between preferences, material incentives,
and population structure (including migration and potential group conflicts). The following
four main results emerge from our analysis.

First, we obtain a necessary and suffi cient condition for a utility function to be unin-
vadable. This characterization says that a utility function is uninvadable if and only if all
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strategies used in any Nash equilibrium among individuals with this utility function are,
when viewed as heritable strategies, uninvadable by other strategies.

Second, we identify a class of utility functions that, for any given game in material
payoffs, contains an uninvadable utility function. Each utility function in this class can be
interpreted as a mix of self-interest and a Kantian concern, both expressed at the fitness
level. Specifically, the Kantian concern, driven by kin selection, consists in evaluating one’s
behavior in the light of what one’s own fitness would be if others in one’s group were to
behave in the same way. This concern vanishes under unlimited migration (that is, when all
offspring always migrate) and when groups are very large.

Third, when material payoffs only have marginal effects on fitnesses (a property which
arguably holds for many human interactions), uninvadable preferences generically involve a
mix of self-interest, a Kantian concern, and also a concern for neighbors, all concerns being
expressed at the level of material payoffs. The weight given to the Kantian motive is then
proportional to the coeffi cient of relatedness, but it also depends on fitness externalities
between neighbors. The weight on other group members’material payoffs may be negative
(“spite”) or positive (“altruism”), and it depends on the coeffi cient of fitness interdependence,
which measures the effect on own fitness that an individual obtains relative to his neighbors
by diminishing or enhancing their material payoffs.

Finally, we provide suffi cient conditions for the uninvadability of preferences of a par-
ticularly simple form, namely, a convex combination of own material payoff and the own
material payoff that would arise should all others choose the same behavior. Under these
specific conditions, the weight given to the second, Kantian, component is determined by
the coeffi cient of scaled relatedness, a coeffi cient that combines the (standard) coeffi cient
of relatedness with the coeffi cient of fitness interdependence. This weight allows to deter-
mine whether, on balance, equilibrium behaviors are pro-or anti-social, in the sense that
equilibrium material payoffs are higher or lower than under selfishness. We show that an
increased risk for group conflicts make preferences less anti-social, and, at a critical level of
the risk of group conflict, preferences are neither anti- nor pro-social, while at higher risk
levels, preferences turn pro-social. Hence, at this intermediate risk of conflict, preferences
have only a self-interested and a Kantian component, while at lower (higher) risks, a third
component appears, a component that expresses envy or spite if the risk is low, and empathy
or altruism if the risk is high. We also show that cultural transmission of preferences may
trigger anti-sociality because of local competition for proselytes.

Compared to the existing economics literature on preference evolution in social interac-
tions (see Alger and Weibull, 2019, for a recent survey), our model makes two key innova-
tions.3 First, it explicitly analyzes the effects of population structure and limited dispersal
upon behavior and preferences. While Alger and Weibull (2013, 2016) investigated the

3In the economics literature it has been shown that the following conditions are suffi cient (and necessary
except in knife-edge settings) for populations of self-interested individuals to resist invasion by non-self-
interested individuals: (i) the population is very large and homogeneous (no subdivision by sex, age, size,
etc.) and reproduction is clonal, (ii) interacting individuals do not know each other’s preferences but have
statistically correct beliefs, and (iii) interactions are uniformly random in the population, in the sense that
each encounter is just as likely (see Ok and Vega-Redondo, 2001, Dekel, Ely, and Yilankaya, 2007).
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evolutionary stability of preferences under incomplete information, they did so in an ab-
stract model of assortative matching which did not explicitly account for the demographics
and population dynamics.4 They found that preferences expressing a certain combination
of self-interest and a Kantian concern are evolutionarily stable, and that preferences that
are behaviorally distinct from these are evolutionarily unstable. They also showed how the
weight given to the Kantian concern depends on the assortativity in group formation. While
assortativity in those models is treated as an abstract primitive, it here arises explicitly
and endogenously from the population structure; group size, rates of survival, migration,
and conflicts together determine the probability that rare mutants get to interact with each
other– i.e., relatedness. The present model thus contributes to this strand of literature by
explicitly modeling the population structure and how it gives rise to assortativity.

Second, it establishes a clear distinction between preferences at the fitness level and
preferences at the material payoff level. In the existing economics literature on preference
evolution, these are taken to coincide. The model makes it clear that, when preferences
are expressed at the level of material payoffs, relatedness must go hand in hand with local
fitness interdependence, a force which does not appear in Alger and Weibull (2013, 2016).
We here also show how relatedness and fitness interdependence can be formally traced back
to group size and limited migration. While we already made this distinction in Lehmann,
Alger, and Weibull (2015), we then did not analyze preference evolution. Instead, we asked
under what conditions, if any, evolving strategies can be interpreted as chosen by rational
individuals endowed with specific utility functions (we examined three candidate utility
functions, two of which are described above). The value added of the present paper is that
we here analyze preference evolution, rather than strategy evolution, in group-structured
populations. In addition, we (a) examine other utility functions than those used to establish
the “as if”results in Lehmann, Alger, and Weibull (2015), (b) obtain new results concerning
fitness interdependence and scaled relatedness, and (c) analyze a wider class of evolutionary
scenarios.

Apart from our previous work, the most closely related work is by Akçay and van Cleve
(2012). They investigated the evolutionary stability of preferences parameterized by scalar
traits (in the vein of Heifetz, Shannon and Spiegel, 2007a-b). In addition to focusing on
complete rather than incomplete information, their model differs from ours in two broad
respects. First, since they focus only on the effects of traits on reproduction under genetic
transmission, they do not obtain results for preferences over strategy profiles or material
payoffs. Second, they focus only on necessary first-order conditions. These conditions express

4By contrast to the present model, assortativity was there modeled as an abstract function that maps
the distribution of traits in the population to probabilities governing the matching of interacting individuals.
This formalization of assortativity was pioneered in economics by Bergstrom (1995, 2003), who focused on
strategy evolution; see also Bowles and Gintis (1998), as well as Alger and Weibull (2010, 2012) for analyses
of preference evolution under complete information. This formalization of assortativity, which implicitly
assumes marginal effects of traits on fitness, goes back to Hamilton (1971); Michod and Hamilton (1980)
discuss how different formalizations of assortativity are equivalent to each other. It should further be noted
that Rogers (1994) studied the evolution of time preference in an age-structured population; a setting that
allows for kin selection but not kin competition. Finally, alternative models of endogenous assortativity have
been proposed by Nax and Rigos (2016), Newton (2017), and Wu (2017, 2019).
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how many offspring an individual is willing to forgo, at the margin, in order to marginally
increase the number of offspring of other group members.

The paper is organized as follows. Section 2 describes the model and provides a charac-
terization of an uninvadable trait. Section 3 presents the analysis. In Section 4 we illustrate
our results in three canonical evolutionary scenarios, including genetic and cultural evolu-
tion, as well as potential “wars”between groups. Section 5 concludes. Mathematical proofs
are provided in an appendix.

2 Model

This section presents the building blocks of the analysis– the population structure and indi-
viduals’life-cycles– and defines the evolutionary stability criterion that will be used. It also
describes what is novel compared to the existing literature.

2.1 Population structure

Consider a countably infinite population, divided into infinitely many identical islands
(groups, locations, or villages), each of constant size n. Evolution takes place perpetually
and stochastically over time, and time is divided into demographic time periods. Individuals
are called children or offspring in their first demographic period, the period in which they
are born, and grown-ups or adults in all other periods of their life. No age distinction is
made between adults. Each demographic time period consists of two phases:

• In Phase 1, the n adults in each island engage in a social or economic interaction with
each other, the same on all islands and at all times. The strategies used determine
each individual’s material payoff , which we take to be income (expressed, for example,
in money or in calories). An individual’s strategy choice in the interaction is assumed
to be determined by her preferences and her beliefs about the strategies used by her
island neighbors. Preferences are inherited in childhood from exactly one adult, the
individual’s genetic or cultural parent, and are fixed throughout her life.

• In Phase 2, the realized material payoffs determine each adult’s survival, and, in
case there are exogenous random shocks to entire groups (e.g., warfare, environmen-
tal catastrophies), the adult’s entire group’s survival. Individual and group survival
probabilities are assumed to be independent of age. The realized material payoffs also
determine each adult’s fecundity, which is its number of offspring (where offspring are
biological if preferences are coded for genetically, and cultural if they are transmitted
by way of a cultural process). Following reproduction, offspring, and only offspring,
may migrate from their native island to other islands (and this migration takes place
in the period they are born). The migration probability m is the same for all offspring
at all times, and is strictly positive. Moreover, migration is blind in the sense that

7

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 30, 2019. ; https://doi.org/10.1101/408435doi: bioRxiv preprint 

https://doi.org/10.1101/408435
http://creativecommons.org/licenses/by-nd/4.0/


any migrant picks a destination in a uniformly random fashion.5 After migration and
competition among the offspring for securing a place on an island, there are exactly n
adults in each island (group). Offspring who did not secure a place on an island die.

Phase 1 and 2 taken together determine an adult’s individual fitness. This is the expected
number of her immediate descendants, defined as those adults in the next demographic time
period who have inherited their preferences from her. These immediate descendants consist
of those of the individual’s (genetic or cultural) offspring who survived, and thus became
adults in the next demographic time period, as well as the individual herself if she survived
into the next period. We next describe in more detail how the interactions and the ensuing
individual fitness are formalized in the subsequent analysis.

2.2 The interaction

2.2.1 The material game

The material game is formalized as a symmetric non-cooperative normal-form n-player game
in which each player has access to the same set of strategies (which may be pure or mixed),
X, a non-empty compact set in some normed vector space. The expected material payoff6

accruing to any (adult) individual i ∈ {1, 2, ..., n} on a given island depends on her own
strategy, xi ∈ X, and on the vector x−i ∈ Xn−1 of strategies used by the others on i’s island,
her neighbors. The material payoff function π : Xn → R is continuous, and π (xi,x−i) is
invariant under permutation of the components of the vector x−i ∈ Xn−1.7 Such permutation
invariance holds if, for example, strategies are real numbers, and an individual’s material
payoff depends on her own strategy and either the sum, product, maximum or minimum of
her island neighbors’strategies. The material game may be a simple simultaneous-move game
or a multi-stage game in which individuals interact over many stages within the demographic
time period.

2.2.2 The subjective game

Every (adult) individual in the population has (personal) preferences over strategy profiles,
preferences that can be represented by some continuous utility function.8 More precisely,

5Technically, we study the limit of uniform random dispersal among finitely many islands as the number
of islands tend to infinity.

6For simplicity, we will henceforth use “material payoff”to refer to “expected material payoff”.

7More precisely, for any xi ∈ X and x−i ∈ Xn−1, and any bijection h : {2, 3, ..., n} → {2, 3, ..., n}:
π
(
xi, xh(2), xh(3), ..., xh(n)

)
= π (xi,x−i).

8Continuity is inessential for much of the analysis. However, it is important for some existence results, and
for our stability analysis since we there invoke Berge’s maximum theorem. (A form of upper semi-continuity
would be suffi cient for these results, but such a generalization does not seem to be of primary interest here.)
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every individual i has a complete and transitive preference ordering �i over strategy pro-
files (xi,x−i) ∈ Xn, such that there exists a continuous function ui : Xn → R satisfying
ui (xi,x−i) ≥ ui

(
yi,y−i

)
if and only if (xi,x−i) �i

(
yi,y−i

)
. Letting F be the set of con-

tinuous functions f : Xn → R, each individual has preferences that admit representation by
some function u ∈ Θ ⊆ F , where Θ is the subset of preference types, or simply types. Each in-
dividual of any given type u ∈ Θ chooses her strategy so as to maximize the expected value
of her utility function under her probabilistic beliefs about her island neighbors’strategy
choices.

In order to carry out our evolutionary analysis of preferences, we need to evaluate the
fitness consequences of preferences, and we will do so when individuals’ strategy choices
constitute Nash equilibria in the subjective game. (Which is not to say that we assume or
believe that interactions are always in equilibrium. We use Nash equilibrium as a systematic
reference point.)

2.3 Individual fitness

An individual’s fitness may depend on (a) own material payoff, (b) the material payoffs to
the individual’s island neighbors, and (c) the material payoffs in the population at large. De-
pendence on own material payoff is self-evident. Dependence on neighbors’material payoffs
arises as soon as neighbors’survival and number of offspring influences the competition that
one’s own offspring meet when competing for succession of deceased adults on the native
island. Own and others’material payoffs may also affect one’s island’s success probability
in wars with other islands. Dependence on material payoffs in other islands has two sources;
migration and potential wars between islands. First, an individual’s offspring face compe-
tition with offspring from other islands, both when competing for succession of deceased
adults on her native island and on other islands. Second one’s island’s success probability
in wars may depend on those islands’material payoffs.

The individual (or direct) fitness function w : Rn+1→ R is assumed to be continuously
differentiable. We write w (πi,π−i, π

∗) for i’s fitness, where πi ∈ R is own material payoff,
π−i ∈ Rn−1, is the vector of her neighbors’material payoffs, and π∗ ∈ R is the average
material payoff in the population at large.9 We also assume that w (πi,π−i, π

∗) is invariant
under permutation of the components of the vector π−i. Owing to the assumption of constant
group size, average fitness in the population is always equal to 1. The subsequent analysis
further presumes that an individual’s fitness is strictly increasing in her own material payoff,
strictly decreasing in the average material payoff in the population at large, and that it may
be decreasing or increasing, or non-monotonic in other group members’material payoffs,
but never increase more from a neighbor’s increase in material payoff than from the same
increase in own material payoff. Formally:

[M] (i) ∂w (πi,π−i, π
∗) /∂πi > 0, (ii) ∂w (πi,π−i, π

∗) /∂πj ≤ ∂w (πi,π−i, π
∗) /∂πi for all

9Individual fitness is thus assumed to be expressible in terms of expected material payoff only, and we
therefore neglect effects of variance in payoff (see Appendix 6.1 and 6.2 for a justification).
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j 6= i, (iii) ∂w (πi,π−i, π
∗) /∂π∗ < 0.

Denote by P = 〈n,X, π, w,Θ〉 a population with (countably) infinitely many islands of
size n, strategy set X, material payoff function π, fitness function w, and type set Θ ⊆ F . In
each demographic time period t there is some type distribution µt ∈ ∆ (Θ) in the population
at large. The focus of the analysis is on the dynamics of this type distribution. Analysis will
be restricted to type distributions with at most two types present in the population at any
given point in time.

Our model adds two novelties to the existing island model literature. First, an individ-
ual’s strategy choice is guided by her preferences and beliefs about her island neighbors’
strategy choices. Second, we distinguish material payoffs– here interpreted as income– from
individual fitness (see concrete examples of fitness functions in section 5). This distinction is
a novelty for the literature on preference evolution in economics, in which fitness is equated
with material payoff, and for the evolutionary biology literature, in which income does not
appear.

2.4 Uninvadability in structured populations

Consider a population P which prior to some date t = 0 is homogenous with some resident
type u. Can this population be invaded by some mutant type v 6= u that appears at time
t = 0 in a single adult individual? By “invasion”is meant long-run survival of the mutant
type, or, more precisely, that it does not go extinct within finite time. In our model all adults
have a positive probability of dying in each period of their lives, and offspring migrate with
positive probability, so for a mutant type v 6= u to be able to invade the population, it must
spread beyond the island where the first mutant appeared. The initial mutant’s descendants
may, by way of migration, colonize new islands that were before inhabited exclusively by
the resident type u. Such colonization, as well as survival and fecundity, depends on all
individuals’material payoffs, which in turn depend on the strategy profiles used in the
population. The analysis of a residential type’s invadability or uninvadability is thus an
analysis of (non-linear) stochastic population processes involving both (global) demography
and (local) strategic interactions.

In order to be able to apply results in the biology literature for stochastic evolution
in structured populations to preference evolution, we impose the following homogeneity as-
sumption concerning individual’s equilibrium behavior in the subjective game:

[H] On all islands with the same number of mutants, and irrespective of calendar
time, the same Nash equilibrium is played, and all residents use the same strategy
(say, x ∈ X), and all mutants use the same strategy (say, y ∈ X).

As a consequence, on any given island and in any given demographic time period: all
residents obtain the same fitness (which in general depends on their strategy, their island

10

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 30, 2019. ; https://doi.org/10.1101/408435doi: bioRxiv preprint 

https://doi.org/10.1101/408435
http://creativecommons.org/licenses/by-nd/4.0/


neighbors’strategies, and on strategy profiles in the population at large), and all mutants
obtain the same fitness (which likewise depends on their strategy, their island neighbors’
strategies, and on strategy profiles in the population at large). Under these conditions, it is
possible to obtain results for the long-run survival, or extinction, of mutants. We proceed in
steps towards a definition and characterization of uninvadability.

First, in a population where all individuals are of the same type u, all individuals use the
same strategy, to be called the resident strategy, and this strategy x̃ has to satisfy

x̃ ∈ arg max
x∈X

u
(
x, x̃(n−1)

)
, (1)

where x̃(n−1) is the (n− 1)-dimensional vector whose components all equal x̃. We write Xu

for the set of strategies x̃ that satisfy (1).10 Condition (1) follows from the homogeneity as-
sumption [H] and the Nash equilibrium requirement that every individual chooses a strategy
that is optimal, given her preferences.

Second, consider a population P initially populated by some resident type u and in which
some strategy in Xu is played by everyone. Let some mutant type v appear in exactly one
individual at time t = 0. Under assumption [H], and for any selection of Nash equilibria, one
equilibrium for all islands with k = 0, 1, ..., n mutants, respectively, this defines a probability
distribution over fitness levels in all future demographic time periods. We define the resident
type u to be uninvadable by v if, for every Nash equilibrium selection, the mutant type v
goes extinct in finite time with probability one.11 A type u ∈ Θ is uninvadable in Θ if it is
uninvadable by all mutant types v ∈ Θ.

The notion of lineage fitness plays a key role in our characterization of uninvadability.
An individual’s lineage consists of all of the individual’s descendants, that is, her immediate
descendants (her offspring and also herself if she survives), the immediate descendants of her
immediate descendants, etc. ad infinitum. The individual’s local lineage is the subset of her
lineage members who live, as adults, in the island where she herself became an adult. Our
assumption that the migration rate is positive and constant implies that the random time
T of first extinction of any individual’s local lineage is finite with probability one, and that
in time periods before T local lineage members may produce emigrants settling on other
islands.12

Any selection of Nash equilibrium (in the case of complete information, one equilibrium
for each number of mutants in a group) defines a Markov chain that induces a unique invari-
ant probability distribution over possible mutant local lineage size realizations (including the

10By continuity of the utility function and compactness of the set X, the set of maximands in (1) is
non-empty and compact (by Weierstrass’maximum theorem). Moreover, by Berge’s maximum theorem, the
set of maximands also define an upper hemi-continuous correspondence. By Kakutani’s fixed-point theorem,
the set Xu is therefore non-empty (and compact) if the function u is also quasi-concave in its first argument
(the player’s own strategy).

11Extinction is defined as the event that no individual in the population is of the mutant type.

12Even if locally extinct, members of the individual’s lineage may still live on other islands. Moreover,
some lineage members may later move to the mutant’s native island. However, the probability that this
event occurs in finite time is zero.
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realization of the random extinction time T ), and this occurs irrespectively of whether an
island of residents is colonized by a single or several successful mutant emigrants. This prob-
ability distribution in turn can be taken to determine the lineage fitness of the mutant type
v given this equilibrium selection, defined as the average w fitness of a mutant, the average
being taken over (a) all possible local lineage size realizations (each one before the associ-
ated random period T ) and (b) over all possible initial conditions of a local lineage (single or
multiple simultaneous emigrant mutants). As long as the mutant is rare in the population,
the number of mutants is finite, so the average material payoff earned by individuals of the
resident type u in those periods is simply π∗ = π (x, x, ..., x), where x ∈ Xu is the resident
strategy in the equilibrium in question.13 For any given selection of Nash equilibrium, under
assumption [H] the lineage fitness of a mutant type v ∈ Θ in an otherwise homogeneous
population in which all individuals are of type u ∈ Θ, can be written in the form

W (v, u) =

n−1∑
k=0

pk (v, u) · w (π (v|k) , 〈π (v|k) , π (u|k)〉 , π∗) , (2)

where for each k = 0, ..., n−1, pk (v, u) is the probability for a mutant uniformly drawn from
a local lineage, that k = 0, 1, ..., n − 1 of her neighbors are from this lineage, π (v|k) is the
material payoff to the mutant at hand, and 〈π (v|k) , π (u|k)〉 ∈ Rn−1 is the vector of material
payoffs to the mutant’s n− 1 island neighbors (among whom k have the mutant trait v, and
the other n − 1 − k have the resident trait u). Hence, the lineage fitness of a mutant is
the average individual fitness of a representative carrier of the mutant trait. Note that if
there are multiple Nash equilibria, there may be several matching probability distributions
p (v, u) = (p0 (v, u) , ..., pn−1 (v, u)), one for each selection of Nash equilibrium. Note further
that the lineage fitness of the mutant type is well-defined if the mutant type happens to be
identical with the resident type; then all individuals in the population have the same lineage
fitness, namely W (u, u) = 1 (since population size is constant).

A positive probability weight pk (v, u) in the definition of W for some k > 0 means
that descendants of the initial mutant face a positive probability of being matched with
each other. The overall level of such assortative matching can be usefully quantified by the
coeffi cient of pairwise relatedness, defined as

r (v, u) =

n−1∑
k=0

k

n− 1
· pk (v, u) . (3)

This coeffi cient measures, for any descendant of the initial mutant of type v, the average
share of island neighbors who are also descendants of the initial mutant. When migration
is complete (m = 1, see Section 2.1) or when groups are infinitely large (n → ∞), no two
group members can be traced back to an initial common ancestor, and thus pk (v, u) = 0 for
all k > 0, and hence r (v, u) = 0 . But since real-life groups are of finite size, and owing to
the cost of dispersal, essentially all natural populations display positive relatedness between

13Note that because the analysis focuses on the fitness of rare mutants in an otherwise homogenous
population, our assumption that the fitness function depends on the average material payoff in the population
at large, and not on the distribution of the material payoffs therein, is innocuous.
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group members, i.e., r (v, u) > 0. This in turn implies that pk (v, u) > 0 for at least some
k > 0.14

We denote byW (v, u) the set of lineage fitness levels induced by all Nash equilibria com-
patible with types v and u in a given population P. The (potentially empty) setW (v, u) ⊆ R
is compact. Extending the characterization in Lehmann et al. (2016) from types with unique
lineage fitness values to types with sets of potential lineage fitness values,15 uninvadability
can be succinctly characterized as follows: A type u ∈ Θ with W (v, u) 6= ∅ is uninvadable
if and only if

maxW (v, u) ≤ 1 ∀v ∈ Θ. (4)

For each mutant type v ∈ Θ, this characterization compares the highest possible average
lineage fitness of a single initial v-mutant, maxW (v, u), with the lineage fitness of any
resident individual, W (u, u) = 1. An uninvadable type u thus preempts entry into the
population in the sense of obtaining (weakly) higher average lineage fitness that any mutant
type can ever obtain.

2.5 Nash equilibrium

In order to apply our characterization of uninvadability to preference evolution we need
to get a handle on the set of Nash equilibria, which in turn depends on the informational
assumptions about the strategic interactions on the islands. We know of three settings that
are compatible with homogeneity assumption [H], and that admit analysis. In the first
setting, each type in the type space Θ ⊂ F has exactly one strategy that it will always
use. This is the easiest case, and it can be referred to as “strategy evolution.”In the second
setting, all types are permitted, Θ = F , and interactions take place under (maximally)
incomplete information, i.e., each individual’s type is his or her private information. In
the third setting, interactions take place under complete information, i.e., every individual
knows the types of all individuals on her island. Under the homogeneity assumption, each
of these settings is amenable to analysis. While one could argue that individuals are likely
more knowledgeable about the type distribution in their own island than in the overall
population, we nonetheless adopt the incomplete information assumption here, and leave
analysis of complete information for future research. The reason is that the incomplete
information setting is not only known to provide benchmark results to which results derived
under complete information assumptions can be fruitfully compared (for a recent survey, see
Alger and Weibull, 2019), but is also likely to be the default case under genetic transmission
since information about genotype is generally incomplete (e.g., Frank 1998, chapter 6).

14This would be true even if migration probabilities were endogenous, as long as migration entails some
cost (for literature with endogenous dispersal decisions, see, e.g., Clobert et al., 2001, Frank, 1998, and
Rousset, 2004, and Hartl and Clark, 2007). The model by Newton (2017) can be interpreted as having
costless migration.

15In Lehmann, Alger, and Weibull (2015) we proved this result for scenarios where new islands can be
colonized only by singleton mutants. Lehmann et al. (2016, eqs. (14)-(16)) extended that result to allow for
scenarios in which multiple offspring from the same group can reproduce in the same non-natal island.
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It remains to define the set of Nash equilibria that will be used to calculate any mutant’s
lineage fitness under incomplete information. We assume that individuals’probabilistic be-
liefs about the type distribution among their neighbors are statistically correct. In particular,
every individual of the resident type u (correctly) believes that all other individuals on his
or her island are (with probability one) of her type, and every mutant (correctly) believes
that the types of his or her island neighbors are drawn according to the mutant lineage’s
probability distribution p (v, u) = (p0 (v, u) , ..., pn−1 (v, u)). For any given resident strategy
x̃ ∈ Xu, all mutants are, by homogeneity assumption [H], assumed to use one and the same
strategy, say ỹ that, moreover, is a best response for them, with their utility function v, and
given the matching probability distribution that they face:

ỹ ∈ arg max
y∈X

n−1∑
k=0

pk (ỹ, x̃) · v
(
y, ỹ(k), x̃(n−k−1)

)
. (5)

Here ỹ(k) is the strategy vector whose k components all are ỹ ∈ X, and x̃(n−k−1) the strategy
vector whose n − k − 1 components all are x̃, and the matching probabilities are from now
on and throughout written directly as a function of the equilibrium strategies played. Given
the resident and mutant types, u, v ∈ Θ, a strategy pair (x̃, ỹ) ∈ X2 is a (type-homogenous)
Nash equilibrium if x̃ ∈ Xu and ỹ satisfies (5). Let BNE (u, v) ⊆ X2 denote the set of such
Nash equilibria. Any such Nash equilibrium defines all remaining material payoffs π (v|k)
and π (u|k) in (2).16

3 Analysis

It turns out that it is useful, as a first step, to examine preference types which induce
commitment to some particular strategy. To be more specific, let Θ ⊂ F consist of all utility
functions u : Xn → R of the form u (xi,x−i) ≡ ‖xi − x‖2 for some x ∈ X. All individuals
with types in this set Θ each have a unique dominant strategy, and we will identify types by
their dominant strategy; Θ = X. Under such strategy evolution, for a resident type x and a
mutant type y, the set W (y, x) is a singleton, and maxW (y, x) = W (y, x), where

W (y, x) =
n−1∑
k=0

pk (y, x) · w̃
(
y,y(k),x(n−1−k), x

)
. (6)

Here w̃ = w ◦ π is the composite function which gives the fitness of any individual i who
plays strategy xi ∈ X when the others on his or her island play x−i ∈ Xn−1, while some
strategy x∗ ∈ X is played by all individuals on all other islands:

w̃ (xi,x−i, x
∗) = w

(
π (xi,x−i) , (π (xj,x−j))j 6=i , π (x∗, ..., x∗)

)
. (7)

16The reader may worry about model robustness at this point. For if the total population is large but
finite, then the probability is not zero, but small and positive, that there will at least one mutant in a
given resident’s island. However, for suffi ciently large populations (with fixed island size n), the probability
that a mutant is present in a resident’s island is so small that, by upper hemi-continuity of the best-reply
correspondence of any u ∈ F , the set of Nash equilibrium strategies for the residents when mutants are very
rare in their islands, can be kept within arbitrarily small distance from the set Xu.
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The population size being constant over time, we note that w̃
(
x,x(n−1), x

)
= 1 for all

x ∈ X. A necessary and suffi cient condition for a strategy x ∈ X to be uninvadable under
strategy evolution is readily obtained by applying condition (4), resulting in:

n−1∑
k=0

pk (y, x) · w̃
(
y,y(k),x(n−1−k), x

)
≤ 1 ∀y ∈ X. (8)

Equivalently, an uninvadable strategy x can be seen as preempting entry into the population
by earning the maximal lineage fitness that can be obtained in a population where the
resident strategy is x; that is

x ∈ arg max
y∈X

n−1∑
k=0

pk (y, x) · w̃
(
y,y(k),x(n−1−k), x

)
. (9)

In other words, a strategy is uninvadable if and only if it is a best reply to itself in terms of
lineage fitness. We denote by X̂ (P) the (potentially empty) set of uninvadable strategies in
population P = 〈n,X, π, w,Θ〉.
As a second step we use these observations to write the condition for a type u ∈ F to be

uninvadable, (4), in an operational form:

n−1∑
k=0

pk (y, x) · w̃
(
y,y(k),x(n−1−k), x

)
≤ 1 ∀v ∈ F and ∀ (x, y) ∈ BNE (u, v) . (10)

This immediately leads to our first result.

Proposition 1 In a population P, a utility function u is uninvadable in F if and only if
Xu ⊆ X̂ (P).

In other words, for a utility function to be uninvadable, it must induce resident Nash
equilibrium strategies that are all uninvadable. However, a utility function does not need to
give rise to all uninvadable strategies in resident Nash equilibrium; any strategy in X̂ (P)
that would not belong to Xu would simply not be played by residents, and would thus not
be subject to potential invasion by mutants.17

The expression on the left-hand side of (10), however, shows that characterization of
uninvadable preferences involves a major challenge, because the matching probabilities may
depend both on the resident and mutant strategies, in all time periods when mutants are
around.18 In the second part of the analysis below, we analyze a model in which independence

17Note that the proposition implies that strategy-committed types that are uninvadable by other strategy-
committed types, are uninvadable by all preference types. Indeed, if X̂ = {x̂}, then u ∈ F is uninvadable
if and only if Xu = {x̂}. Moreover, this is true even if the residents would have preferences that do not
entail commitment to a particular strategy, as long as these preferences induce them to play the uninvadable
strategy in residential Nash equilibrium.

18Obtaining exact expressions for the matching probabilities is typically hard. However, their values can
be approximated (see Appendix 6.7 for an approximation method).
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of the matching probabilities on the strategies played arises endogenously. This model will
allow us to fully characterize the set of uninvadable preferences at the level of material
payoffs. Prior to that, however, we report results on uninvadable preferences at the level of
fitnesses.

3.1 Utility and fitness

In spite of the challenge posed by the dependence of the matching probabilities on the
strategies played by residents and mutants, we show that one particular class of utility
functions stands out, in the sense that there always exists a utility function in this class for
which some resident strategy is uninvadable.

3.1.1 The general case

For any given strategy x∗ ∈ X, let the utility function ux∗ : Xn → R be defined by

ux∗ (xi,x−i) = Ep(xi,x∗) [w̃ (xi, z̃−i, x
∗) | (xi,x−i)] ∀(xi,x−i) ∈ Xn, (11)

where p (xi, x
∗) = (p0 (xi, x

∗) , p1 (xi, x
∗) , ..., pn−1 (xi, x

∗)) is the vector of matching proba-
bilities that would be induced in population P if residents played x∗ and mutants played
xi. Here z̃−i is a random strategy-profile such that with probability pk (xi, x

∗) (for each
k = 0, 1, .., n − 1) exactly k of the n − 1 components in x−i are replaced by xi, with equal
probability for each such subset of k replaced components, while the remaining components
in x−i keep their original value. Then:

Proposition 2 Any utility function ux̂ of the form (11) such that Xux̂ = {x̂} is uninvadable
in F . Moreover, each uninvadable strategy x̂ is also a resident strategy under the utility
function ux̂.

This proposition identifies a suffi cient condition for a utility function of the form (11) to
be uninvadable. The condition is that the utility function has a unique resident strategy.
Moreover, if the population structure admits multiple uninvadable strategies, then there are
multiple utility functions of the form (11) that may be uninvadable, one for each x̂ ∈ X̂ (P).
Interestingly, then, different utility functions may arise in different populations with the
same population structure. The reason is that the residential strategy affects the matching
probabilities (which further explains why this result differs sharply from models in which
the assortativity in the matching process is exogenous). There may of course be other unin-
vadable utility functions than those of the form (11) (see below). Nonetheless, Proposition
2 has a powerful implication: any uninvadable utility function must give rise to a resident
strategy that is also a resident strategy under ux̂ for some x̂ ∈ X̂ (P).

An individual with the utility function ux∗ can be seen as following a probabilistic version
of Kant’s categorical imperative (Kant, 1785) at the fitness level; she evaluates the strategies
at her disposal in the light of what would happen to her own fitness in the hypothetical
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scenario in which others would probabilistically use her strategy, according to the proba-
bility distribution p (xi, x

∗).19 For illustrative purposes, we state ux∗ explicitly for n = 2
(then calling own strategy xi and the opponent’s strategy xj) and n = 3 (then calling the
opponents’strategies xj and xk):

ux∗ (xi, xj) = p0 (xi, x
∗) · w̃ (xi, xj, x

∗) + p1 (xi, x
∗) · w̃ (xi, xi, x

∗) (12)

ux∗ (xi, xj, xk) = p0 (xi, x
∗) · w̃ (xi, xj, xk, x

∗) +
p1 (xi, x

∗)

2
· w̃ (xi, xi, xk, x

∗) (13)

+
p1 (xi, x

∗)

2
· w̃ (xi, xj, xi, x

∗) + p2 (xi, x
∗) · w̃ (xi, xi, xi, x

∗) .

Note that the weights p (xi, x
∗) in the ux∗ utility function depend on the individual’s own

strategy xi in the present, whereas in the lineage fitness the matching probabilities depend on
the strategy played by mutants individuals living over several (and past) demographic time
periods. This highlights the difference between lineage fitness, which is an objective measure,
and utility, which is subjective. The dependence of the weights p (xi, x

∗) on own strategy
xi, however, questions the operational relevance of ux∗ as an analytically and conceptually
useful utility function. As such, we now turn to study cases where the matching probabilities
in the lineage fitness no longer depend on the mutants’strategy; this will enable us to turn
to utility functions with weights that do not depend on the individual’s strategy.

3.1.2 The differentiable case

Suppose that the following differentiability assumption holds:20

[D] (i) X = R, (ii) π : Rn → R is continuously differentiable, and (iii) pk : X2 → [0, 1]
is differentiable for all k ∈ {0, 1, ..., n− 1}.
In the next proposition, which states a necessary condition for a strategy x̂ to be unin-

vadable, r (x̂, x̂) is the coeffi cient of pairwise relatedness (see (3)) in a population where all
individuals play x̂, and a subscript i on w̃ denotes the partial derivative with respect to the
i-th argument.

Proposition 3 If [D] holds and x̂ ∈ X̂ (P), then

w̃1
(
x̂, x̂(n−1), x̂

)
+ r (x̂, x̂)

n∑
j=2

w̃j
(
x̂, x̂(n−1), x̂

)
= 0. (14)

19These preferences are reminiscent of homo moralis preferences (Alger and Weibull, 2013, 2016). However,
there are two important distinctions. First, here the utility function is defined for a certain reference strategy.
Second, the weights attached to the different terms in the utility function depend on the strategy used by
the individual at hand.

20The uni-dimensionality assumption is inessential. All analysis can be carried out in terms of gradients,
but with little gain in terms of qualitative insight. For brevity and clarity, we therefore stay with the
unidimensional case.
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The first term is the marginal fitness benefit of the individual’s own strategy, while the
second term is the sum of the marginal fitness benefits conferred by others, weighted by
the coeffi cient of pairwise relatedness. This equation is nothing but the marginal version of
Hamilton’s rule (Hamilton, 1964, 1970, Franck, 1998), which provides the necessary first-
order condition for an (interior) strategy to be uninvadable (see equation (3) in Taylor and
Frank, 1996, or equation (7.5) in Rousset, 2004).21 Such first-order conditions are standard
in the biology literature, but for the sake of completeness we provide a proof in the appendix.

Consider the utility function defined by

ũx̂ (xi,x−i) = [1− r (x̂, x̂)] · w̃ (xi,x−i, x̂) + r (x̂, x̂) · w̃
(
xi,x

(n−1)
i , x̂

)
, (15)

where x̂ ∈ X̂ (P), and x
(n−1)
i ∈ Xn−1 is the strategy vector whose n−1 components all equal

xi. Clearly, Propositions 1 and 3 together imply that if x̂ is the unique resident strategy
under ũx̂, then this utility function is uninvadable.

An individual equipped with the utility function in (15) evaluates her strategy, xi, both
in terms of how it affects her own fitness, given the neighbors’strategies and the strategy
played in the population at large, reflected in the first term, and how her strategy xi would
affect her fitness should her neighbors, hypothetically, also use it, reflected in the second
term. This is reminiscent of homo moralis preferences (see, in particular, Proposition 3 of
Alger and Weibull, 2016), although an important difference is that here the utility function
in (15) is defined for a certain reference strategy.

3.2 Utility and material payoffs

We now turn to an approach in which the matching probabilities still depend on the trans-
mission process but are independent of the strategies used. This approach, in biology called
weak selection (see, e.g., Nagylaki, 1992, 1993), assumes that fitness effects from the in-
teraction in question are small. Arguably, this approach is highly relevant for the social
sciences, since it generates predictions regarding those preferences that guide behaviors in
minor everyday interactions, those with only small effects on lifetime fitness.

3.2.1 Weak selection

Formally: for each x ∈ X and y ∈ Xn−1 let an individual’s material payoff be a convex
combination of two terms,

π̄(δ) (x,y) = (1− δ) · π0 + δ · π (x,y) , (16)

21First-order conditions like equation (14) apply more generally to traits if lineage fitness and individual
fitness are differentiable in trait values. The aforementioned evolutionary dynamics literature focuses on
the evolution of phenotypes– the composite of an organism’s characteristics– thus subsuming virtually any
heritable trait and can be applied to essentially any demographic scenario (see Rousset, 2004, for general
results).
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where π0 is baseline material payoff, assumed identical for all individuals, and δ ∈ (0, 1) is
the share of the material payoff that emanates from the present material game interaction.
This factor δ is the intensity of selection. Thus, for δ ∈ (0, 1) fixed, the fitness of individual
i is now of the form

w (π̄i, π̄−i, π̄
∗) = w

(
(1− δ) π0 + δπi, ((1− δ) π0 + δπj)j 6=i , (1− δ) π0 + δπ∗

)
. (17)

Weak selection amounts to considering the limit as δ tends towards 0.22 Importantly,
under weak selection, the matching probabilities, while still depending on the transmission
process, do not depend on the strategies x and y (for any population P = 〈n,X, π, w,Θ〉
satisfying assumption [M]). The probability for a randomly drawn descendant of an ancestor,
be it a resident or mutant, to coexist in its island with k other descendants of the same
ancestor is then solely determined by the vital rates in a population in which everybody uses
the same strategy x, no matter which. In biology this is referred to as the neutral process.
This in turn has profound implications for the ability of a mutant trait to invade, since it
means that the strategy played by residents matters only insofar as it affects the local success
of mutants.

Let p0 =
(
p00, p

0
1, ..., p

0
n−1
)
denote the vector of matching probabilities induced by the

neutral process. Proposition 2 still holds under weak selection: individuals playing some
uninvadable strategy x̂ ∈ X̂ (P) may be viewed as if they were striving to maximize the
utility function ux̂, with the matching profile now given by p0. This utility function is
a sum of individual fitnesses. However, as is shown in the next proposition, under weak
selection there is also an uninvadable utility function which describes preferences at the level
of material payoffs, and which does not depend on any reference strategy. Let v0 : Xn → R
be defined by

v0 (xi,x−i) = Ep0

[
π (xi, z̃−i)− λ0 ·

∑
j 6=i
π (z̃j, z̃−j) | (xi,x−i)

]
∀ (xi,x−i) ∈ Xn, (18)

where z̃−i is defined in the same way as in (11), and

λ0 = lim
δ→0

λ (x) (19)

is the coeffi cient of fitness interdependence under weak selection, where

λ (x) = −
(∑

j 6=i

∂w (πi,π−i, π
∗)

∂πj

)
/

(
∂w (πi,π−i, π

∗)

∂πi

)
, (20)

evaluated when all individuals in the population use the same strategy x ∈ X. Hence, λ0
measures the marginal effect of neighbors’material payoffs on own fitness, relative to the
marginal effect of own material payoffon own fitness, in a population in which all individuals
play the same strategy, and in the limit as δ tends to zero. A positive coeffi cient λ0 can be

22This formalization of weak selection corresponds to what Wild and Traulsen (2007) call w-weak selection.
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interpreted as there being competition for local resources: an increase in the material payoffs
to neighbors then reduces an individual’s fitness. A negative coeffi cient λ0 means that there
is a positive externality at the level of material payoffs between neighbors: an increase in
the material payoffs to neighbors then increases an individual’s fitness.

Our next result establishes that selection favors the so-defined utility function, which was
used in the context of strategy evolution in Lehmann, Alger, and Weibull (2015), and rejects
other utility functions unless they induce an identical best reply to some resident equilibrium
for v0:

Proposition 4 The utility function v0 is uninvadable in Θ = F under weak selection. A
utility function u ∈ Θ is invadable under weak selection if ∃x̃ ∈ Xu such that x̃ /∈ Xv0.
Moreover, 1− n ≤ λ0 ≤ 1.

An individual with the utility function v0 is but that of the familiar Homo oeconomicus if
λ0 = 0 and p00 = 1. By contrast, if λ0 6= 0 and p00 < 1, the individual evaluates any strategy
profile (xi,x−i) by pondering his expected material payoff advantage over his neighbors,
π (xi, z̃−i) − λ0 ·

∑
j 6=iπ (z̃j, z̃−j), if all, some, or none of the others in her island would use

the same strategy as herself (drawn randomly according to p0), instead of playing their
strategies, given by x−i.

To illustrate how the v0 goal function is related to preferences studied in behavioral
and experimental economics, we briefly consider the two-player case. By writing the utility
function as

v0(xi, xj) = (1− λ0)
(
1− p01

)
π (xi, xj) + (1− λ0) p01π (xi, xi) (21)

+ λ0
(
1− p01

)
[π (xi, xj)− π (xj, xi)] ,

it can be interpreted as the sum of three terms, where the first represents “pure self-interest”
(own material payoff), the second a Kantian concern (what is the “right thing to do if others
in the population act like me”), and the third a “comparison with the Joneses”(the difference
between own material payoff and that of the neighbor). Note also that a positive weight
λ0 > 0 expresses a form of envy or spite; if instead λ0 < 0, then it is as if individuals care
positively, or altruistically, about their neighbors’material payoffs.

Remark 1 Part of the economics literature on the evolutionary stability of strategies and
preferences relies on models in which rare mutants may have a positive probability of being
matched with each other, even in the limit as the share of mutants tends to zero (Bergstrom,
2003, Alger and Weibull, 2013, 2016). These limit matching probabilities are taken to be
independent of the strategies being played. Hence, they may be interpreted as the vector of
matching probabilities p0 in the neutral process.

3.2.2 The differentiable case

We finally turn to return to the general model, i.e., selection need not be weak, and consider
settings where [D] holds. In a population in which all individuals play x, let κ (x) denote

20

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 30, 2019. ; https://doi.org/10.1101/408435doi: bioRxiv preprint 

https://doi.org/10.1101/408435
http://creativecommons.org/licenses/by-nd/4.0/


the coeffi cient of scaled relatedness, defined as

κ (x) =
r (x, x)− 1

n−1λ (x) [1 + (n− 2) r (x, x)]

1− λ (x) r (x, x)
. (22)

Then we obtain a result that (unlike Proposition 3) is new to the evolutionary biology
literature:23

Proposition 5 If [D] holds and x̂ ∈ X̂ (P), then

[1− κ (x̂)] · π1
(
x̂, x̂(n−1)

)
+ κ (x̂) ·

n∑
j=1

πj
(
x̂, x̂(n−1)

)
= 0. (23)

Like r(x̂, x̂), the coeffi cient κ (x̂) can be interpreted as a marginal substitution rate: it
gives the number of units of own material payoff that any given individual is willing to
forgo to increase the material payoff of each neighbor by one unit. Absent any fitness
interdependence, i.e., if λ (x̂) = 0, κ (x̂) would simply equal relatedness r (x̂, x̂). To see
exactly how κ (x̂) accounts for fitness interdependence, consider first the case when there is
but one neighbor, that is n = 2. A payofftransfer to this neighbor increases competition from
the neighbor at rate λ (x̂) (since λ (x̂) measures the relative increase in competition in the
neighborhood of an individual when its payoff is varied, see (20)). The fitness benefit to the
donor from giving the transfer to the neighbor is thus reduced by λ (x̂), so that the numerator
in (22) becomes r (x̂, x̂)− λ (x̂). Moreover, a transfer of resources to the neighbor alleviates
the competition that the neighbor experiences, and the neighbor is related to the donor
according to coeffi cient r (x̂, x̂). Hence, the cost of the transfer is reduced by λ (x̂) r (x̂, x̂),
which explains the denominator in (22).

When there are multiple neighbors, n > 2, a transfer given to one neighbor enhances
the competition by λ (x̂) / (n− 1), but also for the (n− 2) other neighbors, each of which
is related to the donor according to coeffi cient r (x̂, x̂). Therefore, the fitness benefit of
the transfer to the donor is reduced by λ (x̂) / (n− 1) times the term in square brackets in
the numerator; which explains the numerator of κ (x̂). In the denominator, the cost of the
transfer is still reduced by λ (x̂) r (x̂, x̂), which is the expected alleviation of competition that

23To be more explicit about this statement, we note that first-order conditions similar to the one in (23)
appear elsewhere in the evolutionary biology literature, but then under the form f1

(
x̂, x̂(n−1)

)
+ κ̃ (x̂) ·∑n

j 6=1 fj
(
x̂, x̂(n−1)

)
= 0, where f is the fecundity of an individual (see Lehmann and Rousset, 2010, Akçay

and van Cleve, 2012, Van Cleve, 2015, Dos-Santos and Peña, 2017). We would obtain the exact same
expression if in our model fitness depended solely on fecundity, since then derivatives of fecundity with respect
to material payoffs would cancel from first-order conditions (to see this, set survival to zero in the fitness
function in (26) in Section 4). Our model generalizes previous models, since Proposition 5 applies regardless
of whether fitness depends only on fecundity, or also on individual and/or group survival (see Section 4 for
examples of fitness functions), and it makes explicit the role of the coeffi cient of fitness interdependence.
Further, it demonstrates that even if r (x̂, x̂) = 0, the substitution rate κ (x̂) can be substantial depending on
the scenario (see, in particular, the examples in Section 4.2). As such, our results unify and extend previous
ones of the evolutionary biology literature.
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the transfer induces for the individual’s neighbors (recall that λ (x̂) accounts for all neighbors
through the term (n− 1)).

In view of the necessary first-order condition (23), it may be of interest to consider the
utility functions vx̂ ∈ F defined by

vx̂ (xi,x−i) = [1− κ (x̂)] · π (xi,x−i) + κ (x̂) · π
(
xi,x

(n−1)
−i

)
, (24)

where x̂ ∈ X̂ (P). Since (23) implies that x̂ satisfies the necessary first-order condition for
an interior symmetric Nash equilibrium of the n-player game in which all players have utility
function vx̂, Proposition 1 implies that vx̂ is an uninvadable utility function if x̂ is the unique
resident strategy under vx̂.

In sum, in a population in which all individuals play some interior uninvadable strategy
x̂, these individuals may (under some conditions) be perceived as having a Kantian concern
at the fitness level as well as at the material payoff level. Importantly, the strength of
the Kantian (or other-regarding) concern at the fitness level, measured by r (x̂, x̂), typically
differs from the strength of the Kantian (or other-regarding) concern at the material payoff
level, measured by κ (x̂), as shown next:

Proposition 6 Suppose that [D] holds and that vx̂ is uninvadable. The weight κ (x̂) attached
to the neighbors’material payoffs in the function vx̂ lies in the interval [−1, 1]. Furthermore,
κ (x̂) > r (x̂, x̂) if and only if λ (x̂) < 0.

We note that a necessary and suffi cient condition for λ (x̂) to be negative is that in a
population where everybody plays x̂, ∂w (πi,π−i, π

∗) /∂πj is positive (this partial derivative
being the same for all j 6= i). We finally note that under weak selection (22) becomes:

κ0 =
r0 − 1

n−1λ0 [1 + (n− 2) r0]

1− λ0r0
, (25)

where λ0 is defined in (19) and r0 = limδ→0 r (x, x).

4 Three canonical scenarios

We have reported general theoretical results on how fitness consequences of material payoffs
may be expected to affect preferences over material payoff outcomes. In this section we
apply these general results by examining three canonical evolutionary scenarios. For each
scenario we calculate the associated coeffi cients of relatedness r, fitness interdependence λ,
and scaled relatedness κ (all the calculations can be found in the appendix). Once these
coeffi cients have been identified, equations (18), (15) and (24) provide closed-form represen-
tations of uninvadable utility functions, expressed in terms of the material payoff function
that represents the strategic interaction at hand. We note that these coeffi cients are inde-
pendent of the material payoff function in question, so the obtained utility representations
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can be carried over from one material game to any other material game. Also, for all these
scenarios the approximate explicit expression for the matching probabilities can be applied
(see equation (78) in the Appendix), so the preferences can be fully evaluated in terms of
the aforementioned coeffi cients.

4.1 Scenario A: Genes

If types are genetically determined, a possible fitness function is:

w (πi,π−i, π
∗) = s (πi) + m · [1− s (π∗)]n · f (πi)

nf (π∗)
(26)

+ (1−m) ·
(
n−

n∑
j=1

s (πj)

)
· f (πi)

(1−m)
∑n

j=1 f (πj) + nmf (π∗)
,

where s (πi) ∈ [0, 1] is the probability that i survives to the next demographic time period,
f (πi) > 0 is i’s expected number of offspring (who will have inherited i’s type), and 0 <
m ≤ 1 is the probability for each offspring to migrate to another island. These vital events–
survival, reproduction and migration– are assumed to be statistically independent. In each
island the deceased adults, if any, are replaced by (uniformly) randomly drawn aspiring
offspring, native and immigrant. The fortunate ones settle and become adults while the
unfortunate ones die. The third term is thus the expected number of i’s offspring who
manage to secure a “breeding spot”on the natal island. It is the product of three factors:
(a) the probability for not migrating, (1−m); (b) the number of available spots on the
island; and, for each available spot, (c) the competition for the spot, among native and
migrating offspring from other islands, where f (π∗) is he fecundity in the population at
large. The second term is the expected number of i’s offspring who migrate and manage
to secure a breeding spot on another island: each offspring who migrates to another island
competes against nf (π∗) other individuals for the n available spots.

Remark 2 For a more detailed derivation of an equation like (26) from the random variables
that underlie survival and reproduction, see Lehmann and Balloux (2007). In particular,
since the total number of islands is infinite, the probability is zero for the event that more
than one of i’s offspring happen to migrate to the same island. Moreover, when the expected
number of offspring is large, as we here assume, then the event that there are fewer aspiring
offspring than there are available slots in an island is negligible, and the ratios between the
expected numbers of offspring, in (26), equal the expectations of the ratios of the underlying
random numbers of offspring.

Considering the case where the survival probability is constant, s (πi) = s0, the coeffi cient
of relatedness equals

r (x, x) =
(1−m)2 + s0 (1−m2)

n− (n− 1) (1−m)2 + s0 [1 + (n− 1)m2]
, (27)
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and the coeffi cient of fitness interdependence equals

λ (x) =
(n− 1) (1−m)2

n− (1−m)2
. (28)

Both coeffi cients turn out to be independent of the reference strategy x. Hence, the utility
functions ux and vx, defined in equations (15) and (24), are independent of what strategy
x is used in the population at large and can, in this evolutionary scenario, be explicitly
parametrized in terms of the migration rate m, group size n, and survival probability s0.
Both r (x, x) and λ (x) are strictly positive for all n, all m ∈ (0, 1), and all s0 ∈ (0, 1).
By contrast, if m = 1, the probability of interacting with an individual from the same
lineage is nil, r (x, x) = 0, and, moreover, there is no fitness benefit from out-competing
neighbors materially, λ (x) = 0. Moreover, both coeffi cients are decreasing in m, and r (x, x)
is increasing in s0. Substituting (27) and (28) into (22), we obtain:

κ (x) =
2 (1−m) s0

2 (1−m) s0 + n [2−m (1− s0)]
, (29)

which is strictly positive for any m ∈ (0, 1) and s0 > 0, but nil for m = 1 and for s0 = 0.
In other words, in this evolutionary scenario, when s0 = 0 but m ∈ (0, 1), any uninvadable
utility function must be as if individuals are pro-social at the level of fitnesses (r (x, x) > 0),
but are purely selfish at the level of material payoffs (κ (x) = 0). Furthermore, a positive
survival probability s0 > 0 induces pro-sociality (κ (x) > 0). However, note that κ (x)
is decreasing in island size n and in migration rate m. In fact, it vanishes as n becomes
infinitely large. Figure 1 shows how κ (x) depends on m when s0 = 1/n, for n = 2 (black
solid) and n = 10 (black dashed), and when s0 = 0.8 for n = 2 (blue) and n = 10 (blue
dashed), as well as s0 = 0 (pink).

Figure 1: The value of κ (x) as a function of the migration rate m.

Remark 3 In the biology literature, the island model has become a work-horse model to an-
alyze conditions favoring pro- and anti-sociality at the level of survival and reproduction in
spatially structured populations. This literature has a well-known result known as Taylor’s
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cancellation result, a useful yardstick for understanding how changes in the transmission
scenario can tip the balance either in the direction of pro-sociality or anti-sociality. Our
result that κ (x) = 0 for s0 = 0 is in line with this result. When s0 = 0, (14) boils down
to n2m (2−m) f ′ (π (x̂)) = 0, which implies that f ′ (π (x̂)) = 0: in spite of a positive relat-
edness, uninvadability requires simple maximization of own fecundity. This holds true even
if fecundity depends directly on the underlying trait, the standard assumption in the biology
literature (see also Footnote 23), without being a function of some material payoff. It is this
observation which is known as Taylor’s cancellation result, noticed initially in agent-based
simulations by Wilson, Pollock, and Dugatkin (1992), proven formally by Taylor (1992a) for
the island model, and then shown to hold for arbitrary migration patterns between groups
(e.g., Taylor, 1992b, Rousset, 2004, and Ohtsuki, 2012). To see that it is in line with our
result that κ (x) = 0 for s0 = 0, note that since f is strictly increasing in π, f ′ (π (x̂)) = 0
in turn implies that x̂ maximizes π, i.e., π′ (x̂) = 0. Finally, we note that the same ex-
pression as that in the right hand side of eq. (29) was first obtained by Taylor and Irwin
(2000, their eq. A.10), as a marginal cost to benefit ratio at the level of fecundity (see also
Akçay and van Cleve, 2012). There is by now an extensive theoretical literature seeking to
delineate how the assumptions pertaining to demography, life-history, the environment, and
the modes of transmission, tip the balance in favor of pro- or anti-sociality at the survival or
fecundity level (see, e.g., Eshel, 1972, Aoki, 1982, Gardner and West, 2006, Johnstone and
Cant, 2008, Lehmann, Foster, and Feldman, 2008, Lion and Gandon, 2010, Bao and Wild,
2012, and Micheletti, Ruxton, and Gardner, 2017, for a some representative case studies,
and Lehmann and Rousset, 2010, for a review).

4.2 Scenario B: Guns

Take the biological scenario A with non-overlapping generations (set s (π) = 0 for all π),
and augment it by introducing wars between groups. Following play of the material game
in a demographic time period, but before reproduction, death of the adults, and migration
by the offspring, islands are randomly engaged in pairwise wars, under exogenous uniform
random matching. In each war, one island wins and the other loses. All individuals in the
losing island thus die before they reproduce; the winning island takes over all reproductive
resources of the other island and thus doubles its members’ fecundity. Technically, the
double-sized pool of offspring of the winning island will split in two halves, one for each
of the two islands, that they will treat as their “home” island. Let 0 ≤ ρ ≤ 1 denote the
probability that any given island is drawn into war, the war risk, and let g (π, π∗) denote the
conditional probability that an island with material payoff profile π ∈ Rn wins a war when
the average payoff in the rest of the population is π∗, conditional on being drawn into war.
Here g is assumed to be increasing and permutation invariant with respect to the material
payoffs earned by the inhabitants of the island in question. In other words, for π∗ fixed, g
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has the properties of standard welfare functions. In this scenario the fitness function is

w (πi,π−i, π
∗) = [(1− ρ) + 2ρg (π, π∗)] ·

[
m · f (πi)

f (π∗)
+ (30)

(1−m)n · f (πi)

(1−m)
∑n

j=1 f (πj) + nmf (π∗)

]
.

The difference with the baseline scenario is the first factor, which contains two terms: the
probability that the individual’s island will not go to war (1−ρ), and the probability that the
island will go to war and win times two (2ρg (π, π∗)), where the factor two comes from the
assumption that a winning island doubles its fecundity and spreads its offspring uniformly
over the two islands it now possesses. To see why the second factor is the same as the
right-hand side of (26), note that migrants who arrive at any island, irrespective of whether
this island has been involved in war or not, come with probability 1− ρ from an island that
was not in war, and (recalling that the average probability of winning a war is 1/2) with
probability ρ/2 from an island that won a war. Moreover, victorious islands send out twice
as many migrants as islands that did not go to war. Hence, the expected number of migrants
who compete for the breeding spots in any given island ism (1− ρ+ 2ρ/2)·f (π∗) = mf (π∗),
the same as in the absence of wars.

The coeffi cient of relatedness turns out to coincide with that in the preceding scenario
(for s0 = 0). This is because the only event in which a randomly drawn individual can belong
to the same local lineage as a randomly drawn neighbor, is when both belong to an island
which did not lose a war, and both stayed in their natal island. Since the risk of losing a war
applies to the whole island, while the migration probability applies to the individual, only
the latter matters for relatedness. The coeffi cient of fitness interdependence equals

λ (x) = −
(n− 1)

[
2ρgn (π∗, π∗)− (1−m)2f ′(π∗)

nf(π∗)

]
2ρgn (π∗, π∗)− [n− (1−m)2] f

′(π∗)
nf(π∗)

, (31)

where gn denotes the partial derivative of g with respect to the n-th argument (since g is
evaluated in a homogenous population here, and since g is invariant under permutation of
the n first arguments, gn simply captures the marginal effect of an increase in the material
payoff of any island member on the probability of winning a war). While the expression is
involved, it can readily be seen (by considering a scenario in which f ′ (π∗) = 0, for instance)
that the effect of material payoffs on the strength in wars can make λ (x) negative, while
in the scenario without wars studied above, it is always positive. In other words, conflicts
between groups reduces spite, and may even reduce it so much that it turns into altruism,
i.e., a positive weight is attached to the neighbors’material payoffs. Indeed, by substituting
(27) (for s0 = 0) and (31) into (22), we obtain:

κ (x) =
ρ

ρ+ (2−m)m
2gn(π∗,π∗)

f ′(π∗)
f(π∗)

, (32)

which is increasing in the marginal effect gn on the probability of winning wars.
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We next turn to weak selection in order to obtain more explicit results on the effects
of wars on fitness interdependence and scaled relatedness. Recalling the notation under
weak selection (see (16)), let each individual’s fecundity be exponentially increasing in the
individual’s material payoff,

f (π̄i) = f0 · exp ((1− δf ) · π0 + δf · πi) , (33)

where f0 > 0 is baseline fecundity and δf > 0 represents the intensity of selection with
respect to fecundity. Furthermore, assume that the probability of winning a war depends on
the two islands’aggregate material payoffs according to

g (π̄, π̄∗) =
exp (V (π̄))

exp (V (π̄)) + exp (V (π̄∗))
, (34)

where π̄ = (1− δν)π0 + δvπ and π̄∗ = (1− δν)π0 + δvπ
∗, and V : Rn → R is a strictly

increasing symmetric function (like any standard welfare function). Its values V (π̄) and
V (π̄∗) represent the “strengths”of the two islands. This is a logistic version of the Tullock
contest function (Tullock, 1980), see Skaperdas (1996). It spans a continuum of cases, from
all islands having the same chance to win any war, if the intensity of selection with respect
to wars be nil, to the case in which the materially wealthiest island is almost sure to win
any war (is the intensity of selection is infinitely large). Letting δf = σf · δ in equation (33)
and δv = σv · δ, for non-negative parameters σf ≥ 0, σv ≥ 0, and δ > 0, we can let both
sensitivity parameters tend to zero at proportional rates by focusing on the limit as δ → 0.
Below, however, we let σv = σf , and thus write δ for δv.

Many scenarios can be imagined, of which we consider two. First, if an island’s strength
is proportional to its total material payoff, i.e., if V (π̄) = (1− δ)nπ0 + δ

∑n

i=1
πi, then

fitness interdependence takes the following form (see the appendix):

λ0 =
(n− 1) (1−m)2 − ρ (n− 1)n/2

n− (1−m)2 + ρn/2
. (35)

This changes sign when the risk of war is ρ∗ = 2 (1−m)2 /n; it is positive at lower risks of war
and negative at higher risk levels for war. Since in the baseline scenario with non-overlapping
generations uninvadability under weak selection requires individuals to be selfish on balance
(see Section 3.2), the reduction in fitness interdependence that the war risk entails, leads to
pro-sociality on balance; indeed, for any ρ > 0 we obtain κ0 > 0:

κ0 =
ρ

ρ+ 2m (2−m)
. (36)

Moreover, the threat of war (ρ > 0) nourishes pro-sociality: κ0 is increasing in the risk of
war, ρ, and is independent of group size, n.24 Figure 2 shows κ0 as a function of the migration

24The early evolutionary biology literature, which considered traits affecting environmentally induced
group extinction (e.g., Eshel, 1972, Aoki, 1982), produced the opposite insight, namely, that pro-sociality
at the fecundity level (the equivalent of κ̃ referred to in Footnote 23) is a decreasing function of n (see also
Lehmann and Rousset, 2010.
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rate m, for war risk ρ = 0 (the pink curve), ρ = 0.4 (the orange curve), and ρ = 0.8 (the
blue curve).25

Figure 2: The value of κ0 as a function of the migration rate m.

Second, while it is arguably a natural benchmark case to assume that the probability of
winning a war depends on the group’s total material payoff, sometimes the success or failure
in conflicts depends on the strongest or the weakest member of one’s group.26 A general
case, that allows for intermediate cases between dependence on the group’s total material
payoff and its minimal payoff, is obtained by using a CES-functional form. Let

V (π̄) =
[
(1− δ) · nπc0 + δ ·

∑n

i=1
πci

]1/c
(37)

for some c 6= 0. For c = 1 we obtain the previous case, and as c → −∞, V (π̄) →
mini {(1− δ) · π0 + δ · πi} (Leontieff production function). Hence, when c is negative and
large in absolute terms, an increase in the poorest group member’s material payoff will
increase the winning probability, and hence have a positive effect on others’fitness. This
suggests a Rawlsian, rather than Benthamite concern for other group members’material
well-being. Individuals with medium or high material payoffs may then behave as if they
had a particular concern for individuals with low payoff.

4.3 Scenario C: Culture

Suppose now that types are carried over from one generation to the next by cultural trans-
mission. In every demographic time period, each adult dies and is replaced by exactly one

25The analytical models of Bowles (2006, 2009) for the evolution of “parochial altruism”are also close to
our scenario with wars; in particular, the expected number of groups [1− ρ+ 2ρν (π, π̄∗)] to which a focal
group has access for reproduction after warfare also appears in Bowles’s formalization. However, since in
his model there are no explicit assumptions that allow to close the lifecycle, it is impossible to derive the
explicit values of λ0, r0, and κ0 for his model.

26A host of other hypotheses about group strength could be explored, see, e.g., Konrad (2014) and the
references therein.
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child, who searches for a type to emulate, from its deceased (single) parent, another adult
in its island, or an adult in another island. With probability s (πi) ∈ [0, 1], the loyalty of i’s
child, the (unique) child of individual i, emulates its parent’s type. With probability 1−m a
non-loyal child searches for a type to emulate among the (now dead) grown-ups in its natal
island (including its own parent). With the complementary probability, m > 0, such a child
draws a sample of n grown-ups from the population at large, and emulates the type of one of
them. The probability that an adult on any island is chosen as role model, when compared
to others in her island (by a non-loyal child), depends on her type’s attractiveness relative
to the attractiveness of the other grown-ups’types in her island. Likewise, the probability
that a child who searches outside its native island will pick a certain island, when looking for
a “role model”, is assumed to be proportional to the island’s relative attractiveness in the
world at large. Fitness w (πi,π−i, π

∗) is then the expected number of children who emulate
their type from an individual with material payoff πi when the other island members earn
the material payoff vector π−i, and individuals in all other islands earn material payoff π∗:

w (πi,π−i, π
∗) = s (πi) + m · [1− s (π∗)] · f (πi)

f (π∗)
(38)

+ (1−m) ·
(
n−

n∑
j=1

s (πj)

)
· f (πi)∑n

j=1 f (πj)
,

where, for any individual j in i’s island, f (πj) > 0 is the attractiveness of the type used by
j. The first term in (38) is the probability that i’s child loyally emulates its parent’s type,
without comparison with other adults’types.27 The second term concerns the event that
children from other islands emulate their type from one of the parents on i’s island. Written
more explicitly, this term can be spelled out as

mn [1− s (π∗)] ·
∑n

j=1 f (πj)

n · f (π∗)
· f (πi)∑n

j=1 f (πj)
, (39)

where the first factor is the expected number of children who search outside their native
islands, the second factor is the probability for each such child to decide for i’s island, and
the third is the conditional probability that it will then choose i as role model. The third
term concerns the event that some or all the children in i’s island emulate their type from
one among the parents on the island. The product of the first two factors in this term is
the expected number of such children and the third factor is the probability, for each such

27In the economics literature on cultural transmission of traits, a commonly used model is that of Bisin and
Verdier (2001). Like in our model, in Bisin and Verdier (2001) each grown-up has exactly one child, and each
child inherits its parent’s trait with some probability, and otherwise it inherits the trait of another grown-up
in the population. By contrast to our model, the population is not structured into islands, and there is no
strategic interaction between individuals. Furthermore, in their model a parent cares about whether her
child has the same trait as her, but not about whether the child inherited this trait from the parent or from
someone else. Denoting by qθ the population share of individuals with trait θ in the population, and by
s (qθ) the probability that a child inherits its trait vertically from its parent, their equation (1) says that the
unique child of a parent with trait θ acquires trait θ with probability s (qθ) + [1− s (qθ)] · qθ. Thus, in the
their model it is only the frequency of the trait that determines the transmission probability; in our model
the attractiveness of a trait also plays a role.
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child, that it will choose to imitate individual i. Note that, comparing this scenario to the
biological scenario with overlapping generations, loyalty plays a similar role to survival, and
attractiveness to fecundity. Moreover, the cultural import propensity m plays a similar role
to migration. (These observations motivated the notation.)

In this scenario,

r (x, x) =
(1−m)2 + s (π (x)) (1−m2)

n− (n− 1) (1−m)2 + s (π (x)) [1 + (n− 1)m2]
, (40)

where x = (x, ..., x) ∈ Xn, and

λ (x) =
(n− 1) (1−m)

n− 1 +m
, (41)

which leads to

κ (x) = − (1−m) [1− s (π (x))]

2n− [m (n− 1) + 1] [1− s (π (x))]
. (42)

Comparison with the biological scenario with overlapping generations reveals that the coef-
ficients of relatedness are the same, but that for any m < 1 the coeffi cient of fitness inter-
dependence is larger under cultural transmission. The enhanced competitiveness is strong
enough to lead to anti-sociality, since κ (x) < 0 obtains if and only if (1−m) [1− s (π (x))] <
(2−m [1− s (π (x))]) · n, an inequality which holds for all parameter values.28 In this ex-
ample, cultural transmission thus leads to anti-sociality, and anti-sociality is stronger at low
values of m. This is because a low cultural import rate enhances fitness interdependence.
Note that although genetic and cultural transmission here lead to opposite predictions re-
garding sociality, one qualitative similarity that appears is that like survival under genetic
transmission, loyalty under cultural transmission has a positive effect on sociality, κ (x). We
also note that the negative pro-sociality vanishes as groups tend to become infinitely large:
κ (x)→ 0 as n→∞.
To illustrate this, Figure 3 shows that κ (x) is strictly negative for all m < 1, for different

loyalty rates and different island sizes: for s0 = 0 and n = 2 (the pink curve), s0 = 0.4 and
n = 2 (the orange curve), s0 = 0.8 and n = 2 (the blue curve), s0 = 0 and n = 10 (the pink
dashed curve), s0 = 0.4 and n = 10 (the orange dashed curve), s0 = 0.8 and n = 10 (the
blue dashed curve).

28In evolutionary biology, the same expression as the right hand side of (42) was obtained for the case of
no cultural loyalty as a marginal fecundity cost to benefit threshold ratio under which the mutant is favored
in a public good game (eq. 26 of Lehmann, Foster, and Feldman, 2008).
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Figure 3: The value of κ (x) as a function of the cultural import rate m, for different
degrees of background loyalty of offspring towards parents.

5 Conclusion

By combining non-cooperative game theory and evolutionary biology, we have derived sev-
eral novel insights on the evolutionary viability of preferences in social interactions. In
particular, our model enables analysis of how the tendency of individuals to interact in fairly
small groups, between which there is limited migration, and between which there may be
conflicts, affects such preferences. A key strength of the model is that it makes a distinction
between material payoffs, which typically is the level at which data analysis by economists
is conducted, and individual fitness. Our results clearly show that the qualitative nature
of evolutionarily viable preferences is typically different at the material payoff than at the
individual fitness level. Furthermore, our results provide an evolutionary justification for
preferences as drivers of choice, by connecting stability at the strategy level with equilibrium
behavior under certain preferences. Our results thus address a criticism of the literature on
preference evolution, according to which it conflates revealed preferences with preferences
that drive choice, see, e.g. Newton (2018).

The cognitive assumption we make is that individuals understand what interaction is at
hand, but they need not know the material payoffs to others or the preferences of others.
Moreover, our formalization allows for the possibility that in fact there are (finitely) many
interactions going on simultaneously, or that are randomly selected, and even that each in-
teraction involves only a subset of the inhabitants in an island. What is required is symmetry
in the sense that all individuals face the same probabilities of being involved in any one of
the interactions and that the interaction at hand is aggregative and symmetric.

However, if individuals also understand the mapping from strategies to material payoffs,
a remarkable result emerges from our analysis. Under weak selection the nature of the
derived preferences are independent of the nature of the strategic interaction within islands.
This is because the matching profiles then depend only on the population structure, without
any reference to material payoffs. Hence, the utility function v0 (see (18)) would remain

31

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 30, 2019. ; https://doi.org/10.1101/408435doi: bioRxiv preprint 

https://doi.org/10.1101/408435
http://creativecommons.org/licenses/by-nd/4.0/


uninvadable even if the mapping from material payoffs to fitness and/or the mapping from
strategies to material payoffs were to change over time, as long as these changes do not
affect the matching probabilities, and as long as individuals understand the mapping from
strategies to material payoffs and adjust the material payoff terms in v0 accordingly.29 Such
robustness, however, presumes that Nash equilibrium play under the adjusted v0 would be
reached. Furthermore, the utility function at the fitness level would generally not remain
uninvadable. Given that the aforementioned mappings have certainly changed over the course
of human history, future research should lift the assumption of time-invariant mappings.

While our model is general in the sense that we allow for essentially any type of inter-
actions within groups, it also has several limitations. Perhaps the strongest is that we only
analyze type-homogeneous play and homogeneous populations subject to a single mutant.
More realistic models, with heterogeneous individuals, heterogeneous islands and resident
populations with multiple types are called for. Our hope is that the model proposed here
can be fruitfully used to this end.

6 Appendix

6.1 Fitness and randomness

We here give details about how we justify the expression of individual direct fitness w (πi,π−i, π
∗)

in our model. First, we note that, generically in the infinite island model, lineage fitness of
a mutant trait τ in a resident population with trait θ is defined as

W (τ, θ) =
n−1∑
k=0

pk (τ, θ) · w̄ (τ, θ, k) , (43)

where w̄ (τ, θ, k) is the expected number of settled offspring in the next demographic time
period that descend from a given adult mutant with trait τ in a group with exactly k other
mutants, and thus n − k − 1 individuals with trait θ. More formally, w̄ : Θ2 × N0 → R+ is
defined as the expectation of the random number Wτ,θ,k ∈ N0 of settled offspring descending
from the given mutant (including herself through survival), conditional on the event that in
the parental demographic time period her island is in state s = (τ, θ, k), that is, with k other
mutants (with trait τ) and the other n− k− 1 individuals with trait θ. The stochasticity in
the random variable Wτ,θ,k is due to within-generation variability.

Let Π = (Π1,Π2, ...,Πn,Π
∗) be the random payoff vector on an island, where Πi is

the random material payoff obtained by individual i = 1, ..., n at the end of phase one
of a demographic time period, and Π∗ is the random payoff earned by a representative
individual in an island where all individuals have trait θ. According to our decomposition

29To be more specific, and using Scenario A to illustrate this point, if the mappings f and s in (26) change,
while the migration probability m as well as the function w remain unchanged, then the weights attached
to the components in v0 remain unchanged.
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of a demographic time period into two phases (see section 2.1):

w̄ (τ, θ, k) = E [Wτ,θ | k] = E1 [E2 [Wτ,θ,k | Π] | k] , (44)

where E1 is the expectation over all stochastic events occurring during phase 1 of the demo-
graphic time period (potential randomness in the actions taken by individuals, and hence
in payoffs obtained), while E2 is the expectation over all stochastic events occurring dur-
ing phase 2 of the demographic time period (randomness in reproduction, survival, and/or
sampling among competing offspring).

We note that three sources of within-generation variability can be distinguished in our
model: (i) within-island trait variability (randomness in the number of other mutants), (ii)
within-island interaction and payoff variability (for given number of mutants, randomness
in the payoff vector), (iii) within-individual variability (for given number of mutants and
payoffs, randomness in survival and number of surviving offspring). Hence, equation (43)
can be viewed as a three-level iterated expectation:

W (τ, θ) = E0 [E1 [E2 [Wτ,θ,k | Π] | k]] . (45)

This is the grand expectation of the random numberWτ,θ of settled offspring descending from
a mutant randomly sampled from the local lineage of the initial mutant, sampled during the
random time interval until the first extinction of the local lineage, a time interval that is
finite with probability one.

We are now in a position to introduce the continuously differentiable individual fitness
function w : Rn+1→ R that maps realized material payoff vectors to the expected number of
offspring, conditional to the island state s = (τ, θ, k):

w(Πτ , 〈Πτ ,Πθ〉k ,Π∗) = E2 [Wτ | Π, τ, θ, k] , (46)

where 〈Πτ ,Πθ〉k is the random vector of the island neighbors’payoffs, when k neighbors (of
the given mutant) are mutants and the others are residents. We note that in a homogeneous
population, that is, where all individuals carry the same trait, irrespective what that trait
is, and all individuals use the same strategy, the random payoffs are identically and inde-
pendently distributed, and hence, for τ = θ: w(Πτ , 〈Πτ ,Πθ〉k ,Π∗) = w(Π̃,

〈
Π̃, Π̃

〉
, Π̃) = 1,

due to the constancy of the population in our model. Hence,

w̄ (τ, θ, k) = E1 [w(Πτ , 〈Πτ ,Πθ〉k ,Π∗) | τ, θ, k] . (47)

6.2 Functions and randomness

So far, we imposed no restrictions on the effect of within-generation uncertainty. A key
assumption we make in the analysis in the main text is that

E1 [w(Πτ , 〈Πτ ,Πθ〉k ,Π∗) | τ, θ, k] = w (π (τ |k) , 〈π (τ |k) , π (θ|k)〉 , π∗ (θ)) , (48)

where π (τ |k) = E1 [Πτ | τ, θ, k], π (θ|k) = E1 [Πθ | τ, θ, k], π∗ = E1 [Πθ | θ, θ, k]. Hence, we
replace the expectation of a function by the function of the expectation for uncertainty in
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phase 1 (type (ii) uncertainty above), which is a substantial assumption, except when all
functions are affi ne.

When the game under consideration is but one source for individuals’fitness and there
is variance in payoff, equation (48) is less restrictive under weak selection than may first be
thought. To see this, suppose that the total random payoff to an individual i (who may
have trait θ or τ) is the convex combination of two random variables, one exogenous random
background payoff (from other interactions, say), Πb, and the random payoff Π̃i from the
material game under consideration in our model:

Πi = (1− δ)Πb + δΠ̃i (49)

where δ ∈ (0, 1) is small. Then, by way of a Taylor expansion with respect to δ at δ = 0,
and using the zero-sum property of effects on individuals’fitnesses, we get (with subscripts
on the function w denoting partial derivatives):

w(Πi,Π−i,Π
∗) = 1 + δ · w1(Πb) · Π̃i + δ ·

n∑
j=2

wj(Πb) · Π̃j + δ · wn+1(Πb) · Π̃∗ +O(δ2). (50)

Suppose further that the random baseline payoffΠb is statistically independent from that
of the specific game, which for an mutant individual i denote Π̃τ . Then

E1 [w(Πi,Π−i,Π
∗)] = 1 + δ · E1 [w1(Πb)] · E1

[
Π̃i

]
+ δ ·

n∑
j=2

E1 [wj(Πb)] · E1
[
Π̃j

]
+ δ · wn+1E1 [Πb] · E1 [Π∗] + O(δ2), (51)

which leads to the same results as obtained by eq. (68) here below, but with partial derivatives
wj(Πb) replaced by their expectation.

6.3 Proof of Proposition 1

We show first that Xu ⊆ X̂ (P) is a suffi cient condition for u to be uninvadable. Suppose
that Xu ⊆ X̂ (P). Then for each x̃ ∈ Xu, (8) is satisfied for any strategy y ∈ X played by
mutants. In other words, there exists no v ∈ F for which some (x, y) ∈ BNE (u, v) does not
satisfy the inequality in (10). Hence, the condition (10) for u to be uninvadable in Θ = F is
satisfied.

We now show that Xu ⊆ X̂ (P) is a necessary condition for u is uninvadable. Suppose to
the contrary that u is uninvadable and that there exists some x̃ ∈ Xu such that x̃ /∈ X̂ (P).
Then there exists some ỹ ∈ X for which the inequality in (10) is not satisfied for (x̃, ỹ).
Consider the mutant utility function v (xi,x−i) ≡ ‖xi − ỹ‖2; it induces mutants to play the
strategy ỹ whichever strategy the residents play. Hence, there exists (x, y) ∈ BNE (u, v) for
which (10) is not satisfied. Since v ∈ F , this means that u is invadable in Θ = F .
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6.4 Proof of Proposition 2

Consider some uninvadable strategy x̂ ∈ X̂ (P). Then

x̂ ∈ arg max
y∈X

n−1∑
k=0

pk (y, x̂) · w̃
(
y,y(k), x̂(n−1−k), x̂

)
. (52)

Suppose now that ux̂ is the resident utility function. To see that x̂ is then a resident
strategy, note that given that an individual i’s opponents in the group play x̂, ux̂ writes:

ux̂,p(xi,x̂)
(
xi, x̂

(n−1)) =
n−1∑
k=0

pk (xi, x̂) · w̃
(
xi,x

(k)
i , x̂(n−1−k), x̂

)
, (53)

so that x̂ is a resident strategy iff

x̂ ∈ arg max
xi∈X

n−1∑
k=0

pk (xi, x̂) · w̃
(
xi,x

(k)
i , x̂(n−1−k), x̂

)
, (54)

which is true (to see this, compare this expression to (52)).

However, the fact that x̂ is the unique strategy satisfying (52) does not preclude existence
of other resident strategies under ux̂. Indeed, consider some strategy x̃. This is a resident
strategy if

x̃ ∈ arg max
xi∈X

n−1∑
k=0

pk (xi, x̂) · w̃
(
xi,x

(k)
i , x̃(n−1−k), x̂

)
. (55)

Lastly, if x̂ is the unique resident strategy under ux̂, then the set of resident strategies
under ux̂ is a subset of X̂ (P). This together with Proposition 1 implies that ux̂ is uninvadable
in F .

6.5 Proof of Proposition 3

For x to be uninvadable it must be that, given x, y = x is a local maximum of

W (y, x) =

n−1∑
k=0

pk(y, x) w̃
(
y,y(k),x(n−1−k), x

)
, (56)

where y(k) is the k-dimensional vector whose components all equal y, and x(n−1−k) is the
(n− 1− k)-dimensional vector whose components all equal x, or ∂W (y,x)

∂y

∣∣∣
y=x

= 0. To eval-

uate this first-order condition, we follow the same calculations as in Lehmann, Alger, and
Weibull (2015) Appendix B. In particular, writing w̃j for the partial derivative of w̃ with
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respect to its j-th argument,

∂W (y, x)

∂y
=

n−1∑
k=0

[
∂pk(y, x)

∂y
w̃
(
y,y(k),x(n−1−k), x

)]
+ (57)

n−1∑
k=0

[
pk(y, x)

k+1∑
j=1

w̃j
(
y,y(k),x(n−1−k), x

)]
.

Noting that for y = x, w̃
(
y,y(k),x(n−1−k), x

)
= w̃

(
x,x(n−1), x

)
= 1, which is independent of

k so that it can be factored out in the first term, and that

n−1∑
k=0

(
∂pk(y, x)

∂y

∣∣∣∣
y=x

)
=

∂

∂y

(
n−1∑
k=0

pk(y, x)

)∣∣∣∣∣
y=x

=
∂

∂y
(1)

∣∣∣∣
y=x

= 0, (58)

the expression simplifies to

∂W (y, x)

∂y

∣∣∣∣
y=x

=
n−1∑
k=0

[
pk(y, x)

k+1∑
j=1

w̃j
(
y,y(k),x(n−1−k), x

)]∣∣∣∣∣
y=x

. (59)

Permutation invariance further implies that for any j ≥ 2, w̃j
(
x,x(n−1), x

)
= w̃n

(
x,x(n−1), x

)
(it’s as if the individual whose marginal type change is under consideration were systemat-
ically labeled to appear as the last component in the vector x(n−1)). Noticing also that∑n−1

k=0

[
pk(y, x)w̃1

(
y,y(k),x(n−1−k), x

)]∣∣
y=x

= w̃1
(
x,x(n−1), x

)
, we can write:

∂W (y, x)

∂y

∣∣∣∣
y=x

= w̃1
(
x,x(n−1), x

)
+

n−1∑
k=1

[
pk(y, x)

k+1∑
j=2

w̃j
(
y,y(k),x(n−1−k), x

)]∣∣∣∣∣
y=x

(60)

= w̃1
(
x,x(n−1), x

)
+

n−1∑
k=1

[
pk(x, x)kw̃n

(
x,x(n−1), x

)]
= w̃1

(
x,x(n−1), x

)
+ (n− 1) w̃n

(
x,x(n−1), x

) n−1∑
k=1

[
kpk(x, x)

(n− 1)

]
= w̃1

(
x,x(n−1), x

)
+ r(x, x)w̃n

(
x,x(n−1), x

)
,

which owing to permutation invariance can also be written

∂W (y, x)

∂y

∣∣∣∣
y=x

= w̃1
(
x,x(n−1), x

)
+ r(x, x)

n∑
j=2

w̃j
(
x,x(n−1), x

)
. (61)

6.6 Proof of Proposition 4

The proof begins by deriving a lemma under strategy evolution, which is a generalization of
Appendix B of Lehmann, Alger, and Weibull (2015), and will be a stepping stone towards
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the result on preference evolution stated in the proposition. For this purpose, we define
the lineage payoff-advantage of a mutant strategy y ∈ X in a population of residents using
strategy x ∈ X as

Π (y, x) =

n−1∑
k=0

p0k · π̃(k) (y, x) , (62)

where π̃(k) (y, x) is the mutant’s payoff advantage when there are k other mutants in her or
his island, defined by

π̃(k) (y, x) = π (y|k)− λ0 ·
[

k

n− 1
π (y|k) +

n− 1− k
n− 1

π (x|k)

]
. (63)

The first term in (63) is the payoff of a descendant of the initial mutant who finds herself in
an island with k other such descendants. The term in square brackets is the average material
payoff earned by the other members in the island.

Lemma 1 A strategy x̂ ∈ X is uninvadable under weak selection if and only if

Π(y, x̂) ≤ Π(x̂, x̂) ∀y ∈ X. (64)

Moreover, 1− n ≤ λ0 ≤ 1.

Proof of Lemma 1: Let w : Rn+1 → R be any continuously differentiable fitness
function, let b ∈ R, and let b denote the vector in Rn+1 that has all components equal to b.
Then, by virtue of (86),

w1 (b) +
n∑
j=2

wj (b) + wn+1 (b) = 0, (65)

where an index k = 1, ..., n+ 1 stands for the partial derivative of w with respect to its k-th
argument.

Recalling the definition of π̄ (see (16)), and omitting for notational simplicity the term
(1− δ) π0, for any given payoff vector (πi,π−i, π

∗) ∈ Rn+1 a first-order Taylor expansion of
w with respect to δ evaluated at δ0 writes

w (δπi, δπ−i, δπ
∗) = w (δ0πi, δ0π−i, δ0π

∗) + (δ − δ0) · w1 (δ0πi, δ0π−i, δ0π
∗) · πi (66)

+ (δ − δ0) ·
n∑
j=2

[wj (δ0πi, δ0π−i, δ0π
∗) · πj]

+ (δ − δ0) · wn+1 (δ0πi, δ0π−i, δ0π
∗) · π∗ +O(δ2).

Evaluated at δ0 = 0, this expression writes

w (δπi, δπ−i, δπ
∗) = w (π0)+δ ·w1 (π0) ·πi+δ ·

n∑
j=2

wj (π0) ·πj+δ ·wn+1 (π0) ·π∗+O(δ2), (67)
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where w (π0) = 1, and π0 is the vector in Rn+1 whose components all equal π0. By permu-
tation invariance of w (πi,π−i, π

∗) with respect to the components of π−i, we may for each
j = 2, ..., n write wn (π0) instead of wj (π0). Letting β = w1 (π0) and γ = − (n− 1)wn (π0),
using (65), and rearranging terms, (67) can thus be written

w (δπi, δπ−i, δπ
∗) = 1 + δ ·

[
β · (πi − π∗)−

γ

n− 1

∑
j 6=i

(πj − π∗)
]

+O(δ2). (68)

Letting

λ0 =
γ

β
= −(n− 1)wn (π0)

w1 (π0)
, (69)

and factoring out β > 0 from (68), and simply omitting to write the factor δ in the fitness
function, we conclude that for small δ > 0,

w (δπi, δπ−i, δπ
∗) = 1 + δ · β

[
πi − λ0

∑
j 6=i

πj
n− 1

− (1− λ0)π∗
]

+O(δ2). (70)

This shows that λ0 quantifies fitness interdependence among patch members (Lehmann, Al-
ger, and Weibull, 2015; see also Frank, 1998, and Gardner and West, 2004, for a description,
but without a formal derivation, of λ0).

The next step of the proof consists in obtaining an expression for local linage fitness
under weak selection. Under weak selection the evolutionary process is what in biology is
called neutral (Crow and Kimura, 1970, Ewens, 2004, Gillespie, 2004, and, for an explicit
example, Rousset, 2004). Formally, this means that we can write

pk(y, x̂) = p0k +O(δ) ∀k, (71)

where O(δ) accounts for the deviation (relative to the neutral process) of the strategy-profile
distribution induced by selection (i.e., δ > 0) that is at most of order δ, where p0k is strategy-
independent. Second, recalling the definition of w̃ (see (7)) and letting x̂ denote the resident
strategy, (70) can be written

w̃
(
y,
(
y(k), x̂

)
, x̂
)

= 1 + δβ ·
[
π̃(k) (y, x̂)− (1− λ0)π(x̂)

]
+O(δ2), (72)

where
(
y(k), x̂

)
is the (n− 1)-dimensional vector with k components equal to y and the

remaining components equal to x̂, and (see equation (63))

π̃(k) (y, x̂) = π (y|k)− λ0
[

k

n− 1
π (y|k) +

n− 1− k
n− 1

π (x̂|k)

]
. (73)

Using (71) and (72), local lineage fitness (see (2)) writes

W (y, x̂) =
n−1∑
k=0

pk(y, x̂) · w̃
(
y,
(
y(k), x̂

))
(74)

= 1 + δβ ·
n−1∑
k=0

p0k ·
[
π̃(k) (y, x̂)− (1− λ0)π(x̂)

]
+O(δ2).
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Recalling the definition of lineage payoff-advantage Π(y, x̂) (see (62)),this can be written as

W (y, x̂) = 1 + δβ · [Π (y, x̂)− (1− λ0)π(x̂)] +O(δ2). (75)

Neglecting higher order terms in δ in this equation, the condition for uninvadability [W (y, x̂) ≤
W (x̂, x̂) for all y ∈ X] under weak selection is equivalent to the condition Π(y, x̂) ≤ Π(x̂, x̂)
for all y ∈ X.
Finally, we determine the implications of Assumption [M] for the bounds on λ0 =

− (n− 1) · wn (π0) /w1 (π0), focusing on the non-trivial case wn (π0) 6= 0. Part (ii) of the
assumption implies − (n− 1) ≤ λ0. Moreover, recalling (65) we obtain λ0 ≤ 1, with strict
inequality when either wn+1 (π0) < 0 or wn+1 (π0) = 0 and n > 2. Q.E.D.

We are now in a position to complete the proof of the proposition. To establish the first
claim of the proposition, we note that Lemma 1 implies that Xv0 = X̂. The second claim
follows by noting that any utility function u ∈ F for which some x ∈ Xu is not an element
of Xv0 , is invadable.

6.7 Approximation of the neutral distribution

Standard populations genetics results (see e.g., Lessard, 2007, and references therein) show
that the neutral distribution of types in an island model with constant group size, and with
population share of mutants ε > 0, is well approximated by way of the hypergeometric
distribution

φj(ε) =

(
j + ωε− 1

j

)(
n− j + ω(1− ε)− 1

n− j

)
/

(
n+ ω − 1

n

)
, (76)

where φj(ε) is the probability that there are j = 0, 1, .., n mutants in any given group, and
ω = r0/(1 − r0) (see Lessard, 2007, equation (7)). Since p0 =

(
p00, ..., p

0
n−1
)
is the limit

distribution when ε→ 0 of the number of other mutants in a given mutant’s group, we have

p0k = lim
ε→0

(k + 1)φk+1(ε)/

(
n∑
j=1

jφj(ε)

)
, (77)

for k = 0, 1, ..., n− 1. Upon rearrangements, this produces

p0k =

(
n

k + 1

)
· (k + 1)ω

n
· Γ(k + 1)Γ(ω + n− k − 1)

Γ(ω + n)
, (78)

where Γ is the gamma function. This distribution depends only on group size n and pairwise
relatedness r0.

Numerical comparison between this approximation for the above evolutionary scenarios
(that can all be subsumed under the relatedness in (40)) and the exact distribution shows
that the average total variation between the approximate and exact distributions is quite
small. Sampling randomly 10 000 values of s and m when n = 5 gives an average total
variation of 0.005, a variation that should diminish with n. It can also be shown that in the
special case of a Moran process (s (πi) = 1/n) the approximation is in fact exact. (Indeed it
can be verified that the expression in (78) then reduces to equation D.6 in Lehmann, Alger,
and Weibull, 2015.)
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6.8 Proof of Proposition 5

Recalling that

w̃(xi,x−i, x) = w
(
π (xi,x−i) , (π (xj,x−j))j 6=i , π

∗ (x)
)
, (79)

we obtain

w̃1
(
x,
(
y(0),x

)
, x
)

= w1

(
π
(
x,
(
y(0),x

))
,
(
π
(
x,
(
y(0),x

)))(n−1)
, π∗ (x)

)
· π1

(
x,
(
y(0),x

))
(80)

+ (n− 1) · wn
(
π
(
x,
(
y(0),x

))
,
(
π
(
x,
(
y(0),x

)))(n−1)
, π∗ (x)

)
· πn

(
x,
(
y(0),x

))
,

where
(
π
(
x,
(
y(0),x

)))(n−1)
denotes the (n− 1)-dimensional vector whose components all

equal π
(
x,
(
y(0),x

))
, and

w̃n
(
x,
(
y(0),x

)
, x
)

= w1

(
π
(
x,
(
y(0),x

))
,
(
π
(
x,
(
y(0),x

)))(n−1)
, π∗ (x)

)
· πn

(
x,
(
y(0),x

))
(81)

+ (n− 2) · wn
(
π
(
x,
(
y(0),x

))
,
(
π
(
x,
(
y(0),x

)))(n−1)
, π∗ (x)

)
· πn

(
x,
(
y(0),x

))
+ wn

(
π
(
x,
(
y(0),x

))
,
(
π
(
x,
(
y(0),x

)))(n−1)
, π∗ (x)

)
· π1

(
x,
(
y(0),x

))
.

Substituting the last two equations into the last line of (60) produces

0 = w1

(
π
(
x,
(
y(0),x

))
,
(
π
(
x,
(
y(0),x

)))(n−1)
, π∗ (x)

)
· π1

(
x,
(
y(0),x

))
(82)

+ (n− 1) · wn
(
π
(
x,
(
y(0),x

))
,
(
π
(
x,
(
y(0),x

)))(n−1)
, π∗ (x)

)
· πn

(
x,
(
y(0),x

))
+ r (x, x) (n− 1)w1

(
π
(
x,
(
y(0),x

))
,
(
π
(
x,
(
y(0),x

)))(n−1)
, π∗ (x)

)
· πn

(
x,
(
y(0),x

))
+ r (x, x) (n− 1) (n− 2) · wn

(
π
(
x,
(
y(0),x

))
,
(
π
(
x,
(
y(0),x

)))(n−1)
, π∗ (x)

)
· πn

(
x,
(
y(0),x

))
+ r (x, x) (n− 1)wn

(
π
(
x,
(
y(0),x

))
,
(
π
(
x,
(
y(0),x

)))(n−1)
, π∗ (x)

)
· π1

(
x,
(
y(0),x

))
.

Noting that with the notation used in this proof, λ (x) writes

λ (x) = −
(n− 1)wn

(
π
(
x,
(
y(0),x

))
,
(
π
(
x,
(
y(0),x

)))(n−1)
, π∗ (x)

)
w1

(
π (x, (y(0),x)) , (π (x, (y(0),x)))

(n−1)
, π∗ (x)

) , (83)

(82) can be written

π1
(
x,
(
y(0),x

))
+ (n− 1) ·

r (x, x)− λ (x)
[

1
n−1 + r (x, x) n−2

n−1
]

1− λ (x) r (x, x)
· πn

(
x,
(
y(0),x

))
= 0, (84)

or
[1− κ (x)] · π1

(
x,
(
y(0),x

))
+ κ (x) ·

n∑
k=1

πk
(
x,
(
y(0),x

))
= 0. (85)
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6.9 Proof of Proposition 6

To show that κ (x) ∈ [−1, 1], we begin by studying λ (x). Note that the terms that define
λ (x) are partial derivatives evaluated in a homogenous population. Furthermore, since
population size is constant in a homogenous population, each individual’s fitness would
remain at 1 following a marginal change in the material payoff of all the individuals in the
population. Formally:

∂w (πi,π−i, π
∗)

∂πi

∣∣∣∣
πi=πj=π∗

+
∑n

j=2

∂w (πi,π−i, π
∗)

∂πj

∣∣∣∣
πi=πj=π∗

+
∂w (πi,π−i, π

∗)

∂π∗

∣∣∣∣
πi=πj=π∗

= 0.

(86)
By permutation invariance, and using a more compact notation, this writes w1 (·)+(n− 1)wn (·)+
wn+1 (·) = 0. Using this and the assumption w1 (·) > 0,

λ (x) < 1⇔ − (n− 1)wn (·) < w1 (·) (87)

⇔ w1 (·) + wπ∗ (·) < w1 (·) ,

which is true by Assumption [M] (iii).

Since r (x, x) ∈ [0, 1] for all x this implies that λ (x) r (x, x) < 1, and hence

κ (x) ≤ 1⇔ r (x, x)− λ (x)

[
1

n− 1
+ r (x, x)

n− 2

n− 1

]
≤ 1− λ (x) r (x, x) (88)

⇔ λ (x)

[
r (x, x)− 1

n− 1
− r (x, x)

n− 2

n− 1

]
≤ 1− r (x, x)

⇔ λ (x)

[
r (x, x)− 1

n− 1

]
≤ 1− r (x, x)

⇔ λ (x) ≥ − (n− 1)

⇔ −(n− 1)wn (·)
w1 (·) ≥ − (n− 1)

⇔ wn (·) ≤ w1 (·) ,

which is true by virtue of Assumption [M] (ii).

We now show that κ (x) ≥ −1. For any λ (x) < 1, κ (x) is increasing in r (x, x). Indeed,
the partial derivative of the expression for κ (x) with respect to r (x, x) has the same sign as
(in this expression r ≡ r (x, x) and λ ≡ λ (x))

[(n− 1) (1− λ) + λ] (n− 1) (1− λr) + λ (n− 1) [r (n− 1) (1− λ)− λ (1− r)] (89)

= (n− 1) (1− λ) (n− 1 + λ) .

For the inequality κ (x) ≥ −1 to hold, it is thus suffi cient that κ (x) ≥ −1 for r (x, x) = 0, a

condition which reduces to
−λ (x) ≥ − (n− 1) , (90)

which is true for any n ≥ 2 since λ (x) < 1.
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Finally,

κ (x) ≤ r (x, x)⇔
r (x, x)− λ (x)

[
1

n−1 + r (x, x) n−2
n−1
]

1− λ (x) r (x, x)
≤ r (x, x) (91)

⇔ r (x, x)− λ (x)

[
1

n− 1
+ r (x, x)

n− 2

n− 1

]
≤ r (x, x) [1− λ (x) r (x, x)]

⇔ λ (x) [r (x, x)]2 ≤ λ (x)

[
1

n− 1
+ r (x, x)

n− 2

n− 1

]
⇔ λ (x) r (x, x) [1− [1− r (x, x)] (n− 1)] ≤ λ (x) .

This inequality is true if and only if λ (x) ≥ 0 by virtue of the fact that for all r (x, x) ∈ [0, 1)
we have r (x, x) [1− [1− r (x, x)] (n− 1)] ≤ 1. Likewise, it is clear that κ (x) > r (x, x) if
and only if λ (x) < 0.

Finally, the last result stated in the proposition is implied by (20) together with Assump-
tion [M] (i).

6.10 Calculating the coeffi cients of fitness interdependence and
pairwise relatedness

6.10.1 Scenario A: Genes

To calculate λ (x) we begin by calculating the partial derivatives needed for this purpose.
Here, from the individual fitness function (26):

∂w (πi,π−i, π
∗)

∂πj
= −∂s (πj)

∂πj
· (1−m) f (πi)

(1−m)
∑n

j=1 f (πj) + nmf (π∗)
(92)

−
(
n−

n∑
j=1

s (πj)

)
· (1−m)2 f (πi) [∂f (πj) /∂πj][

(1−m)
∑n

j=1 f (πj) + nmf (π∗)
]2

and

∂w (πi,π−i, π
∗)

∂πi
=
∂s (πi)

∂πi
− ∂s (πi)

∂πi
· (1−m) f (πi)

(1−m)
∑n

j=1 f (πj) + nmf (π∗)
(93)

+

(
n−

n∑
j=1

s (πj)

)
· (1−m) [∂f (πi) /∂πi]

(1−m)
∑n

j=1 f (πj) + nmf (π∗)

−
(
n−

n∑
j=1

s (πj)

)
· (1−m)2 f (πi) [∂f (πj) /∂πj][

(1−m)
∑n

j=1 f (πj) + nmf (π∗)
]2

+ [1− s (π∗)] · m [∂f (πi) /∂πi]

f (π∗)
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Writing s′ (π∗) for ∂s(πj)

∂πj

∣∣∣
πj=π∗

and f ′ (π∗) for ∂f(πj)

∂πj

∣∣∣
πj=π∗

, we obtain (upon simplification)

∂w (πi,π−i, π
∗)

∂πj

∣∣∣∣
πi=πj=π∗

= −s′ (π∗) · 1−m
n
− [1− s (π∗)] · (1−m)2 f ′ (π∗)

nf (π∗)
(94)

and
∂w (πi,π−i, π

∗)

∂πi

∣∣∣∣
πi=πj=π∗

=
1

n
(n+m− 1) s′ (π∗) + [1− s (π∗)]

f ′ (π∗)

nf (π∗)

[
n− (1−m)2

]
.

(95)
Upon simplification, we thus obtain

λ (x) =
(n− 1) (1−m)

{
(1−m) [1− s (π∗)] f

′(π∗)
f(π∗) + s′ (π∗)

}
[
n− (1−m)2

]
[1− s (π∗)] f

′(π∗)
f(π∗) + (n+m− 1) s′ (π∗)

. (96)

The expression in (28) obtains by setting s′ (π∗) = 0.

To calculate r (x, x), one uses a recursion equation (this is a standard technique for
calculating probabilities of identity by descent; see Nagylaki, 1992, and Rousset, 2004, for a
background). In the scenario at hand, this equation writes

r (x, x) = [s (π∗)]2 r (x, x) + 2s (π∗) [1− s (π∗)] (1−m)

[
1

n
+
n− 1

n
r (x, x)

]
(97)

+ [1− s (π∗)]2 (1−m)2
[

1

n
+
n− 1

n
r (x, x)

]
.

The left-hand side is the average probability that, in a monomorphic population in which
all individuals play x, the neighbor of a randomly drawn member of a certain local lineage
is also a member of this local lineage. The terms on the right-hand side details the events
in which this happens. The first term on the right hand side corresponds to the event that
both the individual at hand and the randomly drawn neighbor survived from the previous
period. The second term on the right hand side corresponds to the two events in which
either the individual at hand or the randomly drawn neighbor survived from the previous
period while the other didn’t, and the one who didn’t survive from the previous period did
not migrate in from another island. In this case, there is a probability 1/n that one is the
offspring of the other, in which case they are both members of the same local lineage with
certainty; with the complementary probability, they are not parent and child, in which case
the probability that they are both members of the same local lineage equals r (x, x). The
third term on the right hand side corresponds to the event in which neither the individual
at hand nor the randomly drawn neighbor survived from the previous period, and neither
of them migrated in from another island. In this case, there is a probability 1/n that they
have the same parent, in which case they are both members of the same local lineage with
certainty; with the complementary probability, they have different parents, in which case
the probability that they are both members of the same local lineage equals r (x, x). Solving
(97) for r (x, x) yields

r (x, x) =
(1−m)2 + (1−m2) s (π∗)

n− (n− 1) (1−m)2 + [1 + (n− 1)m2] s (π∗)
. (98)
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The expression in (27) obtains by replacing s (π∗) by s0.

6.10.2 Scenario B: Guns

In the biological scenario with wars, we obtain from the individual fitness function (30):

∂w (πi,π−i, π
∗)

∂πj
= 2ρ [∂g (π, π∗) /∂πj] ·

[
m · f (πi)

f (π∗)
+ (99)

(1−m)n · f (πi)

(1−m)
∑n

j=1 f (πj) + nmf (π∗)

]

− [(1− ρ) + 2ρg (π, π∗)] · (1−m)n · (1−m) f (πi) [∂f (πj) /∂πj][
(1−m)

∑n
j=1 f (πj) + nmf (π∗)

]2
and

∂w (πi,π−i, π
∗)

∂πi
= 2ρ [∂g (π, π∗) /∂πi] ·

[
m · f (πi)

f (π∗)
+ (100)

(1−m)n · f (πi)

(1−m)
∑n

j=1 f (πj) + nmf (π∗)

]
+ [(1− ρ) + 2ρg (π, π∗)] · (1−m)n·

·

[
(1−m)

∑n
j=1 f (πj) + nmf (π∗)

]
∂f (πi) /∂πi − (1−m) f (πi) [∂f (πj) /∂πj][

(1−m)
∑n

j=1 f (πj) + nmf (π∗)
]2

+m
∂f (πi) /∂πi
f (π∗)

. (101)

By permutation invariance of g, write gn (π∗, π∗) for ∂g(π,π∗)
∂πj

∣∣∣
πj=π∗

for all j = 1, ..., n. Since,

moreover, g (π, π∗) = 1/2, upon simplification we obtain:

∂w (πi,π−i, π
∗)

∂πj

∣∣∣∣
πi=πj=π∗

= 2ρgn (π∗, π∗)− (1−m)2 f ′ (π∗)

nf (π∗)
(102)

and
∂w (πi,π−i, π

∗)

∂πi

∣∣∣∣
πi=πj=π∗

= 2ρgn (π∗, π∗)− (1−m)2 f ′ (π∗)

nf (π∗)
+
f ′ (π∗)

f (π∗)
, (103)

so that

λ (x) = −
(n− 1)

[
2ρgn (π∗, π∗)− (1−m)2f ′(π∗)

nf(π∗)

]
2ρgn (π∗, π∗) + [n− (1−m)2] f

′(π∗)
nf(π∗)

. (104)

The recursion equation to calculate r (x, x) writes

r (x, x) = (1−m)2
[

1

n
+
n− 1

n
r (x, x)

]
. (105)
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In this scenario, the only event in which a randomly drawn individual can belong to the
same local lineage as a randomly drawn neighbor, is when both stayed in their natal island.
In this case, there is a probability 1/n that they have the same parent, in which case they
belong to the same local lineage with certainty; with the complementary probability, they
have different parents, in which case the probability that they belong to the same local
lineage is r (x, x). Solving for r (x, x) yields

r (x, x) =
(1−m)2

n− (n− 1) (1−m)2
. (106)

6.10.3 Scenario B: Wars (weak selection)

Recall that under weak selection we write the individual fitness of individual i asw (π̄i, π̄−i, π̄
∗),

where (π̄i, π̄−i, π̄
∗) = ((1− δ) π0 + δπi, (1− δ) π0 + δπ−i, (1− δ) π0 + δπ∗), and δ ≥ 0 repre-

sents the intensity of selection (see (16)). From (69) in the proof of Proposition 5, we have

λ0 = −

∑
j 6=i

∂w (π̄i, π̄−i, π̄
∗) /∂π̄j|δ=0

∂w (π̄i, π̄−i, π̄∗) /∂π̄i|δ=0
. (107)

Since, for δ = 0, π̄i = π̄j = π̄∗, we obtain from (102) and (103) that

∂w (π̄i, π̄−i, π̄
∗)

∂π̄j

∣∣∣∣
δ=0

= 2ρgn (π̄∗, π̄∗)− (1−m)2 f ′ (π̄∗)

nf (π̄∗)
(108)

and
∂w (π̄i, π̄−i, π̄

∗)

∂π̄i

∣∣∣∣
δ=0

= 2ρgn (π̄∗, π̄∗)− (1−m)2 f ′ (π̄∗)

nf (π̄∗)
+
f ′ (π̄∗)

f (π̄∗)
. (109)

With the expressions for f and g given in (33) and (34), and the assumption that V (π̄i, π̄−i) =

(1− δ)nπ0+δ
(
πi +

∑
j 6=i πj

)
(note that we assume that the intensity of selection is the same

for fecundity and for the probability of winning wars; one can also allow for different selection
intensities), we have:

f ′ (π̄∗)

f (π̄∗)
= 1 (110)

and
gn (π̄∗, π̄∗) =

1

4
. (111)

Hence, we get

λ0 = −
(n− 1)

[
ρ/2− (1−m)2

n

]
ρ/2− (1−m)2

n
+ 1

, (112)

which upon simplification gives the expression in (35). It can then be verified that, together
with the fact that r0 is given by (106), this gives the expression for κ0 in (36).
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6.10.4 Scenario C: Culture

In the cultural scenario, we have from (38):

∂w (πi,π−i, π
∗)

∂πj
= −∂s (πj)

∂πj
· (1−m) f (πi)∑n

j=1 f (πj)
(113)

−
(
n−

n∑
j=1

s (πj)

)
· (1−m) f (πi) [∂f (πj) /∂πj][∑n

j=1 f (πj)
]2

and

∂w (πi,π−i, π
∗)

∂πi
=
∂s (πi)

∂πi
− ∂s (πi)

∂πi
· (1−m) f (πi)∑n

j=1 f (πj)
(114)

+ (1−m)

(
n−

n∑
j=1

s (πj)

)
·

[∂f (πi) /∂πi]
[∑

j 6=i f (πj)
]

[∑n
j=1 f (πj)

]2
+ [1− s (π∗)] · m [∂f (πi) /∂πi]

f (π∗)
.

Upon simplification, we obtain:

∂w (πi,π−i, π
∗)

∂πj

∣∣∣∣
πi=πj=π∗

= −(1−m)

n

[
s′ (π∗) + [1− s (π∗)] · f

′ (π∗)

f (π∗)

]
(115)

and

∂w (πi,π−i, π
∗)

∂πi

∣∣∣∣
πi=πj=π∗

=

(
n− 1 +m

n

)[
s′ (π∗) + [1− s (π∗)] · f

′ (π∗)

f (π∗)

]
. (116)

Hence:

λ (x) =
(n− 1) (1−m)

n− 1 +m
. (117)

For r (x, x) the recursion equation writes

r (x, x) = [s (π∗)]2 r (x, x) + 2 (1−m) s (π∗) [1− s (π∗)]

[
1

n
+
n− 1

n
r (x, x)

]
(118)

+ (1−m)2 [1− s (π∗)]2 ·
[

1

n
+
n− 1

n
r (x, x)

]
.

The first term on the right-hand side corresponds to the event that both the individual at
hand and the randomly drawn neighbor have been loyal to their parents, where the neighbor’s
parent belongs to the individual’s lineage with probability r (x, x). The second term on the
right hand side corresponds to the event that either the individual at hand was loyal to its
parent but the randomly drawn neighbor was not loyal to its parent, or the other way around.
In this case, there is a probability 1/n that the non-loyal child acquired its trait from the
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loyal child’s parent, in which case they both belong to the same local lineage with certainty,
while with the complementary probability this did not happen, in which case the probability
that the randomly neighbor belongs to the same local lineage is r (x, x). The third term
on the right hand side corresponds to the event that neither the individual at hand nor
the randomly drawn neighbor were loyal to their parents but both of them acquired their
trait from someone in the island. In this case, there is a probability 1/n that they acquired
their type from the same adult, in which case they belong to the same local lineage with
certainty; with the complementary probability they have different cultural parents, in which
case the probability that the randomly drawn neighbor belongs to the same local lineage as
the individual at hand is r (x, x). We note that the equation simplifies to

r (x, x) = [s (π∗)]2 r (x, x) + 2s (π∗) [1− s (π∗)] (1−m)

[
1

n
+
n− 1

n
r (x, x)

]
(119)

+ [1− s (π∗)]2 (1−m)2
[

1

n
+
n− 1

n
r (x, x)

]
.

The expression in the text obtains upon observing that this equation is identical to the one
in (97).
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