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For image-based infection biology, accurate unbiased quantifi-
cation of host-pathogen interactions is essential, yet often per-
formed manually or using limited enumeration employing sim-
ple image analysis algorithms based on image segmentation.
Host protein recruitment to pathogens is often refractory to ac-
curate automated assessment due to its heterogeneous nature.
An intuitive intelligent image analysis program to assess host
protein recruitment within general cellular pathogen defense is
lacking.We present HRMAn (Host Response to Microbe Analy-
sis), an open-source image analysis platform based on machine
learning algorithms and deep learning. We show that HRMAn
has the capability to learn phenotypes from the data, without
relying on researcher-based assumptions. Using Toxoplasma
gondii and Salmonella typhimurium we demonstrate HRMAn’s
capacity to recognize, classify and quantify pathogen killing,
replication and cellular defense responses.
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Introduction
High content imaging (HCI) has revolutionized the field of
host-pathogen interaction by allowing researchers to per-
form image-based large-scale compound and host genome-
wide depletion screens in a high-throughput fashion (1, 2).
The majority of these screens assess host-pathogen interac-
tions using bulk colorimetric or automated enumeration of
pathogen growth at the population level (3). Additionally,
quantification of host-pathogen interaction (e.g. analysis of
host protein recruitment to the pathogen) in general is of-
ten performed manually. However, to meaningfully dissect
cell-mediated pathogen control, it is imperative to quantify
the host response and pathogen fate at the single-cell level.
Many open-source (e.g. CellProfiler (4)) and proprietary
(e.g. Perkin Elmer Harmony) analysis software packages
have been developed and successfully employed for exactly
this purpose (5–7). To advance the state of the art in im-
age analysis of host-pathogen interaction, incorporation of
cutting-edge machine intelligence algorithms (8, 9) to strat-
ify the image content without the requirement to program
complex integrations is needed. HRMAn relies on the same
well-established image segmentation strategies as many other
programs, but offers an intuitive integration of deep learning
for more complex image analysis (an overview of currently
available programs can be found in Table S1). Deep neural

network-based machine intelligence methods have brought
about a revolutionary advance in the field of computer vision,
by allowing for machine learning of complex morphologies
in a highly generalized fashion (8, 10). These methods have
not yet been adapted for the field of host-pathogen interac-
tion. Typically, HCI based fluorescent imaging data from a
host-pathogen interaction experiment is analyzed by classi-
cal image segmentation (11–14). Occasionally segmentation
combined with machine learning based on calculated features
has been employed (15). Most of these analysis pipelines
make use of open-source programs tailored with additional
coding by the user to suit their specific needs. They are not
published in their final form as a universal open-source so-
lution. Most importantly, these classical image segmentation
and machine learning analysis methods fail at the level of
quantifying host protein recruitment to the pathogen. This
is largely due to the fact that traditional algorithms quan-
tify phenotypes in a rule-based manner, using bulk statisti-
cal properties of microscopy images or their segments. Con-
versely, deep neural networks make use of complex patterns
(e.g. shapes) within the dataset to learn phenotypes and their
diversity. The neural network derives these complex pat-
terns in an unsupervised fashion from expert-labeled data.
Thus, using pattern complexity to refine classification (10),
deep neural networks improve the biological relevance of the
phenotypic readouts. While some proprietary solutions have
been employed to extract host protein recruitment data, these
solutions are impractical for most researchers as they are tied
to single and expensive microscopes (16). To date, for the
analysis of host protein recruitment to pathogens, artificial
intelligence-driven automated analysis is neither available as
an open-source or commercial package. Thus, there remains
a need for an open-source, intuitive, multi-parametric, flex-
ible, and trainable host-pathogen interaction analysis soft-
ware that performs at the level of human analytic capacity
(17, 18). Here we present a high-throughput, high-content,
single-cell image analysis pipeline that incorporates machine
learning and a deep convolutional neural network (CNN) en-
semble for Host Response to Microbe Analysis (HRMAn;
www.hrman.org). To assure its broad applicability to infec-
tion biology, HRMAn is based on the data handling environ-
ment Eclipse-KNIME (19). The analysis relies on training of
machine learning algorithms and deep neural networks that
can be tailored to individual researchers’ needs.

Fisch & Yakimovich et al. | bioRχiv | September 4, 2018 | 1–21

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 5, 2018. ; https://doi.org/10.1101/408450doi: bioRxiv preprint 

www.hrman.org
https://doi.org/10.1101/408450
http://creativecommons.org/licenses/by-nc-nd/4.0/


Results
Architecture of the high-content image analysis
pipeline for analyzing host-pathogen interaction. The
HRMAn pipeline (Fig. 1), is designed to work with all file
types acquired on any HCI platform or fluorescence micro-
scope. Plate maps including experimental layouts, sample
groups and replicates can be loaded, enabling HRMAn to au-
tomatically cluster results and perform error analysis. Once
fed into the HRMAn pipeline, images are automatically pre-
processed and clustered based on user-defined parameters
(i.e. imaging specifications) and corrected for illumination.
The subsequent image analysis proceeds in two stages: in
stage 1, HRMAn segments images into pathogen and cell fea-
tures for single cell analysis. It then classifies these features
using a decision tree learning algorithm previously trained on
an annotated dataset. In stage 2, HRMAn analyzes cell fea-
tures associated with the pathogens using a CNN (based on
AlexNet architecture) trained to distinguish complex pheno-
typic patterns of host-protein recruitment (8). Robust clas-
sification is achieved by passing convolutions of segmented
areas of interest through multiple non-linear filters to iden-
tify characteristic phenotypic details. Finally, data is output
as a single spreadsheet file providing the researcher with ≥
15 quantitative descriptions of a pathogen and its interaction
with host factors at population and single cell levels (Fig. 1;
Readouts). Importantly, by separating the analysis, HRMAn
offers researchers the flexibility to perform fast, simple quan-
titative analysis of infection parameters using stage 1, with-
out analyzing host protein recruitment.

Machine learning and a convolutional neural network
drives classification of pathogen replication and host
defense. To train for detection and analysis of host-pathogen
interactions, HRMAn was provided an annotated dataset of
cells infected with an eGFP-expressing version of the parasite
Toxoplasma gondii (Tg) and stained for various cell features
(Fig. 2a) (20, 21). For stage 1 pathogen detection and enu-
meration training, over 35,000 Tg-vacuoles were analyzed by
decision tree, gradient boosted tree, and random forest ma-
chine learning classification algorithms and cross-validated
(Fig. 2b). As each performed equally, a simple decision
tree with Minimum Description Length (MDL) pruning, to
limit overfitting, was employed for speed and accuracy of
pathogen detection (> 99.5% for Tg). Using these parame-
ters, in addition to the readouts from stage 1 (see Fig. 1),
HRMAn detected and quantified Tg-containing vacuoles har-
boring 1, 2, 4 or ≥ 4 fluorescent Tg (Fig. 2c).
For stage 2, host protein recruitment, the CNN was trained
for ubiquitin and p62 recruitment using segmented Tg vac-
uoles defined in Stage 1. Robust classification of host protein
recruitment was achieved by passing these regions of interest
through multiple non-linear filters to identify and differenti-
ate between no recruitment, recruitment, and analysis arte-
facts (Fig. 2d). Using backpropagation over 80 training cy-
cles (epochs) with negative log likelihood as a loss function,
the deep CNN achieved 92.1% classification accuracy, con-
firmed by expert based cross-validation (Fig. 2e).

HRMAn allows for accurate high-throughput analy-
sis of the host defense response to Toxoplasma. To
demonstrate the ability of HRMAn and to expand how re-
searchers define and classify host-pathogen interactions, the
impact of IFNγ on Tg replication and ubiquitin/p62 recruit-
ment to Tg vacuoles was analyzed (Fig. 3). To assure that
uninvaded Tg parasites do not skew the data, stringent syn-
chronization of infection by centrifugation and washing pro-
cedures were employed. In a pilot ds experiment (Fig. S1),
staining with the Tg vacuole marker GRA2 (Fig. S1a+b) re-
vealed that more than 98% of all parasites captured in the
images have successfully invaded and established a PV, ir-
respective of the Tg strain used for infection (Fig. S1b). At
the multiplicity of infection (MOI) of 3 used for experiments,
this resulted in up to 90% type I and 80% type II Tg infected
cells (Fig S1c). Importantly, we often observed that a single
cell can contain more than one PV.

Previous reports indicate that HeLa cells restrict the growth
of Tg through ubiquitination of parasitophorous vacuoles
and subsequent non-canonical, p62-dependent autophagy
(20, 22). HeLa cells infected with EGFP Tg ± IFNγ were
fixed 6 hours post-infection (hpi) and stained with Hoechst
(nuclei) and antibodies directed against ubiquitin and p62.
Overall, 1,350 4-color images were acquired on an automated
microscope and loaded into HRMAn for analysis.

HRMAn automatically detected and analyzed more than
15,000 cells resulting in 15 quantitative outputs of host-
pathogen interaction (Fig. 3). Population level readouts from
stage 1 indicated that IFNγ treatment did not impact the per-
centage of infected cells but decreased the number of vac-
uoles within cells as well as the number of parasites per cell
(Fig. 3a). As eGFP fluorescence is lost when parasites are
killed, a reduction in the ratio between vacuoles and cells
serves as an indirect measurement for parasite killing. At the
single cell level, HRMAn found that IFNγ treatment resulted
in a significant reduction of vacuoles per cell and a minor
reduction in mean vacuole size, without impacting vacuole
position (Fig. 3b). Concomitant with this reduction in vac-
uole size, both the percentage of replicating parasites, and the
number of parasites per vacuole were significantly reduced
by IFNγ treatment (Fig. 3c). Thus, IFNγmediated control of
Tg in HeLa cells involves both parasite killing and restriction
of Tg replication. Importantly, HRMAn offers a wide range
of readouts in stage 1 analysis allowing for more detailed in-
formation on the dynamics of infection and clearance than
typically seen with manual counting. To allow the user to de-
cide which readouts are best suited to answer their specific
research question some redundancy has been purposely built
in (e.g. mean vacuole size vs. % Replicating). For exam-
ple, here we focused mainly on parasites per vacuole and the
proportion of infected cells, as opposed to the number of in-
dividual vacuoles per cell.

In stage 2, analysis of the >25,000 vacuoles identified in
stage 1, showed that the number of cells with ubiquitin/p62-
positive vacuoles and the percentage of ubiquitin/p62-
positive vacuoles per cell increased with IFNγ (Fig. 3d). Dis-
tribution analysis indicated that in untreated cells, only 5.92%
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Fig. 1. Overview of the HRMAn pipeline. Following image acquisition, on a high-content imaging platform or any other fluorescence microscope, the images can be loaded
into the HRMAn software. First, the data is pre-processed and clustered based on user-defined parameters and provided plate maps. Images then undergo illumination
correction and automated segmentation. Segmented images are used by a deep convolution neural network (CNN) and other machine learning based algorithms to analyze
infection of cells with intracellular pathogens. Depicted is the CNN diagram representing three-dimensional convolutional filters with respective width, height and depth
designated on filters facets. Respective change of stride in the groups of hidden layers is depicted above the diagram, while respective activation functions below the diagram.
Finally, the data is written as a single file and will provide the researcher with more than 15 different readouts that describe the interaction between pathogen and host cell
during infection. HRMAn is based on the open-source data handling environment KNIME making it modular and adaptable to a researcher’s needs. The analysis is based on
training of the machine learning algorithms generating high flexibility, which can be tailored to the needs of the user.

Fisch & Yakimovich et al. | AI Workflow for Defining HP Interactions bioRχiv | 3

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 5, 2018. ; https://doi.org/10.1101/408450doi: bioRxiv preprint 

https://doi.org/10.1101/408450
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 2. Decision-tree and convolutional neural network training for pathogen replication and host defense protein recruitment analysis. (a) Example images from
one field of view. A composite image of all channels (blue: nuclei, green: Tg, red: Ubiquitin, grey: p62) and the single channel images are shown. Scale bar indicates
a distance of 30 m. (b) Training and cross-validation of different machine learning classification algorithms to predict parasite replication. (c) Example images of different
vacuoles with the resulting classification of a trained decision tree classifier. (d) Resulting classification of the trained deep convolution neural network (CNN) with example
vacuoles. For the recruited classification a class activation map (CAM) is depicted to illustrate the focus of the CNN. (e) Decrease of negative log likelihood (NLL) used as
loss function during CNN training over training cycles (epochs) for Toxoplasma gondii model (left) and confusion matrix of Toxoplasma gondii model validation illustrating
classification accuracy of labelled data unseen by the model, classification accuracy (0 to 1) during validation is color-coded blue to red (right).

of vacuoles were decorated with ubiquitin, p62, or both. This
number rose to 27.61% in IFNγ-treated cells, the majority of
which (20.92%) were double-positive for ubiquitin/p62 (Fig.
3d). By quantifying the radial fluorescence intensity distri-
bution of these host factors, HRMAn revealed that ubiqui-
tin was more closely associated with Tg vacuoles than p62
and that recruitment of both was increased by IFNγ treatment
(Fig. 3e). This is in agreement with the notion that p62 binds
a ubiquitinated vacuole substrate through its UBA domain
(20, 21). Finally, by analyzing vacuoles that recruit ubiqui-
tin/p62, HRMAn indicated that restriction of Tg replication
occurs in vacuoles decorated with these host defense proteins
(Fig. 3f). Collectively, this data indicates that in HeLa cells,
IFNγ drives both parasite killing as well as recruitment of
ubiquitin/p62 to Tg vacuoles, which acts to restrict parasite
replication (Fig. 3). The results demonstrate the capacity
of HRMAn to provide a quantitative, multi-parametric read-
out of host-pathogen interaction at population and single-cell
levels.
As a high-throughput, high-content analysis program,
HRMAn removes experimental size constraints imposed by
manual quantification. To illustrate this, HRMAn was used
to systematically analyze the impact of IFNγ treatment on
type I and type II Toxoplasma strains in 5 human cell lines:
HeLa (cervical carcinoma epithelial), PMA-differentiated
THP-1 (macrophage-like), A549 (lung carcinoma epithelia),
HFF (primary fibroblasts), and HUVEC (primary endothelial
cells) (Fig. S2-S8).

First, stage 1 HRMAn was used to ascertain the impact of
varying concentrations of IFNγ (50-500 IU/ml) on Tg infec-
tion, killing, and replication. (Fig. S2). For each cell line
(Fig. S2a), a dose-dependent reduction in Tg infection was
seen (Fig. S2b). Assessment of the vacuole:cell ratio and
mean vacuole size indicated that THP-1s, HFFs, and HU-
VECs limit infection largely by IFNγ-dependent Tg killing,
while HeLas and A549s do so by restricting replication (Fig.
S2c+d). Quantification of the number of parasites per vac-
uole indicated that HeLas and A549s acutely restrict type I
and type II Tg replication at all concentrations of IFNγ(Fig.
S3b+c), while THP-1s, HFFs, and HUVECs are far more lim-
ited in this capacity (Fig. S3a, d+e).
Next, HRMAn was employed on all 5 cell lines infected with
either type I and type II Tg ± 100 IU/ml IFNγ and immuno-
stained for ubiquitin and p62. Supplementary figures S4-S8
display the 15 quantitative readouts compiled by HRMAn of
9,000 fields of view ( 90 GB) and >175,000 vacuoles iden-
tified in stage 1. Taking advantage of the large-scale capa-
bilities of HRMAn, we found that all cell types can medi-
ate IFNγ-dependent type I and II Tg killing (Fig. S4b+c),
and growth restriction (Fig. S5a+b) to similar levels. Tg
vacuoles show strain-dependent (A549, HUVEC), and strain-
independent (HFFs) IFNγ-stimulated movement towards the
nucleus (Fig. S5c). HRMAn revealed that type II Tg grew
slower than type I Tg in each cell line and that their growth
decreased more upon treatment with IFNγ (Fig. S6a-b). Con-
sistent with this, stage 2 HRMAn showed that all cell types
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Fig. 3. Analysis of Toxoplasma gondii infection in IFNγ-treated HeLa cells. HeLa cells were stimulated with 100 IU/mL IFNγ, infected with type I (RH) Toxoplasma gondii
(Tg) and analyzed 6 hours post-infection. (a) Infection parameters depicted as total percent of Tg infected cells, the ratio of Tg vacuoles to cells and the ratio of parasites
to cells. (b) Cellular readouts showing the proportion of cells that contain a varying numbers of parasite vacuoles, the mean vacuole size of Tg and the vacuole position
as the value of the mean euclidian distance of Tg vacuoles to the host cell nucleus. (c) Replication capacity of Tg shown as the proportion of replicating parasites and the
distribution of replicating Tg. (d) Cellular response to infection with Tg measured as the percentage of cells that decorate vacuoles and the average proportion of vacuoles
per cell that are being decorated simultaneously and the overall proportion of ubiquitin and/or p62 decorated Tg vacuoles. N shows the total number of vacuoles analyzed for
each condition, percentages are indicated in the legend. (e) Properties of the host protein coat on Tg vacuoles as the average coat distance for ubiquitin and p62 to Tg and
mean fluorescence intensity of ubiquitin and p62 at Tg vacuoles. (f) Fate of Tg vacuoles grouped based on host protein recruitment. The proportion of replicating parasites
and the replication distribution based on recruitment status of the vacuole are shown. All data shown above represents the mean of N = 3 experiments ± SEM. Significance
was determined using unpaired t-tests, n.s. = not significant, * p ≤ 0.0332, ** p ≤ 0.0021, *** p ≤ 0.0002 and **** p < 0.0001.

could recruit ubiquitin and/or p62 equally well (Fig. S7a),
while a greater percentage of type II vacuoles per cell were
decorated in response to IFNγ-priming (Fig. S7b). The ex-
ception to this were THP-1 cells, which did not mount a
strain-specific response (Fig. S7b). Distribution analysis fur-
ther indicated that THP-1s rather display a higher intrinsic
capacity to decorate Tg vacuoles than other cell lines, even
in the absence of IFNγ (Fig. S7c). While no cell-type de-
pendent differences in ubiquitin or p62 coat distance were
observed (Fig. S8a), THP-1s not only decorate vacuoles with
more ubiquitin upon IFNγ stimulation, they also appear to
recruit p62 in an IFNγ-independent fashion (Fig. S8b). Dec-
orated vacuoles in all cell types displayed a greater ability
to restrict the growth of type II versus type I Tg upon IFNγ
treatment (Fig. S8c-d). These results highlight the abil-
ity of HRMAn to provide high-throughput and quantitative
single-cell analysis of host-pathogen interactions at a scale
not achievable by automated bulk or manual quantification.

HRMAn can be adapted for bacteria-host interaction
analysis. To demonstrate its flexibility, HRMAn was trained
to recognize the bacterium Salmonella typhimurium (STm) -
a pathogen 16x smaller than Tg (0.5 m vs. 8 m) - and then
set to analyze the impact of IFNγ on bacterial killing, repli-

cation, and ubiquitin recruitment. Stage 1 outputs showed
that similar to Tg (Fig. 3), IFNγ treatment in HeLa cells re-
duced the ratio of STm vacuoles/cell and the bacterial load,
without impacting the percent of infected cells (Fig. 4a). At
the single cell level, HRMAn found a significant reduction in
the number of STm vacuoles/cell, consistent with a reduction
in vacuole size, percent of replicating bacteria, and reduced
numbers of STm/vacuole (Fig. 4b+c). These results demon-
strate that HeLa cells can control infection with STm through
IFNγ dependent bacterial killing and growth restriction. For
stage 2, we used the Tg recruitment model as input to re-
train HRMAn for quantification of ubiquitin recruitment to
STm (Fig. 4d). This allowed us to achieve 69.9% classifica-
tion accuracy, confirmed by expert-based cross-validation, in
just 40 epochs using 10-fold less non-augmented image data
(Fig. 4d). It’s known that HeLa cells restrict STm growth by
maintaining vacuole integrity; the small percentage of bacte-
ria which escape vacuoles are decorated with ubiquitin and
subsequently cleared by autophagy (23, 24). Interestingly,
stage 2 HRMAn showed that the percent of cells which re-
cruit ubiquitin to STm doubles upon IFNγ treatment, while
the percent of decorated vacuoles/cell increases only slightly
(Fig. 4e). As seen with Tg (Fig. 3e, S8a), IFNγ does not im-
pact the distance of the ubiquitin coat to STm but increases its
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Fig. 4. Analysis of Salmonella typhimurium infection in IFNγ-treated HeLa cells. HeLa cells were stimulated with 100 IU/mL IFNγ infected with Salmonella typhimurium
(STm) and analyzed 2 hours post-infection. (a-c) Stage 1 infection analysis parameters. (a) Infection parameters depicted as total percent of STm infected cells, the ratio of
STm vacuoles to cells and the ratio of bacteria to cells. (b) Cellular readouts showing the proportion of cells that contain a certain number of bacteria vacuoles, the mean
vacuole size of STm and the vacuole position as the value of the mean euclidian distance of STm vacuoles to the host cell nucleus. (c) Replication capacity of STm shown
as the proportion of replicating bacteria and the distribution of replicating STm. (d) Training of the deep convolution neural network (CNN) to analyze host protein recruitment
to STm vacuoles and bacteria. Left: Example images showing the difference of no recruitment versus ubiquitin (magenta) recruitment to STm. Middle: Decrease of negative
log likelihood (NLL) used as loss function during CNN training over training cycles (epochs) for STm model. Right: Confusion matrix of STm model validation, classification
accuracy (0 to 1) during validation is color-coded blue to red. (e) Cellular response to infection with STm measured through the percentage of cells that decorate vacuoles and
the average proportion of vacuoles per cell that are being decorated simultaneously and the overall proportion of ubiquitin decorated STm vacuoles. N shows the total number
of vacuoles analyzed for each condition, percentages are indicated in the legend. (f) Properties of the host protein coat on STm vacuoles as the average coat distance for
ubiquitin to STm and mean fluorescence intensity of ubiquitin. (g) Fate of STm grouped based on host protein recruitment. Shown is the proportion of replicating bacteria and
the replication distribution based on recruitment status of the vacuole. All data shown above represents the mean of N = 3 experiments ± SEM. Significance was determined
using unpaired t-tests, n.s. = not significant, * p ≤ 0.0332, ** p ≤ 0.0021, *** p ≤ 0.0002 and **** p < 0.0001
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thickness (Fig. 4f). This indicates that more ubiquitin is re-
cruited to cytosolic STm in the presence of IFNγ and growth
of decorated bacteria was restricted (Fig. 4g). Consequently,
although IFNγ treatment increases the number of cells that
recruit ubiquitin to STm and the intensity of that recruitment,
at the single-cell level HeLa cells appear to have reached their
capacity for detection and autophagy-mediated clearance of
cytosolic/ubiquitinated STm independent of IFNγ treatment
(Fig. 4e-g).

Discussion

Recent advances have made deep CNNs a powerful image
analysis method (18, 25). Inspired by abstraction of animal
visual cortex architecture, CNNs are able to generalize pat-
terns independent of minor phenotypic differences (26, 27).
Combining automated image segmentation, machine learn-
ing and a deep CNN in an ensemble, HRMAn is a power-
ful open-source, user-friendly software for the analysis of
host-pathogen interaction at the single-cell level. To date,
HRMAn represents the only open-source CNN-driven host-
pathogen analysis solution for fluorescent images. Many au-
tomated image analysis programs, some of which incorpo-
rate machine learning elements, have been developed and
are successfully used for classical image segmentation (Ta-
ble 1). However, when presented with the problem of clas-
sifying host protein recruitment to a pathogen, inaccurate
classical image segmentation could lead to erroneous results.
Employing an intuitive open-source artificial intelligence al-
gorithm, HRMAn circumvents these problems and delivers
user-defined automated and unbiased enumeration of this
subset of the host-pathogen interplay. Using Tg and STm in-
fection models we demonstrate that HRMAn is capable of
detecting and quantifying multiple pathogen and host param-
eters. Designed for biologists, HRMAn requires no coding
or specialized computer science knowledge. Its modular ar-
chitecture and the use of KNIME providing a graphical repre-
sentation of the analysis pipeline, allows users to tailor exper-
imental outputs to their own datasets and questions. As the
models we have generated can be used as primers to lower the
training dataset size, computation power and training time re-
quirements, HRMAn can be rapidly applied to similar large-
scale, image-based experimental setups. As such, HRMAn
will allow a broad range of researchers to extend into the
realm of high-throughput, unbiased, quantitative, single-cell
analysis of host-pathogen interaction.

Author Contribution. DHF and EMF conceived the idea for
HRMAn, DHF and AY designed and implemented HRMAn,
DHF performed experiments, BC provided essential exper-
imental protocols, BC, JW, MB tested HRMAn in multiple
settings, MH provided essential high content imaging guid-
ance and performed the automated image acquisition. DHF,
AY, JPM and EMF wrote the manuscript. All authors con-
tributed to analysis and interpretation of the data and revision
of the manuscript.

Competing Financial Interests. The authors declare no
competing financial interest.

ACKNOWLEDGEMENTS
We thank all members of the Frickel lab for productive discussion. This work was
supported by the Francis Crick Institute, which receives its core funding from Can-
cer Research UK (FC001076), the UK Medical Research Council (FC001076), and
the Wellcome Trust (FC001076). EMF was supported by a Wellcome Trust Career
Development Fellowship (091664/B/10/Z). DHF was supported by a Boehringer In-
gelheim PhD fellowship. AY, JM were supported by core funding to the MRC Lab-
oratory for Molecular Cell Biology at University College London (J.M.), the Euro-
pean Research Council (649101-UbiProPox), the UK Medical Research Council
(MC_UU12018/7).

Fisch & Yakimovich et al. | AI Workflow for Defining HP Interactions bioRχiv | 7

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 5, 2018. ; https://doi.org/10.1101/408450doi: bioRxiv preprint 

https://doi.org/10.1101/408450
http://creativecommons.org/licenses/by-nc-nd/4.0/


Methods
Code availability. All open-source KNIME workflows used
in this publication can be found at: http://bit.ly/hrman2018.
Upon publication HRMAn framework will be deposited on
GitHub and the homepage http://hrman.org under GPLv3
open-source software license to allow for rapid and open dis-
semination and free availability for the research community.
The models and their respective weights obtained through
training will be deposited on GitHub and the homepage as
well.

Image acquisition. For simple infection analysis (stage 1),
96-well plates (see Microscopy sample generation) were im-
aged on an ArrayScanTM VtI Live High Content Imaging
Platform (Thermo Scientific) using 20x magnification and
depending on the experiment, 15-20 fields of view per well.
For recruitment analysis to Toxoplasma gondii (Tg) vacuoles,
glass-bottom 96-well plates were imaged on an ArrayScan™
VtI Live High Content Imaging Platform but using 40x mag-
nification and depending on the experiment, 50 fields of view
per well. In both cases, following image acquisition, the im-
ages were exported from HCS Studio Cell Analysis Software
as single channel 16-bit tiff files before they were fed into the
HRMAn analysis pipeline.
For recruitment analysis to Salmonella typhimurium (STm)
vacuoles, images of coverslips were acquired on a Ti-E Nikon
microscope equipped with an LED-illumination and an Orca-
Flash4 camera using a 60x magnification. 75 fields of view
per coverslip were acquired using multi-position acquisition.
Images were exported as single channel 16-bit tiff files with
Nikon NIS Elements software before they were fed into the
HRMAn analysis pipeline.
Generally, HRMAn can work with any common image file
format, but the use of uncompressed, lossless formats like tiff
(or png) is recommended. Furthermore, HRMAn can work
with images acquired on any type of fluorescence microscope
and is truly platform independent.

Image analysis using HRMAn. Following image acqui-
sition, the images were loaded into the HRMAn pipeline.
Images can be in any common file format, preferably as
single-channel tiff files. The used image reader loads im-
ages from all file formats supported by the Bio-Formats li-
brary (a list of the supported formats can be found here:
http://loci.wisc.edu/bio-formats/formats). If the images were
not acquired on a high-content imaging platform, they can be
renamed with HRMAn to mimic the file names and the plate
format. This is needed to cluster the output data and perform
error calculation. Furthermore, the OME-XML-metadata is
loaded and information on the image is extracted (e.g. im-
age size, type and origin). While the images are loaded into
KNIME, the user is asked to provide some basic information
on the image acquisition and the type of analysis to be per-
formed. This includes the used magnification, type of analy-
sis, channel number and order and providing a plate map to
cluster the data.
HRMAn then pre-processes the images, meta-data and pro-

vided information and lets the user inspect the input images
arranged into a grid and sorted by the field of view. Next
the input images undergo illumination correction by dividing
the background as a mean image of all acquired images in
a channel-wise fashion. Following this step, the individual
channels are segmented to detect the Nuclei, the pathogens
and the cells:
(1) Nuclei are detected using Otsu’s method thresholding, a
watershed and connected component analysis. Fields of view
containing insufficient numbers of nuclei (i.e. empty fields)
are excluded from the following analysis.
(2) The pathogens (or vacuoles) are detected after image nor-
malization and filtering through thresholding using Otsu’s
method. Incomplete labels are corrected by filling holes and
pathogen vacuoles are separated through watershedding. La-
bels are created with a connected component analysis.
(3) Cell labels are created using Huang thresholding and
a Voronoi segmentation using the nuclei labels as starting
points. Optionally the images can be enhanced using Con-
trast Limited Adaptive histogram equalization (CLAHE) to
improve the segmentation accuracy. All cell labels touching
the border of an image are excluded from the analysis.
Furthermore, the created labels are filtered based on their size
and the user-defined parameters such as magnification and
detector size. The filter values for STm and Tg were empir-
ically determined using thousands of images from different
experiments. Based on which pathogen type is chosen by
the user, HRMAn will adjust the filters automatically. Using
labelling arithmetic, pathogen labels that are not contained
within a cell label are removed from the dataset, as they rep-
resent extracellular pathogens. The created labels can then
be inspected by the user through an interactive label viewer
displaying the original image next to the labels.
Using the created labels, the infection readouts for stage 1
are created: First, cell numbers NCells and vacuole numbers
NV acuoles are determined by counting the numbers of
respective labels in all acquired fields per well (= replicate).
Using these values, the vacuole to cell ratio is calculated:

V acuole : Cells = NV acuoles
NCells

Next, the dependencies between the cell labels and vacuole
labels are used to calculate the proportion of infected cells
and the infection levels of the cells. The label dependencies
determine which vacuole labels V1, V2, . . . , Vi are contained
by which cell label C1, C2 . . . , Cj . If a cell label C contains
at least one vacuole label V , the cell is considered as infected
cell Cinf . This is used to calculate the proportion of infected
cells:

%Infected cells = NCinf
NCells

, with NCinf as the number of infected cells Cinf

To determine the more precise distribution describing how
many vacuoles are contained by which proportion of cells (=
Infection levels) the cells C are split into subgroups accord-
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ing to the number of vacuoles they contain (no vacuoles or
uninfected = C0, 1 vacuole = C1, . . . , 5 or more vacuoles per
cell = C≥5) and then the proportion is calculated:

0 vacuoles per cell (uninfected):

uninfected = NC0
NCells

1 vacuole per cell:

1vac/cell = NC1
NCells

. . .

5 or more vacuoles per cell:

> 5vac/cell = NC≥5
NCells

Also based on the dependencies, the mean euclidean distance
d between the centroid of the vacuole labels (with coordi-
nates XV and YV ) within a cell and its nucleus’ centroid
(with coordinates XN and YN ) is determined as the position
of the vacuole:

d =
√

(XV −XN )2 +(YV −YN )2

Using the vacuole labels, of vacuoles contained within cells,
and working on the original images the properties of the vac-
uoles are measured as mean values for each well. These
include mean vacuole size, shape descriptors (Circularity,
Perimeter, Convexity, Extent, Diameter) and fluorescence
properties (Minimum, Mean and Maximum Fluorescence).
Using the above determined values as attributes, a decision-
tree machine learning algorithm determines good classifiers
and employs them to classify each vacuole label Vi based on
how many individual pathogens PV i it contains. This step
requires providing an annotated dataset.
Based on this classification the vacuoles can be divided
into individual groups for the number of pathogens they
contain (1/vac = V1V ac, 2/vac = V2V ac, 4/vac = V4V ac
and 4ormore/vac = V≥4V ac) and the number of vacuoles in
each group is counted (e.g. number of vacuoles that contain
just one pathogen = NV 1V ac). To calculate the proportion of
replicating pathogens, the number of vacuoles that contain
at least two pathogens is divided by the total number of
vacuoles:

%Replicating = NV 2V ac+NV 4V ac+NV≥4V ac
NV acuoles

Similarly, the individual proportions of the vacuole groups
are calculated to illustrate pathogen replication distribution:

1 pathogen per vacuole:

1/vac = NV 1V ac
NV acuoles

2 pathogen per vacuole:

2/vac = NV 2V ac
NV acuoles

. . .

4 or more pathogens per vacuole:

4/vac = NV≥4V ac
NV acuoles

Combining the information on the number of vacuoles and
the number of pathogens PVi each individual vacuole Vi
contains, the total number of pathogens NPathogens is
calculated:

NPathogens =
∑

Vi×PVi

This can be used to determine the Pathogen load by normal-
ization to the cell number:

Pathogen Load = NPathogens
NCells

This concludes stage 1 infection analysis performed by
HRMAn. In the end of the analysis, the values calculated
for each well or replicate is combined with the values for the
other wells belonging to the same sample group based on the
user-provided plate map and error calculation is performed.
If the user decides to perform only stage 1 infection analysis
the HRMAn image analysis pipeline will stop here, if host
protein recruitment analysis is to be performed the data will
be fed into the second stage for which the implemented deep
Convolutional Neural Network (CNN) has to be trained first.

Deep Learning Setup and Neural Network Architec-
ture. To classify pathogen recruitment, we employed a deep
Convolutional Neural Network (CNN) adopted from a pub-
lished AlexNet (10, 28) (Fig. S1). To ensure our neural
network can be implemented by other researchers with no
coding, it was based on the open source DeepLearning4J li-
brary implementation in Eclipse-KNIME. Unlike the origi-
nal AlexNet our network was suited to take 100 by 100 by
2 pixels images as input and designed to run on a single
graphic processing unit (GPU). Since our fluorescence mi-
croscopy input data had two fluorescence channels, rather
than the standard RGB dimension of three, we used two
to save computational resources. Furthermore, the choice
of DeepLearning4J as a deep learning library allowed us to
use 16-bit microscopy images directly, preventing informa-
tion loss upon conversion of scientific imaging data. Our
deep learning hardware was based on a single Nvidia 1080
Ti GPU set up in Intel®CoreTM i7 4790K system equipped
with 32 Gb of RAM and a SSD. Our architecture consisted
of a total of 5 convolutional layers, where the first two were
immediately followed by local response normalization layers
and max pooling layers and the last three convolutional lay-
ers were followed by one max pooling layer connected to a
fully connected layer. All these layers used rectified linear
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unit (ReLU) as activation function (29). Finally, to accom-
plish the classification task the network had a fully connected
layer with a soft maximum (SoftMax) activation (30).

Neural Network Training and Hyperparameters Opti-
mization. Our neural networks were trained using stochastic
gradient descent (SGD) based backpropagation on the aug-
mented original data over at least 80 cycles (epochs) (31, 32).
To fully utilize the GPU capacity, training was performed in
mini-batches of 200. To improve the SGD performance, we
utilized an ADAM updater with ADAM Mean Decay of 0.9
and ADAM Variance Decay of 0.999 (33). We employed
the Xavier algorithm for the weight initialization strategy and
negative log likelihood (NLL) as our loss function (33). We
used learning rates between 0.001 and 0.01 adjusted accord-
ingly to ensure the optimal loss curve decay during training.
Together with the weights initialization strategy and the up-
dater choice these were the main hyperparameters optimized
in multiple iterations to ensure good training process.

Data Preparation, Augmentation and Model Validation.
Vacuole images used for creation of our deep learning model
were segmented from large field of view micrographs ob-
tained from high-content imaging. To ensure the dimension
of the images are uniform, we padded all vacuole with zero-
value padding to a uniform 100 by 100 pixels size. Next, we
manually labeled the segmented vacuoles into recruited, non-
recruited and artefactual (in case of erroneous segmentation
of the vacuole). This labeled dataset was then split into the
training and test datasets. To ensure our neural network has
sufficiently diverse learning data, upon splitting the original
labeled dataset into training and test subsets we performed
data augmentation using a custom developed macro for Im-
ageJ. During the augmentation processing, the original la-
beled dataset was concatenated with a modified version of it.
The modifications included various rotations, image reflect-
ing, image translation within the field of view. As microscopy
data is typically rotation-, translation- or reflection-invariant,
such modification allowed us to create a better dataset aim-
ing at a more generalized model. Model validation was per-
formed using the non-augmented test fraction of the labeled
dataset previously unseen by the model. For this, we used
the trained model as first input and passed the labeled test
data through the classifier in the second input. The classi-
fication accuracy was assessed by accuracy score, numbers
of true positive, false positive, true negative and false nega-
tive, as well as Cohen’s kappa values. A direct summary of
the accuracy was visualized in a confusion matrix illustrating
a mismatch between original label (Ground Truth) and the
class assigned by the classifier (Fig. 2).

Host protein recruitment analysis in HRMAn. For re-
cruitment analysis, the vacuole labels created in stage 1 of
the analysis are dilated over 20 iterations to create non-
overlapping regions of interest (ROIs) around them. Simul-
taneously, the fluorescence images of the pathogen and the
respective channel with fluorescence signal of the host pro-
tein are merged into a dual channel image. The created ROIs

are used to crop the dual channel images, which creates im-
ages of the pathogen and its surrounding stained host pro-
tein. The images are clipped to 100 by 100 pixel and fed into
a feedforward predictor (classification) which uses the pro-
vided and trained deep convolution neural network (CNN) to
classify the pathogens vacuoles based on their coating. Once
the vacuoles are separated into two groups, they are analyzed
with the above described methods of stage 1 infection analy-
sis but additionally comparing recruited versus non-recruited
vacuoles. Thus, in addition to the overall infection parame-
ters from stage 1 the user is provided with the same parame-
ters but further layered for the cellular response. In the case
of co-recruitment analysis, two images of each vacuole are
created with both containing the pathogen signal, but each
containing a different second channel, representing the dif-
ferent stainings. After classification with the CNN, the vac-
uoles can be compared for recruitment or co-recruitment and
all the above described parameters are calculated for them in-
dividually. Using the previously determined label dependen-
cies of vacuoles Vi and cells Ci and the classification of the
vacuoles Vi by the CNN, HRMAn can furthermore calculate
the proportion of cells that do respond to infection by dec-
orating at least one vacuole and the proportion of vacuoles
decorated per cell, if a single cell contains more than one
pathogen vacuole. Furthermore, working only on the deco-
rated vacuoles, we used a custom-made Fiji code to create a
pixel-wise radial intensity profile starting from the pathogen
centroid. The distance of the maximum fluorescence inten-
sity is then used to define the distance of the coat from the
pathogen center. Moreover, the mean fluorescence intensity
of the coat is determined and can be used as a readout for
the amount of protein recruited to each pathogen vacuole. Fi-
nally, all mean values and errors for the replicate conditions,
as defined by the user’s plate map, are calculated and written
into a single spreadsheet file. Before this, the user can also
define a scaling factor between pixel and actual metric values
which will adjust the output values from pixel (px) to µm or
to µm2 respectively.

Cell culture. THP-1 (ATCC) were maintained in RPMI
with GlutaMAX (Life Technologies) supplemented with 10%
FBS (Sigma), at 37◦C in 5% CO2. THP-1s were differenti-
ated with 50 ng/mL phorbol 12-myristate 13-acetate (PMA)
for 3 days and then rested for 2 days by replacing the dif-
ferentiation medium with complete medium without PMA.
Cells were not used beyond passage 20. Human Umbili-
cal Vein Endothelial cells, HUVECs, (Promocell C12203),
were maintained in M199 medium (Life Technologies) sup-
plemented with 30 g/mL endothelial cell growth supplement
(ECGS) (Upstate 02–102), 10 units/mL heparin (Sigma H-
3149) and 20% FBS (Sigma). Cells were grown on plates,
pre-coated with 1% (w/v) porcine gelatin (Sigma G1890)
and cultured at 37◦C in 5% CO2. HUVEC were not used
beyond passage 6. HeLa (ECACC, Sigma), A549 (ATCC)
and human foreskin fibroblasts, HFFs (ATCC), were cul-
tured in DMEM with GlutaMAX (Life Technologies) supple-
mented with 10% FBS (Sigma), at 37◦C in 5% CO2. HeLa
and A549 cells were not used beyond passage 25 and HFFs
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were not used beyond passage 15. All cell culture was per-
formed without addition of antibiotics and the cells were reg-
ularly tested for mycoplasma contamination by immunofluo-
rescence, PCR and agar test.

Interferon stimulation of cells. All five cell lines used in
this publication were stimulated for 16 h in complete medium
at 37◦C with addition of 100 IU/mL human IFNγ (R&D Sys-
tems) prior to infection, if not indicated otherwise.

Toxoplasma gondii infection. Parasites were always pas-
saged the day before infection onto new HFFs to obtain par-
asites with a high viability for infection. Tg were prepared
from freshly 25G syringe-lysed HFF cultures in 10% FBS by
centrifugation at 50 x g for 3 minutes and transferring the
cleared supernatant into a new tube and subsequent centrifu-
gation at 500 x g for 7 minutes and re-suspension of the pel-
leted parasites into fresh complete medium. Then, the par-
asites were added to the experimental cells at a MOI of 3
for both type I and type II strains. The cell cultures with
added Tg were then centrifuged at 500 x g for 5 minutes to
synchronize the infection. Two hours post-infection, the cul-
tures were thoroughly washed two times with warm PBS to
remove any uninvaded parasites and fresh complete medium
was added prior to culturing at 37◦C, 5% CO2 for the re-
quired time.

Bacteria culture and infection. Salmonella enterica
serovar Typhimurium 12023 wild-type strain containing the
plasmid pFVP25.1, carrying gfpmut3A under the control of
the rpsM constitutive promoter were grown in Luria Bertani
(LB) medium supplemented with ampicillin (50 µg/ml).
Prior to infection, bacteria were grown to induce SPI-1 T3SS
expression: cultures of STm were grown at 37◦C in LB, di-
luted 1:50 into fresh LB containing 300 mM NaCl the next
morning and incubated shaking at 200 rpm until OD600 = 0.9
– 1.0 was reached. Bacteria were washed in medium with-
out FBS before use. Cells were infected at a MOI of 50 and
infections were synchronized by centrifuging bacteria onto
the cells at 750 x g for 10 minutes. 15 minutes post infec-
tion, the cells were thoroughly washed three times with warm
PBS to remove extracellular bacteria and medium containing
100 µg/mL Gentamicin (Gibco) was added for 30 min. Then,
Gentamicin concentration was reduced to 10 g/mL and cells
were incubated further at 37◦C, 5% CO2 for the appropriate
amount of time.

Antibodies. Antibodies used in this study were rabbit pAb
anti-p62 (MBL, #PM045), mouse mAb anti-GRA2 (Biovi-
sion, A1298) and mouse mAb anti-ubiquitin (FK2) (Enzo
Lifesciences, PW8810). Secondary antibodies used were
Alexa Fluor 647-conjugated goat anti-rabbit or anti-mouse
and Alexa Fluor 568-conjugated goat anti-mouse (Molecular
Probes).

Microscopy sample generation. Simple infection analysis
For simple infection analysis, 30,000 THP-1s per well were
seeded 5 days prior to IFNγ treatment and differentiated with

50 ng/mL PMA for three days and then rested for 2 days
in complete medium. HFFs were harvested by washing a
confluent monolayer with PBS and subsequent lifting of the
cells with 0.05% Trypsin-EDTA (Gibco). Cells were cen-
trifuged at 250 x g for 5 mins, re-suspended in fresh DMEM
plus 10% FBS and 20,000 HFFs per well were seeded the
day before IFNγ treatment. Similarly, HUVECs were har-
vested and 15,000 cells per well were seeded in complete
medium the day before IFNγ treatment. A549s and HeLa
cells were harvested in the same way and 8,000 cells per
well were seeded the morning before IFNγ treatment. All
cells were seeded on 1% (w/v) porcine gelatin pre-coated
black-wall, clear bottom 96-well plates (Thermo Scientific).
In the evening, all cells were treated with 100 IU/mL IFNγ
or medium and left at 37◦C, 5% CO2 overnight. The next
morning the cells were infected with either Tg or STm as
described above. After the appropriate infection duration
the infected cells were again thoroughly washed with warm
PBS to remove as many uninvaded pathogens as possible and
subsequently fixed with 4% methanol-free paraformaldehyde
(Thermo Scientific). Fixed specimens were permeabilized
with PermQuench buffer (0.2% (w/v) BSA and 0.02% (w/v)
saponin in PBS) for 30 minutes at room temperature. Then
PermQuench buffer containing 1 g/mL Hoechst 33342 (Life
Technologies) and 2 ug/mL CellMaskTM Deep Red plasma
membrane stain (Invitrogen) were added and samples were
incubated at room temperature for 1 hour. After staining, the
specimens were washed with PBS 5 times and kept in 200 L
PBS per well for imaging.
Recruitment analysis
For recruitment analysis, the cells were prepared as described
above, but they were seeded on 1% (w/v) porcine gelatin
pre-coated black-wall, glass bottom 96-well imaging plates
CG 1.0 (Miltenyi Biotec) to allow higher resolution imaging.
After fixation, cells were permeabilized identically and then
stained with primary antibody diluted in PermQuench buffer
for 1 hour at room temperature. After three washes with PBS,
cells were incubated with the appropriated secondary anti-
body and 1 µg/mL Hoechst 33342 diluted in PermQuench
buffer for another hour at room temperature. Then, the spec-
imens were washed with PBS 5 times and kept in 200 µL
PBS per well for imaging. In the case of recruitment analysis
to STm vacuoles, the cells were seeded on 1% (w/v) porcine
gelatin pre-coated 9 mm coverslips in 24-well plates. After
fixation and identical staining procedure, the coverslips were
mounted using 5 L ProLongTM Gold Antifade Mountant (In-
vitrogen).

Data handling and statistical measurements. Data was
plotted using GraphPad Prism and presented with error bars
as standard error of the mean (SEM). Significance of results
was determined by non-parametric one-way ANOVA, two-
way ANOVA or unpaired t-test as indicated in the figure leg-
ends.
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Supplementary Information

This is supplementary information to the preprint manuscript from Fisch & Yakimovich et al. 2018. Supplementary section
contains Supplementary table, supplementary figures and figure legends. All further information is available upon request.

Supplementary Figures.

Fig. S1: Infection of HeLa cells with Toxoplasma gondii at 6 hours post-infection.. (a+b) HeLa cells were infected with
either type I (RH) Toxoplasma gondii (a) or type II Pru Toxoplasma gondii and underwent a stringent washing procedure to
eliminate uninvaded parasites. Infected cells were stained with anti-GRA2 (purple) to illustrate vacuole establishment. Scale
bar indicates a distance of 20 m. (c) Quantification of GRA2 positive vacuoles for type I and type II Toxoplasma gondii infected
cells. (d) Quantification of infected cells as proportion of all captured cells. Data shown in (c) and (d) represents the mean of N
= 3 experiments ±SEM, N = total number of vacuoles analyzed in the course of three experiments.
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Fig. S2: IFNγ dose-dependent killing and replication-inhibition of Toxoplasma gondii in 5 human cell types at 24h post-
infection.. (a) Example images employed to analyze the cellular response to Toxoplasma gondii (Tg) infection dependent on
different dosages of IFNγ pre-treatment for these 5 different human cell lines: macrophage-like, PMA-differentiated THP-1s
(yellow), alveolar-epithelial tumor cells A549 (purple), the cervical cancer cell line HeLa (blue), human foreskin fibroblasts
(HFF, red) and primary human umbilical vein endothelial cells (HUVEC, green). Scale bar indicates a distance of 30 m. All
images represent conditions pre-treated with 100 IU/mL IFNγ. (b-d) Host-pathogen interaction parameters of Tg type I and II
infection were analyzed with HRMAn 24 hours post-infection. (b) Percent Tg infected cells, (c) ratio between Tg vacuoles and
cells and (d) the mean vacuole size of Tg. All data shown above represents the mean of N = 3 experiments ±SEM.
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Fig. S3: IFNγ dose-dependent replication-inhibition of Toxoplasma gondii in 5 human cell types analyzed as parasites
per vacuole at 24h post-infection.. (a-e) Mean vacuole size of Toxoplasma gondii (Tg) dependent on different dosages of
IFNγ pre-treatment for 5 different human cell lines converted to number of parasites per vacuole as per HRMAn decision tree
machine learned algorithm. Plotted are the distribution of vacuoles that contain one parasite, two, four or more than 4 parasites.
Data shown was recorded 24 hours post-infection. Growth restriction of type I (RH) Tg (left) or type II (Pru) Tg (right) in
THP-1 cells (a), A549 cells (b), HeLa cells (c), HFF (d) and HUVECs (e). All data shown above represents the mean of N =
3 experiments ±SEM. Significance was determined using non-parametric one-way Anova, n.s. = not significant, * p ≤ 0.0332,
** p ≤ 0.0021, *** p ≤ 0.0002 and **** p < 0.0001.
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Fig. S4: Systematic analysis of IFNγ-dependent cellular control of Toxoplasma gondii infection of 5 human cell types at
6h post-infection.. Analysis of the proportion of cells infected with type I (RH) and type II (Pru) Toxoplasma gondii (Tg) in
IFNγ-treated 5 human cell types. (a) Total percent infected cells for all cell lines tested, (b) the ratio of Tg vacuoles to cells and
(c) the ratio of total number of individual parasites to cells. All data shown above represents the mean of N = 3 experiments
±SEM. Significance was determined using unpaired t-tests, n.s. = not significant, * p ≤ 0.0332, ** p ≤ 0.0021, *** p ≤ 0.0002
and **** p < 0.0001.
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Fig. S5: Systematic analysis of IFNγ-dependent replication control of Toxoplasma gondii infection of 5 human cell types
at 6h post-infection.. Measuring the infectivity and position of type I (RH) and type II (Pru) Toxoplasma gondii (Tg). (a) The
proportion of cells that contain a certain number of parasite vacuoles, (b) the mean vacuole size of Tg, (c) Value of the mean
euclidian distance of Tg vacuoles to the host cell nucleus. All data shown above represents the means of N = 3 experiments
±SEM. Significance was determined using unpaired t-tests, n.s. = not significant, * p ≤ 0.0332, ** p ≤ 0.0021, *** p ≤ 0.0002
and **** p < 0.0001.
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Fig. S6: Systematic analysis of IFNγ-dependent replication control of Toxoplasma gondii infection of 5 human cell types
at 6h post-infection analyzed as parasites per vacuole. Measuring the replication capacity of type I (RH) and type II (Pru)
Toxoplasma gondii (Tg). (a) The proportion of replicating parasites, (b) the distribution of replicating Tg. All data shown above
represents the means of N = 3 experiments ±SEM. Significance was determined using unpaired t-tests, n.s. = not significant, *
p ≤ 0.0332, ** p ≤ 0.0021, *** p ≤ 0.0002 and **** p < 0.0001.
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Fig. S7: Ubiquitin and p62 host protein recruitment to Toxoplasma gondii type I and II vacuoles in 5 IFNγ-treated
human cell lines at 6h post-infection.. Cellular response to type I (RH) and type II (Pru) Toxoplasma gondii (Tg) infection.
(a) Percentage of infected cells that respond to Tg infection by decorating at least one vacuole with either ubiquitin, p62 or both.
(b) Proportion of vacuoles one cell can decorate with ubiquitin or p62 or both simultaneously. (c) Depicted are the average
percentages Tg vacuoles decorated with host protein. Exact proportions can be found in the legend. The number of vacuoles
analyzed is indicated. All data shown above represents the mean of N = 3 experiments ±SEM. Significance was determined
using unpaired t-tests, n.s. = not significant, * p ≤ 0.0332, ** p ≤ 0.0021, *** p ≤ 0.0002 and **** p < 0.0001.
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Fig. S8: Characterization of the effect of host protein coating of Toxoplasma gondii type I and II vacuoles in 5 IFNγ-
treated human cell lines at 6h post-infection. (a-b) Radial fluorescence intensity of host proteins around decorated type I
(RH) and type II (Pru) Toxoplasma gondii (Tg) vacuoles. (a) Analysis of the coat distance to the centroid of Tg for ubiquitin
and p62. (b) Intensity of the ubiquitin and p62 stain at the Tg vacuole. Significance was determined using unpaired t-tests, n.s.
= not significant, * p ≤ 0.0332, ** p ≤ 0.0021, *** p ≤ 0.0002 and **** p < 0.0001. (c-d) Fate of Tg vacuoles grouped based
on host protein recruitment. (c) Combined replication and recruitment analysis for non-decorated Tg vacuoles versus vacuoles
co-decorated with ubiquitin and p62. (d) Replication distribution of Tg parasites contained in vacuoles with or without ubiquitin
and p62 decoration. Significance was determined using 2-way ANOVA, n.s. = not significant, * p ≤ 0.0332, ** p ≤ 0.0021,
*** p ≤ 0.0002 and **** p < 0.0001. All data shown above represents the means of N = 3 experiments ±SEM.
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Supplementary Table.

Table S1. Overview and evaluation of existing software packages for analysis of fluorescence images in HCI experiments.

Program Reference Machine learning and deep learning features and user friendliness
Cellprofiler Ana-
lyst (CA)

Carpenter et al., 2006 Deep learning (DL) is not a native part of CA. Using it requires writing
python code. Furthermore, due to necessity to maintain the integration
between DL framework (e.g. Google TensorFlow) and CA such code
is even more complex defeating the purpose of the framework for DL
application.

WND-CHARM Orlov et al., 2008 This collection of scripts requires coding and integration with up-to date
libraries.

CellClassifier Rämö, Sacher, Sni-
jder, Begemann, &
Pelkmans, 2009

Being a milestone research contribution, CellClassifier is a discontinued
legacy solution, making it currently unusable.

CellCognition
(CC)

Held et al., 2010 CC is a SVM-based user-friendly machine learning classification tool.
However, similar to CA, DL is not a native part of CC, requires coding
and comes with compatibility overhead.

Enhanced Cell
Classifier (ECC)

Misselwitz et al.,
2010

While employing machine Learning (ML), ECC uses simplistic Sup-
port Vector Machine (SVM) classifier, which is not on par with modern
machine learning techniques. ECC is a legacy solution.

Ilastik Sommer, Straehle,
Kothe, & Hamprecht,
2011

Ilastik is ML-first oriented image analysis software with a great training
interface and graphic processing unit (GPU) acceleration. It provides
use of Random Forest ML classifier and SVM but has no DL support.

PhenoRipper Rajaram, Pavie, Wu,
& Altschuler, 2012

PhenoRipper provides a lightweight analytical alternative to conven-
tional computer vision approaches. However, it does not include the
latest methodology like DL.

cellXpress (CX) Laksameethanasan,
Tan, Toh, & Loo,
2013

CX offers great performance based on conventional computer vision
algorithms. It is equipped with principle component analysis and SVM-
based machine learning, however has no DL integration available.

Cytomine
Marée & et al., 2013 Cytomine is a great implementation of python basic ML libraries. How-

ever, it is based on the Scikit-learn library, which is missing DL. Fur-
thermore, it is cloud only, which is impractical for large-scale HCS
datasets and/ or unpublished data.

PhenoDissim Zhang & Boutros,
2013

PhenoDissim is a tool to analyze phenotypic dissimilarity based on
SVM, this approach has not been followed up with more advance ML
techniques like DL.

BioConductor
(BC)

Huber et al., 2015 BC is an important tool in Bioinformatics with a substantial bioimage
informatics capabilities. However, using BC requires coding. Further-
more, being aimed for R rather than python it provides poor integration
with modern day DL libraries.

CP-CHARM Uhlmann, Singh, &
Carpenter, 2016

Elaborated pure code analysis solution. However, requires understand-
ing the code and integration with modern day libraries.

Advanced Cell
Classifier (ACC)

Piccinini et al., 2017 ML in ACC solution is based on a simplistic multi-layer perceptron net-
work (MLP), which has been shown to be incapable of high complexity
learning.

HTX Arteta et al., 2017 Great tool combining DL and graphical user interface in Matlab, how-
ever it lacks specific host-pathogen analysis. Furthermore, Matlab us-
age requires additional commercial licenses for highly specific tool-
boxes used here, which significantly limits applicability of this frame-
work.

Trainable Weka
Segmentation

Arganda-Carreras et
al., 2017

Weka has arguably the largest ML classifiers collection, however for
image analysis it relies on either ImageJ or KNIME integration and in
absence of GPU acceleration no DL integration.
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