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Abstract

Complex traits are known to be influenced by a combination of environmental fac-

tors and rare and common genetic variants. However, detection of such multivariate

associations can be compromised by low statistical power and confounding by popula-

tion structure. Linear mixed effect models (LMM) can account for correlations due to

relatedness but have not been applicable in high-dimensional (HD) settings where the

1

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2018. ; https://doi.org/10.1101/408484doi: bioRxiv preprint 

https://doi.org/10.1101/408484
http://creativecommons.org/licenses/by-nc-nd/4.0/


1 INTRODUCTION

number of fixed effect predictors greatly exceeds the number of samples. False positives

can result from two-stage approaches, where the residuals estimated from a null model

adjusted for the subjects’ relationship structure are subsequently used as the response

in a standard penalized regression model. To overcome these challenges, we develop

a general penalized LMM framework called ggmix that simultaneously, in one step,

selects variables and estimates their effects, while accounting for between individual

correlations. Our method can accommodate several sparsity-inducing penalties such as

the lasso, elastic net and group lasso, and also readily handles prior annotation infor-

mation in the form of weights. We develop a blockwise coordinate descent algorithm

which is highly scalable, computationally efficient and has theoretical guarantees of

convergence. Through simulations, we show that ggmix leads to correct Type 1 error

control and improved variance component estimation compared to the two-stage ap-

proach or principal component adjustment. ggmix is also robust to different kinship

structures and heritability proportions. Our algorithms are available in an R package

(https://github.com/greenwoodlab).

1 Introduction

Genome-wide association studies (GWAS) have become the standard method for analyzing

genetic datasets owing to their success in identifying thousands of genetic variants associated

with complex diseases (https://www.genome.gov/gwastudies/). Despite these impressive

findings, the discovered markers have only been able to explain a small proportion of the

phenotypic variance; this is known as the missing heritability problem [1]. One plausible

explanation is that there are many causal variants that each explain a small amount of

variation with small effect sizes [2]. Methods such GWAS, which test each variant or single

nucleotide polymorphism (SNP) independently, may miss these true associations due to the

stringent significance thresholds required to reduce the number of false positives [1]. Another

major issue to overcome is that of confounding due to geographic population structure, family
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1 INTRODUCTION

and/or cryptic relatedness which can lead to spurious associations [3]. For example, there

may be subpopulations within a study that differ with respect to their genotype frequencies

at a particular locus due to geographical location or their ancestry. This heterogeneity in

genotype frequency can cause correlations with other loci and consequently mimic the signal

of association even though there is no biological association [4, 5]. Studies that separate their

sample by ethnicity to address this confounding suffer from a loss in statistical power.

To address the first problem, multivariable regression methods have been proposed which

simultaneously fit many SNPs in a single model [6, 7]. Indeed, the power to detect an

association for a given SNP may be increased when other causal SNPs have been accounted

for. Conversely, a stronger signal from a causal SNP may weaken false signals when modeled

jointly [6].

Solutions for confounding by population structure have also received significant attention in

the literature [8, 9, 10, 11]. There are two main approaches to account for the relatedness

between subjects: 1) the principal component (PC) adjustment method and 2) the linear

mixed model (LMM). The PC adjustment method includes the top PCs of genome-wide

SNP genotypes as additional covariates in the model [12]. The LMM uses an estimated

covariance matrix from the individuals’ genotypes and includes this information in the form

of a random effect [3].

While these problems have been addressed in isolation, there has been relatively little

progress towards addressing them jointly at a large scale. Region-based tests of association

have been developed where a linear combination of p variants is regressed on the response

variable in a mixed model framework [13]. In case-control data, a stepwise logistic-regression

procedure was used to evaluate the relative importance of variants within a small genetic

region [14]. These methods however are not applicable in the high-dimensional setting, i.e.,

when the number of variables p is much larger than the sample size n, as is often the case in

genetic studies where millions of variants are measured on thousands of individuals.
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1 INTRODUCTION

There has been recent interest in using penalized linear mixed models, which place a con-

straint on the magnitude of the effect sizes while controlling for confounding factors such as

population structure. For example, the LMM-lasso [15] places a Laplace prior on all main

effects while the adaptive mixed lasso [16] uses the L1 penalty [17] with adaptively chosen

weights [18] to allow for differential shrinkage amongst the variables in the model. Another

method applied a combination of both the lasso and group lasso penalties in order to select

variants within a gene most associated with the response [19]. However, these methods are

normally performed in two steps. First, the variance components are estimated once from

a LMM with a single random effect. These LMMs normally use the estimated covariance

matrix from the individuals’ genotypes to account for the relatedness but assumes no SNP

main effects (i.e. a null model). The residuals from this null model with a single random

effect can be treated as independent observations because the relatedness has been effec-

tively removed from the original response. In the second step, these residuals are used as the

response in any high-dimensional model that assumes uncorrelated errors. This approach

has both computational and practical advantages since existing penalized regression soft-

ware such as glmnet [20] and gglasso [21], which assume independent observations, can be

applied directly to the residuals. However, recent work has shown that there can be a loss in

power if a causal variant is included in the calculation of the covariance matrix as its effect

will have been removed in the first step [13, 22].

In this paper we develop a general penalized LMM framework called ggmix that simul-

taneously selects variables and estimates their effects, accounting for between-individual

correlations. Our method can accommodate several sparsity inducing penalties such as the

lasso [17], elastic net [23] and group lasso [24]. ggmix also readily handles prior annota-

tion information in the form of a penalty factor, which can be useful, for example, when

dealing with rare variants. We develop a blockwise coordinate descent algorithm which is

highly scalable and has theoretical guarantees of convergence to a stationary point. All of

our algorithms are implemented in the ggmix R package hosted on GitHub with extensive

Page 4 of 56

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2018. ; https://doi.org/10.1101/408484doi: bioRxiv preprint 

https://doi.org/10.1101/408484
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 PENALIZED LINEAR MIXED MODELS

documentation (http://sahirbhatnagar.com/ggmix/). We provide a brief demonstration

of the ggmix package in Appendix C.

The rest of the paper is organized as follows. Section 2 describes the ggmix model. Section

3 contains the optimization procedure and the algorithm used to fit the ggmix model. In

Section 4, we compare the performance of our proposed approach and demonstrate the

scenarios where it can be advantageous to use over existing methods through simulation

studies. Section 5 discusses some limitations and future directions.

2 Penalized Linear Mixed Models

2.1 Model Set-up

Let i = 1, . . . , N be a grouping index, j = 1, . . . , ni the observation index within a group

and NT =
∑N

i=1 ni the total number of observations. For each group let y i = (y1, . . . , yni
) be

the observed vector of responses or phenotypes, Xi an ni × (p + 1) design matrix (with

the column of 1s for the intercept), b i a group-specific random effect vector of length

ni and εi = (εi1, . . . , εini
) the individual error terms. Denote the stacked vectors Y =

(y i, . . . , yN)
T ∈ RNT×1, b = (b i, . . . , bN)

T ∈ RNT×1, ε = (εi, . . . , εN)
T ∈ RNT×1, and the

stacked matrix

X = (X1, . . . ,XN)
T ∈ RNT×(p+1). Furthermore, let β = (β0, β1, . . . , βp)

T ∈ R(p+1)×1 be a

vector of fixed effects regression coefficients corresponding to X. We consider the following

linear mixed model with a single random effect [25]:

Y = Xβ + b + ε (1)

Page 5 of 56

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2018. ; https://doi.org/10.1101/408484doi: bioRxiv preprint 

http://sahirbhatnagar.com/ggmix/
https://doi.org/10.1101/408484
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 PENALIZED LINEAR MIXED MODELS

where the random effect b and the error variance ε are assigned the distributions

b ∼ N (0, ησ2Φ) ε ∼ N (0, (1− η)σ2I) (2)

Here, ΦNT×NT
is a known positive semi-definite and symmetric covariance or kinship ma-

trix calculated from SNPs sampled across the genome, INT×NT
is the identity matrix and

parameters σ2 and η ∈ [0, 1] determine how the variance is divided between b and ε. Note

that η is also the narrow-sense heritability (h2), defined as the proportion of phenotypic

variance attributable to the additive genetic factors [1]. The joint density of Y is therefore

multivariate normal:

Y|(β, η, σ2) ∼ N (Xβ, ησ2Φ+ (1− η)σ2I) (3)

The LMM-Lasso method [15] considers an alternative but equivalent parameterization given

by:

Y|(β, δ, σ2
g) ∼ N (Xβ, σ2

g(Φ+ δI)) (4)

where δ = σ2
e/σ

2
g , σ2

g is the genetic variance and σ2
e is the residual variance. We instead

consider the parameterization in (3) since maximization is easier over the compact set η ∈

[0, 1] than over the unbounded interval δ ∈ [0,∞) [25]. We define the complete parameter

vector as Θ := (β, η, σ2). The negative log-likelihood for (3) is given by

−ℓ(Θ) ∝ NT

2
log(σ2) +

1

2
log (det(V)) +

1

2σ2
(Y−Xβ)T V−1 (Y−Xβ) (5)

where V = ηΦ+ (1− η)I and det(V) is the determinant of V.

Let Φ = UDUT be the eigen (spectral) decomposition of the kinship matrix Φ, where

UNT×NT
is an orthonormal matrix of eigenvectors (i.e. UUT = I) and DNT×NT

is a diagonal
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2 PENALIZED LINEAR MIXED MODELS

matrix of eigenvalues Λi. V can then be further simplified [25]

V = ηΦ+ (1− η)I

= ηUDUT + (1− η)UIUT

= UηDUT + U(1− η)IUT

= U (ηD + (1− η)I)UT

= UD̃UT (6)

where

D̃ = ηD + (1− η)I (7)

= η



Λ1

Λ2

. . .

ΛNT


+ (1− η)



1

1

. . .

1



=



1 + η(Λ1 − 1)

1 + η(Λ2 − 1)

. . .

1 + η(ΛNT
− 1)


= diag {1 + η(Λ1 − 1), 1 + η(Λ2 − 1), . . . , 1 + η(ΛNT

− 1)} (8)

Since (7) is a diagonal matrix, its inverse is also a diagonal matrix:

D̃
−1

= diag

{
1

1 + η(Λ1 − 1)
,

1

1 + η(Λ2 − 1)
, . . . ,

1

1 + η(ΛNT
− 1)

}
(9)
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2 PENALIZED LINEAR MIXED MODELS

From (6) and (8), log(det(V)) simplifies to

log(det(V)) = log
(
det(U) det

(
D̃
)
det(UT )

)
= log

{
NT∏
i=1

(1 + η(Λi − 1))

}

=

NT∑
i=1

log(1 + η(Λi − 1)) (10)

since det(U) = 1. It also follows from (6) that

V−1 =
(
UD̃UT

)−1

=
(
UT
)−1
(
D̃
)−1

U−1

= UD̃
−1

UT (11)

since for an orthonormal matrix U−1 = UT . Substituting (9), (10) and (11) into (5) the

negative log-likelihood becomes

−ℓ(Θ) ∝ NT

2
log(σ2) +

1

2

NT∑
i=1

log(1 + η(Λi − 1)) +
1

2σ2
(Y−Xβ)T UD̃

−1
UT (Y−Xβ)

(12)

=
NT

2
log(σ2) +

1

2

NT∑
i=1

log(1 + η(Λi − 1)) +
1

2σ2

(
UTY−UTXβ

)T D̃
−1 (

UTY−UTXβ
)

=
NT

2
log(σ2) +

1

2

NT∑
i=1

log(1 + η(Λi − 1)) +
1

2σ2

(
Ỹ− X̃β

)T
D̃

−1
(
Ỹ− X̃β

)

=
NT

2
log(σ2) +

1

2

NT∑
i=1

log(1 + η(Λi − 1)) +
1

2σ2

NT∑
i=1

(
Ỹi −

∑p
j=0 X̃ij+1βj

)2
1 + η(Λi − 1)

(13)

where Ỹ = UTY, X̃ = UTX, Ỹi denotes the ith element of Ỹ, X̃ij is the i, jth entry of X̃

and 1 is a column vector of NT ones.
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3 COMPUTATIONAL ALGORITHM

2.2 Penalized Maximum Likelihood Estimator

We define the p + 3 length vector of parameters Θ := (Θ0,Θ1, . . . ,Θp+1,Θp+2,Θp+3) =

(β, η, σ2) where β ∈ Rp+1, η ∈ [0, 1], σ2 > 0. In what follows, p+ 2 and p+ 3 are the indices

in Θ for η and σ2, respectively. In light of our goals to select variables associated with the

response in high-dimensional data, we propose to place a constraint on the magnitude of

the regression coefficients. This can be achieved by adding a penalty term to the likelihood

function (13). The penalty term is a necessary constraint because in our applications, the

sample size is much smaller than the number of predictors. We define the following objective

function:

Qλ(Θ) = f(Θ) + λ
∑
j ̸=0

vjPj(βj) (14)

where f(Θ) := −ℓ(Θ) is defined in (13), Pj(·) is a penalty term on the fixed regression

coefficients β1, . . . , βp+1 (we do not penalize the intercept) controlled by the nonnegative

regularization parameter λ, and vj is the penalty factor for jth covariate. These penalty

factors serve as a way of allowing parameters to be penalized differently. Note that we do

not penalize η or σ2. An estimate of the regression parameters Θ̂λ is obtained by

Θ̂λ = argmin
Θ

Qλ(Θ) (15)

This is the general set-up for our model. In Section 3 we provide more specific details on

how we solve (15).

3 Computational Algorithm

We use a general purpose block coordinate gradient descent algorithm (CGD) [26] to solve (15).

At each iteration, we cycle through the coordinates and minimize the objective function with

respect to one coordinate only. For continuously differentiable f(·) and convex and block-
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3 COMPUTATIONAL ALGORITHM

separable P (·) (i.e. P (β) =
∑

i Pi(βi)), Tseng and Yun [26] show that the solution generated

by the CGD method is a stationary point of Qλ(·) if the coordinates are updated in a

Gauss-Seidel manner i.e. Qλ(·) is minimized with respect to one parameter while holding

all others fixed. The CGD algorithm has been successfully applied in fixed effects models

(e.g. [27], [20]) and linear mixed models with an ℓ1 penalty [28]. In the next section we

provide some brief details about Algorithm 1. A more thorough treatment of the algorithm

is given in Appendix A.

We emphasize here that previously developed methods such as the LMM-lasso [15] use a two-

stage fitting procedure without any convergence details. From a practical point of view, there

is currently no implementation that provides a principled way of determining the sequence

of tuning parameters to fit, nor a procedure that automatically selects the optimal value of

λ. To our knowledge, we are the first to develop a CGD algorithm in the specific context of

fitting a penalized LMM for population structure correction with theoretical guarantees of

convergence. Furthermore, we develop a principled method for automatic tuning parameter

selection and provide an easy-to-use software implementation in order to promote wider

uptake of these more complex methods by applied practitioners.

Algorithm 1: Block Coordinate Gradient Descent
Set the iteration counter k ← 0, initial values for the parameter vector Θ(0) and
convergence threshold ϵ;

for λ ∈ {λmax, . . . , λmin} do
repeat

β(k+1) ← argmin
β

Qλ

(
β, η(k), σ2 (k)

)
η(k+1) ← argmin

η
Qλ

(
β(k+1), η, σ2 (k)

)
σ2 (k+1) ← argmin

σ2

Qλ

(
β(k+1), η(k+1), σ2

)
k ← k + 1

until convergence criterion is satisfied:
∥∥∥Θ(k+1) −Θ(k)

∥∥∥
2
< ϵ;

end
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3 COMPUTATIONAL ALGORITHM

3.1 Updates for the β parameter

Recall that the part of the objective function that depends on β has the form

Qλ(Θ) =
1

2

NT∑
i=1

wi

(
Ỹi −

p∑
j=0

X̃ij+1βj

)2

+ λ

p∑
j=1

vj|βj| (16)

where

wi :=
1

σ2 (1 + η(Λi − 1))
(17)

Conditional on η(k) and σ2 (k), it can be shown that the solution for βj, j = 1, . . . , p is given

by

β
(k+1)
j ←

Sλ
(∑NT

i=1 wiX̃ij

(
Ỹi −

∑
ℓ̸=j X̃iℓβ

(k)
ℓ

))
∑NT

i=1 wiX̃2
ij

(18)

where Sλ(x) is the soft-thresholding operator

Sλ(x) = sign(x)(|x| − λ)+

sign(x) is the signum function

sign(x) =


−1 x < 0

0 x = 0

1 x > 0

and (x)+ = max(x, 0). We provide the full derivation in Appendix A.1.2.
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3 COMPUTATIONAL ALGORITHM

3.2 Updates for the η paramter

Given β(k+1) and σ2 (k), solving for η(k+1) becomes a univariate optimization problem:

η(k+1) ← argmin
η

1

2

NT∑
i=1

log(1 + η(Λi − 1)) +
1

2σ2 (k)

NT∑
i=1

(
Ỹi −

∑p
j=0 X̃ij+1β

(k+1)
j

)2
1 + η(Λi − 1)

(19)

We use a bound constrained optimization algorithm [29] implemented in the optim function

in R and set the lower and upper bounds to be 0.01 and 0.99, respectively.

3.3 Updates for the σ2 parameter

Conditional on β(k+1) and η(k+1), σ2 (k+1) can be solved for using the following equation:

σ2 (k+1) ← argmin
σ2

NT

2
log(σ2) +

1

2σ2

NT∑
i=1

(
Ỹi −

∑p
j=0 X̃ij+1βj

)2
1 + η(Λi − 1)

(20)

There exists an analytic solution for (20) given by:

σ2 (k+1) ← 1

NT

NT∑
i=1

(
Ỹi −

∑p
j=0 X̃ij+1β

(k+1)
j

)2
1 + η(k+1)(Λi − 1)

(21)

3.4 Regularization path

In this section we describe how determine the sequence of tuning parameters λ at which to

fit the model. Recall that our objective function has the form

Qλ(Θ) =
NT

2
log(σ2)+

1

2

NT∑
i=1

log(1+ η(Λi− 1))+
1

2

NT∑
i=1

wi

(
Ỹi −

p∑
j=0

X̃ij+1βj

)2

+λ

p∑
j=1

vj|βj|

(22)
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3 COMPUTATIONAL ALGORITHM

The Karush-Kuhn-Tucker (KKT) optimality conditions for (22) are given by:

∂

∂β1, . . . , βp

Qλ(Θ) = 0p

∂

∂β0

Qλ(Θ) = 0

∂

∂η
Qλ(Θ) = 0

∂

∂σ2
Qλ(Θ) = 0

(23)

The equations in (23) are equivalent to

NT∑
i=1

wiX̃i1

(
Ỹi −

p∑
j=0

X̃ij+1βj

)
= 0

1

vj

NT∑
i=1

wiX̃ij

(
Ỹi −

p∑
j=0

X̃ij+1βj

)
= λγj,

γj ∈


sign(β̂j) if β̂j ̸= 0

[−1, 1] if β̂j = 0

, for j = 1, . . . , p

1

2

NT∑
i=1

Λi − 1

1 + η(Λi − 1)

1−

(
Ỹi −

∑p
j=0 X̃ij+1βj

)2
σ2(1 + η(Λi − 1))

 = 0

σ2 − 1

NT

NT∑
i=1

(
Ỹi −

∑p
j=0 X̃ij+1βj

)2
1 + η(Λi − 1)

= 0

(24)

where wi is given by (17), X̃
T

−1 is X̃
T

with the first column removed, X̃
T

1 is the first column

of X̃
T
, and γ ∈ Rp is the subgradient function of the ℓ1 norm evaluated at (β̂1, . . . , β̂p).

Therefore Θ̂ is a solution in (15) if and only if Θ̂ satisfies (24) for some γ. We can determine

a decreasing sequence of tuning parameters by starting at a maximal value for λ = λmax

for which β̂j = 0 for j = 1, . . . , p. In this case, the KKT conditions in (24) are equivalent
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to
1

vj

NT∑
i=1

∣∣∣wiX̃ij

(
Ỹi − X̃i1β0

)∣∣∣ ≤ λ, ∀j = 1, . . . , p

β0 =

∑NT

i=1 wiX̃i1Ỹi∑NT

i=1 wiX̃2
i1

1

2

NT∑
i=1

Λi − 1

1 + η(Λi − 1)

1−

(
Ỹi − X̃i1β0

)2
σ2(1 + η(Λi − 1))

 = 0

σ2 =
1

NT

NT∑
i=1

(
Ỹi − X̃i1β0

)2
1 + η(Λi − 1)

(25)

We can solve the KKT system of equations in (25) (with a numerical solution for η) in order

to have an explicit form of the stationary point Θ̂0 =
{
β̂0,0p, η̂, σ̂

2
}

. Once we have Θ̂0, we

can solve for the smallest value of λ such that the entire vector (β̂1, . . . , β̂p) is 0:

λmax = max
j

{∣∣∣∣∣ 1vj
NT∑
i=1

ŵiX̃ij

(
Ỹi − X̃i1β̂0

)∣∣∣∣∣
}
, j = 1, . . . , p (26)

Following Friedman et al. [20], we choose τλmax to be the smallest value of tuning parameters

λmin, and construct a sequence of K values decreasing from λmax to λmin on the log scale.

The defaults are set to K = 100, τ = 0.01 if n < p and τ = 0.001 if n ≥ p.

3.5 Warm Starts

The way in which we have derived the sequence of tuning parameters using the KKT con-

ditions, allows us to implement warm starts. That is, the solution Θ̂ for λk is used as the

initial value Θ(0) for λk+1. This strategy leads to computational speedups and has been

implemented in the ggmix R package.
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3 COMPUTATIONAL ALGORITHM

3.6 Prediction of the random effects

We use an empirical Bayes approach (e.g. [30]) to predict the random effects b. Let the

maximum a posteriori (MAP) estimate be defined as

b̂ = argmax
b

f(b|Y,β, η, σ2) (27)

where, by using Bayes rule, f(b|Y,β, η, σ2) can be expressed as

f(b|Y,β, η, σ2) =
f(Y|b,β, η, σ2)π(b|η, σ2)

f(Y|β, η, σ2)

∝ f(Y|b,β, η, σ2)π(b|η, σ2)

∝ exp

{
− 1

2σ2
(Y−Xβ − b)TV−1(Y−Xβ − b)− 1

2ησ2
bTΦ−1b

}
= exp

{
− 1

2σ2

[
(Y−Xβ − b)TV−1(Y−Xβ − b) +

1

η
bTΦ−1b

]}
(28)

Solving for (27) is equivalent to minimizing the exponent in (28):

b̂ = argmin
b

{
(Y−Xβ − b)TV−1(Y−Xβ − b) +

1

η
bTΦ−1b

}
(29)
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3 COMPUTATIONAL ALGORITHM

Taking the derivative of (29) with respect to b and setting it to 0 we get:

0 = −2V−1(Y−Xβ − b) +
2

η
Φ−1b

= −V−1(Y−Xβ) +

(
V−1 +

1

η
Φ−1

)
b

b̂ =

(
V−1 +

1

η̂
Φ−1

)−1

V−1(Y−Xβ̂)

=

(
UD̃

−1
UT +

1

η̂
UD−1UT

)−1

UD̃
−1

UT (Y−Xβ̂)

=

(
U
[
D̃

−1
+

1

η̂
D−1

]
UT

)−1

UD̃
−1
(Ỹ− X̃β̂)

= U
[
D̃

−1
+

1

η̂
D−1

]−1

UTUD̃
−1
(Ỹ− X̃β̂)

where V−1 is given by (11), and (β̂, η̂) are the estimates obtained from Algorithm 1.

3.7 Choice of the optimal tuning parameter

In order to choose the optimal value of the tuning parameter λ, we use the generalized

information criterion [31] (GIC):

GICλ = −2ℓ(β̂, σ̂2, η̂) + an · d̂fλ (30)

where d̂fλ is the number of non-zero elements in β̂λ [32] plus two (representing the variance

parameters η and σ2). Several authors have used this criterion for variable selection in mixed

models with an = logNT [28, 33], which corresponds to the BIC. We instead choose the high-

dimensional BIC [34] given by an = log(log(NT )) ∗ log(p). This is the default choice in our

ggmix R package, though the interface is flexible to allow the user to select their choice of

an.
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4 SIMULATION STUDY

4 Simulation Study

To assess the performance of ggmix, we simulated random genotypes from the BN-PSD ad-

mixture model using the bnpsd package [35, 36]. We used a block diagonal kinship structure

with 5 subpopulations. In Figure 1, we plot an estimated kinship matrix (Φ), based on a

single simulated dataset, in the form of a heatmap. Each block represents a subpopulation,

and a darker color indicates a closer genetic relationship.

Empirical Kinship Matrix with Block Structure

0
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Figure 1: Empirical kinship matrix with block diagnoal structure used in simulation studies.
Each block represents a subpopulation.

In Figure 2 we plot the first two principal component scores calculated from the block

diagonal kinship matrix in Figure 1, and color each point by subpopulation membership.

We can see that the PCs can identify the subpopulations which is why including them as

additional covariates in a regression model has been considered a reasonable approach to

control for confounding.
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Figure 2: First two principal component scores of the block diagonal kinship matrix where
each color represents one of the 5 simulated subpopulations.

For other parameters in our simulation study, we define the following quantities:

• c: percentage of causal SNPs

• X(fixed): n× pfixed matrix of SNPs that will be included as fixed effects in our model.

• X(causal): n×(c∗pfixed) matrix of SNPs that will be truly associated with the simulated

phenotype, where X(causal) ⊆ X(fixed)

• X(other): n × pother matrix of SNPs that will be used in the construction of the kin-

ship matrix. Some of these X(other) SNPs, in conjunction with some of the SNPs in

X(test) will be used in construction of the kinship matrix. We will alter the balance be-

tween these two contributors and with the proportion of causal SNPs used to calculate

kinship.

• X(kinship): n× k matrix of SNPs used to construct the kinship matrix.
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4 SIMULATION STUDY

• βj: effect size for the jth SNP, simulated from a Uniform(0.3, 0.7) distribution for

j = 1, . . . , (c ∗ pfixed)

We simulate data from the model

Y = X(fixed)β +P+ ε (31)

where P ∼ N (0, ησ2Φ) and ε ∼ N (0, (1−η)σ2I). The values of the parameters that we used

were as follows: narrow sense heritability η = {0.1, 0.5}, sample size n = 1000, number of

fixed effects pfixed = 5000, number of SNPs used to calculate the kinship matrix k = 10000,

percentage of causal SNPs c = {0%, 1%} and σ2 = 1. In addition to these parameters, we

also varied the amount of overlap between the causal SNPs and the SNPs used to generate

the kinship matrix. We considered two main scenarios:

1. None of the causal SNPs are included in the calculation of the kinship matrix:

X(kinship) =
[
X(other)

]

2. All the causal SNPs are included in the calculation of the kinship matrix:

X(kinship) =
[
X(other);X(causal)

]
.

Both kinship matrices are meant to contrast the model behavior when the causal SNPs

are included in both the main effects and random effects versus when the causal SNPs are

only included in the main effects. These scenarios are motivated by the current standard of

practice in GWAS where the candidate marker is excluded from the calculation of the kinship

matrix [8]. This approach becomes much more difficult to apply in large-scale multivariable

models where there is likely to be overlap between the variables in the design matrix and

kinship matrix.
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We compare ggmix to the lasso and the twostep method. For the lasso, we include the first

10 principal components of the estimated kinship as unpenalized predictors in the design

matrix. For the twostep method, we first fit an intercept only model with a single random

effect using the average information restricted maximum likelihood (AIREML) algorithm [37]

as implemented in the gaston R package [38]. The residuals from this model are then used

as the response in a regular lasso model. Note that in the twostep method, we have removed

the kinship effect in the first step and therefore do not need to make any further adjustments

when fitting the penalized model. We fit the lasso using the default settings in the glmnet

package [20] and select the optimal value of the regularization parameter using 10-fold cross-

validation.

Let λ̂ be the estimated value of the optimal regularization parameter selected via cross-

validation or GIC, β̂λ̂ the estimate of β at regularization parameter λ̂, S0 = {j; (β)j ̸= 0}

the index of the true active set, Ŝλ̂ =
{
j; (β̂λ̂)j ̸= 0

}
the index of the set of non-zero estimated

coefficients, and |A| the cardinality of set A.

We evaluate the methods based on correct sparsity defined as 1
p

∑p
j=1 Aj, where

Aj =


1 if (β̂λ̂)j = (β)j = 0

1 if (β̂λ̂)j ̸= 0, (β)j ̸= 0

0 if else.

We also compare the model error (∥Xβ − Xβ̂λ̂∥2), true positive rate (|Ŝλ̂ ∈ S0|/|S0|), false

positive rate (|Ŝλ̂ /∈ S0|/|j /∈ S0|), and the variance components for the random effect and error

term. The following estimator is used for the error variance of the lasso [39]:

1

n− Ŝλ̂

∥∥∥Y−Xβ̂λ̂

∥∥∥2
2

(32)
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4.1 Results

We first plot the correct sparsity results for the null model (c = 0) and the model with 1%

causal SNPs (c = 0.01) in Figures 3 and 4, respectively. When the true model has no causal

SNPs, we see that ggmix has perfect Type 1 error control across all 200 replications while

both the twostep and lasso methods sometimes estimate a model with a large number of

false positives. When the true model contains some causal SNPs, ggmix again outperforms

the other two methods in terms of correct sparsity. The distribution of Ŝλ̂ for each of the

three methods is shown in Figure 9 for c = 0 and Figure 10 for c = 0.01 of Supplemental

Section B.

10% Heritability 50% Heritability

N
o causal SN

Ps in Kinship

twostep lasso ggmix twostep lasso ggmix

0.97
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1.00

Method twostep lasso ggmix

Based on 200 simulations

Correct Sparsity Results for the Null Model

Figure 3: Boxplots of the correct sparsity from 200 simulations by the true heritability
η = {10%, 50%} for the null model (c = 0).

The true positive vs. false positive rate for the model with 1% causal SNPs (c = 0.01) is
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10% Heritability 50% Heritability
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Correct Sparsity results for the Model with 1% Causal SNPs

Figure 4: Boxplots of the correct sparsity from 200 simulations by the true heritability
η = {10%, 50%} and number of causal SNPs that were included in the calculation of the
kinship matrix for the model with 1% causal SNPs (c = 0.01).

shown in Figure 5. Both the lasso and twostep outperform ggmix in terms of identifying

the true model. This accuracy however, comes at the cost of a very high false positive rate

compared to ggmix.
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True Positive Rate vs. False Positive Rate (Mean +/- 1 SD) for the Model with 1% Causal SNPs

Figure 5: Means ±1 standard deviation of true positive rate vs. false positive rate from
200 simulations by the true heritability η = {10%, 50%} and number of causal SNPs that
were included in the calculation of the kinship matrix for the model with 1% causal SNPs
(c = 0.01).

We plot the twostep and ggmix heritability estimates for c = 0 (Figure 11, Supplemental

Section B) and c = 0.01 (Figure 6). We see that both methods correctly estimate the

heritability in the null model. When all of the causal SNPs are in the kinship matrix, both

methods overestimate η though ggmix is closer to the true value. When none of the causal

SNPs are in the kinship, both methods tend to overestimate the truth when η = 10% and

underestimate when η = 50%.
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Figure 6: Boxplots of the heritability estimate η̂ from 200 simulations by the true heritability
η = {10%, 50%} and number of causal SNPs that were included in the calculation of the
kinship matrix for the model with 1% causal SNPs (c = 0.01).

In Figures 12 (Supplemental Section B) and 7, we plot the error variance for c = 0 and

c = 0.01, respectively. The twostep and ggmix methods correctly estimate the error variance

while the lasso overestimates it for the null model and for when 1% of the causal SNPs are

in the kinship matrix. We see an inflated estimated error variance across all three methods

when c = 0.01 and none of the causal SNPs are in the kinship matrix with the lasso and

ggmix performing similarly.
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Figure 7: Boxplots of the estimated error variance from 200 simulations by the true heri-
tability η = {10%, 50%} and number of causal SNPs that were included in the calculation
of the kinship matrix for the model with 1% causal SNPs (c = 0.01).

We compare the model error as a function of Ŝλ̂ in Figures 13 (Supplemental Section B)

and 8 for c = 0 and c = 0.01, respectively. Lasso achieves the smallest model error across all

scenarios (for c = 0.01), albeit with a large number of active variables. ggmix has a smaller

model error compared to twostep when all causal SNPs are in the kinship matrix and similar

performance when none of the causal SNPs are in the kinship matrix.
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Figure 8: Means ±1 standard deviation of the model error vs. the number of active variables
by the true heritability η = {10%, 50%} and number of causal SNPs that were included in
the calculation of the kinship matrix for the model with 1% causal SNPs (c = 0.01).

Overall, we observe that variable selection results for ggmix are similar regardless of whether

the causal SNPs are in the kinship matrix or not. This result is encouraging since in practice

the kinship matrix is constructed from a random sample of SNPs across the genome, some

of which are likely to be causal. ggmix has very good Type 1 error control, while both

the lasso and twostep have a very high false positive rate. Inclusion of the causal SNPs

in the kinship calculation has a strong impact on the variance component estimation with

the heritabilty and error variance estimates working in opposite directions. That is, when

all causal SNPs are in the kinship matrix, the heritability estimates are biased towards 1
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while the error variance is correctly estimated. Conversely, when none of the causal SNPs

are included in the kinship matrix, the estimated heritability is closer to the true value,

while the error variance is inflated. Both the lasso and twostep methods have better signal

recovery as compared to ggmix. However, this signal is being spread across many variables

leading to many Type 1 errors.

5 Discussion

We develop a general penalized LMM framework for population structure correction that si-

multaneously selects and estimates variables, accounting for between individual correlations,

in one step. Our CGD algorithm is computationally efficient and has theoretical guarantees

of convergence. We provide an easy-to-use software implementation of our algorithm along

with a principled method for automatic tuning parameter selection. Through simulation

studies, we show that existing approaches such as a two-stage approach or the lasso with

a principal component adjustment lead to a large number of false positives. Our proposed

method has excellent Type 1 error control and is robust to the inclusion of causal SNPs in

the kinship matrix. This feature is important since in practice the kinship matrix is con-

structed from a random sample of SNPs across the genome, some of which are likely to be

causal.

Although we derive a CGD algorithm for the ℓ1 penalty, our approach can also be easily

extended to other penalties such as the elastic net and group lasso with the same guarantees

of convergence.

A limitation of ggmix is that it first requires computing the covariance matrix with a compu-

tation time ofO(n2k) followed by a spectral decomposition of this matrix inO(n3) time where

k is the number of SNP genotypes used to construct the covariance matrix. This computa-

tion becomes prohibitive for large cohorts such as the UK Biobank [40] which have collected
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5 DISCUSSION

genetic information on half a million individuals. When the matrix of genotypes used to

construct the covariance matrix is low rank, there are additional computational speedups

that can be implemented. While this has been developed for the univariate case [8], to our

knowledge, this has not been explored in the multivariable case. We are currently developing

a low rank version of the penalized LMM developed here, which reduces the time complexity

from O(n2k) to O(nk2).

While the predominant motivation for our approach has been association testing, we believe

that there are other applications in which it can be used as well. For example, in the

most recent Genetic Analysis Workship 20 (GAW20), the causal modeling group investigated

causal relationships between DNA methylation (exposure) within some genes and the change

in high-density lipoproteins ∆HDL (outcome) using Mendelian randomization (MR) [41].

Penalized regression methods could be used to select SNPs strongly associated with the

exposure in order to be used as an instrumental variable (IV). However, since GAW20 data

consisted of families, two step methods were used which could have resulted in a large number

of false positives. ggmix is an alternative approach that could be used for selecting the IV

while accounting for the familial structure of the data. Our method is also suitable for fine

mapping SNP association signals in genomic regions, where the goal is to pinpoint individual

variants most likely to impact the undelying biological mechanisms of disease [42].
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A BLOCK COORDINATE DESCENT ALGORITHM

A Block Coordinate Descent Algorithm

We use a general purpose block coordinate descent algorithm (CGD) [26] to solve (15). At

each iteration, the algorithm approximates the negative log-likelihood f(·) in Qλ(·) by a

strictly convex quadratic function and then applies block coordinate decent to generate a

decent direction followed by an inexact line search along this direction [26]. For continuously

differentiable f(·) and convex and block-separable P (·) (i.e. P (β) =
∑

i Pi(βi)), [26] show

that the solution generated by the CGD method is a stationary point of Qλ(·) if the coor-

dinates are updated in a Gauss-Seidel manner i.e. Qλ(·) is minimized with respect to one

parameter while holding all others fixed. The CGD algorithm can thus be run in parallel and

therefore suited for large p settings. It has been successfully applied in fixed effects models

(e.g. [27], [20]) and [28] for mixed models with an ℓ1 penalty. Following Tseng and Yun [26],

the CGD algorithm is given by Algorithm 2.

The Armijo rule is defined as follows [26]:

Choose α
(k)
init > 0 and let α(k) be the largest element of

{
αk
initδ

r
}
r=0,1,2,...

satisfying

Qλ(Θ
(k)
j + α(k)d(k)) ≤ Qλ(Θ

(k)
j ) + α(k)ϱ∆(k) (37)

where 0 < δ < 1, 0 < ϱ < 1, 0 ≤ γ < 1 and

∆(k) := ∇f(Θ(k)
j )d(k) + γ(d(k))2H

(k)
jj + λP (Θ

(k)
j + d(k))− λP (Θ(k)) (38)

Common choices for the constants are δ = 0.1, ϱ = 0.001, γ = 0, α(k)
init = 1 for all k [28].

Below we detail the specifics of Algorithm 2 for the ℓ1 penalty.
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A BLOCK COORDINATE DESCENT ALGORITHM

Algorithm 2: Coordinate Gradient Descent Algorithm to solve (15)
Set the iteration counter k ← 0 and choose initial values for the parameter vector Θ(0);
repeat

Approximate the Hessian ∇2f(Θ(k)) by a symmetric matix H(k):

H(k) = diag

[
min

{
max

{[
∇2f(Θ(k))

]
jj
, cmin

}
cmax

}]
j=1,...,p

(33)

for j = 1, . . . , p do
Solve the descent direction d(k) := dH(k)(Θ

(k)
j ) ;

if Θ
(k)
j ∈ {β1, . . . , βp} then

dH(k)(Θ
(k)
j )← argmin

d

{
∇f(Θ(k)

j )d+
1

2
d2H

(k)
jj + λP (Θ

(k)
j + d)

}
(34)

end
end
Choose a stepsize;

α
(k)
j ← line search given by the Armijo rule

Update;

Θ̂
(k+1)
j ← Θ̂

(k)
j + α

(k)
j d(k)

Update;

η̂(k+1) ← argmin
η

1

2

NT∑
i=1

log(1 + η(Λi − 1)) +
1

2σ2 (k)

NT∑
i=1

(
Ỹi −

∑p
j=0 X̃ij+1β

(k+1)
j

)2
1 + η(Λi − 1)

(35)
Update;

σ̂2
(k+1)

← 1

NT

NT∑
i=1

(
Ỹi −

∑p
j=0 X̃ij+1β

(k+1)
j

)2
1 + η(k+1)(Λi − 1)

(36)

k ← k + 1
until convergence criterion is satisfied ;
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A BLOCK COORDINATE DESCENT ALGORITHM

A.1 ℓ1 penalty

The objective function is given by

Qλ(Θ) = f(Θ) + λ|β| (39)

A.1.1 Descent Direction

For simplicity, we remove the iteration counter (k) from the derivation below.

For Θ(k)
j ∈ {β1, . . . , βp}, let

dH(Θj) = argmin
d

G(d) (40)

where

G(d) = ∇f(Θj)d+
1

2
d2Hjj + λ|Θj + d|

Since G(d) is not differentiable at −Θj, we calculate the subdifferential ∂G(d) and search

for d with 0 ∈ ∂G(d):

∂G(d) = ∇f(Θj) + dHjj + λu (41)

where

u =


1 if d > −Θj

−1 if d < −Θj

[−1, 1] if d = Θj

(42)

We consider each of the three cases in (41) below

1. d > −Θj

∂G(d) = ∇f(Θj) + dHjj + λ = 0

d =
−(∇f(Θj) + λ)

Hjj
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A BLOCK COORDINATE DESCENT ALGORITHM

Since λ > 0 and Hjj > 0, we have

−(∇f(Θj)− λ)

Hjj

>
−(∇f(Θj) + λ)

Hjj

= d
def
> −Θj

The solution can be written compactly as

d = mid
{
−(∇f(Θj)− λ)

Hjj

,−Θj,
−(∇f(Θj) + λ)

Hjj

}

where mid {a, b, c} denotes the median (mid-point) of a, b, c [26].

2. d < −Θj

∂G(d) = ∇f(Θj) + dHjj − λ = 0

d =
−(∇f(Θj)− λ)

Hjj

Since λ > 0 and Hjj > 0, we have

−(∇f(Θj) + λ)

Hjj

<
−(∇f(Θj)− λ)

Hjj

= d
def
< −Θj

Again, the solution can be written compactly as

d = mid
{
−(∇f(Θj)− λ)

Hjj

,−Θj,
−(∇f(Θj) + λ)

Hjj

}

3. dj = −Θj

There exists u ∈ [−1, 1] such that

∂G(d) = ∇f(Θj) + dHjj + λu = 0

d =
−(∇f(Θj) + λu)

Hjj
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A BLOCK COORDINATE DESCENT ALGORITHM

For −1 ≤ u ≤ 1, λ > 0 and Hjj > 0 we have

−(∇f(Θj) + λ)

Hjj

≤ d
def
= −Θj ≤

−(∇f(Θj)− λ)

Hjj

The solution can again be written compactly as

d = mid
{
−(∇f(Θj)− λ)

Hjj

,−Θj,
−(∇f(Θj) + λ)

Hjj

}

We see all three cases lead to the same solution for (40). Therefore the descent direction for

Θ
(k)
j ∈ {β1, . . . , βp} for the ℓ1 penalty is given by

d = mid
{
−(∇f(βj)− λ)

Hjj

,−βj,
−(∇f(βj) + λ)

Hjj

}
(43)

A.1.2 Solution for the β parameter

If the Hessian∇2f(Θ(k)) > 0 then H(k) defined in (33) is equal to∇2f(Θ(k)). Using αinit = 1,

the largest element of
{
α
(k)
initδ

r
}

r=0,1,2,...
satisfying the Armijo Rule inequality is reached for

α(k) = α
(k)
initδ

0 = 1. The Armijo rule update for the β parameter is then given by

β
(k+1)
j ← β

(k)
j + d(k), j = 1, . . . , p (44)

Substituting the descent direction given by (43) into (44) we get

β
(k+1)
j = mid

{
β
(k)
j +

−(∇f(β(k)
j )− λ)

Hjj

, 0, β
(k)
j +

−(∇f(β(k)
j ) + λ)

Hjj

}
(45)

We can further simplify this expression. Let

wi :=
1

σ2 (1 + η(Λi − 1))
(46)
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A BLOCK COORDINATE DESCENT ALGORITHM

.

Re-write the part depending on β of the negative log-likelihood in (13) as

g(β(k)) =
1

2

NT∑
i=1

wi

(
Ỹi −

∑
ℓ̸=j

X̃iℓβ
(k)
ℓ − X̃ijβ

(k)
j

)2

(47)

The gradient and Hessian are given by

∇f(β(k)
j ) :=

∂

∂β
(k)
j

g(β(k)) = −
NT∑
i=1

wiX̃ij

(
Ỹi −

∑
ℓ̸=j

X̃iℓβ
(k)
ℓ − X̃ijβ

(k)
j

)
(48)

Hjj :=
∂2

∂β
(k)
j

2 g(β
(k)) =

NT∑
i=1

wiX̃
2
ij (49)

Substituting (48) and (49) into β
(k)
j +

−(∇f(β
(k)
j )−λ)

Hjj

β
(k)
j +

∑NT

i=1 wiX̃ij

(
Ỹi −

∑
ℓ̸=j X̃iℓβ

(k)
ℓ − X̃ijβ

(k)
j

)
+ λ∑NT

i=1 wiX̃2
ij

= β
(k)
j +

∑NT

i=1 wiX̃ij

(
Ỹi −

∑
ℓ̸=j X̃iℓβ

(k)
ℓ

)
+ λ∑NT

i=1 wiX̃2
ij

−
∑NT

i=1 wiX̃
2
ijβ

(k)
j∑NT

i=1 wiX̃2
ij

=

∑NT

i=1 wiX̃ij

(
Ỹi −

∑
ℓ̸=j X̃iℓβ

(k)
ℓ

)
+ λ∑NT

i=1 wiX̃2
ij

(50)

Similarly, substituting (48) and (49) in β
(k)
j +

−(∇f(β
(k)
j )+λ)

Hjj
we get

∑NT

i=1 wiX̃ij

(
Ỹi −

∑
ℓ̸=j X̃iℓβ

(k)
ℓ

)
− λ∑NT

i=1wiX̃2
ij

(51)
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Finally, substituting (50) and (51) into (45) we get

β
(k+1)
j = mid


∑NT

i=1 wiX̃ij

(
Ỹi −

∑
ℓ̸=j X̃iℓβ

(k)
ℓ

)
− λ∑NT

i=1 wiX̃2
ij

, 0,

∑NT

i=1 wiX̃ij

(
Ỹi −

∑
ℓ ̸=j X̃iℓβ

(k)
ℓ

)
+ λ∑NT

i=1 wiX̃2
ij


=
Sλ
(∑NT

i=1 wiX̃ij

(
Ỹi −

∑
ℓ̸=j X̃iℓβ

(k)
ℓ

))
∑NT

i=1 wiX̃2
ij

(52)

Where Sλ(x) is the soft-thresholding operator

Sλ(x) = sign(x)(|x| − λ)+

sign(x) is the signum function

sign(x) =


−1 x < 0

0 x = 0

1 x > 0

and (x)+ = max(x, 0).
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B Additional Simulation Results
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Figure 9: Boxplots of the number of active variables from 200 simulations by the true
heritability η = {10%, 50%} for the null model (c = 0).
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Figure 10: Boxplots of the number of active variables from 200 simulations by the true
heritability η = {10%, 50%} and number of causal SNPs that were included in the calculation
of the kinship matrix for the model with 1% causal SNPs (c = 0.01).
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Figure 11: Boxplots of the heritability estimate η̂ from 200 simulations by the true heritability
η = {10%, 50%} for the null model (c = 0).
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B ADDITIONAL SIMULATION RESULTS
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Figure 12: Boxplots of the estimated error variance from 200 simulations by the true heri-
tability η = {10%, 50%} for the null model (c = 0).
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B ADDITIONAL SIMULATION RESULTS
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Figure 13: Means ±1 standard deviation of the model error vs. the number of active variables
by the true heritability η = {10%, 50%} for the null model (c = 0).
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C ggmix Package Showcase

In this section we briefly introduce the freely available and open source ggmix package in R.

More comprehensive documentation is available at https://sahirbhatnagar.com/ggmix.

Note that this entire section is reproducible; the code and text are combined in an .Rnw1 file

and compiled using knitr [43].

C.1 Installation

The package can be installed from GitHub via
install.packages("pacman")

pacman::p_load_gh('sahirbhatnagar/ggmix')

To showcase the main functions in ggmix, we will use the simulated data which ships with

the package and can be loaded via:
library(ggmix)

data("admixed")

names(admixed)

## [1] "y" "x" "causal"

## [4] "beta" "kin" "Xkinship"

## [7] "not_causal" "causal_positive" "causal_negative"

## [10] "x_lasso"

For details on how this data was simulated, see help(admixed).

There are three basic inputs that ggmix needs:

1. Y : a continuous response variable

2. X: a matrix of covariates of dimension N × p where N is the sample size and p is the

number of covariates

3. Φ: a kinship matrix
1scripts available at https://github.com/sahirbhatnagar/ggmix/tree/master/manuscript
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We can visualize the kinship matrix in the admixed data using the popkin package:
# need to install the package if you don't have it

# pacman::p_load_gh('StoreyLab/popkin')

popkin::plotPopkin(admixed$kin)
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C.2 Fit the linear mixed model with Lasso Penalty

We will use the most basic call to the main function of this package, which is called ggmix.

This function will by default fit a L1 penalized linear mixed model (LMM) for 100 distinct

values of the tuning parameter λ. It will choose its own sequence:
fit <- ggmix(x = admixed$x, y = admixed$y, kinship = admixed$kin)

names(fit)

## [1] "result" "ggmix_object" "n_design" "p_design"

## [5] "lambda" "coef" "b0" "beta"

## [9] "df" "eta" "sigma2" "nlambda"

## [13] "cov_names" "call"

class(fit)
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## [1] "lassofullrank" "ggmix_fit"

We can see the solution path for each variable by calling the plot method for objects of

class ggmix_fit:
plot(fit)
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2 36 120 168 196

We can also get the coefficients for given value(s) of lambda using the coef method for

objects of class ggmix_fit:
# only the first 5 coefficients printed here for brevity

coef(fit, s = c(0.1,0.02))[1:5, ]

## 5 x 2 Matrix of class "dgeMatrix"

## 1 2

## (Intercept) -0.3824525 -0.030227753

## X62 0.0000000 0.000000000

## X185 0.0000000 0.001444670

## X371 0.0000000 0.009513604

## X420 0.0000000 0.000000000

Here, s specifies the value(s) of λ at which the extraction is made. The function uses linear
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interpolation to make predictions for values of s that do not coincide with the lambda

sequence used in the fitting algorithm.

We can also get predictions (Xβ̂) using the predict method for objects of class ggmix_fit:
# need to provide x to the predict function

# predict for the first 5 subjects

predict(fit, s = c(0.1,0.02), newx = admixed$x[1:5,])

## 1 2

## id1 -1.19165061 -1.3123396

## id2 -0.02913052 0.3885921

## id3 -2.00084875 -2.6460045

## id4 -0.37255277 -0.9542455

## id5 -1.03967831 -2.1377274

C.3 Find the Optimal Value of the Tuning Parameter

We use the Generalized Information Criterion (GIC) to select the optimal value for λ. The

default is an = log(log(n)) ∗ log(p) which corresponds to a high-dimensional BIC (HD-

BIC):
# pass the fitted object from ggmix to the gic function:

hdbic <- gic(fit)

class(hdbic)

## [1] "ggmix_gic" "lassofullrank" "ggmix_fit"

# we can also fit the BIC by specifying the an argument

bicfit <- gic(fit, an = log(length(admixed$y)))

We can plot the HDBIC values against log(λ) using the plot method for objects of class

ggmix_gic:
plot(hdbic)
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The optimal value for λ according to the HDBIC, i.e., the λ that leads to the minium HDBIC

is:
hdbic[["lambda.min"]]

## [1] 0.05596623

We can also plot the BIC results:
plot(bicfit, ylab = "BIC")
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bicfit[["lambda.min"]]

## [1] 0.05596623

C.4 Get Coefficients Corresponding to Optimal Model

We can use the object outputted by the gic function to extract the coefficients corresponding

to the selected model using the coef method for objects of class ggmix_gic:
coef(hdbic)[1:5, , drop = FALSE]

## 5 x 1 sparse Matrix of class "dgCMatrix"

## 1

## (Intercept) -0.2668419

## X62 .

## X185 .

## X371 .

## X420 .

We can also extract just the nonzero coefficients which also provide the estimated variance

components η and σ2:
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coef(hdbic, type = "nonzero")

## 1

## (Intercept) -0.26684191

## X336 -0.67986393

## X7638 0.43403365

## X1536 0.93994982

## X1943 0.56600730

## X2849 -0.58157979

## X56 -0.08244685

## X4106 -0.35939830

## eta 0.26746240

## sigma2 0.98694300

We can also make predictions from the hdbic object, which by default will use the model

corresponding to the optimal tuning parameter:
predict(hdbic, newx = admixed$x[1:5,])

## 1

## id1 -1.3061041

## id2 0.2991654

## id3 -2.3453664

## id4 -0.4486012

## id5 -1.3895793

C.5 Extracting Random Effects

The user can compute the random effects using the provided ranef method for objects of

class ggmix_gic. This command will compute the estimated random effects for each subject

using the parameters of the selected model:
ranef(hdbic)[1:5]

## [1] -0.02548691 -0.10011680 0.13020240 -0.30650997 0.16045768
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C.6 Diagnostic Plots

We can also plot some standard diagnotic plots such as the observed vs. predicted response,

QQ-plots of the residuals and random effects and the Tukey-Anscombe plot. These can be

plotted using the plot method on a ggmix_gic object as shown below.

C.6.1 Observed vs. Predicted Response

plot(hdbic, type = "predicted", newx = admixed$x, newy = admixed$y)
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C.6.2 QQ-plots for Residuals and Random Effects
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plot(hdbic, type = "QQranef", newx = admixed$x, newy = admixed$y)
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plot(hdbic, type = "QQresid", newx = admixed$x, newy = admixed$y)
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C.6.3 Tukey-Anscombe Plot

plot(hdbic, type = "Tukey", newx = admixed$x, newy = admixed$y)
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