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Abstract16

Complex traits are known to be influenced by a combination of environmental fac-17
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1 AUTHOR SUMMARY

tors and rare and common genetic variants. However, detection of such multivariate18

associations can be compromised by low statistical power and confounding by popu-19

lation structure. Linear mixed effects models (LMM) can account for correlations due20

to relatedness but have not been applicable in high-dimensional (HD) settings where21

the number of fixed effect predictors greatly exceeds the number of samples. False22

positives or false negatives can result from two-stage approaches, where the residuals23

estimated from a null model adjusted for the subjects’ relationship structure are sub-24

sequently used as the response in a standard penalized regression model. To overcome25

these challenges, we develop a general penalized LMM framework called ggmix for26

simultaneous SNP selection and adjustment for population structure in high dimen-27

sional prediction models. Our method can accommodate several sparsity-inducing28

penalties such as the lasso, elastic net and group lasso, and also readily handles prior29

annotation information in the form of weights. We develop a blockwise coordinate30

descent algorithm which is highly scalable, computationally efficient and has theo-31

retical guarantees of convergence. Through simulations and two real data examples,32

we show that ggmix leads to better sensitivity and specificity compared to the two-33

stage approach or principal component adjustment with better prediction accuracy.34

ggmix can be used to construct polygenic risk scores and select instrumental variables35

in Mendelian randomization studies. Our algorithms are available in an R package36

(https://github.com/greenwoodlab/ggmix).37

1 Author Summary38

This work addresses a recurring challenge in the analysis and interpretation of genetic as-39

sociation studies: which genetic variants can best predict and are independently associated40

with a given phenotype in the presence of population structure ? Not controlling confound-41

ing due to geographic population structure, family and/or cryptic relatedness can lead to42

spurious associations. Much of the existing research has therefore focused on modeling the43
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2 INTRODUCTION

association between a phenotype and a single genetic variant in a linear mixed model with44

a random effect. However, this univariate approach may miss true associations due to the45

stringent significance thresholds required to reduce the number of false positives and also46

ignores the correlations between markers. We propose an alternative method for fitting47

high-dimensional multivariable models, which selects SNPs that are independently associ-48

ated with the phenotype while also accounting for population structure. We provide an49

efficient implementation of our algorithm and show through simulation studies and real data50

examples that our method outperforms existing methods in terms of prediction accuracy51

and controlling the false discovery rate.52

2 Introduction53

Genome-wide association studies (GWAS) have become the standard method for analyzing54

genetic datasets owing to their success in identifying thousands of genetic variants associated55

with complex diseases (https://www.genome.gov/gwastudies/). Despite these impressive56

findings, the discovered markers have only been able to explain a small proportion of the57

phenotypic variance; this is known as the missing heritability problem [1]. One plausible58

reason is that there are many causal variants that each explain a small amount of variation59

with small effect sizes [2]. Methods such GWAS, which test each variant or single nucleotide60

polymorphism (SNP) independently, may miss these true associations due to the stringent61

significance thresholds required to reduce the number of false positives [1]. Another major62

issue to overcome is that of confounding due to geographic population structure, family63

and/or cryptic relatedness which can lead to spurious associations [3]. For example, there64

may be subpopulations within a study that differ with respect to their genotype frequencies65

at a particular locus due to geographical location or their ancestry. This heterogeneity in66

genotype frequency can cause correlations with other loci and consequently mimic the signal67

of association even though there is no biological association [4, 5]. Studies that separate68
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2 INTRODUCTION

their sample by ethnicity to address this confounding suffer from a loss in statistical power69

due to the drop in sample size.70

To address the first problem, multivariable regression methods have been proposed which71

simultaneously fit many SNPs in a single model [6, 7]. Indeed, the power to detect an72

association for a given SNP may be increased when other causal SNPs have been accounted73

for. Conversely, a stronger signal from a causal SNP may weaken false signals when modeled74

jointly [6].75

Solutions for confounding by population structure have also received significant attention in76

the literature [8, 9, 10, 11]. There are two main approaches to account for the relatedness77

between subjects: 1) the principal component (PC) adjustment method and 2) the linear78

mixed model (LMM). The PC adjustment method includes the top PCs of genome-wide79

SNP genotypes as additional covariates in the model [12]. The LMM uses an estimated80

covariance matrix from the individuals’ genotypes and includes this information in the form81

of a random effect [3].82

While these problems have been addressed in isolation, there has been relatively little83

progress towards addressing them jointly at a large scale. Region-based tests of association84

have been developed where a linear combination of p variants is regressed on the response85

variable in a mixed model framework [13]. In case-control data, a stepwise logistic-regression86

procedure was used to evaluate the relative importance of variants within a small genetic87

region [14]. These methods however are not applicable in the high-dimensional setting, i.e.,88

when the number of variables p is much larger than the sample size n, as is often the case in89

genetic studies where millions of variants are measured on thousands of individuals.90

There has been recent interest in using penalized linear mixed models, which place a con-91

straint on the magnitude of the effect sizes while controlling for confounding factors such as92

population structure. For example, the LMM-lasso [15] places a Laplace prior on all main93

effects while the adaptive mixed lasso [16] uses the L1 penalty [17] with adaptively chosen94
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2 INTRODUCTION

weights [18] to allow for differential shrinkage amongst the variables in the model. Another95

method applied a combination of both the lasso and group lasso penalties in order to select96

variants within a gene most associated with the response [19]. However, these methods are97

normally performed in two steps. First, the variance components are estimated once from98

a LMM with a single random effect. These LMMs normally use the estimated covariance99

matrix from the individuals’ genotypes to account for the relatedness but assumes no SNP100

main effects (i.e. a null model). The residuals from this null model with a single random101

effect can be treated as independent observations because the relatedness has been effec-102

tively removed from the original response. In the second step, these residuals are used as the103

response in any high-dimensional model that assumes uncorrelated errors. This approach104

has both computational and practical advantages since existing penalized regression soft-105

ware such as glmnet [20] and gglasso [21], which assume independent observations, can be106

applied directly to the residuals. However, recent work has shown that there can be a loss in107

power if a causal variant is included in the calculation of the covariance matrix as its effect108

will have been removed in the first step [13, 22].109

In this paper we develop a general penalized LMM framework called ggmix that simul-110

taneously selects variables and estimates their effects, accounting for between-individual111

correlations. Our method can accommodate several sparsity inducing penalties such as the112

lasso [17], elastic net [23] and group lasso [24]. ggmix also readily handles prior annotation113

information in the form of a penalty factor, which can be useful, for example, when dealing114

with rare variants. We develop a blockwise coordinate descent algorithm which is highly115

scalable and has theoretical guarantees of convergence to a stationary point. All of our116

algorithms are implemented in the ggmix R package hosted on GitHub with extensive docu-117

mentation (https://github.com/greenwoodlab/ggmix). We provide a brief demonstration118

of the ggmix package in Appendix C.119

The rest of the paper is organized as follows. In Section 3, we compare the performance120
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3 RESULTS

of our proposed approach and demonstrate the scenarios where it can be advantageous to121

use over existing methods through simulation studies and two real data analyses. This is122

followed by a discussion of our results, some limitations and future directions in Section 4.123

Section 5 describes the ggmix model, the optimization procedure and the algorithm used to124

fit it.125

3 Results126

In this section we demonstrate the performance of ggmix in a simulation study and two real127

data applications.128

3.1 Simulation Study129

We evaluated the performance of ggmix in a variety of simulated scenarios. For each simu-130

lation scenario we compared ggmix to the lasso and the twostep method. For the lasso,131

we included the top 10 principal components from the simulated genotypes used to calcu-132

late the kinship matrix as unpenalized predictors in the design matrix. For the twostep133

method, we first fitted an intercept only model with a single random effect using the average134

information restricted maximum likelihood (AIREML) algorithm [25] as implemented in the135

gaston R package [26]. The residuals from this model were then used as the response in a136

regular lasso model. Note that in the twostep method, we removed the kinship effect in137

the first step and therefore did not need to make any further adjustments when fitting the138

penalized model. We fitted the lasso using the default settings and standardize=FALSE139

in the glmnet package [20]. For other parameters in our simulation study, we defined the140

following quantities:141

• n: sample size142
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3 RESULTS

• c: percentage of causal SNPs143

• β: true effect size vector of length pfixed144

• S0 = {j; (β)j ̸= 0} the index of the true active set with cardinality |S0| = c× pfixed145

• X(fixed): n× pfixed matrix of SNPs that were included as fixed effects in the model146

• X(causal): n× |S0| matrix of SNPs that were truly associated with the simulated phe-147

notype, where X(causal) ⊆ X(fixed)
148

• X(other): n × pother matrix of SNPs that were used in the construction of the kinship149

matrix. Some of these X(other) SNPs, in conjunction with some of the SNPs in X(fixed)
150

were used in construction of the kinship matrix. We altered the balance between these151

two contributors and with the proportion of causal SNPs used to calculate kinship152

• X(kinship): n× k matrix of SNPs used to construct the kinship matrix153

We simulated data from the model154

Y = X(fixed)β +P+ ε (1)

where P ∼ N (0, ησ2Φ) is the polygenic effect and ε ∼ N (0, (1 − η)σ2I) is the error term.155

Here, Φn×n is the covariance matrix calculated from X(kinship), In×n is the identity matrix156

and parameters σ2 and η ∈ [0, 1] determine how the variance is divided between P and157

ε. The values of the parameters that we used were as follows: narrow sense heritability158

η = {0.1, 0.3}, number of fixed effects pfixed = 5, 000, number of SNPs used to calculate the159

kinship matrix k = 10, 000, percentage of causal SNPs c = {0%, 1%} and σ2 = 1. In addition160

to these parameters, we also varied the amount of overlap between the causal SNPs and the161

SNPs used to generate the kinship matrix. We considered two main scenarios:162
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3 RESULTS

1. None of the causal SNPs are included in the calculation of the kinship matrix:

X(kinship) =
[
X(other)

]

2. All the causal SNPs are included in the calculation of the kinship matrix:

X(kinship) =
[
X(other);X(causal)

]
.

Both kinship matrices were meant to contrast the model behavior when the causal SNPs163

are included in both the main effects and random effects versus when the causal SNPs are164

only included in the main effects. These scenarios are motivated by the current standard of165

practice in GWAS where the candidate marker is excluded from the calculation of the kinship166

matrix [8]. This approach becomes much more difficult to apply in large-scale multivariable167

models where there is likely to be overlap between the variables in the design matrix and168

kinship matrix. We simulated random genotypes from the BN-PSD admixture model with169

1D geography and 10 subpopulations using the bnpsd package [27, 28]. In Figure 1, we plot170

the estimated kinship matrix from a single simulated dataset in the form of a heatmap where171

a darker color indicates a closer genetic relationship.172
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Figure 1: Example of an empirical kinship matrix used in simulation studies. This scenario
models a 1D geography with extensive admixture.

In Figure 2 we plot the first two principal component scores calculated from the simulated173

genotypes used to calculate the kinship matrix in Figure 1, and color each point by sub-174

population membership. We can see that the PCs can identify the subpopulations which175

is why including them as additional covariates in a regression model has been considered a176

reasonable approach to control for confounding.177
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Figure 2: First two principal component scores of the genotype data used to estimate the
kinship matrix where each color represents one of the 10 simulated subpopulations.

Using this set-up, we randomly partitioned 1000 simulated observations into 80% for training178

and 20% for testing. The training set was used to fit the model and select the optimal tuning179

parameter only, and the resulting model was evaluated on the test set. Let λ̂ be the esti-180

mated value of the optimal regularization parameter, β̂λ̂ the estimate of β at regularization181

parameter λ̂, and Ŝλ̂ =
{
j; (β̂λ̂)j ̸= 0

}
the index of the set of non-zero estimated coefficients.182

We evaluated the methods based on correct sparsity defined as 1
p

∑p
j=1Aj, where183

Aj =


1 if (β̂λ̂)j = (β)j = 0

1 if (β̂λ̂)j ̸= 0, (β)j ̸= 0

0 otherwise.

(2)

We also compared the test set prediction error based on the refitted unpenalized estimates184
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3 RESULTS

for each selected model, the estimation error (||β̂−β||22), true positive rate (|Ŝλ̂ ∈ S0|/|S0|), false185

positive rate (|Ŝλ̂ /∈ S0|/|j /∈ S0|), and the variance components (η, σ2) for the polygenic random186

effect and error term.187

In Figure 3, we present the results for the scenario with 1% causal SNPs (c = 0.01) which were188

all used in the calculation of the kinship matrix and true heritability η =10%. The complete189

simulation results are shown in supplementary Section B. We see that ggmix outperformed190

both the twostep and lasso in terms of correct sparsity and estimation error (Figure 3191

panels A and B). This was true regardless of true heritability and whether the causal SNPs192

were included in the calculation of the kinship matrix (Figures B.1, B.8, B.2 and B.9). Across193

all simulation scenarios, ggmix had the smallest root mean squared prediction error (RMSE)194

on the test set while also producing the most parsimonious models (Figures 3 panel B, B.3195

and B.13). Both the lasso and twostep had on average, slightly higher true positive rate196

compared to ggmix but came at the cost of a higher false positive rate (Figures 3 panel D, B.4197

and B.10). Both the twostep and ggmix overestimated the heritability though ggmix was198

closer to the true value (Figure 3 panel E). When none of the causal SNPs were in the199

kinship, both methods tended to overestimate the truth when η = 10% and underestimate200

when η = 30% (Figure B.11). Across all simulation scenarios ggmix was able to (on average)201

correctly estimate the error variance (Figures 3 panel F, B.6 and B.12). The lasso tended202

to overestimate σ2 in the null model while the twostep overestimated σ2 when none of the203

causal SNPs were in the kinship matrix.204

Overall, we observed that variable selection results and RMSE for ggmix were similar regard-205

less of whether the causal SNPs were in the kinship matrix or not. This result is encouraging206

since in practice the kinship matrix is constructed from a random sample of SNPs across the207

genome, some of which are likely to be causal, particularly in polygenic traits. ggmix had208

very good Type 1 and II error control, while both the lasso and twostep had a very high209

false positive rate in all simulation scenarios. In particular, our simulation results show that210
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the principal component adjustment method may not be the best approach to control for211

confounding by population structure, particularly when variable selection is of interest.212
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Figure 3: Results from 200 replications for the scenario with 1% causal SNPs (c = 0.01)
which are all used in the calculation of the kinship matrix and true heritability η = 10%.
(A) Correct sparsity as defined by Equation (2). (B) Estimation error defined as the squared
distance between the estimated and true effect sizes (C) Root mean squared prediction error
on the test set as a function of the number of selected variables. (D) True positive vs. false
positive rate. (E) Heritability (η) for twostep is estimated as σ2

g/(σ
2
g +σ2

e) from an intercept
only LMM with a single random effect where σ2

g and σ2
e are the variance components for

the random effect and error term, respectively. η is explictly modeled in ggmix. There is
no positive way to calculate η for the lasso since we are using a PC adjustment. (F) Error
variance (σ2) for twostep is estimated from an intercept only LMM with a single random
effect and is modeled explicitly in ggmix. For the lasso we use 1

n−|Ŝλ̂|

∥∥∥Y−Xβ̂λ̂

∥∥∥2
2

[29] as
an estimator for σ2.
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3.2 Real Data Applications213

Two datasets with contrasting features are used to illustrate the potential advantages of214

ggmix over existing approaches such as PC adjustment in a lasso regression. In one dataset,215

family structure induces low levels of correlation and sparsity in signals. In the second, a216

dataset involving mouse crosses, correlations are extremely strong and can confound sig-217

nals.218

3.2.1 GAW20219

In the most recent Genetic Analysis Workship 20 (GAW20), the causal modeling group in-220

vestigated causal relationships between DNA methylation (exposure) within some genes and221

the change in high-density lipoproteins ∆HDL (outcome) using Mendelian randomization222

(MR) [30]. Penalized regression methods were used to select SNPs strongly associated with223

the exposure in order to be used as an instrumental variable (IV) [31, 32]. However, since224

GAW20 data consisted of families, twostep methods were used which could have resulted225

in a large number of false positives or false negatives. ggmix is an alternative approach that226

could be used for selecting the IV while accounting for the family structure of the data.227

We applied ggmix to all 200 GAW20 simulation datasets, each of 679 observations, and com-228

pared its performance to the twostep and lasso methods. Using a FaST-LMM (Factored229

Spectrally Transformed Linear Mixed Model) [33], we validated the effect of rs9661059 on230

blood lipid trait to be significant (genome-wide p = 6.29× 10−9). Though several other SNPs231

are also associated with the phenotype, these associations are probably mediated by CpG-232

SNP interaction pairs and do not reach statistical significance. Therefore, to avoid ambiguity,233

we only focused on chromosome 1 containing 51,104 SNPs where rs9661059 resides. Given234

that population admixture in the GAW20 data is likely, we estimated the population kinship235

using REAP [34] after decomposing population compositions using ADMIXTURE [35]. We236

supplied the estimated kinship matrix directly to ggmix . For both the lasso and twostep237
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3 RESULTS

methods, we adopted the same strategies as described in our simulation study in section 3.1,238

supplying the same kinship matrix estimated by REAP.239

On each simulated replicate, we calibrated the methods so that they could be easily compared240

by fixing the true positive rate to 1 and then minimizing the false positive rate. Hence, the241

selected SNP, rs9661059, is likely to be the true positive for each method, and non-causal242

SNPs are excluded to the greatest extent. All of the three mothods precisely choose the243

correct predictor without any false positives in more than half of the replicates, given the244

strong causal signal. When some false positives are selected, ggmix performs comparably245

to twostep, and the lasso tends to select more false positives (Figure 4). In terms of246

phenotype prediction, we observed that ggmix outperforms the twostep method without247

requiring more SNPs, while it achieves roughly the same prediction accuracy as lasso but248

with fewer non-causal SNPs (Figure 4).249
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Figure 4: Mean ±1 standard deviation of root mean squared error vs. number of active
variables used by each method on the GAW20 data. Diamonds represent median number of
active variables and the corresponding root mean square error. Horizontal solid lines span
from median to the 90th percentile; Horizontal dotted lines span from the 90th percentile to
the 95th percentile.

3.2.2 Mouse Crosses and Sensitivity to Mycobacterial Infection250

Mouse inbred strains of genetically identical individuals are extensively used in research.251

Crosses of different inbred strains are useful for various studies of heritability focusing on252

either observable phenotypes or molecular mechanisms, and in particular, recombinant con-253

genic strains have been an extremely useful resource for many years [36]. However, ignor-254

ing complex genetic relationships in association studies can lead to inflated false positives255
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in genetic association studies when different inbred strains and their crosses are investi-256

gated [37, 38, 39]. Therefore, a previous study developed and implemented a mixed model257

to find loci associated with mouse sensitivity to mycobacterial infection [40]. The random258

effects in the model captured complex correlations between the recombinant congenic mouse259

strains based on the proportion of the DNA shared identical by descent. Through a se-260

ries of mixed model fits at each marker, new loci that impact growth of mycobacteria on261

chromosome 1 and chromosome 11 were identified.262

Here we show that ggmix can identify these loci, as well as potentially others, in a single263

analysis. We reanalyzed the growth permissiveness in the spleen, as measured by colony264

forming units (CFUs), 6 weeks after infection from Mycobacterium bovis Bacille Calmette-265

Guerin (BCG) Russia strain as reported in [40].266

By taking the consensus between the “main model” and the “conditional model” of the267

original study, we regarded markers D1Mit435 on chromosome 1 and D11Mit119 on chromo-268

some 11 as two true positive loci. Similar to the strategy used when analyzing the GAW20269

data, we optimized models by tuning the penalty factor such that these two loci are picked270

up, while the number of other active loci is minimized. To evaluate robustness of different271

models, we bootstrapped the 189-sample dataset and repeated the analysis 200 times. We272

directly estimated the kinship between mice using genotypes at 625 microsatellite markers.273

The estimated kinship entered directly into ggmix and twostep. For the lasso, we calcu-274

lated and included the first 10 principal components of the estimated kinship. Significant275

markers are defined as those captured in at least half of the bootstrap replicates, and in276

which the corresponding method successfully captures both pre-selected true positives with277

a penalty factor minimizing the number of active loci (Figure 5).278

We demonstrate that ggmix recognizes the true associations more robustly than twostep279

and lasso. In almost all (99%) bootstrap replicates, ggmix is able to capture both true280

positives, while twostep failed in 19% of the replicates and lasso failed in 56% of the281

Page 16 of 73

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 15, 2019. ; https://doi.org/10.1101/408484doi: bioRxiv preprint 

https://doi.org/10.1101/408484
http://creativecommons.org/licenses/by-nc-nd/4.0/
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replicates by missing of at least one of the two true positives (Figure 5). We also identified282

several other loci that might also be associated with susceptibility to mycobacterial infection283

(Table 1). Among these new potentially-associated markers, D2Mit156 was found to play a284

role in control of parasite numbers of Leishmania tropica in lymph nodes [41]. This locus is285

considered significant by our definition for both ggmix and lasso. An earlier study identified286

a parent-of-origin effect at D17Mit221 on CD4M levels [42]. This effect was more visible in287

crosses than in parental strains. In addition, D14Mit131, selected only by ggmix , was found288

to have a 9% loss of heterozygosity in hybrids of two inbred mouse strains [43], indicating the289

potential presence of putative suppressor genes pertaining to immune surveillance and tumor290

progression [44]. This result might also suggest association with anti-bacterial responses yet291

to be discovered.292
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Figure 5: Comparison of model performance on the mouse cross data. Pie charts depict
model robustness where grey areas denote bootstrap replicates on which the corresponding
model is unable to capture both true positives using any penalty factor, whereas colored
areas denote successful replicates. Chromosome-based signals record in how many successful
replicates the corresponding loci are picked up by the corresponding optimized model. Red
dashed lines delineate p value thresholds.
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4 DISCUSSION

Table 1: Additional loci significantly associated with mouce susceptibility to myobacterial
infection, after excluding two true positives. Loci needed to be identified in at least 50% of
the successful bootstrap replicates that captured both true positive loci.

Method Marker Position in cM Position in bp

twostep N/A N/A N/A

lasso D2Mit156 Chr2:31.66 Chr2:57081653-57081799

D14Mit155 Chr14:31.52 Chr14:59828398-59828596

ggmix D2Mit156 Chr2:31.66 Chr2:57081653-57081799

D14Mit131 Chr14:63.59 Chr14:120006565-120006669

D17Mit221 Chr17:59.77 Chr17:90087704-90087842

293

4 Discussion294

We have developed a general penalized LMM framework called ggmix which simultaneously295

selects SNPs and adjusts for population structure in high dimensional prediction models.296

Through an extensive simulation study and two real data analyses, we show that the current297

approaches of PC adjustment and two-stage procedures are not necessarily sufficient to298

control for confounding by population structure leading to a high number of false positives299

or false negatives. Furthermore, ggmix showed improved prediction performance with a more300

parsimonious model compared to both the lasso and twostep. Our proposed method has301

excellent Type 1 error control and is robust to the inclusion of causal SNPs in the kinship302

matrix. Many methods for single-SNP analyses avoid this “proximal contamination” [8]303

by using a leave-one-chromosome-out scheme [45], i.e., construct the kinship matrix using304

all chromosomes except the one on which the marker being tested is located. However, this305

approach is not possible if we want to model many SNPs (across many chromosomes) jointly.306

We also demonstrated ggmix using two examples that mimic many experimental designs in307
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genetics. In the GAW20 example, we showed that while all methods were able to select308

the strongest causal SNP, ggmix did so with the least amount of false positives while also309

maintaining good predictive ability. In the mouse crosses example, we showed that ggmix is310

robust to perturbations in the data using a bootstrap analysis. Indeed, ggmix was able to311

consistently select the true positives across bootstrap replicates, while twostep failed in 19%312

of the replicates and lasso failed in 56% of the replicates by missing of at least one of the313

two true positives. Our re-analysis of the data also lead to some potentially new findings,314

not found by existing methods, that may warrant further study.315

We emphasize here that previously developed methods such as the LMM-lasso [15] use a two-316

stage fitting procedure without any convergence details. From a practical point of view, there317

is currently no implementation that provides a principled way of determining the sequence318

of tuning parameters to fit, nor a procedure that automatically selects the optimal value of319

the tuning parameter. To our knowledge, we are the first to develop a coordinate gradient320

descent (CGD) algorithm in the specific context of fitting a penalized LMM for population321

structure correction with theoretical guarantees of convergence. Furthermore, we develop322

a principled method for automatic tuning parameter selection and provide an easy-to-use323

software implementation in order to promote wider uptake of these more complex methods324

by applied practitioners.325

Although we derive a CGD algorithm for the ℓ1 penalty, our approach can also be easily326

extended to other penalties such as the elastic net and group lasso with the same guarantees327

of convergence. A limitation of ggmix is that it first requires computing the covariance ma-328

trix with a computation time of O(n2k) followed by a spectral decomposition of this matrix329

in O(n3) time where k is the number of SNP genotypes used to construct the covariance330

matrix. This computation becomes prohibitive for large cohorts such as the UK Biobank [46]331

which have collected genetic information on half a million individuals. When the matrix of332

genotypes used to construct the covariance matrix is low rank, there are additional computa-333
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5 MATERIALS AND METHODS

tional speedups that can be implemented. While this has been developed for the univariate334

case [8], to our knowledge, this has not been explored in the multivariable case. We are cur-335

rently developing a low rank version of the penalized LMM developed here, which reduces336

the time complexity from O(n2k) to O(nk2).337

There are other applications in which our method could be used as well. For example, there338

has been a renewed interest in polygenic risk scores (PRS) which aim to predict complex339

diseases from genotypes. ggmix could be used to build a PRS with the distinct advantage340

of modeling SNPs jointly, allowing for main effects as well as interactions to be accounted341

for. Based on our results, ggmix has the potential to produce more robust and parsimonious342

models than the lasso with better predictive accuracy. Our method is also suitable for fine343

mapping SNP association signals in genomic regions, where the goal is to pinpoint individual344

variants most likely to impact the undelying biological mechanisms of disease [47].345

5 Materials and Methods346

5.1 Model Set-up347

Let i = 1, . . . , N be a grouping index, j = 1, . . . , ni the observation index within a group348

and NT =
∑N

i=1 ni the total number of observations. For each group let yi = (y1, . . . , yni
) be349

the observed vector of responses or phenotypes, Xi an ni × (p + 1) design matrix (with350

the column of 1s for the intercept), bi a group-specific random effect vector of length351

ni and εi = (εi1, . . . , εini
) the individual error terms. Denote the stacked vectors Y =352

(yi, . . . ,yN)
T ∈ RNT×1, b = (bi, . . . , bN)

T ∈ RNT×1, ε = (εi, . . . , εN)
T ∈ RNT×1, and the353

stacked matrix354

X = (X1, . . . ,XN)
T ∈ RNT×(p+1). Furthermore, let β = (β0, β1, . . . , βp)

T ∈ R(p+1)×1 be a355

vector of fixed effects regression coefficients corresponding to X. We consider the following356
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5 MATERIALS AND METHODS

linear mixed model with a single random effect [48]:357

Y = Xβ + b + ε (3)

where the random effect b and the error variance ε are assigned the distributions358

b ∼ N (0, ησ2Φ) ε ∼ N (0, (1− η)σ2I) (4)

Here, ΦNT×NT
is a known positive semi-definite and symmetric covariance or kinship ma-359

trix calculated from SNPs sampled across the genome, INT×NT
is the identity matrix and360

parameters σ2 and η ∈ [0, 1] determine how the variance is divided between b and ε. Note361

that η is also the narrow-sense heritability (h2), defined as the proportion of phenotypic362

variance attributable to the additive genetic factors [1]. The joint density of Y is therefore363

multivariate normal:364

Y|(β, η, σ2) ∼ N (Xβ, ησ2Φ+ (1− η)σ2I) (5)

The LMM-Lasso method [15] considers an alternative but equivalent parameterization given365

by:366

Y|(β, δ, σ2
g) ∼ N (Xβ, σ2

g(Φ+ δI)) (6)

where δ = σ2
e/σ

2
g , σ2

g is the genetic variance and σ2
e is the residual variance. We instead

consider the parameterization in (5) since maximization is easier over the compact set η ∈

[0, 1] than over the unbounded interval δ ∈ [0,∞) [48]. We define the complete parameter

vector as Θ := (β, η, σ2). The negative log-likelihood for (5) is given by

−ℓ(Θ) ∝ NT

2
log(σ2) +

1

2
log (det(V)) +

1

2σ2
(Y−Xβ)T V−1 (Y−Xβ) (7)
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5 MATERIALS AND METHODS

where V = ηΦ+ (1− η)I and det(V) is the determinant of V.367

Let Φ = UDUT be the eigen (spectral) decomposition of the kinship matrix Φ, where

UNT×NT
is an orthonormal matrix of eigenvectors (i.e. UUT = I) and DNT×NT

is a diagonal

matrix of eigenvalues Λi. V can then be further simplified [48]

V = ηΦ+ (1− η)I

= ηUDUT + (1− η)UIUT

= UηDUT + U(1− η)IUT

= U (ηD + (1− η)I)UT

= UD̃UT (8)

where

D̃ = ηD + (1− η)I (9)

= η



Λ1

Λ2

. . .

ΛNT


+ (1− η)



1

1

. . .

1



=



1 + η(Λ1 − 1)

1 + η(Λ2 − 1)

. . .

1 + η(ΛNT
− 1)


= diag {1 + η(Λ1 − 1), 1 + η(Λ2 − 1), . . . , 1 + η(ΛNT

− 1)} (10)
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Since (9) is a diagonal matrix, its inverse is also a diagonal matrix:

D̃
−1

= diag

{
1

1 + η(Λ1 − 1)
,

1

1 + η(Λ2 − 1)
, . . . ,

1

1 + η(ΛNT
− 1)

}
(11)

From (8) and (10), log(det(V)) simplifies to

log(det(V)) = log
(
det(U) det

(
D̃
)
det(UT )

)
= log

{
NT∏
i=1

(1 + η(Λi − 1))

}

=

NT∑
i=1

log(1 + η(Λi − 1)) (12)

since det(U) = 1. It also follows from (8) that

V−1 =
(

UD̃UT
)−1

=
(
UT
)−1
(

D̃
)−1

U−1

= UD̃
−1

UT (13)

since for an orthonormal matrix U−1 = UT . Substituting (11), (12) and (13) into (7) the

negative log-likelihood becomes

−ℓ(Θ) ∝ NT

2
log(σ2) +

1

2

NT∑
i=1

log(1 + η(Λi − 1)) +
1

2σ2
(Y−Xβ)T UD̃

−1
UT (Y−Xβ)

(14)

=
NT

2
log(σ2) +

1

2

NT∑
i=1

log(1 + η(Λi − 1)) +
1

2σ2

(
UTY−UTXβ

)T D̃
−1 (

UTY−UTXβ
)

=
NT

2
log(σ2) +

1

2

NT∑
i=1

log(1 + η(Λi − 1)) +
1

2σ2

(
Ỹ− X̃β

)T
D̃

−1
(

Ỹ− X̃β
)

=
NT

2
log(σ2) +

1

2

NT∑
i=1

log(1 + η(Λi − 1)) +
1

2σ2

NT∑
i=1

(
Ỹi −

∑p
j=0 X̃ij+1βj

)2
1 + η(Λi − 1)

(15)
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where Ỹ = UTY, X̃ = UTX, Ỹi denotes the ith element of Ỹ, X̃ij is the i, jth entry of X̃368

and 1 is a column vector of NT ones.369

5.2 Penalized Maximum Likelihood Estimator370

We define the p + 3 length vector of parameters Θ := (Θ0,Θ1, . . . ,Θp+1,Θp+2,Θp+3) =371

(β, η, σ2) where β ∈ Rp+1, η ∈ [0, 1], σ2 > 0. In what follows, p+ 2 and p+ 3 are the indices372

in Θ for η and σ2, respectively. In light of our goals to select variables associated with the373

response in high-dimensional data, we propose to place a constraint on the magnitude of374

the regression coefficients. This can be achieved by adding a penalty term to the likelihood375

function (15). The penalty term is a necessary constraint because in our applications, the376

sample size is much smaller than the number of predictors. We define the following objective377

function:378

Qλ(Θ) = f(Θ) + λ
∑
j ̸=0

vjPj(βj) (16)

where f(Θ) := −ℓ(Θ) is defined in (15), Pj(·) is a penalty term on the fixed regression379

coefficients β1, . . . , βp+1 (we do not penalize the intercept) controlled by the nonnegative380

regularization parameter λ, and vj is the penalty factor for jth covariate. These penalty381

factors serve as a way of allowing parameters to be penalized differently. Note that we do382

not penalize η or σ2. An estimate of the regression parameters Θ̂λ is obtained by383

Θ̂λ = argmin
Θ

Qλ(Θ) (17)

This is the general set-up for our model. In Section 5.3 we provide more specific details on384

how we solve (17).385
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5.3 Computational Algorithm386

We use a general purpose block coordinate gradient descent algorithm (CGD) [49] to solve (17).387

At each iteration, we cycle through the coordinates and minimize the objective function with388

respect to one coordinate only. For continuously differentiable f(·) and convex and block-389

separable P (·) (i.e. P (β) =
∑

i Pi(βi)), Tseng and Yun [49] show that the solution gener-390

ated by the CGD method is a stationary point of Qλ(·) if the coordinates are updated in a391

Gauss-Seidel manner i.e. Qλ(·) is minimized with respect to one parameter while holding392

all others fixed. The CGD algorithm has been successfully applied in fixed effects models393

(e.g. [50], [20]) and linear mixed models with an ℓ1 penalty [51]. In the next section we394

provide some brief details about Algorithm 1. A more thorough treatment of the algorithm395

is given in Appendix A.396

Algorithm 1: Block Coordinate Gradient Descent
Set the iteration counter k ← 0, initial values for the parameter vector Θ(0) and
convergence threshold ϵ;

for λ ∈ {λmax, . . . , λmin} do
repeat

β(k+1) ← argmin
β

Qλ

(
β, η(k), σ2 (k)

)
η(k+1) ← argmin

η
Qλ

(
β(k+1), η, σ2 (k)

)
σ2 (k+1) ← argmin

σ2

Qλ

(
β(k+1), η(k+1), σ2

)
k ← k + 1

until convergence criterion is satisfied:
∥∥∥Θ(k+1) −Θ(k)

∥∥∥
2
< ϵ;

end
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5.3.1 Updates for the β parameter397

Recall that the part of the objective function that depends on β has the form398

Qλ(Θ) =
1

2

NT∑
i=1

wi

(
Ỹi −

p∑
j=0

X̃ij+1βj

)2

+ λ

p∑
j=1

vj|βj| (18)

where399

wi :=
1

σ2 (1 + η(Λi − 1))
(19)

Conditional on η(k) and σ2 (k), it can be shown that the solution for βj, j = 1, . . . , p is given

by

β
(k+1)
j ←

Sλ
(∑NT

i=1 wiX̃ij

(
Ỹi −

∑
ℓ̸=j X̃iℓβ

(k)
ℓ

))
∑NT

i=1 wiX̃2
ij

(20)

where Sλ(x) is the soft-thresholding operator

Sλ(x) = sign(x)(|x| − λ)+

sign(x) is the signum function400

sign(x) =


−1 x < 0

0 x = 0

1 x > 0

and (x)+ = max(x, 0). We provide the full derivation in Appendix A.1.2.401
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5.3.2 Updates for the η paramter402

Given β(k+1) and σ2 (k), solving for η(k+1) becomes a univariate optimization problem:403

η(k+1) ← argmin
η

1

2

NT∑
i=1

log(1 + η(Λi − 1)) +
1

2σ2 (k)

NT∑
i=1

(
Ỹi −

∑p
j=0 X̃ij+1β

(k+1)
j

)2
1 + η(Λi − 1)

(21)

We use a bound constrained optimization algorithm [52] implemented in the optim function404

in R and set the lower and upper bounds to be 0.01 and 0.99, respectively.405

5.3.3 Updates for the σ2 parameter406

Conditional on β(k+1) and η(k+1), σ2 (k+1) can be solved for using the following equation:407

σ2 (k+1) ← argmin
σ2

NT

2
log(σ2) +

1

2σ2

NT∑
i=1

(
Ỹi −

∑p
j=0 X̃ij+1βj

)2
1 + η(Λi − 1)

(22)

There exists an analytic solution for (22) given by:

σ2 (k+1) ← 1

NT

NT∑
i=1

(
Ỹi −

∑p
j=0 X̃ij+1β

(k+1)
j

)2
1 + η(k+1)(Λi − 1)

(23)

5.3.4 Regularization path408

In this section we describe how determine the sequence of tuning parameters λ at which to409

fit the model. Recall that our objective function has the form410

Qλ(Θ) =
NT

2
log(σ2)+

1

2

NT∑
i=1

log(1+ η(Λi− 1))+
1

2

NT∑
i=1

wi

(
Ỹi −

p∑
j=0

X̃ij+1βj

)2

+λ

p∑
j=1

vj|βj|

(24)
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The Karush-Kuhn-Tucker (KKT) optimality conditions for (24) are given by:411

∂

∂β1, . . . , βp

Qλ(Θ) = 0p

∂

∂β0

Qλ(Θ) = 0

∂

∂η
Qλ(Θ) = 0

∂

∂σ2
Qλ(Θ) = 0

(25)

The equations in (25) are equivalent to412

NT∑
i=1

wiX̃i1

(
Ỹi −

p∑
j=0

X̃ij+1βj

)
= 0

1

vj

NT∑
i=1

wiX̃ij

(
Ỹi −

p∑
j=0

X̃ij+1βj

)
= λγj,

γj ∈


sign(β̂j) if β̂j ̸= 0

[−1, 1] if β̂j = 0

, for j = 1, . . . , p

1

2

NT∑
i=1

Λi − 1

1 + η(Λi − 1)

1−

(
Ỹi −

∑p
j=0 X̃ij+1βj

)2
σ2(1 + η(Λi − 1))

 = 0

σ2 − 1

NT

NT∑
i=1

(
Ỹi −

∑p
j=0 X̃ij+1βj

)2
1 + η(Λi − 1)

= 0

(26)

where wi is given by (19), X̃
T

−1 is X̃
T

with the first column removed, X̃
T

1 is the first column413

of X̃
T
, and γ ∈ Rp is the subgradient function of the ℓ1 norm evaluated at (β̂1, . . . , β̂p).414

Therefore Θ̂ is a solution in (17) if and only if Θ̂ satisfies (26) for some γ. We can determine415

a decreasing sequence of tuning parameters by starting at a maximal value for λ = λmax416

for which β̂j = 0 for j = 1, . . . , p. In this case, the KKT conditions in (26) are equivalent417
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to418

1

vj

NT∑
i=1

∣∣∣wiX̃ij

(
Ỹi − X̃i1β0

)∣∣∣ ≤ λ, ∀j = 1, . . . , p

β0 =

∑NT

i=1 wiX̃i1Ỹi∑NT

i=1 wiX̃2
i1

1

2

NT∑
i=1

Λi − 1

1 + η(Λi − 1)

1−

(
Ỹi − X̃i1β0

)2
σ2(1 + η(Λi − 1))

 = 0

σ2 =
1

NT

NT∑
i=1

(
Ỹi − X̃i1β0

)2
1 + η(Λi − 1)

(27)

We can solve the KKT system of equations in (27) (with a numerical solution for η) in order419

to have an explicit form of the stationary point Θ̂0 =
{
β̂0,0p, η̂, σ̂

2
}

. Once we have Θ̂0, we420

can solve for the smallest value of λ such that the entire vector (β̂1, . . . , β̂p) is 0:421

λmax = max
j

{∣∣∣∣∣ 1vj
NT∑
i=1

ŵiX̃ij

(
Ỹi − X̃i1β̂0

)∣∣∣∣∣
}
, j = 1, . . . , p (28)

Following Friedman et al. [20], we choose τλmax to be the smallest value of tuning parameters422

λmin, and construct a sequence of K values decreasing from λmax to λmin on the log scale.423

The defaults are set to K = 100, τ = 0.01 if n < p and τ = 0.001 if n ≥ p.424

5.3.5 Warm Starts425

The way in which we have derived the sequence of tuning parameters using the KKT con-426

ditions, allows us to implement warm starts. That is, the solution Θ̂ for λk is used as the427

initial value Θ(0) for λk+1. This strategy leads to computational speedups and has been428

implemented in the ggmix R package.429
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5.3.6 Prediction of the random effects430

We use an empirical Bayes approach (e.g. [53]) to predict the random effects b. Let the431

maximum a posteriori (MAP) estimate be defined as432

b̂ = argmax
b

f(b|Y,β, η, σ2) (29)

where, by using Bayes rule, f(b|Y,β, η, σ2) can be expressed as

f(b|Y,β, η, σ2) =
f(Y|b,β, η, σ2)π(b|η, σ2)

f(Y|β, η, σ2)

∝ f(Y|b,β, η, σ2)π(b|η, σ2)

∝ exp

{
− 1

2σ2
(Y−Xβ − b)TV−1(Y−Xβ − b)− 1

2ησ2
bTΦ−1b

}
= exp

{
− 1

2σ2

[
(Y−Xβ − b)TV−1(Y−Xβ − b) + 1

η
bTΦ−1b

]}
(30)

Solving for (29) is equivalent to minimizing the exponent in (30):

b̂ = argmin
b

{
(Y−Xβ − b)TV−1(Y−Xβ − b) + 1

η
bTΦ−1b

}
(31)
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Taking the derivative of (31) with respect to b and setting it to 0 we get:

0 = −2V−1(Y−Xβ − b) + 2

η
Φ−1b

= −V−1(Y−Xβ) +

(
V−1 +

1

η
Φ−1

)
b

b̂ =

(
V−1 +

1

η̂
Φ−1

)−1

V−1(Y−Xβ̂)

=

(
UD̃

−1
UT +

1

η̂
UD−1UT

)−1

UD̃
−1

UT (Y−Xβ̂)

=

(
U
[
D̃

−1
+

1

η̂
D−1

]
UT

)−1

UD̃
−1
(Ỹ− X̃β̂)

= U
[
D̃

−1
+

1

η̂
D−1

]−1

UTUD̃
−1
(Ỹ− X̃β̂)

where V−1 is given by (13), and (β̂, η̂) are the estimates obtained from Algorithm 1.433

5.3.7 Phenotype prediction434

Here we describe the method used for predicting the unobserved phenotype Y⋆ in a set of435

individuals with predictor set X⋆ that were not used in the model training e.g. a testing436

set. Let q denote the number of observations in the testing set and N − q the number of437

observations in the training set. We assume that a ggmix model has been fit on a set of438

training individuals with observed phenotype Y and predictor set X. We further assume439

that Y and Y⋆ are jointly multivariate Normal:440

Y⋆

Y

 ∼ N

 µ1(q×1)

µ2(N−q)×1

 ,

 Σ11(q×q)
Σ12q×(N−q)

Σ21(N−q)×q
Σ22(N−q)×(N−q)


 (32)

Then, from standard multivariate Normal theory, the conditional distribution Y⋆|Y, η, σ2,β,X,X⋆
441

is N (µ⋆,Σ⋆) where442
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µ⋆ = µ1 +Σ12Σ
−1
22 (Y− µ2) (33)

Σ⋆ = Σ11 −Σ12Σ
−1
22 Σ21 (34)

The phenotype prediction is thus given by:443

µ⋆
q×1 = X⋆β +

1

σ2
Σ12V−1(Y−Xβ) (35)

= X⋆β +
1

σ2
Σ12UD̃

−1
UT (Y−Xβ) (36)

= X⋆β +
1

σ2
Σ12UD̃

−1
(Ỹ− X̃β) (37)

= X⋆β +
1

σ2
ησ2Φ⋆UD̃

−1
(Ỹ− X̃β) (38)

= X⋆β + ηΦ⋆UD̃
−1
(Ỹ− X̃β) (39)

where Φ⋆ is the q × (N − q) covariance matrix between the testing and training individu-444

als.445

5.3.8 Choice of the optimal tuning parameter446

In order to choose the optimal value of the tuning parameter λ, we use the generalized447

information criterion [54] (GIC):448

GICλ = −2ℓ(β̂, σ̂2, η̂) + an · d̂fλ (40)

where d̂fλ is the number of non-zero elements in β̂λ [55] plus two (representing the variance449

parameters η and σ2). Several authors have used this criterion for variable selection in mixed450

models with an = logNT [51, 56], which corresponds to the BIC. We instead choose the high-451
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dimensional BIC [57] given by an = log(log(NT )) ∗ log(p). This is the default choice in our452

ggmix R package, though the interface is flexible to allow the user to select their choice of453

an.454
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Availability of data and material455

1. The GAW20 data is freely available upon request from https://www.gaworkshop.456

org/data-sets.457

2. Mouse cross data is available from ES upon request.458

3. The entire simulation study is reproducible. Source code available at https://github.459

com/sahirbhatnagar/ggmix/tree/pgen/simulation. This includes scripts for ggmix,460

lasso and twostep methods.461
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A BLOCK COORDINATE DESCENT ALGORITHM

A Block Coordinate Descent Algorithm634

We use a general purpose block coordinate descent algorithm (CGD) [49] to solve (17). At635

each iteration, the algorithm approximates the negative log-likelihood f(·) in Qλ(·) by a636

strictly convex quadratic function and then applies block coordinate decent to generate a637

decent direction followed by an inexact line search along this direction [49]. For continuously638

differentiable f(·) and convex and block-separable P (·) (i.e. P (β) =
∑

i Pi(βi)), [49] show639

that the solution generated by the CGD method is a stationary point of Qλ(·) if the coor-640

dinates are updated in a Gauss-Seidel manner i.e. Qλ(·) is minimized with respect to one641

parameter while holding all others fixed. The CGD algorithm can thus be run in parallel and642

therefore suited for large p settings. It has been successfully applied in fixed effects models643

(e.g. [50], [20]) and [51] for mixed models with an ℓ1 penalty. Following Tseng and Yun [49],644

the CGD algorithm is given by Algorithm 2.645

The Armijo rule is defined as follows [49]:646

Choose α
(k)
init > 0 and let α(k) be the largest element of

{
αk
initδ

r
}
r=0,1,2,...

satisfying

Qλ(Θ
(k)
j + α(k)d(k)) ≤ Qλ(Θ

(k)
j ) + α(k)ϱ∆(k) (45)

where 0 < δ < 1, 0 < ϱ < 1, 0 ≤ γ < 1 and

∆(k) := ∇f(Θ(k)
j )d(k) + γ(d(k))2H

(k)
jj + λP (Θ

(k)
j + d(k))− λP (Θ(k)) (46)

647

Common choices for the constants are δ = 0.1, ϱ = 0.001, γ = 0, α(k)
init = 1 for all k [51].648

Below we detail the specifics of Algorithm 2 for the ℓ1 penalty.649
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A BLOCK COORDINATE DESCENT ALGORITHM

Algorithm 2: Coordinate Gradient Descent Algorithm to solve (17)
Set the iteration counter k ← 0 and choose initial values for the parameter vector
Θ(0);

repeat
Approximate the Hessian ∇2f(Θ(k)) by a symmetric matix H(k):

H(k) = diag

[
min

{
max

{[
∇2f(Θ(k))

]
jj
, cmin

}
cmax

}]
j=1,...,p

(41)

for j = 1, . . . , p do
Solve the descent direction d(k) := dH(k)(Θ

(k)
j ) ;

if Θ
(k)
j ∈ {β1, . . . , βp} then

dH(k)(Θ
(k)
j )← argmin

d

{
∇f(Θ(k)

j )d+
1

2
d2H

(k)
jj + λP (Θ

(k)
j + d)

}
(42)

end
end
Choose a stepsize;

α
(k)
j ← line search given by the Armijo rule

Update;

Θ̂
(k+1)
j ← Θ̂

(k)
j + α

(k)
j d(k)

Update;

η̂(k+1) ← argmin
η

1

2

NT∑
i=1

log(1 + η(Λi− 1)) +
1

2σ2 (k)

NT∑
i=1

(
Ỹi −

∑p
j=0 X̃ij+1β

(k+1)
j

)2
1 + η(Λi − 1)

(43)
Update;

σ̂2
(k+1)

← 1

NT

NT∑
i=1

(
Ỹi −

∑p
j=0 X̃ij+1β

(k+1)
j

)2
1 + η(k+1)(Λi − 1)

(44)

k ← k + 1
until convergence criterion is satisfied;
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A BLOCK COORDINATE DESCENT ALGORITHM

A.1 ℓ1 penalty650

The objective function is given by651

Qλ(Θ) = f(Θ) + λ|β| (47)

A.1.1 Descent Direction652

For simplicity, we remove the iteration counter (k) from the derivation below.653

For Θ
(k)
j ∈ {β1, . . . , βp}, let654

dH(Θj) = argmin
d

G(d) (48)

where655

G(d) = ∇f(Θj)d+
1

2
d2Hjj + λ|Θj + d|

Since G(d) is not differentiable at −Θj, we calculate the subdifferential ∂G(d) and search656

for d with 0 ∈ ∂G(d):657

∂G(d) = ∇f(Θj) + dHjj + λu (49)

where658

u =


1 if d > −Θj

−1 if d < −Θj

[−1, 1] if d = Θj

(50)

We consider each of the three cases in (49) below659

1. d > −Θj

∂G(d) = ∇f(Θj) + dHjj + λ = 0

d =
−(∇f(Θj) + λ)

Hjj
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A BLOCK COORDINATE DESCENT ALGORITHM

Since λ > 0 and Hjj > 0, we have

−(∇f(Θj)− λ)

Hjj

>
−(∇f(Θj) + λ)

Hjj

= d
def
> −Θj

The solution can be written compactly as

d = mid
{
−(∇f(Θj)− λ)

Hjj

,−Θj,
−(∇f(Θj) + λ)

Hjj

}

where mid {a, b, c} denotes the median (mid-point) of a, b, c [49].660

2. d < −Θj

∂G(d) = ∇f(Θj) + dHjj − λ = 0

d =
−(∇f(Θj)− λ)

Hjj

Since λ > 0 and Hjj > 0, we have

−(∇f(Θj) + λ)

Hjj

<
−(∇f(Θj)− λ)

Hjj

= d
def
< −Θj

Again, the solution can be written compactly as

d = mid
{
−(∇f(Θj)− λ)

Hjj

,−Θj,
−(∇f(Θj) + λ)

Hjj

}

3. dj = −Θj

There exists u ∈ [−1, 1] such that

∂G(d) = ∇f(Θj) + dHjj + λu = 0

d =
−(∇f(Θj) + λu)

Hjj
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A BLOCK COORDINATE DESCENT ALGORITHM

For −1 ≤ u ≤ 1, λ > 0 and Hjj > 0 we have

−(∇f(Θj) + λ)

Hjj

≤ d
def
= −Θj ≤

−(∇f(Θj)− λ)

Hjj

The solution can again be written compactly as

d = mid
{
−(∇f(Θj)− λ)

Hjj

,−Θj,
−(∇f(Θj) + λ)

Hjj

}

We see all three cases lead to the same solution for (48). Therefore the descent direction for661

Θ
(k)
j ∈ {β1, . . . , βp} for the ℓ1 penalty is given by662

d = mid
{
−(∇f(βj)− λ)

Hjj

,−βj,
−(∇f(βj) + λ)

Hjj

}
(51)

A.1.2 Solution for the β parameter663

If the Hessian∇2f(Θ(k)) > 0 then H(k) defined in (41) is equal to∇2f(Θ(k)). Using αinit = 1,664

the largest element of
{
α
(k)
initδ

r
}

r=0,1,2,...
satisfying the Armijo Rule inequality is reached for665

α(k) = α
(k)
initδ

0 = 1. The Armijo rule update for the β parameter is then given by666

β
(k+1)
j ← β

(k)
j + d(k), j = 1, . . . , p (52)

Substituting the descent direction given by (51) into (52) we get667

β
(k+1)
j = mid

{
β
(k)
j +

−(∇f(β(k)
j )− λ)

Hjj

, 0, β
(k)
j +

−(∇f(β(k)
j ) + λ)

Hjj

}
(53)

We can further simplify this expression. Let668

wi :=
1

σ2 (1 + η(Λi − 1))
(54)
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A BLOCK COORDINATE DESCENT ALGORITHM

.669

Re-write the part depending on β of the negative log-likelihood in (15) as

g(β(k)) =
1

2

NT∑
i=1

wi

(
Ỹi −

∑
ℓ̸=j

X̃iℓβ
(k)
ℓ − X̃ijβ

(k)
j

)2

(55)

The gradient and Hessian are given by

∇f(β(k)
j ) :=

∂

∂β
(k)
j

g(β(k)) = −
NT∑
i=1

wiX̃ij

(
Ỹi −

∑
ℓ̸=j

X̃iℓβ
(k)
ℓ − X̃ijβ

(k)
j

)
(56)

Hjj :=
∂2

∂β
(k)
j

2 g(β
(k)) =

NT∑
i=1

wiX̃
2
ij (57)

Substituting (56) and (57) into β
(k)
j +

−(∇f(β
(k)
j )−λ)

Hjj

β
(k)
j +

∑NT

i=1 wiX̃ij

(
Ỹi −

∑
ℓ̸=j X̃iℓβ

(k)
ℓ − X̃ijβ

(k)
j

)
+ λ∑NT

i=1 wiX̃2
ij

= β
(k)
j +

∑NT

i=1 wiX̃ij

(
Ỹi −

∑
ℓ̸=j X̃iℓβ

(k)
ℓ

)
+ λ∑NT

i=1 wiX̃2
ij

−
∑NT

i=1 wiX̃
2
ijβ

(k)
j∑NT

i=1 wiX̃2
ij

=

∑NT

i=1 wiX̃ij

(
Ỹi −

∑
ℓ̸=j X̃iℓβ

(k)
ℓ

)
+ λ∑NT

i=1 wiX̃2
ij

(58)

Similarly, substituting (56) and (57) in β
(k)
j +

−(∇f(β
(k)
j )+λ)

Hjj
we get

∑NT

i=1 wiX̃ij

(
Ỹi −

∑
ℓ̸=j X̃iℓβ

(k)
ℓ

)
− λ∑NT

i=1 wiX̃2
ij

(59)
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A BLOCK COORDINATE DESCENT ALGORITHM

Finally, substituting (58) and (59) into (53) we get

β
(k+1)
j = mid


∑NT

i=1 wiX̃ij

(
Ỹi −

∑
ℓ ̸=j X̃iℓβ

(k)
ℓ

)
− λ∑NT

i=1 wiX̃2
ij

, 0,

∑NT

i=1 wiX̃ij

(
Ỹi −

∑
ℓ̸=j X̃iℓβ

(k)
ℓ

)
+ λ∑NT

i=1 wiX̃2
ij


=
Sλ
(∑NT

i=1 wiX̃ij

(
Ỹi −

∑
ℓ̸=j X̃iℓβ

(k)
ℓ

))
∑NT

i=1 wiX̃2
ij

(60)

Where Sλ(x) is the soft-thresholding operator

Sλ(x) = sign(x)(|x| − λ)+

sign(x) is the signum function

sign(x) =


−1 x < 0

0 x = 0

1 x > 0

and (x)+ = max(x, 0).670
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B ADDITIONAL SIMULATION RESULTS

B Additional Simulation Results671

B.1 Null Model (c = 0)672

10% Heritability 30% Heritability

No causal SNPs in Kinship
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1.000

Method twostep lasso ggmix

Based on 200 simulations

Correct Sparsity Results for the Null Model

Figure B.1: Boxplots of the correct sparsity from 200 replications by the true heritability
η = {10%, 30%}.

Page 50 of 73

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 15, 2019. ; https://doi.org/10.1101/408484doi: bioRxiv preprint 

https://doi.org/10.1101/408484
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Estimation Error Results for the Null Model

Figure B.2: Boxplots of the estimation error from 200 replications by the true heritability
η = {10%, 30%}.
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Mean Squared Error vs. Number of Active Variable (Mean +/- 1 SD) for Null Model

Figure B.3: Root mean squared prediction error on the test set vs number of active variables
from 200 replications by the true heritability η = {10%, 30%}.
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True Positive Rate vs. False Positive Rate (Mean +/- 1 SD) for the Null Model

Figure B.4: Means ±1 standard deviation of true positive rate vs. false positive rate from
200 replications by the true heritability η = {10%, 30%}.
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horizontal dashed line is the true value

Figure B.5: Boxplots of the heritability estimate η̂ from 200 simulations by the true heri-
tability η = {10%, 30%}.
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Figure B.6: Boxplots of the estimated error variance from 200 replications by the true
heritability η = {10%, 30%}.
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Figure B.7: Run time (in log seconds) for null model for twostep, lasso and ggmix.

B.2 1% of SNPs are Causal (c = 0.01)673
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Correct Sparsity results for the Model with 1% Causal SNPs

Figure B.8: Boxplots of the correct sparsity from 200 replications by the true heritability
η = {10%, 30%} and number of causal SNPs that were included in the calculation of the
kinship matrix for the model with 1% causal SNPs (c = 0.01).
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Estimation Error results for the Model with 1% Causal SNPs

Figure B.9: Boxplots of the estimation error from 200 replications by the true heritability
η = {10%, 30%} and number of causal SNPs that were included in the calculation of the
kinship matrix for the model with 1% causal SNPs (c = 0.01).
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True Positive Rate vs. False Positive Rate (Mean +/- 1 SD) for the Model with 1% Causal SNPs

Figure B.10: Means ±1 standard deviation of true positive rate vs. false positive rate from
200 replications by the true heritability η = {10%, 30%} and number of causal SNPs that
were included in the calculation of the kinship matrix for the model with 1% causal SNPs
(c = 0.01).
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horizontal dashed line is the true value

Figure B.11: Boxplots of the heritability estimate η̂ from 200 replications by the true heri-
tability η = {10%, 30%} and number of causal SNPs that were included in the calculation
of the kinship matrix for the model with 1% causal SNPs (c = 0.01).
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Figure B.12: Boxplots of the estimated error variance from 200 replications by the true
heritability η = {10%, 30%} and number of causal SNPs that were included in the calculation
of the kinship matrix for the model with 1% causal SNPs (c = 0.01).
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Mean Squared Error vs. Number of Active Variable (Mean +/- 1 SD) for Model with 1% Causal SNPs

Figure B.13: Root mean squared prediction error on the test set vs. the number of active
variables from 200 replications by the true heritability η = {10%, 30%} and number of
causal SNPs that were included in the calculation of the kinship matrix for the model with
1% causal SNPs (c = 0.01).
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Mean Squared Error vs. Number of Active Variable (Mean +/- 1 SD) for Model with 1% Causal SNPs

Figure B.14: Mean squared error vs number of active variables results from 200 replications
by the true heritability η = {10%, 30%} and number of causal SNPs that were included in
the calculation of the kinship matrix for the model with 1% causal SNPs (c = 0.01), for 1%
causal SNPs for ggmix and lasso only.
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Figure B.15: Run time (in log seconds) from 200 replications by the true heritability η =
{10%, 30%} and number of causal SNPs that were included in the calculation of the kinship
matrix for the model with 1% causal SNPs (c = 0.01).
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C GGMIX PACKAGE SHOWCASE

C ggmix Package Showcase674

In this section we briefly introduce the freely available and open source ggmix package in R.675

More comprehensive documentation is available at https://sahirbhatnagar.com/ggmix.676

Note that this entire section is reproducible; the code and text are combined in an .Rnw1 file677

and compiled using knitr [58].678

C.1 Installation679

The package can be installed from GitHub via680

install.packages("pacman")

pacman::p_load_gh('sahirbhatnagar/ggmix')

To showcase the main functions in ggmix, we will use the simulated data which ships with681

the package and can be loaded via:682

library(ggmix)

data("admixed")

names(admixed)

## [1] "y" "x" "causal"

## [4] "beta" "kin" "Xkinship"

## [7] "not_causal" "causal_positive" "causal_negative"

## [10] "x_lasso"

For details on how this data was simulated, see help(admixed).683

There are three basic inputs that ggmix needs:684

1. Y : a continuous response variable685

2. X: a matrix of covariates of dimension N × p where N is the sample size and p is the686

number of covariates687

3. Φ: a kinship matrix688

1scripts available at https://github.com/sahirbhatnagar/ggmix/tree/pgen/manuscript
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C GGMIX PACKAGE SHOWCASE

We can visualize the kinship matrix in the admixed data using the popkin package:689

# need to install the package if you don't have it

# pacman::p_load_gh('StoreyLab/popkin')

popkin::plotPopkin(admixed$kin)
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0.
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8
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2
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C.2 Fit the linear mixed model with Lasso Penalty691

We will use the most basic call to the main function of this package, which is called ggmix.692

This function will by default fit a L1 penalized linear mixed model (LMM) for 100 distinct693

values of the tuning parameter λ. It will choose its own sequence:694

fit <- ggmix(x = admixed$x, y = admixed$y, kinship = admixed$kin)
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C GGMIX PACKAGE SHOWCASE

names(fit)

## [1] "result" "ggmix_object" "n_design" "p_design"

## [5] "lambda" "coef" "b0" "beta"

## [9] "df" "eta" "sigma2" "nlambda"

## [13] "cov_names" "call"

class(fit)

## [1] "lassofullrank" "ggmix_fit"

We can see the solution path for each variable by calling the plot method for objects of695

class ggmix_fit:696

plot(fit)

0 5 10 15 20

−
1.

0
0.

0
1.

0

L1 Norm

C
oe

ffi
ci

en
ts

2 36 120 168 196

697

We can also get the coefficients for given value(s) of lambda using the coef method for698

objects of class ggmix_fit:699

# only the first 5 coefficients printed here for brevity
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C GGMIX PACKAGE SHOWCASE

coef(fit, s = c(0.1,0.02))[1:5, ]

## 5 x 2 Matrix of class "dgeMatrix"

## 1 2

## (Intercept) -0.3824525 -0.030224599

## X62 0.0000000 0.000000000

## X185 0.0000000 0.001444518

## X371 0.0000000 0.009513475

## X420 0.0000000 0.000000000

Here, s specifies the value(s) of λ at which the extraction is made. The function uses linear700

interpolation to make predictions for values of s that do not coincide with the lambda701

sequence used in the fitting algorithm.702

We can also get predictions (Xβ̂) using the predict method for objects of class ggmix_fit:703

# need to provide x to the predict function

# predict for the first 5 subjects

predict(fit, s = c(0.1,0.02), newx = admixed$x[1:5,])

## 1 2

## id1 -1.19165061 -1.3123392

## id2 -0.02913052 0.3885923

## id3 -2.00084875 -2.6460043

## id4 -0.37255277 -0.9542463

## id5 -1.03967831 -2.1377268

C.3 Find the Optimal Value of the Tuning Parameter704

We use the Generalized Information Criterion (GIC) to select the optimal value for λ. The705

default is an = log(log(n)) ∗ log(p) which corresponds to a high-dimensional BIC (HD-706

BIC):707

# pass the fitted object from ggmix to the gic function:
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C GGMIX PACKAGE SHOWCASE

hdbic <- gic(fit)

class(hdbic)

## [1] "ggmix_gic" "lassofullrank" "ggmix_fit"

# we can also fit the BIC by specifying the an argument

bicfit <- gic(fit, an = log(length(admixed$y)))

We can plot the HDBIC values against log(λ) using the plot method for objects of class708

ggmix_gic:709

plot(hdbic)
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710

The optimal value for λ according to the HDBIC, i.e., the λ that leads to the minium HDBIC711

is:712

hdbic[["lambda.min"]]

## [1] 0.05596623

We can also plot the BIC results:713
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C GGMIX PACKAGE SHOWCASE

plot(bicfit, ylab = "BIC")
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714

bicfit[["lambda.min"]]

## [1] 0.05596623

C.4 Get Coefficients Corresponding to Optimal Model715

We can use the object outputted by the gic function to extract the coefficients corresponding716

to the selected model using the coef method for objects of class ggmix_gic:717

coef(hdbic)[1:5, , drop = FALSE]

## 5 x 1 sparse Matrix of class "dgCMatrix"

## 1

## (Intercept) -0.2668419

## X62 .

## X185 .

## X371 .

## X420 .

We can also extract just the nonzero coefficients which also provide the estimated variance718
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C GGMIX PACKAGE SHOWCASE

components η and σ2:719

coef(hdbic, type = "nonzero")

## 1

## (Intercept) -0.26684191

## X336 -0.67986393

## X7638 0.43403365

## X1536 0.93994982

## X1943 0.56600730

## X2849 -0.58157979

## X56 -0.08244685

## X4106 -0.35939830

## eta 0.26746240

## sigma2 0.98694300

We can also make predictions from the hdbic object, which by default will use the model720

corresponding to the optimal tuning parameter:721

predict(hdbic, newx = admixed$x[1:5,])

## 1

## id1 -1.3061041

## id2 0.2991654

## id3 -2.3453664

## id4 -0.4486012

## id5 -1.3895793

C.5 Extracting Random Effects722

The user can compute the random effects using the provided ranef method for objects of723

class ggmix_gic. This command will compute the estimated random effects for each subject724

using the parameters of the selected model:725

ranef(hdbic)[1:5]

## [1] -0.02548691 -0.10011680 0.13020240 -0.30650997 0.16045768
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C GGMIX PACKAGE SHOWCASE

C.6 Diagnostic Plots726

We can also plot some standard diagnotic plots such as the observed vs. predicted response,727

QQ-plots of the residuals and random effects and the Tukey-Anscombe plot. These can be728

plotted using the plot method on a ggmix_gic object as shown below.729

C.6.1 Observed vs. Predicted Response730

plot(hdbic, type = "predicted", newx = admixed$x, newy = admixed$y)
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C.6.2 QQ-plots for Residuals and Random Effects732
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C GGMIX PACKAGE SHOWCASE

plot(hdbic, type = "QQranef", newx = admixed$x, newy = admixed$y)
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plot(hdbic, type = "QQresid", newx = admixed$x, newy = admixed$y)
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C.6.3 Tukey-Anscombe Plot735

plot(hdbic, type = "Tukey", newx = admixed$x, newy = admixed$y)
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