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Abstract

In this paper, the relation between the extinction rate and the rate of

last fossil occurrences as well as the relation between the fossil occurrence

rate and the time averaged fossil occurrence rate is examined. Both rela-

tions are described by the same mathematical operation. This operation

is commonly used in image processing, where it generates a blurring ef-

fect. Therefore the rate of last fossil occurrences can be taken as a blurred

version of the extinction rate, and the time averaged fossil occurrence rate

as a blurred version of the fossil occurrence rate. This connection has dif-

ferent applications. It allows to study the patterns different types of time

averaging generate or the patterns of last fossil occurrences generated by

different extinction rates. More importantly, it opens the possibility to use

algorithms from image processing that reverse blurring effects for geologi-

cal applications. This can be used to reverse the effects of time averaging

or to reconstruct extinction rates from the rate of last fossil occurrences.

1 Introduction

In this paper, the structural similarities between two fundamental biases on the

fossil record are demonstrated and a possibility to reverse both using approaches

from image processing is sketched.

The first of these biases is time averaging, causing fossils not to obey the law
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of superposition as it was formulated by Nicolas Steno in the 17th century, and

therefore contradicting an axiom of stratigraphy. Due to time averaging, the age

of fossils in the stratigraphic column is not only unordered, but signals based on

fossil abundances get blurred, since fossils migrate into overlying or underlying

stratigraphic layers and thereby average their fossil content[Kidwell et al., 1991].

The second bias is best explained by the Signor-Lipps effect[Signor and Lipps,

1982], which states that an extinction event will always appear more gradual

as it actually was. This is since the knowledge of an extinction is not from the

extinction of a taxon itself, but via the last fossil occurrence of this taxon. But

the last fossil occurrence is only loosely connected to the actual extinction of

the taxon, since it is heavily dependent on chance. Therefore the rate of last

fossil occurrences fLFO is a blurred version of the actual extinction rate fext,

with the blurring generated by the loose connection of time of extinction and

last fossil occurrence.

What unifies these two biases is that what can be observed, be it time averaged

signal or rate of last fossil occurrences, is a blurred version of what is actually

of interest (not time averaged data/extinction rates). If there is information

available how this blurring is generated (the process that generates time av-

eraging/the relation of last fossil occurrence to extinction), then the original

signal can be reconstructed from the blurred signal. Reversing such blurring ef-

fects is a common problem in image processing, and image processing also offers

a variety of solutions for this problem that can be used in this geological context.

One of the basic operations in image processing is a blurring or a smoothing

effect. Many versions of these effects are based on a mathematical operation

called a convolution, which combines a convolution kernel with the original pic-

ture to generate a blurred version of the picture. The convolution operation can

be paraphrased as a continuous version of weighted moving averages, with the

convolution kernel being the continuous equivalent of the weights. A common

example for a convolution operation is the Gaussian blur, which uses a normal

distribution as the convolution kernel (see fig. 2).

In many applications, such as microscopy, it is useful to assume that the recorded

data is already blurred in a systematic way, which might for example depend

on the type of microscope used. If information about this systematic blurring is

available, algorithms can be applied to reconstruct the original, unblurred im-

age. This procedure is called deconvolution, since it tries to reverse the blurring

effects of a convolution. The result of the deconvolution is in general not unique
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(but see appendix B), and knowledge of the original blurring effect in the form

of a convolution kernel is necessary.

It can be shown (see appendix A) that the mathematical relation of the time

averaged rate of fossil occurrences ftavg to the rate of fossil occurrences ffoss

and the relation of the rate of last fossil occurrences fLFO to the extinction rate

fext is the same as the relation of a blurred image to its original version:

• The time averaged rate of fossil occurrences ftavg is a blurred (convoluted)

version of the rate of fossil occurrences ffoss

• The rate of last fossil occurrences fLFO is a blurred (convoluted) version

of the extinction rate fext

This connection is based on a duality in probability theory, where samples are

taken as realizations of an abstract signal. The mathematical proof in ap-

pendix A shows that a model that is based on a relocation of samples on the

sample level is reflected on the abstract signal level by a convolution of the signal

(see fig. 1). Modeling time averaging and the Signor-Lipps effect as a relocation

of the fossil occurrences and extinctions as done in section 2 and 4 is thereby

reflected on the signal level as a convolution of the rate of fossil occurrences or

extinction rate with a convolution kernel whose shape is determined by the type

of relocation.

So if knowledge about the convolution kernel that describes these blurring effects

is available, the rate of fossil occurrences can be reconstructed from the time

averaged rate of fossil occurrence and the extinction rate can be reconstructed

from the rate of last fossil occurrences by applying a deconvolution algorithm.

2 Model Assumptions

For clarity of language, only the case of time averaging is discussed here. The

corresponding procedure and model assumptions for rates of last fossil occur-

rences and extinction rates can be found in section 4.

In a first step, the fossils are abstracted as points on a line. This line can either

represent stratigraphic height or time, dependent on the type of time averaging

that is being modeled. The basic model can be described as

(M) Time averaging is a process of simultaneous destruction and relocation of

fossils
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This model is complemented by the following model assumptions:

(TA 1) The appearance of fossils is relatively rare, stochastically independent

and the rate of fossil occurrences is given by a function ffoss. This means

that samples are realizations of an inhomogeneous Poisson point process

(IPPP) with rate function ffoss.

(TA 2) Destruction probabilities of fossils remain constant. Since the original

number of fossils remains unknown, having a constant destruction proba-

bility is equal to no destruction at all. Therefore destruction of fossils will

be neglected further on.

(TA 3) The relocation of fossils is random, but remains unchanged throughout

time or with depth. This means that there is one probability distribution

P that determines how much a fossil is being relocated relative to its

original position.

These model assumptions are discussed in detail in section 6.1.

3 The Method

Assume that the following is given:

• The rate of time averaged fossil occurrences ftavg, as it can for example

be reconstructed from time averaged data

• Knowledge of the distribution P that determines the relocation of the

fossils.

Let fP be the density function (continuous case) or probability mass function

(discrete case) of the distribution P .

Then fP is the convolution kernel that transforms the rate of fossil occurrences

ffoss into the rate of time averaged fossil occurrences ftavg:

ffoss ∗ fP = ftavg, (1)

where ∗ denotes the convolution. This equation is derived in appendix A.

The rate of fossil occurrences ffoss can therefore be reconstructed as the decon-

volution of the rate of time averaged fossils occurrences ftavg and fP :

ffoss ≈ deconv(ftavg; fP ) (2)
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The overarching structure of these relations is displayed in fig. 1.

4 Extinction Rates and Last Fossil occurrences:

Reversing the Signor-Lipps Effect

The case of extinction rates is identical to the case of time averaging, when last

fossil occurrences are interpreted as random replacements of the actual extinc-

tions. In this setting, the model assumptions from time averaging translate as

follows:

(EXT 1) The extinctions follow an inhomogeneous Poisson point process with

rate function fext, and the fossil occurrences of each taxon follow an in-

homogeneous Poisson point process

(EXT 2) Sampling effort is constant

(EXT 3) All taxa have the same rate of fossil occurrences λ close to their last

fossil occurrence

These model assumptions are discussed in section 6.1. In the case of extinctions,

the shape of the convolution kernel fP is alredy determined to be the density

function of a exponential distribution with mean 1/λ, mirrored at the y-axis.

This follows since the fossil occurrences are themselves Poisson point processes,

which have exponentially distributed waiting times between fossil occurrences,

and the memorylessness of the exponential distribution.

So just as in the case of time averaging, the rate of last fossil occurrences fLFO

is given as the convolution of fP and the extinction rate fext:

fLFO = fext ∗ fP (3)

Therefore the extinction rate can be reconstructed as a deconvolution of fP and

fLFO:

fext ≈ deconv(fLFO; fP ) (4)

The structure of the relations described here is displayed in fig. 1.
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5 Examples and Figures

Blurred Signal
Rate of Last Fossil Occurences

Original Signal
Extinction Rate

Relocated Sample
Last Fossil Occurences

Original Sample
Extinctions

Realization

Realization
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Figure 1: The overall structure proposed. The upper half is the signal level,
the lower half the sample level. The connection between signal and sample is
created by a realization of the signal, just as a random number is a realization
of a random number generator. The model (M) describes how the original
sample is transformed into the relocated sample. The proof in appendix A
shows that the convolution is the equivalent description of this relocation on
the signal level. Therefore it does not matter whether first the original signal is
transformed into the blurred signal, which is then used to generate a relocated
sample, or whether a sample is generated from the original signal, which is then
relocated to generate the relocated signal.
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Figure 2: A discontinuous signal (dark blue), the convolution kernel (dotted),
and the result of the convolution (black). Note that the sharp edges of the
original signal are smoothed. The convolution kernel chosen here is the density
function of a Normal distribution with standard deviation 0.5. The convolution
displayed here corresponds to the Gaussian blur as it is implemented in most
image processing programs.
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Figure 3: A discontinuous signal (dark blue), the convolution kernel (dotted),
and the result of the convolution (black). The convolution kernel chosen is the
density function of a uniform distribution with width 2. Although the original
signal has been smoothed, some edges are still present in the blurred signal. This
is since the convolution kernel is not as smooth as in fig. 2. This demonstrates
that properties of the convolution kernel are reflected in the blurred signal.
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Figure 4: A discontinuous signal (dark blue), the convolution kernel (dotted),
and the result of the convolution (black). The convolution kernel chosen here
is the density function of an exponential distribution with mean 1, mirrored at
the y-axis. The blurred function appears very asymmetrical. This is generated
by the asymmetry of the convolution kernel. Note how similar very left of the
blurred signal is to the convolution kernel. This similarity will in a geological
context create the Signor-Lipps effect.
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Figure 5: An extinction rate (black) and the derived rates of last fossil occur-
rences for different parameters λ. This parameter represents the rate of fossil
occurrences of the taxa going extinct. As the rate of fossil occurrences decrease,
the distance between last fossil occurrence and extinction increases up to a point
where the rate of last fossil occurrences is so low that it does not resemble the
extinction rate any more.
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Figure 6: A rate of fossil occurrences (black) and different time averaged versions
(in colors) of it. The convolution kernel is the density function of an uniform
distribution from 0 to b. Note how the two distinct spikes in the original rate
of fossil occurrences become more blurred until they cannot be distinguished
anymore (b = 5, red)
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6 Discussion

The proposed model can not only be used to reconstruct extinction rates and

reverse the effects of time averaging, but also to study how the effects of time

averaging and the Signor-Lipps effect change under different extinction rates or

different types of time-averaging and rates of fossil occurrences. For the case of

only studying these effects, the model assumptions (TA 2)/(EXT 2) and (TA

3)/(EXT 3) are no longer binding if a brute force approach for the relocation

based on the simulation of inhomogeneous Poisson point processes is used (see

attached files of [Hohmann, 2017] for examples of code).

It is important to note everything presented here is based on the assumption

that sequence stratigraphy is not interacting with any of the processes discussed.

For applications, this is in general unrealistic. However the effects of changing

deposition rates can be incorporated with the approach presented in [Hohmann,

2018]. This approach is based on the same mathematical concept and therefore

compatible with the work presented here.

6.1 Model Assumptions

Assuming that all processes discussed here follow an inhomogeneous Poisson

point process (TA 1 and EXT 1) is crucial for establishing the mathematical

framework. This assumption is weak, since Poisson processes can be derived

from an elementary sampling procedure that is based on the relative rarity

and the independence of the events (fossils, extinctions, etc)[Meester, 2008,

ch. 7]. Both relative rarity and independence are plausible assumptions for the

paleontological processes discussed here.

6.1.1 Model for Time Averaging

For time averaging, it is possible drop model assumption (TA 2) and to incor-

porate changing destruction rates of shells. For the sake of clarity this has not

been done here. Whether model assumption (TA 3) holds is a priori not clear. If

it does not hold, an exact reconstruction based on the mathematical framework

developed here seems not possible. It might however be possible to establish

error estimates for the reconstruction via deconvolution for cases where (TA 3)

is violated.
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6.1.2 Model Assumptions for Extinctions

Weakening the assumption that sampling effort is constant (EXT 2) would re-

quire the development of a more advanced model, since changing sampling inter-

acts with the model assumption (EXT 3). The assumption (EXT 3) about the

constant rate is equivalent to the assumption (TA 3), since it makes sure that

the relation between extinction and last fossil occurrence remains unchanged

throughout time. It is not clear whether this condition holds, and checking it

might be hard if fossil occurrences are rare. However it might be possible to

establish an error estimate for the reconstruction via deconvolution for cases

where (EXT 3) does not hold, just like in the case of time averaging.

6.2 The Perspective of Information Theory

In Information theory, the convolution is known to increase entropy [Chirikjian,

2009, p. 75] and to decrease information [Chirikjian, 2009, p. 78]. It is how-

ever not clear whether these properties hold in the cases discussed here. This

is since the functions that are convoluted are not probability density functions,

but representatives of a Poisson point process. They are therefore closer to very

high-dimensional parameters than to probability distributions, and it is not clear

whether the convolution of these parameters reflects any relevant information-

theoretic operation.

But if these fundamental inequalities of information theory generalize into the

context discussed here, this would mean that there is a general loss of informa-

tion that can not be recovered, and reconstructions will to some point always

be deficient.

Another approach from information theory that can be applied is looking at the

relative entropy as described in [Hohmann, 2017] and use it to assess how the

distinguishability of different signals changes through convolution. For a similar

approach in the context of push forward measures, compare [Hohmann, 2018].

6.3 Remaining Questions

It remains to identify suitable deconvolution algorithms for the cases where the

obvious approaches via Fourier transform or as sketched in appendix B fail.

Since the nature of the convolution kernel is not a priori known in the case of

time averaging, a second question is how to reconstruct these kernels for time

averaging and how these kernels are linked to specific environments.
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Appendix A: The Connection Between Convolu-

tion and the Model

For the sake of simplicity, only the proof for the case of time averaging is

sketched. The case for extinction rates follows mutatis mutandis, with fext

replacing ffoss, fLFO replacing ftavg, and the model asumptions being replaced

by their equally enumerated counterparts.

Model assumption (TA 1) states that the not time averaged sample is generated

by an inhomogeneous Poisson point process ξ with intensity measure

µ(A) =

∫
A

ffoss(x) dx, (5)

where ffoss is the rate of fossil occurrences. So the number of fossils in an

interval [a, b] follows a Poisson distribution with parameter λ = µ([a, b]), and

the average number of fossil occurrences in the interval [a, b] is µ([a, b]).

Taking the basic model (M), the time averaged fossil occurrences are a ν-

transform (in the sense of [Kallenberg, 2017, p. 73]) of the original process

ξ, where ν is some Markov kernel.

With model assumption (TA 2), this Markov kernel contains no thinning com-

ponent and therefore is a Markov kernel from R to R. Following theorem 3.2

in [Kallenberg, 2017], the ν-transform of ξ is a Cox process directed by µ · ν,

where · denotes the product (sensu [Kallenberg, 2017, p. 33], but ”composition”

sensu [Klenke, 2008, p. 281]) of the measure µ and the Markov kernel ν.

Model assumption (TA 3) then states that νt = δt ∗ P , where δt is the Dirac

measure on t. With Klenke [2008, lemma 14.27], it follows that

µ · ν = µ ∗ P (6)

Therefore the Cox process describing the time averaged signal reduces to a

Poisson process with intensity measure µ ∗ P . This measure has by definition a

density function of ffoss ∗ fP .

So if all model assumptions hold, the rate function ftavg of the time averaged

process is given as the convolution of ffoss and the probability density function

fP :

ffoss ∗ fP = ftavg (7)
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Appendix B: A Unique Deconvolution

In the case of binned data, all functions reduce to series. These series can then

be padded with infinitely many zeros on each sides and taken as elements of

the sequence space `1(Z) with the corresponding norm ‖ · ‖1. This space is

closed under the convolution and forms a Banach algebra with identity e =

(. . . , 0, 0, 0, 1, 0, 0, 0, . . . ), where the 1 is at the position with index zero. If fP

is the convolution kernel, and

‖fP − e‖1 < 1 (8)

then the kernel fdec that describes the deconvolution is given as [Kaniuth, 2008,

lemma 1.2.6]

fdec =

∞∑
n=0

(e− fP )∗n (9)

with the convention (e − fP )∗0 := e and x∗n := x∗(n−1) ∗ x being the n-fold

convolution power. This means that

fdec ∗ fP = fP ∗ fdec = e (10)

Since f ∗ e = e for all f ∈ `1(Z), it follows that

ffoss = ftavg ∗ fdec (11)

The result for the extinction rate follows mutatis mutandis.

Note that although the deconvolution kernel is uniquely determined in this case,

this does not necessarily mean that ffoss is positive and therefore a plausible

reconstruction.
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