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DDuring cortical development, distinct subtypes of glutamatergic neurons are sequentially born 
and differentiate from dynamic populations of progenitors. The neurogenic competence of these 
progenitors progresses as corticogenesis proceeds; likewise, newborn neurons transit through 
sequential states as they differentiate. Here, we trace the developmental transcriptional 
trajectories of successive generations of apical progenitors (APs) and isochronic cohorts of their 
daughter neurons using parallel single-cell RNA sequencing between embryonic day (E) 12 and 
E15 in the mouse cerebral cortex. Our results identify the birthdate- and differentiation stage-
related transcriptional dynamics at play during corticogenesis. As corticogenesis proceeds, APs 
transit through embryonic age-dependent molecular states, which are transmitted to their 
progeny to generate successive initial daughter cell identities. In neurons, essentially conserved 
post-mitotic differentiation programs are applied onto these distinct AP-derived ground states, 
allowing temporally-regulated sequential emergence of specialized neuronal cell types.
Molecular temporal patterning of sequentially-born daughter neurons by their respective 
mother cell thus underlies emergence of neuronal diversity in the neocortex.  

One Sentence Summary: During corticogenesis, temporally dynamic molecular birthmarks are 
transmitted from progenitors to their post-mitotic progeny to generate neuronal diversity.

The cerebral cortex is a cellularly heterogeneous 
structure, whose neuronal circuits underlie high-
order cognitive and sensorimotor information 
processing. During embryogenesis, distinct 
subtypes of glutamatergic neurons are 
sequentially born and differentiate from 
populations of progenitors located in the 
germinal zones below the cortex (Jabaudon 
2017; Florio & Huttner 2014). The aggregate 
neurogenic competence of ventricular zone 
progenitors (i.e. apical progenitors, APs) 
progresses as corticogenesis proceeds 
(Govindan & Jabaudon 2017; Okamoto et al.

2016; Gao et al. 2014, Guo et al. 2013; Gaspard 
et al. 2007); likewise, newborn neurons transit 
through sequential transcriptional states as they 
differentiate (Zahr et al. 2018; Telley et al. 2016; 
Azim et al. 2009). Although the single-cell 
transcriptional diversity of the neocortex is 
increasingly well characterized (Saunders et al. 
2018; Zeisel et al. 2018; Kageyama et al. 2018; 
Nowakowski et al. 2017; Tasic et al. 2016;
Zeisel et al. 2015), little is yet known about the 
molecular processes driving either the 
progression of AP competence, or the specific 
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differentiation of daughter neurons born from 
these progenitors at sequential embryonic ages. 

To address these questions, we used 
FlashTag (FT), a high temporal resolution 
method to pulse-label APs and their daughter 
neurons (Telley et al. 2016; Govindan et al. 
2018), to trace the transcriptional trajectories of 
successive generations of APs and isochronic 
cohorts of their daughter neurons between 
embryonic day (E) 12 and E15. This 
corresponds to the period during which APs 
successively generate layer (L) 6, L5, L4 and 
L2/3 neurons (Jabaudon 2017). Following 
microdissection of the putative somatosensory 
cortex, we collected FT+ cells by FACS after 
either 1 h, as APs are still dividing, 24 h, as 
daughter cells are transiting through the 
subventricular zone, or 96 h (i.e. four days), 
once daughter neurons have entered the cortical 
plate (Fig. 1A and fig. S1, A and B) (Telley et 
al. 2016; Govindan et al. 2018). We performed 
single-cell RNA sequencing at each of these 3 
differentiation stages and 4 embryonic ages
(E12, E13, E14, and E15), which yielded a total 
of 2,756 quality-controlled cells across 12 
conditions for analysis (fig. S1, C and D, and 
Methods). 

Analysis of cellular transcriptional 
identities using t-SNE dimensionality reduction 
revealed two main axes of organization: a 
differentiation (i.e. collection time) axis and a 
birthdate (i.e. injection day) axis (Fig. 1B). 
Along the differentiation axis (Fig. 1B, left), 1 
h-, 1-day- and 4-day-old cells were organized 
into clusters which corresponded to (1) APs, (2) 
basal progenitors (BPs) and 1-day-old neurons 
(N1d), and (3) 4-day-old neurons (N4d), as 
indicated by the combined expression of type-
specific markers (Telley et al. 2016). Cells born 
at successive times of corticogenesis were 
organized perpendicularly to this differentiation 
axis, forming a birthdate axis (Fig. 1B, right). 
This chronotopic map was particularly apparent
for APs and 1-day-old daughter cells, but less 
striking in 4-day-old neurons, suggesting that 
the salience of birthdate-related transcriptional 
features decreases with differentiation. 
Together, these data reveal two orthogonal axes 
of transcriptional organization: a differentiation 

axis, corresponding to the birth and maturation 
of daughter neurons, and a birthdate axis, 
corresponding to the temporal progression in 
AP transcriptional states at sequential 
embryonic ages. These two cardinal processes 
are the major source of transcriptional diversity 
in the developing neocortex. 

We used a graph-based cluster analysis
to investigate the diversity of differentiation 
stage- and birthdate-specific cells and identified 
four embryonic age-defined AP transcriptional 
states, as well as two embryonic age-defined 
basal progenitor populations, as recently 
reported (Yuzwa et al. 2017) (Fig. 1C). Two 
classes of 1-day-old neurons (N1d) could be 
distinguished, early-born cells (i.e. E12-E13-
born) and later-born cells (i.e. E14-E15-born). 
These two classes of neurons displayed early 
onset expression of deep- and superficial-layer 
markers, which foreshadowed their upcoming 
lamina-related identity (Fig. 1C). Classical 
deep-layer markers were also expressed by late-
born neurons (fig S2A), consistent with an 
initial period of mixed identity followed by 
molecular cross-interactions and progressive 
fate refinement (Zahr et al. 2018; Ozair et al. 
2018; Azim et al. 2009). Accordingly, by four 
days of age, neurons with mutually-exclusive 
expression of classical lamina-specific markers 
such as Bcl11b (an L5 marker), Rorb (L4) and 
Cux1 (L2/3) emerged. Of note, GABAergic 
interneurons were also identified (Fig. 1C and 
fig. S2B), likely corresponding to cells 
migrating into the dorsal pallium after FT 
labeling of their progenitors in the ventral 
pallium (Govindan et al. 2018; Wamsley & 
Fishell 2017; Marin 2013). Astrocytes, 
corresponding to 4-day-old daughter cells of 
E15 APs (Minocha et al. 2017; Cahoy et al. 
2008) were also present (Fig. 1C and fig. S2C).
These two cell-types were not further 
investigated in this study. Differential 
expression analysis identified type-enriched 
transcripts (Fig. 1D) whose temporal patterns of 
expression were confirmed using in situ
hybridization (Fig. 1E; figs. S3 and S4; ISH;
Allen Developing Mouse Brain Atlas).
Together, these results indicate that APs transit 
through temporally dynamic transcriptional 
states during corticogenesis as daughter neurons 
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Fig. 1. Birthdate and differentiation stage-related cellular diversity in the developing neocortex.
(A) Schematic illustration of the experimental procedure. M-phase APs were labeled by FT injection 
performed at either E12, E13, E14 or E15 and isochronic cohorts of APs and daughter cells were 
collected either 1, 24 or 96 hours later. (B) t-SNE representation of the single cell RNA sequencing 
dataset revealing the transcriptional organization of the cells according to the time at which they were 
collected (i.e. their differentiation status) and the day on which the injection was performed (i.e. their 
birthdate). APs, BPs and Ns can be distinguished by their combinatorial expression of key marker 
genes (n = 20 transcripts). (C) Cluster analysis reveals transcriptomically distinct and temporally 
dynamic cellular clusters. Cluster nomenclature reflects prevalence of the cluster at a given embryonic 
age (early: E12/E13, late: E14/E15). Cells in these clusters express classical layer and cell-type marker 
genes in accordance with their birthdate and differentiation status. (D) Expression of the top 150 most 
highly variable genes highlights cluster diversity. (E) Spatio-temporal expression of cluster-specific 
transcripts with in situ hybridization. (ISH), from the Allen Developing Mouse Brain Atlas. Color-cod-
ed images represent the average expression for representative transcripts (see also Supplementary Figs 
3 and 4). Abbreviations: AP: apical progenitors, BP: basal progenitors, Astro: astrocyte, IN: interneu-
rons, N1d: 1-day-old neurons, N4d: 4-day-old neurons, VZ: ventricular zone, SVZ: subventricular 
zone, CP: cortical plate, DL: deep layer, SL: superficial layer. 
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progressively acquire more mature 
transcriptional features.

We used two axes of investigation to 
address the transcriptional dynamics of APs and 
differentiating neurons: on the one hand, we 
studied the progression in AP transcriptional 
states between E12 and E15 (Fig. 2), and on the 
other hand we studied the transcriptional 
differentiation of neurons born on each of these 
embryonic days, as shown in Fig. 3. To address 
the temporal progression in AP transcriptional 
states we used a pseudotime (i.e. pseudo-
birthdate) alignment approach (Mayer et al. 
2018), which highlighted the chronotopic 
organization of these cells and identified 
clusters of genes with similar embryonic age-
defined expression dynamics (Fig. 2, A and B; 
fig. S5, A and B). Several of these dynamically-
expressed genes have previously characterized 
functions in the temporal regulation of 
progenitor competence, including the early-
peaking transcripts Hmga2 (E12 peak) and 
Aspm (E13 peak) and the late-peaking transcript
Zbtb20 (E15) (Kishi et al. 2012; Johnson et al. 
2018; Tonchev et al. 2016). Ontological 
analysis revealed the progression of AP 
functional properties during corticogenesis (Fig. 
2C, fig. S5C). At early embryonic ages (E12, 
E13), APs were involved in largely cell-
autonomous tasks, such as regulation of gene 
expression and of chromatin structure; cell-
death related processes were also prominent, 
suggesting some level of regulation of the size 
of the progenitor pool (Cunningham et al. 2013).
Later in corticogenesis (E14, E15), external 
signaling and cell-cell interaction processes
increased, as did lipid metabolism, which has 
been linked with progenitor fate in adult 
neuronal stem cells (Knobloch et al. 2013). Ion
transport-related processes became more 
salient, in line with the role of bioelectrical 
parameters in the progression of AP competence 
(Vitali et al. 2018) and other typically neuron-
related processes involving synapses and 
neurotransmission increased. As further 
discussed below, this suggests that APs 
progressively acquire molecular signatures of 
their progeny upon repetitive rounds of cell 
division. Finally, glia-related processes 
emerged, consistent with the generation of this 

cell type in late corticogenesis (Jabaudon 2017; 
Gao et al. 2014; Guo et al. 2013). Together, 
these findings identify the sequential unfolding 
of successive transcriptional and functional 
programs within APs as corticogenesis 
proceeds.

We next examined the transcriptional 
programs expressed by differentiating neurons 
born on each embryonic age (Fig. 3). 
Pseudotime (i.e. pseudo-differentiation) 
alignment highlighted the sequential 
differentiation states of these cells and identified 
dynamically-expressed genes (Fig. 3 A-C; fig. 
S6, and see Methods). Clustering of these 
transcripts according to their expression 
dynamics outlined successive transcriptional 
waves driving differentiation (Telley et al. 
2016) (Fig. 3C). The sequential unfolding of 
gene expression was essentially conserved 
across embryonic ages, as revealed by largely 
overlapping gene expression dynamics (Fig. 3D 
and fig. S6). Conserved gene expression did not 
simply reflect the constant activity of a small 
number of “pan-neuronal” genes (e.g. NeuroD2, 
Tubb2) but instead reflected genuinely 
conserved differentiation programs since over 
half of the expressed genes had highly 
conserved expression dynamics (R > 0.8, Fig. 
3D). Accordingly, gene ontologies within waves 
were conserved across embryonic ages (Fig. 
3E). Thus, in contrast to the programs driving 
the temporal progression in AP identity, the 
differentiation programs of daughter neurons 
are largely conserved across embryonic ages,
despite the distinct identities these daughter 
neurons acquire.

How then does neuronal diversity 
emerge? As reported above, the chronotopic 
arrangement of APs is also present in their 1-day 
old progeny (Fig. 1B). This suggests that 
embryonic age-dependent AP transcriptional 
programs are transmitted to their progeny to 
generate successive initial neuronal identities.
To investigate this possibility, we next 
determined how dynamic transcriptional 
networks emerge in single cells during 
corticogenesis. We used a machine learning 
strategy to classify cells based on (1) their 
birthdate and (2) their differentiation status, 
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Fig. 2. Apical progenitors transit through sequential transcriptional states during corticogenesis. 
(A) Principal component analysis (PCA) of AP transcriptional identity showing chronotopic organiza-
tion along a birthdate axis (i.e. from E12 to E15). Cells were aligned on a pseudo-birthdate axis to trace 
this maturation route (black line). (B) Cluster analysis reveals distinct dynamics of AP gene expression 
during corticogenesis. Examples of genes for each type of dynamics are provided on the right. (C) 
Examples of gene ontology processes associated with each of the expression dynamics. Descriptions 
of functions in the left panel summarize relevant ontologies. Abbreviations: AP: apical progenitor, 
N1d: 1-day-old neuron, N4d: 4-day-old neuron, VZ: ventricular zone, CP: cortical plate. 
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Fig. 3. Neuronal differentiation programs are conserved across corticogenesis. (A) Principal com-
ponent analysis (PCA) shows that at each developmental age, cells are spontaneously organized along 
a differentiation axis (i.e. from AP to N1d to N4d). Cells were aligned along a pseudo-differentiation 
axis to trace this maturation route (black line). (B) Gene expression kinetics along the pseudo-differen-
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kinetics considering E12 as a reference shows that most gene expression dynamics are independent of 
the developmental age. (E) Parallel progression of gene ontology processes associated with each tran-
scriptional wave. Abbreviations: AP: apical progenitor, CP: cortical plate, IZ: intermediate zone, N1d: 
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which identified two core sets of genes (n = 100 

per model) sufficient to classify all cells 

according to these two cardinal features (Fig. 

4A and fig. S7A-C), many of which have been 

previously involved in regulating progenitor and 

neuronal fate (Tables 1 and 2). Birthdate-

associated core genes were sequentially 

expressed by APs and their 1- and 4-day old 

progeny, directly demonstrating transmission of 

age-specific genesets to daughter cells (Fig. 4B, 

top and fig. S7D). In contrast, consistent with a 

consensus post-mitotic differentiation program, 

the dynamics of the differentiation geneset were 

conserved across embryonic ages (Fig. 4B, 

bottom). Consistent with the increase in neuron-

related ontologies in APs noted above, 

expression of the neuronal differentiation 

geneset progressively increased in APs as 

corticogenesis unfolded (fig. S7E and F); the 

latter cells thus become progressively 

“neuralized” as they give rise to successive 

generations of post-mitotic daughter cells. 

Taken together, these data reveal that neuron-

type-specific identities emerge from 

temporally-defined, AP-derived transcriptional 

ground states onto which essentially conserved 

post-mitotic differentiation programs are 

applied (Fig. 4C). 

We combined the two aforementioned 

models to identify birthdate- and differentiation 

stage-related patterns of gene expression. Based 

on the combined expression of the core genes of 

the two models, each cell was assigned a 

birthdate score and differentiation score. Cells 

were then embedded within a two-dimensional 

matrix, allowing the display of gene expression 

profiles as chrono-typic transcriptional maps 

(Fig. 5A) (Nowakowski et al. 2017). This 

approach revealed a variety of dynamically-

regulated transcriptional patterns, including 

within single families of genes (Fig. 5B and fig. 

S8). To identify archetypical features of gene 

expression, we performed a t-SNE-based cluster 

analysis of all transcriptional maps, revealing 

canonical clusters of genes with similar 

expression dynamics (Fig. 5C). Genes within 

each of these canonical clusters shared common 

functions, and the distinct clusters were 

functionally specialized (Fig. 5D and fig. S9). 

This suggests that these transcriptional clusters 

represent functional units orchestrating the 

unfolding of cellular processes during 

corticogenesis. To substantiate this possibility, 

we selected one early and one late AP 

transcriptional process and assessed its 

functional outcome (Fig. 5E and F). Expression 

of the Polycomb Repressive Complex 2 (PRC2), 

which regulates histone methylation in neural 

progenitors (Pereira et al., 2010), provided a 

first example: all three subunits of the complex 

were co-expressed in APs early in 

corticogenesis, and the H3K27me3 signature 

mark of PRC2 had corresponding dynamics on 

target sites, demonstrating temporally-gated 

functional activity (Fig. 5E). Expression of the 

glutamate transporter transcript Slc1a3 (Glast) 

constituted a second example: Glast increased 

in APs as glutamatergic neurotransmission 

developed in the cortical plate. Pharmacological 

blockade of this transporter increased glutamate 

levels at late, but not early embryonic stages, 

consistent with a dynamic bioelectrical control 

over AP properties during corticogenesis  (Fig. 

5F) (Vitali et al. 2018).  

Together, our findings identify a 

combinatorial process in which type-specific 

neuronal identity emerges from the apposition 

of generic differentiation programs onto 

embryonic age-dependent, AP-derived 

transcriptional states. In this scenario, neuronal 

differentiation essentially corresponds to the 

implementation of programs coding for generic 

neuronal features (e.g. neurites, 

neurotransmission) onto temporally-defined 

initial transcriptional states. This process is 

reminiscent of how neuron diversity is 

generated in evolutionary older brain regions 

such as the subpallium or spinal cord ( Mayer et 

al. 2018; Mi et al. 2018; Nowakowski et al. 

2017; Dasen & Jessell 2009), with the 

difference that in these regions, distinctions in 

initial neuronal states reflect a predominantly 

spatial rather than temporal distribution of 

molecularly distinct progenitors. There thus 

appears to be at least two ways to generate 

cellular diversity: spatial patterning of 

molecularly distinct progenitors (e.g. 

subpallium, spinal cord), and temporal 

patterning, as revealed here. In evolutionary 

terms, temporal patterning may have been 
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selected as the primary mode of neuron 
production in the neocortex because it allows 
the generation of a large spectrum of cell types 
at low spatial cost. How temporal birthmarks are 
transmitted from APs to daughter neurons is 
unclear, but the strong temporal control over 
epigenetic processes identified here suggests 
that transmission of 3D chromatin features may 
be involved. In addition, the passive 
transmission of cytoplasmic RNA into daughter 
neurons along with post-transcriptional events 
could also contribute (Zahr et al. 2018; Yoon et 
al. 2017, 2018). As previously reported, we find 
that newborn neurons initially express a 
combination of classical lamina type-specific 
markers, a process which has been termed 
“transcriptional priming” and is also found in 
other organs such as the hematopoietic system (
Zahr et al. 2018; Azim et al. 2009; Hu et al. 
1997). Our findings thus do not exclude the 
contribution of post-mitotic processes to fate 
refinement (Zahr et al. 2018; Ozair et al. 2018; 
Mayer et al. 2018; Telley & Jabaudon 2018), but 
AP-derived, temporally-regulated processes 
appear to have a primordial role in defining 
initial neuronal identity. Although still present 
in 4-day-old neurons, temporal birthmarks fade 
with differentiation. At these later stages, 
activity-dependent programs may be 
progressively implemented in interaction with 
the environment to complement and eventually 
override earlier transcriptional processes, 
culminating in the generation of the full 
complement of cells required for functional 
cortical circuits.
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Materials and Methods

Mice 

All experiments were approved by the Geneva Cantonal Veterinary Authorities, Switzerland. To avoid 
developmental variability between embryos, three hour-time-mated pregnant CD1 mice were 
purchased from Charles River Laboratories. Embryonic day (E) 0 was established as the time of 
detection of the vaginal plug. Both female and male embryos were analyzed in this study. 

In utero FlashTag injection

FlashTag (FT) injections were performed at E12, E13, E14 or E15, as previously described (Telley et 
al. 2016; Govindan et al. 2018). Briefly, pregnant females were anaesthetized with isoflurane, treated 
with Temgesic (Reckitt Benckiser, Switzerland) and the uterine horn was exposed following an 
abdominal incision. Half a microliter of 10 mM of a carboxyfluorescein succinimidyl ester (i.e. Flash-
Tag, CellTraceTM CFSE, Life Technologies, #C34554) was injected into the lateral cerebral ventricle 
of the embryos. The abdominal wall was then closed and the embryos were let to develop until 
collection. 

Immunofluorescence and imaging

Tissue processing: Embryonic brains were dissected in a phosphate-buffered saline (PBS) solution, 
fixed in 4% paraformaldehyde (PFA) overnight at 4 °C then cryoprotected in PBS-sucrose 30% 
overnight at 4°C before embedding in OCT and freezing on dry ice. On-slide coronal brain sections 
with a thickness of 14 μm were performed using a cryostat.

Immunofluorescence on brain sections: Brain sections were post-fixed 10 min in 4% PFA, washed 
three times in PBS, incubated 30min at 85 °C in citrate buffer solution and washed 3 times in PBS 
prior to a 1-hour incubation in blocking solution (10% horse serum - 0,5% Triton X-100 diluted in 
PBS) at room temperature. Slides were then incubated overnight at 4°C with primary antibodies. Next, 
slides were washed 3 times in PBS and incubated 2 hours at room temperature with respective 
secondary antibodies (1:500) before mounting with Fluoromount (Sigma). Primary antibodies used: 
rabbit anti-pH3 (1:500, Abcam, #AB5176), rabbit anti-H3K27me3 (1:500, Millipore, 07-449).

Imaging: All images were acquired on LSM 700 confocal laser scanning microscope (Carl Zeiss). The 
putative primary somatosensory (S1) cortex was used as a region of study. The ImageJ software was 
further used for downstream image processing. 

In situ hybridization image processing 

All in situ hybridizations were retrieved from the Allen Developing Mouse Brain Atlas (www.brain-
map.org) and uniformly zoomed to the putative S1 neocortical region. For the illustrations Fig. 1E and 
figs S4, S5C, S7C the images were aligned and stacked. The mean intensity level of the Z projection 
was calculated on ImageJ. The resulting layout was artificially colored using the “Fire” mode of 
ImageJ. 

scRNAseq experiment 

Cell dissociation and FAC-sorting: Pregnant females were sacrificed either 1, 24 or 96 hours after FT 
injection. As previously described (Telley et al. 2016; Govindan et al. 2018), embryonic brains were 
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extracted in ice-cold HBSS, embedded in 4% agar low-melt and sectioned coronally at 300 μm using 
a vibrating microtome (Leica, #VT100S). The putative S1 cortical region was microdissected under a 
stereomicroscope and incubated in 0.05% trypsin at 37°C for 5 minutes. Following tissue digestion, 
fetal bovine serum was added to the mix and cells were manually dissociated via up-and-down 
pipetting. Cells were centrifuged 5 min at 300 G and the pellet was suspended in 1 ml of HBSS then 
passed on a 70 μm cell strainer. FT+ cells, gated to include only the top 5% brightest cells (Telley et 
al. 2016; Govindan et al. 2018), were finally FAC-sorted on a MoFloAstrios device (Beckman). 

Single-cell RNA capture and sequencing: FAC-sorted FT+ cells (18 μl) were mixed with the C1 
Suspension Reagent (2 μl; Fluidigm) yielding a total of 20 μl of cell suspension mix with ~500 cells / 
μl. The cell suspension mix was loaded on a C1 Single-Cell AutoPrep integrated fluidic circuit (IFC) 
designed for 10- to 17-μm cells (HT-800, Fluidigm #100-57-80). cDNA synthesis and 
preamplification was processed following the manufacturer’s instructions (C1 system, Fluidigm) and 
captured cells were imaged using the ImageXpress® Micro Widefield High Content Screening System 
(Molecular Devices®). Single cell RNA-sequencing libraries of the cDNA were prepared using 
Nextera XT DNA library prep kit (Illumina). Libraries were multi-plexed and sequenced according to 
the manufacturer’s recommendations with paired-end reads using HiSeq2500 plat-form (Illumina) 
with an expected depth of 1M reads per single cell, and a final mapping read length of 70 bp. All the 
single cell RNA capture and sequencing experiments were performed within the Genomics Core 
Facility of the University of Geneva. The sequenced reads were aligned to the mouse genome 
(GRCm38) using the read-mapping algorithm TopHat. Unique Molecular Identifiers (UMI) sequenced 
in the first reads were used to correct for cDNA PCR amplification biases. Duplicated reads were 
identified and corrected using the deduplication step from the UMI-tools algorithm 
(doi:10.1101/gr.209601.116). The number of reads per transcript was calculated with the open-source 
HTSeq Python library. All the analyses were computed on the Vital-It cluster administered by the 
Swiss Institute of Bioinformatics.

scRNAseq analysis 

Cell filtering: Doublet cells identified on the Fluidigm C1 plate images were excluded before initial 
analysis. A total of 2,906 FT+ single cells were obtained (FT +1 h: E12: 202 cells, E13: 211, E14: 135, 
E15: 304; FT +24 h: E12: 284 cells, E13: 286, E14: 232, E15: 217; FT + 96 h: E12: 246 cells, E13: 
278, E14: 262, E15: 249). Cells expressing < 1000 genes or > 17% of mitochondrial genes were 
excluded. After this step, 2’756 cells remained for analysis (FT +1 h: E12: 189 cells, E13: 207, E14: 
134, E15: 301; FT +24 h: E12: 268 cells, E13: 223, E14: 219, E15: 213; FT +96 h: E12: 244 cells, 
E13: 267, E14: 254, E15: 237). 

Type specific transcripts: The AP, BP and N score used in Fig. 1B correspond to the mean transcript 
expression of the top 20 genes for AP, BP and N previously characterized in (Telley et al. 2016) were:
AP: Aldoc, Pdpn, Vim, Ednrb, Ddah1, Ldha, Peg12, Wwtr1, Tspan12, Mfge8, Uhrf, Ncaph, Ndrg2, 
Mt1, Hk2, Psat1, Sp8, Sdc4, Dnmt3a, Notch2, Psph. BP: Btg2, Eomes, Abcg1, Kif26b, Mfap4, Coro1c, 
Myo10, Mfng, Rprm, Chd7, Ezr, Gadd45g, Slc16a2, Heg1, Celsr1, Tead2, Cd63, Rhbdl3, Mdga1, 
Arrdc3. N: Myt1l, Unc5d, 1700080N15Rik, Nos1, Satb2, Ank3, Scn3a, Dscam, Cntn2, Plxna4, 
9130024F11Rik, Lrrtm4, Ptprk, Nrp1, Celsr3, Rbfox1, Flrt2, Kcnq3, Kcnq2, Gm36988. 

Clustering analysis was performed using the Seurat bioinformatics pipeline 
(https://github.com/satijalab/seurat) and is summarized here. We first created a “Seurat object” 
including all 2,756 cells and all genes. To remove sequencing depth biases between cells, we 
normalized and scaled the UMI counts using the NormalizeData (normalization.method = 
"LogNormalize", scale.factor = 100000 ) combined with the ScaleData function (vars.to.regress = 
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c("nGene","nUMI")). We then determined the most variable genes by plotting transcripts into bins 
based on X-axis (average expression) and Y-axis (dispersion). This identified 4,016 transcripts. 
Parameters and cutoffs were set as follow: mean.function = ExpMean, dispersion.function = LogVMR, 
x.low.cutoff = 0.1, x.high.cutoff = 8, y.cutoff = 0.7. Next, we identified the statistically significant 
principal components and used the top 20 as input for t-Distributed Stochastic Neighbor Embedding 
dimensional reduction, using the TSNEPlot function. To identify cellular clusters, we adopted a graph-
based clustering approach using FindClusters function with a 1.8 resolution. Finally, a multiclass SVM 
model (implementation from R package bmrm was trained on all cluster- assigned cells and genes were 
ranked according to their linear weights. For each class (i.e. clusters), genes with a significant linear 
weight (Z-test, FDR ≤ 0.05) were considered as enriched genes. 

Pseudotime projection: APs, N1d and N4d cells at all embryonic ages identified in the cell clustering 
analysis were processed. Basal progenitors were not included in this analysis because N1d and N4d 
are overwhelmingly directly born from APs when using FT labeling (Telley et al. 2016; Govindan et 
al. 2018). The pseudotime alignment method performed was previously described (Mayer et al. 2018)
and is summarized hereafter. In Fig. 2, Fig. 3 and figs. S5 and S6, we restricted the datasets to the high 
variable genes (n = 4,016) and performed dimensionality reduction using the prcomp function of R 
software. Taking into consideration the significant principal components (PCs) explaining at least 2% 
of the total variance and using the R package princurve, we fitted a curve that described the maturation 
route (i.e. pseudo-birthdate or pseudo-differentiation) along which cells are organized. The beginning 
of the curve was established as the side where cell expressed the highest level of Sox2 (AP) for pseudo-
differentiation or the highest level of Hmga2 (E12) for pseudo-birthdate. A maturation score reflecting 
the distance beginning of the curve-cell coordinate was attributed to each cell and normalized between 
0 to 1. We then restricted the dataset to the top 500 genes for each PCs and performed a “Partitioning 
Around Medoids” analysis using the PAM R package (K = 6, span = 0.6) to identify clusters of 
transcripts with similar expression dynamics along the pseudo-birthdate (Fig. 2, fig. S5) or pseudo-
differentiation (Fig. 3, fig. S6). This approach was previously described elsewhere (Telley et al. 2016).

Ordinal regression models: We used an ordinal regression method to predict on one hand the birthdate 
and on the other hand the differentiation status of each cell. We restricted the analysis to the high 
variable genes (n = 4,016) defined earlier. As the cells are expected to be organized within a 
differentiation and a birthdate continuum, we used and adapted a previously described ordinal 
regression model (Teo et al. 2010) implemented in the bmrm R package. In our context, a single linear 
model is optimized to predict cell differentiation status irrespectively of the date of birth and 
conversely. The linear weight of the models is used to rank the genes according to their ability to 
predict each cell category and the best 100 genes in each model were considered. The ordinal 
regression models were then re-optimized on these subsets of genes. All reported predictions were 
obtained by 10-fold cross-validation.

Transcriptional maps (Fig. 5): Cells were organized on a 2D grid based on their birthdate and 
differentiation status score. For this purpose, the data were linearly adjusted so that the average 
predicted values for each cardinal feature was aligned on to the relative knot of the grid. The gene 
expression at a given coordinate of the 2D space was further estimated as the average expression of its
15 nearest neighbors. All transcriptional landscapes of the most variable genes (n = 4,016) were further 
clustered by projecting genes onto a 2D t-SNE space and submitted to a k-means clustering (K = 12).

Electrophysiology

Four hundred m-thick coronal slices were prepared from E12.5, E13.5, E14.5, E15.5 and E16.5 CD1 
mice embryos and kept 30 minutes at 33°C in artificial cerebrospinal fluid (aCSF) containing 125 mM 
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NaCl, 2.5 mM KCl, 1 mM MgCl2, 2.5 mM CaCl2, 1.25 mM NaH2PO4, 26 mM NaHCO3 and 11 mM 
glucose, saturated with 95% O2 and 5% CO2. Slices were then transferred in the recording chamber, 
submerged and continuously perfused with aCSF. The internal solution used for the experiments 
contained 140 mM potassium methansulfonate, 2 mM MgCl2, 4 mM NaCl 0.2 mM EGTA, 10 mM 
HEPES, 3 mM Na2ATP, 0.33 mM GTP and 5 mM creatine phosphate (pH 7.2, 295 mOsm). Cells in 
immediate proximity to the ventricular wall (i.e. putative APs) were patched and clamped at -70mV. 
A baseline stable holding current was first measured for 4 minutes, after which a 10-minute bath of 
100 M of the glutamate transporter antagonist DL-TBOA (DL-threo- -Benzyloxyaspartate) (Jabaudon 
et al. 1999) was applied and finally washed out. TBOA-induced currents were blocked by application 
of 25 M NBQX and 50 M D-APV (data not shown), consistent with activation of ionotropic 
glutamate receptors by increased extracellular levels of Glu (Jabaudon et al. 1999). Recorded currents
were amplified (Multiclamp 700, Axon Instruments), filtered at 5kHz, digitalized at 20kHz (National 
Instrument Board PCI-MIO-16E4, IGOR WaveMetrics), and stored on a personal computer for further 
analyses (IGOR PRO WaveMetrics). The net amplitude of TBOA induced currents was determined 
after subtraction of baseline holding current. Values are represented as mean SEM.

Softwares 

All single cell RNA sequencing analysis were perfomed using the R software with publicly available 
packages. GeneGo portal (https://portal.genego.com) was used to investigate the enriched gene 
ontology processes in Fig. 2 and Fig. 3 and the biomart R package served to extract the list of genes 
allocated to a defined ontology term. Cytoscape platform (Maere et al. 2005) associated with its plugin 
(Shannon et al. 2003) was used to construct the enrichment gene ontology processes network in 
supplementary fig. S9. For this purpose, the latest version of gene ontology (go-basic.obo) and gene 
association (gene_association.mgi) from the Gene Ontology Consortium website 
(www.geneontology.org) were given as input in Bingo. The string database (http://string-db.org) 
implemented in Cytoscape platform was used to determine the protein-protein interactions in figs S5, 
S6 and S7.
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the six sequential AP transcriptional states. (B) Global protein-protein interactome for each AP state, 
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Fig. S7. 2D modelization of corticogenesis. (A) Birthdate and differentiation scores obtained from 
the two models for each condition. (B) Analysis of protein-protein interactions using the STRING 
database (http://string-db.org) suggests that gene products interact based on their temporal dynamics 
(left) or cellular specificity (right). Unassigned genes are not displayed. (C) Overlay of ISH from the 
Allen Developing Mouse Brain Atlas (www.brain-map.org) confirming the proper spatio-temporal 
dynamics of select core genes. Early genes: Hes1, Hmga2, Tbr1, Fn1, Nfatc2, Sox5. Late genes: 
Nrxn1, Cttnbp2, Clu, Nr2f1, Lgals1, Bcan, Tnc, Unc5d, Slc1a3, Mfge8. AP genes: Cdon, Hes1, Plagl1, 
Nes, Hmga2, Arx. N genes: Trps1, Unc5d, Sox11, Nrxn, Cd24a, Mpped1, Bcl11a, Neurod6, Satb2, 
Dcx, Mapt, Gria2, Tubb3. (D) Top: Birthdate-associated core genes are temporally dynamic and 
daughter cells acquire embryonic stage-specific transcriptional birthmarks. Bottom: In contrast, differ-
entiation status-associated core genes are conserved across corticogenesis. Boxed area represents 
value of reference for correlation. Right: Correlations in gene expression dynamics stratified for early 
(E12, E13) and late (E14, E15) embryonic ages. (E) Expression of the core neuronal genes (n = 50) 
within APs increases with embryonic age. (F) E12-15 APs progressively become “neuralized”. Differ-
entiation model build exclusively with E12 data as a training dataset; E13-E15 APs are classified as 
progressively more neuron-like using this model.
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Fig. S8. Examples of members of gene families and their associated transcriptional maps. Only 
the genes with the most sharply delineated expression patterns are shown for Semaphorins and 
Ephrins. 
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Fig. S9. Cluster-based gene ontology networks. Display of ontological hierarchies for individual 
clusters highlights cluster-specific biological processes.
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