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Abstract 
Significant achievements have been made in the fMRI field by pooling statistical results from 
multiple studies (meta-analysis). More recently, fMRI standardization efforts have focused on 
enabling the joint analysis of raw fMRI data across studies (mega-analysis), with the hope of 
achieving more detailed insights. However, it has not been clear if such analyses in the EEG field 
are possible or equally fruitful. Here we present the results of a large-scale EEG mega-analysis 
using 18 studies from six sites representing several different experimental paradigms. We 
demonstrate that when meta-data are consistent across studies, both channel-level and source-
level EEG mega-analysis are possible and can provide insights unavailable in single studies. The 
analysis uses a fully-automated processing pipeline to reduce line noise, interpolate noisy 
channels, perform robust referencing, remove eye-activity, and further identify outlier signals. 
We define several robust measures based on channel amplitude and dispersion to assess the 
comparability of data across studies and observe the effect of various processing steps on these 
measures. Using ICA-based dipolar sources, we also observe consistent differences in overall 
frequency baseline amplitudes across brain areas. For example, we observe higher alpha in 
posterior vs anterior regions and higher beta in temporal regions. We also detect consistent 
differences in the slope of the aperiodic portion of the EEG spectrum across brain areas. In a 
companion paper, we apply mega-analysis to assess commonalities in event-related EEG features 
across studies. The continuous raw and preprocessed data used in this analysis are available 
through the DataCatalog at https://cancta.net. 
 
Key words: EEG/MEG; Meta-analysis; Mega-analysis; Signal statistics; Large-scale; 
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1 Introduction 

Data-pooling of fMRI (functional magnetic resonance imaging) studies has proven extremely 
valuable for increasing statistical power, assessing inter-subject variability, and determining the 
generalizability and reproducibility of predictions (Costafreda, 2009). fMRI meta-analyses 
typically combine studies based on coordinates of peak activations (coordinate-based meta-
analysis, CBMA) or on 3D statistical images of the activations (image-based meta-analysis, 
IBMA) (Salimi-Khorshidi et al., 2009) (Gorgolewski et al., 2015). The BrainMap project 
represents a pioneering effort to establish standardized methods for spatial normalization, 
referencing to common coordinates, and linking coordinates and images to associated literature 
(Fox and Lancaster, 2002) (Fox et al., 2014).  These and other fMRI data-sharing efforts 
(Maumet et al., 2016) (Reid et al., 2016) have resulted in an explosion of fMRI meta-analyses 
(Costafreda et al., 2008) (Hart et al., 2013) (Barquero et al., 2014) that have increased 
understanding of basic brain function and have enabled the development of tools and biomarkers 
for diagnosis of and evaluation of treatments for mental illnesses.  

Poldrack et al. (Poldrack et al., 2017) lays out a comprehensive strategy for transparent and 
reproducible fMRI imaging and makes a strong case for the need for standardized automated 
processing, benchmarks, and large-scale sharing of raw data as well as statistical maps. The 
BIDS (Brain Imaging Data Structure) specification (Gorgolewski et al., 2016) represents a 
significant international effort to develop data standards for raw and processed neuroimaging 
data and associated metadata. The BIDS standardization and support tools for fMRI data are 
relatively mature. In contrast to meta-analysis, mega-analysis involves the pooling and joint 
analysis of raw data across recordings and/or studies, rather than combining metadata or derived 
statistics. With the creation of open-access platforms for sharing raw data such as OpenfMRI 
(Poldrack et al., 2013) and its successor OpenNeuro (Gorgolewski et al., 2017), fMRI mega-
analyses are now starting to appear.  

While OpenNeuro is currently dominated by fMRI data, the recent adoption of BIDS extensions 
for MEG (magnetoencephalography) and EEG (electroencephalography) imaging (Niso et al., 
2018) has greatly increased interest in making EEG data publicly available on OpenNeuro and 
other platforms. Unfortunately, there is no EEG/MEG equivalent for the standardized statistical 
maps that have powered successful fMRI meta-analyses. Furthermore, although several general 
guidelines for best practices in EEG/MEG data acquisition and preprocessing have recently 
appeared (Gross et al., 2013) (Keil et al., 2014) (Pernet et al., 2018), MEG/EEG preprocessing 
has not been standardized and is only starting to be systematically benchmarked (Pedroni et al., 
2018). 

Central to mega-analysis, which combines raw data across recordings and studies, are the issues 
of how EEG data should be normalized to improve comparability of signals across studies. This 
paper examines channel-level and source-level spatial, temporal, and spectral signal properties 
across 18 studies performed at six different experimental sites in an effort to provide preliminary 
guidance on these issues. A companion paper (Bigdely-Shamlo et al., 2018) applies a more 
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detailed mega-analysis with hierarchical statistical modeling to assess commonalities in event-
related temporal and spectral features across the same corpus.  

The corpus includes several groups of studies that use the same general paradigm but differ in 
protocol details. For example, five of the studies are based on the RSVP (Rapid Serial Visual 
Presentation) paradigm (Bigdely-Shamlo et al., 2008; Sajda et al., 2003), but have different types 
of images, rates of presentation, and requirements for manual response to mark target detection. 
Other studies use tasks such as lane-keeping with vehicle perturbations in a driving simulation. 
This corpus, which reflects the interests of the participating research groups, is indicative of the 
types of studies and heterogeneity that are likely to become available on public repositories 
where control variables across studies may not be comparable, even when multi-factor designs 
are utilized within individual studies. Further, there is no guarantee that subject IDs used within a 
study are consistent across studies performed at a given institution, thus systematic accounting of 
cross-subject variability is difficult in consolidated analyses. However, even in the unstructured 
environments likely to be encountered in public repositories, there are universal elements that 
can be explored and exploited. 

Over the last decade, there has been an increased emphasis on the use of multi-level statistical 
models (e.g., hierarchical linear models or mixed effects models) in EEG data analysis to jointly 
analyze variability both within and between subjects, groups, and studies (Pernet et al., 2011) 
(Stefan J. Kiebel and Friston, 2004) (Stefan J Kiebel and Friston, 2004). Explicitly modeling 
recording- and study-specific variability in a partial-pooling analysis can help address issues with 
Type I error rate inflation associated with classical full-pooling analyses. In EEG analysis, such 
multi-level models are typically applied to a structured corpus of event-related data. In this 
paper, we study the general characteristics of the data using full pooling analyses. We defer to 
our companion paper (Bigdely-Shamlo et al., 2018) a more detailed multi-level statistical 
analysis in which we characterize the effects of various experimental factors on event-related 
temporal and spectral features, while explicitly modeling recording-specific variability using a 
two-level hierarchical linear model. 

This paper is organized into two main themes in which we examine commonalities in channel-
level and source-level spatial, temporal, and spectral properties across studies. The Methods 
section briefly describes the experimental data, provides an overview of the automated 
processing pipeline used to perform the analysis, and introduces a class of robust measures to 
explore normalization and statistical properties of EEG across heterogeneous studies. The 
Results section follows a similar organization with a presentation of results on statistical 
differences and similarities of EEG signals in both channel (section 3.1 Channel analysis) and 
source (section 3.2 Source analysis) space. The Discussion section offers a perspective on the 
analysis of heterogeneous datasets and directions for future mega-analyses. Together, this work 
provides a broad insight into the sources of variability contained within a large, heterogeneous 
dataset of EEG recordings and how these factors can be addressed to reveal consistent 
differences in power spectral amplitude across frequency bands and brain regions. 
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2 Methods  

2.1 Experimental data 
As summarized in Table 1, this paper uses data from 18 studies conducted at six sites associated 
with four institutions: the Army Research Laboratory (ARL), the National Chiao Tung 
University (NCTU), the Netherlands Organization for Applied Scientific Research (TNO), and 
the University of California at San Diego (UCSD). All studies were conducted with voluntary, 
fully-informed subject consent and approved by the Institutional Review Boards of the respective 
institutions. More detailed information about the studies with explanations of acronyms and 
relevant citations appear in Appendix A. 
 
Table 1: Summary of datasets used. The Rec/Sub column gives the number of recordings and 
the number of unique subjects within a study. Subjects may overlap across studies from the same 
site. Headset (B = BioSemi, N = Neuroscan) specifies headset type and number of channels. 

Site Study Description Rec/Sub Headset 
ARLT Cue Lane-keeping with random or perturb-linked cue. 33/17 B-64 
ARLS GuardA Visual verification of IDs based on image and ID.  29/27 B-256 
ARLS GuardB Visual verification of IDs based on image and ID.  22/21 B-256 
ARLA LKBase Long-running lane-keeping baseline task. 130/108 B-64/256 
ARLA LKCal Short-running lane-keeping task for calibration. 245/155 B-64/256 
ARLT Speed Lane-keeping with manual and auto speed control. 61/32 B-64 
ARLT Traffic Lane-keeping in visually complex environment. 30/29 B-64 
ARLT Mind Lane-keeping with audio distractions. 59/20 B-64 
ARLS RSVPB RSVP with common object images (target varies).  31/27 B-256 
ARLH RSVPC RSVP with rare non-targets and rare targets. 51/17 B-64 
ARLS RSVPE RSVP with common object images (target same).  59/10 B-256 
ARLH RSVPI RSVP with visually similar targets and non-targets.  72/18 B-64 
ARLH VEP Visual oddball task with images displayed at 0.5 Hz. 18/18 B-64 
NCTU DAS Lane-keeping with auditory or visual distractions.  201/103 N-62 
NCTU DD Lane-keeping with math problem distractions. 60/15 N-30 
NCTU LKwAF Lane-keeping with auditory feedback on drowsiness. 11/10 N-30 
TNO ACC Driving with faulty adaptive cruise control. 47/15 B-64 

UCSD RSVPU RSVP with satellite clips of London shown at 12-Hz. 14/8 B-256 
 
The studies included variations of tasks that fall into two general categories: visual target 
detection and driving with/without motion platform, traffic, speed control, distraction, auditory 
feedback, or adaptive cruise control. The visual target detection tasks included simulated guard 
duty with ID checks (GUARDA and GUARDB), rapid serial visual presentation (RSVPB, 
RSVPC, RSVPE, RSVPI, RSVPU), and visual oddball (VEP). The other tasks were all based on 
variations of lane-keeping in a driving simulator, with the exception of ACC, which involved 
driving in an actual vehicle on a test track. In all, the corpus includes 1,173 EEG recordings 
running 633 hours. The NCTU, TNO and UCSD experiments were all performed at a single site 
at the respective institutions, while the ARL experiments were performed at three different sites. 
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ARLH designates experiments performed at the Human Research and Engineering Directorate at 
Army Research Laboratory (Aberdeen, MD), ARLS designates experiments performed at SAIC 
Laboratories (Louisville, CO), and ARLT designates experiments performed at Teledyne 
Corporation (Durham, NC). ARLA designates tasks (LKBase and LKCal) that were performed at 
all three sites using identical experimental setups.   
 
To facilitate consistent large-scale downstream processing, the entire corpus was organized in a 
containerized form using ESS (EEG Study Schema) (Bigdely-Shamlo et al., 2016b) (BigEEG 
Workflow, 2018). The individual EEG recordings were converted to EEGLAB set format 
(Delorme et al., 2011), and the study-specific event codes were mapped to Hierarchical Event 
Descriptor (HED) strings (Bigdely-Shamlo et al., 2016a). 
 
2.2 Data organization and preprocessing 
Data cleaning was fully-automated and proceeded in several stages. (See Appendix B for a 
summary graphic of the preprocessing procedure.) We used PREP (Bigdely-Shamlo et al., 2015), 
an automated open-source tool that we developed, to perform robust average referencing and 
interpolation of bad channels. After removing line noise from each data recording, PREP 
identifies and interpolates noisy channels to form a robust average reference. We also removed 
non-EEG channels from each recording and assigned 10-20 channel labels to channels that did 
not have standard labels (e.g., 256-channel BIOSEMI caps) based on channel distances to 
standard 10-20 locations (Klem et al., 1999) (Jurcak et al., 2007). After selecting a maximum of 
64 channels based on the 64-channel 10-20 configuration for this analysis, we resampled the data 
at 128 Hz using EEGLAB pop_resample(). Since all 18 studies used in this paper were acquired 
at rates higher than 128 Hz, resampling is actually down-sampling. We applied a 1690-point 
high-pass filter at 1 Hz with the pop_eegfiltnew() function of EEGLAB to remove low-frequency 
drift. 
 
We used a combination of independent component analysis (ICA) and regression of residual 
blink activity to remove eye activity from the corpus. After performing Infomax ICA (Bell and 
Sejnowski, 1995) using the portion of the data without outlier amplitudes as described in Mullen 
et al. (Mullen et al., 2015), we applied a modified version of EyeCatch (Bigdely-Shamlo et al., 
2013a) to identify independent components (ICs) associated with eye activity. EyeCatch, which 
contains a database of 3,453 manually identified eye-related ICA scalp maps, flags “eye” ICs as 
those that either have a similar topography (correlation > 0.94) to at least one scalp map from the 
database or are moderately similar (correlation > 0.85) and have a power ratio for at least 100 for 
at least 1% of data frames. To compute the power ratio, EyeCatch performs a continuous wavelet 
transform (Lilly and Olhede, 2012; Mallet, 2008) using the MATLAB cwt() function and 
calculates the power in the range [1, 3] Hz divided by the power in the range (3, 15] Hz at each 
time point. We then removed the subspace spanned by the ICs identified by EyeCatch as 
containing eye activity from the channel data.  
 
We also applied BLINKER (Kleifges et al., 2017) to channel data to identify latencies associated 
with different phases of eye blinks prior to eye artifact removal. BLINKER inserts five events 
into the EEG.event structure (Left base, Left zero, Blink peak, Right zero, Right base) for each 
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blink. BLINKER also extracts a continuous “blink” signal that follows the blink-induced EEG 
activity between each pair of [Left zero, Right zero] markers and is zero outside these intervals. 
We applied temporal overlap regression using a method similar to that proposed by Kristensen et 
al. (Kristensen et al., 2017) to regress out both the effects of blink events and the continuous 
blink signal produced by BLINKER, assuming blinks are fixed patterns in an interval [−1, 1] 
seconds time-locked to the Blink peak events.  
 
2.3 Channel analysis 
The goal of channel analysis is to assess the statistics and variability of channel data across 
studies.  Several analysis steps normalize the data by removing the median and dividing by the 
robust standard deviation for each channel. We refer to this normalization as a “robust z-score” 
data transformation. The robust standard deviation is defined as 1.4826 times the median 
absolute deviation from the median (MAD). In this paper, we refer to the robust standard 
deviation of an EEG channel as the “robust channel amplitude.” 
 
2.3.1 Variation of channel amplitudes across scalp positions and recordings 
To investigate whether EEG signals have consistently different amplitudes across channel 
locations and recordings, we developed a compact representation of the amplitude of each 
recording by a 26×1 positive vector called the “recording amplitude vector”. We calculated the 
recording amplitude vector by first selecting the following subset of 26 channels common across 
all of the recordings: Fp1, Fp2, F3, Fz, F4, F7, F8, FC3, FCz, FC4, FT7, FT8, C3, Cz, C4, TP7, 
TP8, CP3, CPz, CP4, P3, Pz, P4, O1, Oz, and O2. We then calculated the robust standard 
deviation of each of these channels after low-pass filtering channel signals at 20 Hz. To perform 
analysis across R recordings, we formed the “amplitude matrix”, a 26×R matrix of these column 
vectors.  (Note, this low-pass filtering and channel down-selection was only used for the purpose 
of channel analysis and does not apply to the calculation of sources.) 
 
We visualized the overall dependence of robust amplitude on channel position by applying the 
median function to the rows of the amplitude matrix and then plotting the resulting 26×1 vector 
using the EEGLAB topoplot() function. To visualize potential dependencies of the amplitude 
vectors on study identity, we applied t-SNE (t-distributed stochastic neighbor embedding) (Van 
Der Maaten and Hinton, 2008) (Van Der Maaten, 2014) to project the columns (recordings) of 
the amplitude matrix to a 2-D space. We used the MATLAB tsne() function with a perplexity 
parameter of 20 for the visualizations displayed in this paper. 
 
2.3.2 Characterizing variation by a recording-specific constant 
A known difficulty with joint analysis of EEG recordings is that the variability introduced by 
headset technology and sensor placement as well as subject hair, scalp and skull characteristics 
causes statistical properties of data to vary across recordings. A simple approach for addressing 
this problem is to model the variability by a recording-specific scaling factor and to “normalize” 
each recording by dividing its channel data by a recording-specific constant. We investigated 
several different ways of computing the recording-specific normalization factor including mean, 
Huber mean (Huber, 1964) (Analytical Methods Committee, 2001), and the Euclidean (L2) norm 
of the recording amplitude vector. We also looked at measures based directly on the channel 
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signal rather than the recording amplitude vector, but these methods provided worse
comparability and are not reported here. While all of these methods capture the central tendency
of recording amplitude, the mean and Euclidean norm are sensitive to outliers. The Huber mean
is an iterative technique for robust approximating the mean in the presence of outliers. 
 
The normalization factors were computed column-wise on the amplitude matrix (across
channels) as summarized in Figure 1 for the Huber mean. Regardless of the normalization
method, the resulting amplitude matrix was divided column-wise by the 1×R vector of resulting
recording normalization factors to produce a normalized amplitude matrix for each normalization
method. 
 

 
 
 
Figure 1. Steps for computing the normalized amplitude matrix and the channel dispersion vector for Huber mean
normalization. A similar procedure was used for the other normalization methods. 
 
We performed several tests to assess whether normalizing each recording by a recording-specific
constant could improve statistical comparability across recordings from different studies. To
characterize comparability of channel amplitudes across a data corpus, we computed the
“dispersion vector” by taking the robust standard deviation of each row (across recordings in the
corpus) of an amplitude matrix and dividing this vector by the row median (across recordings) to
obtain a 26×1 channel dispersion vector representing the corpus variability for each method. We
also computed median dispersion across all channels for each channel dispersion vector to find
the normalization method that was most effective in reducing overall amplitude dispersion across
recordings.  
 
Dispersion vectors for a corpus can be computed at various stages of preprocessing to provide a
compact representation of how different processing steps affect channel statistics. We obtained a
visual representation of these effects using the EEGLAB topoplot() to plot channel dispersion
vectors corresponding to different steps and/or preprocessing methods. In order to find out
whether the difference in median dispersion was statistically significant for different
normalization methods, we applied the pairwise Wilcoxon signed rank test (using MATLAB
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signrank() function) between dispersion vectors calculated using Huber mean (which is the 
method with the smallest median dispersion) and the dispersion vectors calculated using other 
normalization methods.   
 
To investigate how much of the channel amplitude variability could be explained by a recording-
specific constant scaling of all channel amplitudes in each recording, we plotted channel-pair 
amplitudes across all recordings and computed adjusted R2 values for linear fits of data points 
corresponding to each channel-pair amplitude separately. Significance tests for non-zero slopes 
of the linear fits were also performed. The same processing steps on channel-pair amplitudes 
were then repeated after normalizing channel amplitudes in each recording using the recording-
specific constant based on Huber mean.  
 
2.3.3 Variation of channel baseline amplitude across scalp positions and frequencies 
To investigate whether EEG signals at different frequencies have consistently different 
amplitudes across channel locations, we analyzed continuous EEG after removing eye activity 
and normalizing by the Huber recording-specific constant. We selected the same subset of 26 
channels used in the investigation of channel signal amplitudes and calculated the continuous 
wavelet transform (using the MATLAB cwt() function) for each channel to obtain a time-varying 
amplitude spectrogram (square root of the power of 50 frequencies logarithmically sampled 
between 2 and 40 Hz). The baseline spectral amplitude vector for each channel is a 50 × 1 vector 
of the median over time of the amplitudes at each of the 50 specified frequencies in the channel 
spectrogram. To focus on the relative amplitudes of different frequencies in each channel, we 
normalized each of these baseline spectral amplitude vectors to have Euclidean norm of one (1). 
We refer to the result as the “normalized channel spectrogram”. 
 
In order to investigate the statistical significance of the observed differences in channel 
amplitude at each frequency, we applied Wilcoxon signed rank tests (MATLAB signrank() 
function) on the robust z-scores of the channel spectral amplitudes for each (frequency, 
recording) pair. The null hypothesis of these statistical tests was that for each (frequency, 
recording) pair, each channel spectral amplitude could be modeled by a constant plus a random 
value drawn from a zero-median distribution. 
 
2.3.4 Variation of channel covariance across studies 
To investigate systematic variations of channel covariance across headsets, paradigms, and other 
study details, we calculated a single covariance matrix for each recording using the same subset 
of 26 channels used for the investigation of channel signal amplitudes. We used the same 
segments of the data that were used to compute Infomax ICA in order to exclude sections with 
abnormally high power due to artifacts. We plotted the two-dimensional t-SNE projections of 
distances between recording covariance matrices using an EEG headset color scheme to visualize 
the systematic variations in covariance across recordings with respect to headset. We used the 
Riemannian distance metric recommended by Förstner and Moonen (Förstner and Moonen, 
2003) to compare recording covariance matrices A and B: 
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Here n is the number of channels, and the λi are generalized eigenvalues. For comparison, we 
also applied t-SNE to the recording channel correlation matrix and to the channel standard 
deviation vectors (computed as the square root of the variance rather than as the robust standard 
deviation used in the amplitude analysis). We examined variations with and without recording-
specific Huber normalization with both Riemannian distance and Euclidean distance. 
 
We also applied representational similarity analysis (RSA) as proposed by Kriegeskorte et al. 
(Kriegeskorte et al., 2008) to determine whether similarities in the patterns observed in the t-SNE 
visualizations were statistically significant. Representational analysis determines whether 
pairwise sample differences associated with two aspects of the data are more correlated than 
would be expected from chance. The significance tests are performed by random permutation 
testing. The aspects of the data used here are similarity of covariance matrices of two recordings 
and whether or not the recordings are from the same headset. In other words, this analysis 
determines whether covariance matrices from recordings of the same headset type are 
significantly more correlated than would be expected from chance.  More specifically, we used 
Riemannian distance (converted to a similarity measure) between the covariance matrices of 
recordings i and j, respectively, as one measure. The second representation was the headset 
membership matrix Mij, which has an entry of 1 if recording i and recording j are from the same 
headset type and 0 if recording i and recording j are not from the same headset type.  
 
2.4 Source analysis 
Our evaluation of brain source signal variation uses sources derived from ICA, a widely-used 
EEG source analysis technique. We used the ICA components (ICs) computed during 
preprocessing and not identified as eye activity as the starting point for the analysis.   
 
2.4.1 Variation of brain sources across space and frequency 
We inferred equivalent dipole locations for maximally-independent sources of EEG activity by 
applying the EEGLAB dipfit plugin to scalp maps of the ICs not identified as eye artifacts during 
preprocessing. To further select ICs most likely to be associated with brain sources, we only 
considered dipoles that matched all the following criteria: (a) the scalp map explained by the 
dipole accounted for at least 85% of the variance, (b) the EEGLAB MARA plugin (Winkler et al., 
2014, 2011a) did not identify the component scalp map as an artifact (e.g., muscle or eye), and 
(c) the dipole was located inside the brain volume, as identified by the ft_sourcedepth() function 
of the EEGLAB fieldtrip_lite plugin (Oostenveld et al., 2011). Note that each dipole is 
associated with exactly one recording. 
 
As with channel space analysis, we calculated the continuous wavelet transform (using the 
MATLAB cwt() function) of the continuous time course of the IC activation associated with each 
dipole to obtain a time-varying amplitude spectrogram (square root of power of 50 frequencies 
logarithmically sampled between 2 and 40 Hz). The baseline spectral amplitude vector for each 
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IC activation is defined as the 50 × 1 vector of the median over time of the amplitudes at each of 
the 50 specified frequencies in the IC spectrogram. To focus on the relative amplitudes of 
different frequencies and to facilitate cross-recording comparison, we scaled each spectrogram so 
that its overall baseline spectral amplitude vector had Euclidean norm one. We refer to the result 
as the “normalized spectrogram” for an IC. 
 
To investigate the differences in normalized spectrograms, we converted these values to relative 
deviations from means, computed at each frequency across all ICs. We define the spectral 
amplitude deviation value at frequency � for the ith IC as: 
                                                                         �

�

� � �
�

� � �

�
∑ �

�

��
���                                                     

 �
�

�  is the normalized spectrogram value at frequency � for IC �, and � is the number of ICs. We 
then used Measure Projection Analysis (MPA) to analyze and visualize the spatial distribution of 
these deviations for different frequency bands (Bigdely-Shamlo et al., 2013b). Using MPA, we 
computed the spatial Gaussian weighted averages (12 mm standard deviation) of IC spectral 
amplitude deviations for all brain voxels. Averages were also computed for regions of interest 
(ROIs) selected from the AAL brain atlas (Tzourio-Mazoyer et al., 2002). 
 
2.4.2 Background spectral power characteristics in different brain areas 
The power spectrum of electrophysiological signals at the channel or source level can be 
modeled as a combination of periodic and aperiodic components, reflecting narrowband 
oscillations (spectral “peaks”) and approximately 1/f  “background” activity, respectively  
(Onton and Makeig, 2006) (Miller et al., 2009). While the properties of periodic/oscillatory 
activity in various frequency bands have been extensively studied and linked to an array of 
cognitive and behavioral states and neurological disorders, the aperiodic component of the power 
spectrum has received less attention.  
 
In order to characterize the spatial distribution of the aperiodic spectrum, we computed the 
Huber mean power spectra across all time points for each IC. We used the Huber mean, instead 
of median, in order to more closely estimate mean power while ignoring outliers caused by 
artifacts. We then used the FOOOF python toolbox (Haller et al., 2018)  (fooof, 2018) to model 
the power spectrum, P, as a linear combination of aperiodic background activity, L, and a 
weighted sum of N Gaussian functions, Gn,  each representing a periodic component (i.e., a 
“peak” in the spectrum): 

� � � � � ���

��	

 

�� � �� � � !	�	" � ���2$�
�
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Each Gaussian component, Gn, is characterized by its amplitude, an, its spectral position cn, and 
RMS bandwidth, wn. F is a vector of frequencies. The aperiodic signal � is modelled as an 
exponential function in semilog-power space (linear frequencies and log power values) as: 
 � � % � log 	) � "
 
 
where % is the broadband offset, * is the aperiodic slope, and ) is the “knee” parameter that 
determines the inflection point of the aperiodic exponential function (Miller et al., 2009).  
 
We set the maximum number of Gaussians to 10 and their width to be between 3 and 20 Hz. This 
provided FOOOF with ample degrees of freedom to model the spectrum and to separate the 
periodic and aperiodic activity. After fitting each dipole IC power spectrum using FOOOF, we 
removed ICs with a goodness of fit (+� less than 0.95. We then computed the average slope, *,, 
for all ICs and the deviation of each IC’s slope from this average:  �

�


 �  *� � *,. 
 
Similar to the analysis of the spatial distribution of baseline “periodic” amplitude deviations, we 
analyzed the spatial distribution of aperiodic slope deviations using Measure Projection Analysis 
(MPA), computing the spatial Gaussian weighted averages (12 mm standard deviation) of these 
values for all brain voxels (Bigdely-Shamlo et al., 2013b).   
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3 Results  

3.1 Channel analysis 
 
3.1.1 Division by a recording-specific constant improves recording and study comparability 
To investigate whether dividing each EEG recording by a single recording-specific number 
improves the comparability across recordings, we looked at channel amplitude dispersion across 
studies for different normalization approaches and at different stages in processing. Figure 2 
shows the effect of different types of processing on channel amplitude dispersion.  

 
Figure 2.  Effect of preprocessing and channel normalization on channel amplitude dispersion. Each scalp map 
shows the median over all recordings in all studies of the channel dispersion for each channel.  The bracketed 
number over each scalp map is the overall median dispersion corresponding to the scalp map. Normalization always 
occurs after eye removal. 

Interestingly, although removal of eye artifacts changes the spatial distribution of dispersion, it 
does not substantially reduce the amount of dispersion. Further, the maximum dispersion before 
eye artifacts are removed does not occur in the frontal channels. Note that dispersion is a 
dimensionless quantity and scaling a recording by a constant does not change the dispersion. 
Normalization using any of the three methods (mean, L2, or Huber) significantly reduces the 
channel dispersion in comparison with non-normalized recordings. Huber mean and mean are 
essentially the same for datasets without outliers, but Huber mean produces a slightly lower 
dispersion when there are outliers. The spatial distribution of dispersion is similar for all three 
normalization methods. 

Figure 3 shows the distribution of channel dispersions segregated by study before removal of eye 
artifacts (black box plots), after removal of eye artifacts (blue box plots), and after eye artifact 
removal followed by Huber normalization (green box plots). Huber normalization significantly 
reduces the median dispersion across all studies. Normalization also reduces the number of 
channel dispersion outliers for most studies. Note that LKBase and LKCal were basic lane-
keeping studies that included recordings acquired at three different experimental sites (HRED 
Army Research Laboratory in Aberdeen, MD, Teledyne Laboratories in Durham, NC, and SAIC 
Laboratories in Louisville, CO) using two different headset types. The channel dispersions across 
these tasks were well clustered and did not show a particular dependence on site location. 
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Figure 3. Channel dispersions segregated by study before eye artifact removal (black boxplots), after eye artifact 
removal (blue boxplots), and after Huber normalization (green boxplots). Circles mark the medians and plus signs 
mark boxplot outliers. Studies are sorted by the median channel dispersion before eye removal.  
 
3.1.2 Some channels consistently have a higher amplitude than others 
Both removal of eye artifacts and scaling by a recording-specific constant affect the relative 
distributions of channel amplitudes as illustrated in Figure 4. The first row of Figure 4 displays 
results computed on the composite channel amplitude matrix, corresponding to continuous EEG 
data after 128 Hz down-sampling, but before removal of eye artifacts. The middle row of Figure 
4 displays results computed on the composite channel amplitude matrix after removal of eye 
artifacts. The bottom row of Figure 4 displays the results based on the composite channel 
amplitude matrix after eye artifacts have been removed and each recording is scaled by a 
recording-specific value (Huber mean). 
 
The first column of Figure 4 shows the scalp maps of the row medians of the respective channel 
amplitude matrices: before eye artifact removal, after eye artifact removal, and after Huber 
normalization, respectively. The display uses the EEGLAB topoplot() function and the 26 
common channels listed in the Methods section. The median robust channel amplitude is reduced 
after eye artifact removal (3.76 versus 4.97), and the spatial distribution of median robust 
channel amplitude goes from being concentrated in the frontal areas to a two-lobe form with 
amplitude more evenly distributed but concentrated in the frontal and occipital regions of the 
scalp. Notice that normalization does not markedly change the spatial distribution of the scalp 
map, since normalization just corresponds to a reweighting of the points contributing to the 
median. However, normalization does substantially reduce the overall median robust channel 
amplitude (to 1.03).  
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Figure 4. Composite statistics of robust channel amplitudes. Top row uses the composite channel amplitude matrix 
before eye artifact removal, the middle row uses the composite channel amplitude matrix after eye artifact removal, 
and the bottom row uses the composite channel amplitude matrix after eye artifact removal and Huber 
normalization. The first column displays scalp maps of the row medians of the composite channel amplitude matrix 
at various stages in processing. The middle column plots the robust channel amplitude of channel i versus channel j 
(j < i) in each recording. The last column shows the two-dimensional t-SNE projection of recording channel 
amplitude vectors across all studies. The points for each study are depicted using unique colors, and point shape 
designates the institution (with the three ARL sites combined). 
 
Statistical testing (Wilcoxon signed rank) of robust channel amplitudes for the 26 common 
channels showed that prior to eye artifact removal all channels had robust amplitudes that 
differed significantly (p < 0.01, FDR corrected) from the median of the robust channel amplitude 
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in each recording. After eye artifact removal and after normalization, Fp2 was the only channel 
that did not differ significantly different from the recording median.  
 
The middle column of Figure 4 plots robust amplitude of channel i versus channel j (j < i to 
eliminate duplicates) in each recording before removal of eye artifacts (top row), after removal 
of eye artifacts (middle row), and after Huber normalization (bottom row). The top graph is 
somewhat asymmetric with respect to the 45o line, reflecting the amplitude dominance of the 
frontal channels. After eye artifacts are removed, the relationship becomes more symmetric, with 
a visible linear trend, suggesting the existence of an overall recording-level uniform scaling of 
channel amplitudes. After dividing the channel data by the recording Huber mean normalization 
factor (an overall robust measure of the recording’s channel amplitude), the linear trend between 
channel pair amplitudes appears to be essentially eliminated (bottom graph). The median 
adjusted-R-squared value, resulting from fitting a linear regression models to each group of 
channel amplitude pairs, is 0.471 before eye artifact removal, 0.488 after eye artifact removal, 
and 0.014 after normalization. Using data after eye artifact removal and performing linear fits 
separately for different channel pairs (each fit on amplitudes across recordings), we find that in 
100% of these linear fits, the slope factor is nonzero (p < 0.01, FDR corrected). This linear 
relationship, which explains about half of the variability in channel pair amplitudes, mostly 
disappears after Huber mean normalization.  
 
The rightmost column of Figure 4 shows the t-SNE projections of the recording amplitude 
vectors into a two-dimensional plane.  Although the area occupied by the projections is more 
circular after normalization, the points are highly overlapping both before and after Huber 
normalization. The top row, which corresponds to the recordings before removal of eye artifacts 
shows more segregation by study, emphasizing the importance of consistent eye-artifact removal 
in cross-study analysis.  
 
3.1.3 Channel covariance exhibits a strong dependence on EEG cap 
To understand whether there are systematic variations in channel covariance across studies, we 
vectorized recording covariance matrices (using the 26 common channels defined in previous 
sections) and applied t-SNE to project these vectors into a two-dimensional plane.  
 
Figure 5 shows the t-SNE covariance projections plotted with headset type labeled using a unique 
symbol-color pairing. The N30 (gold) and N62 (red) point groups correspond to recordings from 
three studies (DAS, DD, LKwAF) performed at NCTU using Neuroscan headsets in two 
electrode configurations. These points correspond to different tasks and many different subjects. 
The B256_A point group, which uses a custom cap and an older Biosemi 256-channel headset, 
corresponds a single study (RSVPU) of 14 recordings from 8 subjects performing an RSVP task. 
The B256 point group corresponds to data from studies conducted at ARLS using a 256-channel 
headset. The points in this group represent a number of subjects and several studies (GuardA, 
GuardB, RSVPB and RSVPE), as well as a subset of LKBase and LKCal recordings. All of these 
studies were conducted at a single site (ARLS). We also created plots using an individual 
marker/color type for each study, but did not observe any point segregation by study that was not 
explained by headset.  
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Figure 5. Two-dimensional t-SNE visualization of selected vectorized recording signal functions. The top row of 
plots uses Euclidean distance and the bottom row uses Riemannian distance. Points are colored by headset type:  
B64 designates a Biosemi 64-channel headset, B256 designates a Biosemi 256-channel headset, B256_A designates 
the UCSD Biosemi 256-channel headset with a custom cap, N30 designates a Neuroscan 30-channel headset, and 
N62 designates a Neuroscan 62-channel headset. 
 
Visual inspection of the top row of Figure 5, which uses Euclidean distance for the t-SNE 
computation, suggests a possible headset relationship only in the scaled standard deviation. This 
measure was computed by dividing the standard deviation (a channel amplitude measure) by the 
recording-specific Huber mean.  
 
Riemannian distance, used in bottom row of Figure 5, is scale-free in the sense that multiplying 
two covariance matrices by the same constant does not change their distance. The metric is only 
weakly dependent on scale when two covariance matrices are multiplied by different constants. 
Among the plots in the bottom row of Figure 5, the covariance and scaled (divided by squared 
recording-specific Huber mean) covariance plots show distinct clusters, suggesting a strong 
relationship with headset. The correlation plot, however, does not present any prominent 
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clustering, suggesting a weak or non-existent relationship with headset. We did not include a 
scaled correlation plot since scaling does not affect correlation, which is intrinsically scale-free. 
  
To quantify the strength and statistical significance of these relationships, we applied 
Representational Similarity Analysis (RSA) to several different transformations of the recording 
channel signals, including the vectorized channel correlation, channel covariance, and channel 
standard deviation. The RSA question we investigated was whether membership of two 
recordings in the same headset class implied that their signal behavior was more likely to be 
similar than would be expected if the recordings were assigned to a membership class at random. 
Table 2 summarizes the RSA statistics corresponding to Figure 5. All of the results of the table, 
except for the relation between correlations using the Riemannian metric, were significant with p 
< 0.0005. A higher RSA correlation means that a signal function has a stronger relationship with 
headset class.  
 
Table 2: RSA results for statistical significance of the relationship of several channel signal 
characteristics (standard deviation, correlation, and covariance) and the membership function of 
headset type. All results were statistically significant p < 0.0005. 

Signal function Distance metric Scaling p-value RSA correlation 
Correlation Euclidean  < 0.0005 0.19 
Standard deviation Euclidean  < 0.0005 0.04 
Standard deviation Euclidean Huber mean  < 0.0005 0.08 
Correlation Riemannian  0.1810 0.00 
Covariance  Riemannian  < 0.0005 0.29 
Covariance Riemannian Huber mean  < 0.0005 0.30 
 
In this context, the two likely sources of variability affecting channel amplitudes are headset and 
subjects. A hypothesis supported by the RSA correlation is that scaling of standard deviation by 
the recording-specific Huber mean removes some of the variability due to subject, thereby 
strengthening the relative relationship to headset. This is supported by the standard deviation 
results of Table 2: the RSA correlation increases from 0.04 to 0.08 after normalization, reflecting 
a stronger relationship to headset. 
 
In Table 2 we also find some evidence for the hypothesis that headsets affect the relative 
amplitude of channels beyond a uniform scaling effect; the relationship of covariance with 
headset, using the Riemannian metric, is relatively strong (0.29) and only slightly increased (to 
0.30) by scaling. However, this was not the case for channel correlations using the Riemannian 
metric. Since the only difference between correlation and covariance is the relative channel 
amplitude, it is likely that headset type primarily affects the relative amplitude of channels (but 
not their correlation structure).  A simple explanation for the headset dependence is the 
differences in sensor positions associated with the 10-20 mappings, since we chose not to 
interpolate channel positions to an exact standard. These differences are explored in Appendix C. 
Other potential sources beyond variation in sensors and their positions is that the pattern of 
sensor pressures on the scalp exerted by the 256-channel caps may be different from that exerted 
by caps with lower numbers of sensors. This would explain the relative distances between 
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clusters observed in Figure 5 (scaled covariance): 256-channel headset groups (B256_A and 
B256), followed by B64, N62 and finally N30 on the corner furthest from all other groups. These 
systematic differences merit further investigation.  
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3.1.4 Some channels consistently have higher amplitude at certain frequencies 
 
Statistical testing (Wilcoxon signed rank) also shows that channel amplitudes consistently vary at 
different frequencies. Figure 6 shows normalized channel amplitudes at different frequencies, 
each masked by p < 0.01 (FDR corrected). The amplitude patterns between 4 and 8 Hz resemble 
the median channel amplitude plots in Figure 4 after eye activity removal, suggesting that overall 
channel amplitude patterns are highly influenced by amplitude differences in the 4 to 8 Hz range. 
Note that the channel amplitude vector before eye removal more closely resembles the spatial 
distribution observed in the 15 to 30 Hz region of Figure 6. 
 

 
Figure 6. Median normalized channel amplitudes across recordings from all studies at different frequencies, masked 
by p < 0.01, FDR corrected after removal of eye artifacts and normalization by a recording-specific constant.  
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3.2 Source analysis 
 
3.2.1 Some brain areas consistently have higher power in certain frequencies 
To investigate whether there are systematic variations in amplitude associated with particular 
frequency bands and brain areas, we applied measure projection analysis (MPA) to the 
spectrogram deviations calculated from the in-brain IC dipoles (residual variance < 0.15) across 
the corpus and mapped the results to brain areas using the AAL atlas as shown in Figure 7. There 
were originally 56,574 dipoles of which 26,175 were in the brain. Applying the requirement of 
residual dipole variance 0.15 left 11,637 dipoles.  

Figure 7. Brain regions with local average (12 mm spatial Gaussian smoothing) spectral amplitude deviation more 
than 5% (red) and less than −5% (green) for common frequency bands. The left column shows results from the 
entire corpus, while the right column separately shows the results for two distinct groups within the corpus – one 
group (Rsvp) consists of the five RSVP studies and the other (Lane-keeping) consists of data from LKBase and 
LKCal. 
 
The left column of Figure 7 shows three-dimensional views of brain areas with high (red) or low 
(green) local spectral amplitude deviation averages in different frequency ranges: delta ([2, 4] 
Hz), theta ([4, 8] Hz), alpha ([8, 14] Hz), and beta ([14, 31] Hz). Brain areas where the average 
local amplitude deviation, obtained via 12 mm standard deviation 3D Gaussian smoothing, 
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within the specified frequency band was at least 5% are shown in red. Regions where the 
amplitude deviation was at most −5% are coded in green.  
 
These 3D views show a clear anterior/posterior dichotomy in alpha amplitudes: posterior brain 
areas (in red) generally have more alpha amplitude than anterior areas (in green). Beta activity 
appears to be increased in sensorimotor, middle frontal, and temporal regions. We also note 
increased activity in inferior occipital and cerebellar regions, which may reflect neck muscle 
activity (Gramann et al., 2010). Beta activity is reduced along central midline structures, 
including anterior cingulate, superior frontal, superior parietal, posterior cingulate, and medial 
occipital regions. We also observe frontal theta activity in anterior cingulate and superior frontal 
gyrus. Baseline levels were computed by random permutation. 

 
 
 
 
Figure 8. Statistically significant variations of spectral amplitude in common frequency bands. Dipole density plot 
using 12 mm spatial Gaussian smoothing (top row). Spatially smoothed spectral amplitude deviation percentage for 
different frequency bands (rows 2-5). Red is associated with higher-than-average baseline amplitude at that 
frequency and green is associated with lower than average baseline amplitude. The images are masked for 
significance (p < 0.01, FDR-corrected). 
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We investigated whether these differences are statistically significant, as shown in Figure 8 for 
the entire data corpus. The top row of the figure shows transverse brain slides overlaid with 
dipole density images. The dipole density was computed using Gaussian spatial smoothing with 
a standard deviation of 12 mm. While dorsal and midline brain regions have a higher dipole 
density, dipoles are distributed throughout the brain volume 
 
The bottom four rows of Figure 8 show slice displays of the spatially smoothed amplitude 
deviation distribution in standard frequency bands. These values are masked by significance (p < 
0.01, FDR corrected), computed by permuting spectral amplitude deviations in each frequency 
band across dipoles (400 permutations, allowing substitution) followed by spatial smoothing (12 
mm Gaussian kernel) to obtain values associated with the null distribution at each brain location. 
The slice views reflect the distinctive patterns shown in the 3D visualizations of Figure 7.  
 
As in Figure 7, increased beta activity is observed in temporal, lateral frontal, and sensorimotor 
regions as well as inferior occipital and cerebellar regions, while activity is decreased along the 
central midline and cingulate structures. Alpha is increased in posterior regions and decreased in 
anterior regions, while theta is increased in superior frontal and anterior cingulate regions. The 
fact that regions of increased theta and delta are more prominent in Figure 8 than in Figure 7 
indicates that, while significant, the differences for theta and delta are small.  
 
The statistical tests represented in Figure 8 examine whether, for each frequency range, the local 
amplitude deviation average at a given voxel has a value that is significantly higher or lower than 
zero. We also performed the same analysis for each study individually and noticed that although 
the basic patterns were common to most studies, there appeared to be some variations between 
the studies focusing on visual target detection and those focusing on driving activities.  
 
To examine this variation more carefully, we analyzed two sub-groups that together comprised a 
large subset of the overall corpus, an RSVP group and Lane-keeping group. The RSVP group 
(RSVPB, RSVPC, RSVPE, RSVPI, and RSVPU) consisted of studies with different types of 
visual stimulus presentation within the RSVP paradigm. The recordings in this subset consisted 
of periods of rapid visual stimulus presentation interspersed with frequent resting periods to 
alleviate subject fatigue. The Lane-keeping group (LKBase and LKCal studies) contained 
relatively few interspersed events. The right column of Figure 7 shows the spectral amplitude 
deviations across different frequency bands for these two groups. Although some of the general 
characteristics of the two groups are similar, there appear to be some differences in detail, 
particularly for alpha in occipital regions, and for beta in the temporal regions. To test whether 
these spatial differences were statistically significant, we performed permutation tests to assess 
whether, at each voxel, the local average spectral amplitude deviation for the RSVP group minus 
that of the Lane-keeping group was significantly different from zero. The differences were not 
significant after controlling for multiple comparisons using FDR, indicating a very weak effect, 
if any.  
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3.2.2 Some brain areas consistently have higher or lower aperiodic slope 
To investigate whether there are systematic variations in aperiodic slope across studies and brain 
areas, we applied Fooof to calculate aperiodic slopes of the “good” dipoles. These are dipoles 
(56,575 originally) that are inside the brain (26,175) and have residual variance < 0.15 (11,637). 
We further restrict the analysis to dipoles that are identified as non-artifactual (10,170) by the 
MARA algorithm (Winkler et al., 2011b), and have a linear fit of the aperiodic spectrum with R2 
> 0.95 (9,825). Figure 9 shows the results of this analysis. The average aperiodic slope was 
1.1477 +/− 0.0024, a highly significant deviation (p < 10-10) from pink noise (1/f α, α ≈ 1).  

 
Figure 9. Statistically significant variations of local aperiodic slope. Top left shows three-dimensional view of brain 
areas with significantly (p < 0.05, FDR-corrected) high (red) or low (green) local aperiodic slope deviations. Top 
right shows local average (using 12 mm spatial Gaussian smoothing) aperiodic slope deviations masked by 
significance. Bottom plot shows distribution of aperiodic slopes by study, sorted in descending order of study 
median aperiodic slope (based on 9230 dipole power spectra). The gray horizontal line marks a slope of 1. 
 
The top left plot of Figure 9 shows a three-dimensional view of brain areas with significantly (p 
< 0.05, FDR-corrected) high (red) or low (green) local aperiodic slope deviations. We obtained 
this result by applying measure projection analysis (MPA) to the aperiodic slope deviations, 
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mapping the results to brain regions and applying permutation testing to determine statistical 
significance. The right top plot shows local average aperiodic slope deviations masked by 
significance. Both left and right temporal areas, plus some occipital areas have lower than 
average aperiodic slope while posterior midline areas have higher than average slope. The 
average slope (1.1477 +/− 0.0024) is consistent with the slope for EEG channel data (1.33 +/− 
0.19) reported by Dehghani et al. (Dehghani et al., 2010). These authors also report lower slopes 
in parieto-temporal regions, overlapping with the areas of reduced slope shown in Figure 9. 
 
The bottom graph of Figure 9 shows the distribution of individual dipole aperiodic slopes 
segregated by study. Studies are ordered in descending order of median aperiodic slope. All of 
the studies have median aperiodic slope greater than 1 with interquartile ranges roughly centered 
around their medians.  The graph shows that while spectral fall-off varies by dipole, the overall 
distributions across studies are similar. 
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4 Discussion and conclusions 

This paper characterizes EEG channel and source-level signals across a data corpus containing 
1,173 recordings representing 633 hours of EEG collected in 18 studies from 6 different 
institutions on 3 continents using a number of different paradigms and several different headset 
configurations. Most of the studies fall into two major categories: those with paradigms using 
visual targets and those with paradigms that include perturbations during driving. While the 
studies are categorically similar, the experimental details across studies vary considerably, 
leading to semi-structured information on control variables and subject populations, typical of 
cross-study comparisons. As public repositories of EEG data become available, questions of how 
best to compare a new experiment in the context of other published data are an increasingly 
important. Our results have implications for the aggregation of channel data across studies. In 
addition, our mega-analysis provides insight into the nominal spatial distribution of single 
equivalent dipolar sources and their corresponding spectral properties. Limitations of the current 
corpus include a lack of detailed subject information, such as identification of common subjects 
across studies conducted at the same institution and a lack of digitized channel locations and/or 
individual MRI-based anatomical head models to allow for improved covariance analysis and 
source localization. Nonetheless, the initial analyses and results presented in this paper have 
implications for the aggregation of channel data across studies. In addition, our mega-analysis 
provides insight into the nominal spatial distribution of single equivalent dipolar sources and 
their corresponding spectral properties. 

4.1 Channel analysis 
This study provides some insight into how site/headset/subject/paradigm factors affect EEG 
signal comparability. One key result of this work is the demonstration that normalizing each 
recording by a robust recording-specific constant reduces (almost halves) channel amplitude 
variability across studies. This result is important for any analysis step involving the combination 
of signals from multiple recordings. Examples include the computation of independent 
component analysis on datasets formed by combining data from multiple recordings and in 
various averaging procedures.  
 
Increasingly, BCI (brain-computer interface) applications use data obtained from previous 
sessions or from other subjects to reduce the amount of calibration data required to train EEG 
classifiers. Most underlying classifiers assume that training and test signals come from the same 
distributions or use domain adaption to transform the data to make the distributions similar (Wu 
et al., 2014) (Wu, 2016). Simple scaling improves the similarity of these distributions. Recently, 
deep learning using convolutional neural networks has been successfully applied to model EEG 
signals using raw EEG training data taken from multiple studies (Lawhern et al., 2018), 
suggesting that as large corpuses of standardized raw EEG data become available, deep learning 
can potentially lead to advances in EEG analysis similar to those observed in the image and 
speech recognition domains. Simple preprocessing to improve data distribution similarity across 
studies may improve results in this area as well. 
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We have introduced several simple, robust measures for ascertaining whether a given recording 
is an outlier, whether the study as a whole has the expected behavior, and whether the process for 
removing eye artifacts has been effective. A scalp map plot of a recording’s amplitude vector 
provides a simple test of whether a recording is an outlier and whether the eye-artifact removal 
process has been effective. A simple view of the study as a whole can be achieved by plotting a 
scalp map of the row medians of the study channel amplitude matrix at different stages of 
processing (left column of Figure 4). The scalp map of the study channel dispersion vector 
(Figure 2) plotted at various stages of processing can identify data issues and bad channels across 
a study. Box plots of study channel dispersion (Figure 3) can also provide useful information 
about outlier channels and unexpected behavior. Likewise, these methods can be used as part of 
an evaluation of the effects of different processing methods.  
 
EEG measurements are made through hair, scalp, and skull, which can affect the relative 
amplitude of channel measurements. However, as shown by the clustering results of Figure 5, 
relative channel amplitudes may be significantly affected by the EEG cap/sensor technology. 
These observations suggest that it may be useful to apply channel amplitude normalization 
techniques before performing group-level or multi-study analyses.  
 
Table 2 shows that normalizing channel data by a recording-specific constant increases the 
strength of the relationship between channel-derived features (covariance and amplitude) and 
EEG headset. We can conceptually separate variability caused by EEG headsets into two 
sources: (1) variability in uniform amplitude/covariance scaling, (2) variability in relative 
channel features (e.g., channel activity standard deviation ratios). If both of these variability 
sources were of similar strength, performing a normalization procedure that mitigates type (1) 
variability should then weaken the relationship between channel correlation/covariance structure 
and EEG headset type. Since we observe the opposite (an increase in RSA correlation after 
normalization), we can deduce that the relationship is dominated by variabilities of type (2). 
Thus, type (1) variability is mostly unrelated to EEG headset type and is reflected as noise within 
RSA correlations. Future work in this area could explore the potential underlying 
electromechanical reasons for the phenomenon (e.g., a particular EEG headset design may apply 
more mechanical force on a subset of EEG sensors, resulting in a better electrical coupling with 
the scalp). Recently He and Wu (He and Wu, 2018) tested various data-alignment strategies 
based on covariance matrices. Large-scale testing of data alignment and investigation of signal 
properties before and after alignment will be an important step in evaluating effectiveness. 
 
Two important caveats are that our results do not explicitly account for the effects of multiple 
factors on variability, beyond the clear dependence on headset type (displayed in Figure 5). And, 
secondly, our results are based on full pooling of data (single-level analysis) and do not provide 
detailed characterization of inferential uncertainty or generalization error within and between 
recordings, subjects, and studies. Given a suitably structured corpus of data, multi-factor 
statistical modeling e.g., using ANOVA, can be valuable in characterizing different sources of 
variability. For example, in a controlled experiment using a multi-factor design, Melnik et al.  
(Melnik et al., 2017) showed that subject variability dominated differences in event-related 
potentials, followed by headset type in specific experimental paradigms. Additionally, explicitly 
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modeling recording- and study-specific variability in a multi-level partial-pooling analysis can 
also help address issues with inflated inferential certainty associated with classical full-pooling 
analyses. For instance, hierarchical linear modeling (Gelman and Hill, 2006) could be applied 
within restricted subsets of studies to better characterize effects of various experimental factors 
on variability. In a companion paper (Bigdely-Shamlo et al., 2018) we apply a more detailed 
multi-level statistical analysis of a subset of studies from this corpus to characterize the effects of 
various experimental factors on event-related temporal and spectral features, while explicitly 
accounting for recording-specific variability.  
 
We use a particular automated pipeline to preprocess the corpus in a standardized way, but the 
focus of the work is not to establish one preprocessing approach as preferable over another. 
Rather, the goal of this paper is to show that given a reasonable, consistently-applied 
preprocessing strategy, EEG mega-analysis is possible and informative. We believe that several 
automated preprocessing packages such as MARA (Winkler et al., 2011b), AutoReject (Jas et al., 
2017), HAPPE (Gabard-Durnam et al., 2018), BEAPP (Levin et al., 2018), and ASR (Kothe and 
Jung, 2015) (Chang et al., 2018) might be effectively employed in this regard. We have verified 
that the results of Figure 4 are reproduced using a PREP+MARA pipeline instead of the LARG 
pipeline.  
 
4.2 Spectral analysis 
This paper also demonstrated consistent differences in power spectral amplitude within several 
frequency bands for particular channels and brain regions. Theta increased in superior frontal and 
anterior cingulate regions. Alpha increased in posterior (occipital, temporal, parietal) regions and 
decreased in frontal cortex, while delta showed the opposite pattern. Beta increased in temporal, 
middle frontal and sensorimotor regions and decreased in central midline structures, including 
superior frontal, superior parietal, posterior cingulate, and inferior occipital regions. We note, 
however, that we cannot rule out the possibility that the observed beta increases in inferior 
occipital and temporal regions were influenced by neck or facial muscle activity. Similarly, 
increased ventromedial prefrontal delta activity could be due, in part, to residual eye movements 
and blinks. 
 
Modulations in frontal theta and posterior alpha have been well studied and associated with a 
number of cognitive processes (Ward, 2003). Specifically, decreases in posterior alpha power 
have been linked to increasing demands in some forms of attention (Klimesch et al., 1998), 
alertness, and task loading (Holm et al., 2009). Increases in frontal theta power, in surface EEG 
or sources localized in or near the anterior cingulate and superior frontal gyrus, have been linked 
to memory encoding (Klimesch, 1999), increased workload (Sammer et al., 2007), cognitive 
control (Cavanagh and Frank, 2014), and conflict monitoring (Luu et al., 2004).  
 
However, the fact that we did not find statistically significant differences in spectral deviations 
between the Rsvp and Lane-keeping corpora suggests that task-related contributions to recording-
average IC spectral amplitudes are relatively small compared to other sources of variability such 
as subject differences. The lane-keeping paradigms are monotonous driving tasks during which 
prominent resting state network activity has been observed (Lin et al., 2016). Although the 
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RSVP tasks had periods of rapid stimulus presentation, these periods were also frequently 
interspersed with periods of rest. Also, RSVP presentation rates differed greatly across studies 
(0.5, 2, 5, 10 or 12 Hz), significantly reducing the frequency-domain effect of visually evoked 
potentials when spectral averages are computed over all RSVP studies. 
 
Thus, while the patterns of oscillatory activity conform to previously reported spectral 
phenomena (e.g., frontal theta, occipital alpha), we caution against relating this aggregate 
spectral activity to specific neural processes or cognitive states such as visual target detection, 
memory encoding, or fatigue. It is difficult to determine if the regional difference in spectral 
power are due to the type and number of datasets included in the corpus, systematic limitations 
in the source analysis, or some universal pattern of brain activity. Rather, these results may be 
useful as a template or “nominal distribution” from which to measure deviation.  
 
For example, a number of prior studies on lane-keeping tasks have found links between driving 
performance, fatigue, and spectral power in frontal theta and occipital alpha (Lin et al., 2010) 
(Borghini et al., 2012) (Chuang et al., 2012). However, findings in this literature have been 
equivocal as to the direction, magnitude, or consistency of the correlation (Lal and Craig, 2002). 
Deviations from the nominal distribution may provide a more robust linkage between oscillatory 
activity, brain state, and task performance. A recent study, using one of the datasets included in 
this corpus (Garcia et al., 2017) employs a related approach by identifying fluctuations in the 
relationship between brain activity and behavior (i.e., proactive and reactive brain states) rather 
than direct correlations between power spectra and performance. These types of analyses, 
however, require a large, heterogeneous sample in order to establish baseline or nominal states 
that can generalize across tasks and individuals. 
 
By exploiting a large number of dipoles across studies we reduced the effect of random errors in 
source localization, but systemic errors, such as the inability of EEG to capture dipoles in certain 
brain regions, cannot be reduced by simply including more data. We modelled brain sources with 
ICA-derived single equivalent dipoles and used standard EEG sensor locations and brain 
templates to localize them. The accuracy of such modelling approaches is a subject of ongoing 
discussion and investigation (Delorme et al., 2012) (Akalin Acar et al., 2016). We are currently 
exploring the use of distributed source analysis methods such as LCMV Beamforming (Van 
Veen et al., 1997), variants of LORETA (Low Resolution Electromagnetic Tomography) 
(Pascual-Marqui, 2002), and Sparse Bayesian Learning (Wipf and Nagarajan, 2009) (Ojeda et 
al., 2018) in EEG mega-analysis to address issues with single equivalent dipole modeling 
assumptions.  
 
The spectral normalization that we are using is similar to relative power spectral density (PSD), 
but differs in two respects. First, the normalization of a spectrogram that is analogous to a 
relative PSD involves averaging over time at each frequency, while we take the median in 
keeping with our robust statistics approach. The second difference is that we are working with 
spectral amplitude rather than power. Our procedure of dividing the amplitude at each frequency 
by the Euclidean norm of amplitudes (square root of sum of squared amplitudes over all 
frequencies) is equivalent to computing the relative power (dividing the squared amplitude by 
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the sum of squared amplitudes), followed by taking the square root of the result. We do not think 
these differences significantly impact the overall results, but rather make the spectra more 
comparable across recordings. 
 
The study of aperiodic slope in EEG is relatively new. The aperiodic spectrum has been shown 
to change with task (Podvalny et al., 2015) and aging (Voytek et al., 2015) (Dave et al., 2018). It 
is also hypothesized to be associated with tonic differences in excitation/inhibition balance 
(Voytek and Knight, 2015) (Gao et al., 2017). In a four-subject comparison of EEG and MEG, 
Dehghani et al. (Dehghani et al., 2010) found spatial variations of the EEG aperiodic spectrum at 
the channel level that are consistent with the variations found in this study. Brain areas with 
smaller slope exponent, α, seem to have a large overlap with areas exhibiting significantly higher 
beta, and vice versa. This relationship suggests the possibility of a common underlying factor 
inversely relating beta power to aperiodic slope and warrants further investigation.  
 
4.3 Conclusion and future work 
EEG mega-analysis is a nascent subfield and this work is an initial demonstration of the power 
and potential for this approach. The automated nature of these analyses and the assembly of a 
large corpus of data will permit more systematic investigation of brain dynamics associated with 
cognitive phenomena, along with an assessment of generalizability of results obtained from 
single studies or paradigms. The metrics introduced in this paper can be used to determine 
whether particular choices in preprocessing change the general signal characteristics of an EEG 
dataset or if a particular recording is an outlier for that dataset. The raw data is available upon 
request through the DataCatalog at https://cancta.net. 
 
In an aforementioned companion paper (Bigdely-Shamlo et al., 2018), we apply mega-analysis 
with multi-level statistical modeling to assess commonalities in event-related EEG features 
across studies. Ongoing and future work aims to extend these analyses to conduct more detailed 
investigations into sources of EEG variability as well as to investigate distributed cortical source 
activity and large-scale brain connectivity. 
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Appendix A: Data Summary 

This appendix provides additional details about the 18 studies used in this paper with references 
and IRB information. Table A.1 provides some study summary statistics. 
 

Table A.1: Additional summary statistics for the 18 studies used in this paper. 

Dataset Site Head 
set Recs 

Subject Info 
Events Codes Mins 

Dipoles 
F/M/U    Ages Brain +rv<0.15 

Cue ARLT B-64 33 7/10/0 19−38 297142 33 1525 845 403 
GuardA ARLS B-256 29 15/12/0 20−57 211378 37 1461 863 221 
GuardB ARLS B-256 22 12/9/0 19−7 169845 31 1173 589 120 

LKBase 
ARLH B-64 21 0/5/16 27−45 

1061315 35 7919 3325 1068 ARLS B-256 81 46/34/1 19−57 
ARLT B-64 28 11/17/0 18−40 

LKCal 
ARLH B-64 21 0/5/16 27−45 

518199 27 3921 6581 1745 ARLS B-256 127 55/71/1 19−57 
ARLT B-64 97 48/49/0 18−40 

Speed ARLT B-64 61 18/14/0 18−40 442085 26 2697 1332 680 
Traffic ARLT B-64 30 12/17/0 18−40 177937 44 1389 669 341 
Mind ARLT B-64 59 8/12/0 21−38 291979 50 1813 896 529 
RSVPB ARLS B-256 31 16/11/0 21−57 683108 38 1970 941 254 
RSVPC ARLH B-64 51 0/0/17 NA 82366 64 392 1514 292 
RSVPE ARLS B-256 59 2/8/0 22−51 1292141 38 3652 1604 462 
RSVPI ARLH B-64 72 3/15/0 23−58 218098 45 1080 2178 571 
VEP ARLH B-64 18 0/0/18 NA 31987 14 169 532 160 
DAS NCTU N-62 201 46/57/0 18−30 1219933 67 5551 5152 3008 
DD NCTU N-30 60 0/15/0 NA 203240 26 1006 731 536 
LKwAF NCTU N-30 11 5/3/2 20−30 95363 14 880 158 145 
ACC TNO B-64 47 6/9/0 24−60 322528 57 1269 1126 348 
RSVPU UCSD B-256 14 7/1/0 19−29 484194 16 980 325 188 
Total   1173   7802838 662 38849 29116 11071 
 
A.1 ARL Auditory Cueing Task (ARL-Cue) 
The ARL Auditory Cueing Task involved continuous driving using a driving simulator with 
brake and foot-pedals but no motion platform. Subjects were instructed to maintain the constant, 
posted speed and a position in the center of the lane. The vehicle was subjected to perturbations 
to the left or right at unpredictable times (lane-keeping). In task condition A, a tone was played 
at random times, unrelated to perturbation events. In task condition B, the tone was played within 
a 2-second window prior to the perturbation. The two task conditions were counter-balanced 
among participants and each lasted for 45 minutes. Directly prior to the auditory cueing task, 
each participant performed 15 minutes of the Calibration Driving Task (A.5). The subject pool 
consisted of 10 females and 7 males ranging in age from 19 to 38 years old. All participants 
except one were right handed. This study was conducted by Teledyne Laboratories in Durham, 
NC using a BioSemi 64-channel headset (Garcia et al., 2017). The study was reviewed and 
approved by the U.S. Army Human Research Protections Office (Protocol ARL 12-040) before 
the study began. 
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A.2 ARL Advanced Guard Duty Task (ARL-GuardA) 
The ARL Advanced Guard Duty Task (Touryan et al., 2016) involved the visual verification of 
IDs based on eight information fields on an ID card and a corresponding photograph. 
Participants were asked to determine if the individual in the image, paired with the 
corresponding ID card, should have access to a specified restricted area. Some of the ID cards 
were valid and some were not (e.g., expiration date passed, incorrect access area, or photos did 
not match). Participants were instructed to press either an “allow” or “deny” button for each 
image-ID pairing. The two-alternative forced-choice response was self-paced with a maximum 
time limit of 20 seconds. If the participants chose to deny access, they were subsequently asked 
to provide a reason. Reasons for denied access were selected from a numerical list of five 
options: incorrect access, expired ID, suspicious DOB, face mismatch, no watermark. If the 
participant did not respond within the allotted time, the computer forced a “deny” decision. The 
task was divided into ten blocks of five minutes each. The rate of ID presentation as well as the 
criteria for validating IDs varied among blocks. The subject pool consisted of 15 females and 12 
males ranging in age from 20 to 57 years old. 22 participants were right-handed, 4 participants 
were left-handed, and one participant was ambidextrous. This study was conducted by SAIC 
(Louisville, CO) using a BioSemi 256-channel headset. The study was reviewed and approved 
by the U.S. Army Human Research Protections Office (Protocol ARL 12-041) before the study 
began. 
 
A.3 ARL Baseline Guard Duty Task (ARL-GuardB) 
The ARL Baseline Guard Duty Task was similar to the ARL Advanced Guard Duty Task. Rate 
of ID presentation, but not the criteria for verification varied among blocks. The subject pool 
consisted of 12 females and 9 males ranging in age from 19 to 51 years old. 18 of the participants 
were right-handed and 3 were left handed. This study was conducted by SAIC (Louisville, CO) 
using a BioSemi 256-channel headset. The study was reviewed and approved by the U.S. Army 
Human Research Protections Office (Protocol ARL 12-041) before the study began. 
 
A.4 ARL Baseline Driving Task (ARL-LKBase) 
The ARL Baseline Driving Task was conducted at three different sites using an identical 
experimental apparatus that included a driving simulator with steering wheel and brake/foot 
pedals but no motion platform (Touryan et al., 2014) (Brooks et al., 2015) (Brooks and Kerick, 
2015) (Garcia et al., 2017). The Baseline Driving Task included either 45 minutes of continuous 
driving or 60 minutes of driving organized into 10-minute blocks. Subjects were instructed to 
maintain a center lane position and speed while the vehicle underwent lateral perturbations at 
random intervals. The subject pool consisted of 43 females, 48 males, and 17 subjects who did 
not report any demographic information. The subjects ranged in ages from 18 to 57 year old, 
with 17 subjects not reporting age. 78 subjects were right-handed, 11 subjects were left-handed, 
2 subjects were ambidextrous, and 17 subjects did not report handedness. Experiments conducted 
at ARL HRED (Aberdeen MD) and at Teledyne (Durham, NC) used a BioSemi 64-channel 
headset. Experiments conducted at SAIC (Louisville, CO) used a BioSemi 256-channel headset. 
The site protocols were approved by the Army Human Research Protections Office (Protocol 
ARL-20098-10051, ARL 12-040, and ARL 12-041) before the studies began.  
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A.5 ARL Calibration Driving Task (ARL-LKCal) 
The ARL Calibration Driving Task consisted of a 15-minute period of continuous driving in 
which the vehicle was subjected to random lateral perturbations. This task was typically 
performed at the beginning of experiments that included other, subsequent tasks. The subject 
pool consisted of 69 females, 59 males, and 17 subjects who did not report demographic 
information. Subject ages ranged from 18 to 57 years old, with 17 subjects not reporting age. 120 
subjects were right-handed, 15 subjects were left-handed, 3 subjects were ambidextrous, and 17 
subjects did not report handedness. Like the Baseline Driving Task, these experiments were 
conducted at three different sites using an identical experimental apparatus that included a 
driving simulator with steering wheel and brake/foot pedals but no motion platform (Touryan et 
al., 2014) (Brooks et al., 2015) (Brooks and Kerick, 2015) (Garcia et al., 2017). The ARL HRED 
site (Aberdeen MD) and the Teledyne site (Durham, NC) used BioSemi 64-channel headsets. 
The SAIC site (Louisville, CO) used a BioSemi 256-channel headset. The sites protocols were 
approved by the Army Human Research Protections Office (Protocol ARL-20098-10051, ARL 
12-040, and ARL 12-041) before the studies began. 
 
A.6 ARL Lane-keeping with Speed Control Task (ARL-Speed) 
The ARL Lane-keeping with Speed Control Task, which is similar to the ARL Baseline Driving 
Task, consisted of 45 minutes of continuous driving in a driving simulator while maintaining the 
posted speed limit. The driving simulator included a steering wheel and brake/foot pedals but no 
motion platform (Touryan et al., 2014) (Brooks et al., 2015) (Brooks and Kerick, 2015) (Garcia 
et al., 2017). Subjects were instructed to maintain a constant specified speed and stay in the 
center of the lane while the vehicle underwent random lateral perturbations. In condition A, 
speed was controlled by the simulator (i.e., cruise control) while in condition B, speed was 
controlled by the subject. The Speed Control Task was always counter-balanced with a 45-
minute Baseline Driving Task following a 15-minute Calibration Driving Task. The subject pool 
consisted of 18 females and 14 males, ranging in age from 18 to 40 years old. 27 subjects were 
right-handed, and 5 subjects were left-handed. The study was conducted at Teledyne Corporation 
(Durham, NC) using a BioSemi 64-channel headset. The study was reviewed and approved by 
the U.S. Army Human Research Protections Office (Protocol ARL 12-040) before the study 
began. 
 
A.7 ARL Lane-keeping with Traffic Complexity Task (ARL-Traffic) 
The ARL Lane-keeping with Traffic Complexity Task, which is similar to the ARL Baseline 
Driving Task, consisted of 45 minutes of continuous driving in a driving simulator with steering 
wheel and brake/foot pedals but no motion platform (Touryan et al., 2014) (Brooks et al., 2015) 
(Brooks and Kerick, 2015) (Garcia et al., 2017). The visual environment consisted of a long, 
straight highway with visual complexity derived from vehicle traffic, including oncoming traffic 
and traffic in the direction of travel (in the passing lane). The experiment also included 
pedestrians on either side of the road, but not crossing the road. Subjects were instructed to 
maintain a constant specified speed and stay in the center of the lane while the vehicle underwent 
random lateral perturbations. The 45-minute Traffic Complexity Task was always counter-
balanced with a 45-minute Baseline Driving Task following a 15-minute Calibration Driving 
Task. The subject pool consisted of 12 females and 17 males ranging in age from 18 to 40 years 
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old. 26 subjects were left-handed, and 3 subjects were right-handed. The study was conducted by 
Teledyne Corporation (Durham, NC) using a BioSemi 64-channel headset. The study was 
reviewed and approved by the U.S. Army Human Research Protections Office (Protocol ARL 
12-040) before the study began. 
 
A.8 ARL Lane-keeping with Auditory Mind-wandering Distraction Task (ARL-Mind) 
The ARL Lane-keeping with Auditory Mind-wandering Distraction Task was similar to the ARL 
Baseline Driving Task with additional features (Garcia et al., 2017). The experiment was 
performed using the same driving simulator that included a steering wheel and brake/foot pedals 
but no motion platform (Touryan et al., 2014) (Brooks et al., 2015) (Brooks and Kerick, 2015). 
The subject was instructed to maintain lane position and a specified constant speed as the vehicle 
was subjected to random lateral perturbations. The environment included a mix of regular traffic 
and police vehicles. The subject was instructed to press a button when spotting a police vehicle. 
The experiment consisted of three counter-balanced 30-minute blocks corresponding to 
conditions A, B, and C, respectively. During condition A, the subject listened to an audio podcast 
on traffic safety; during condition B, the subject listened to a sports-related audio podcast; and in 
condition C the subject listened to an audio podcast on mediation. The subject pool consisted of 
8 females and 12 males ranging in age from 21 to 38 years old. 18 subjects were right-handed, 1 
subject was left-handed, and 1 subject was ambidextrous. The study was conducted by Teledyne 
Corporation (Durham, NC) using a BioSemi 64-channel headset. The study was reviewed and 
approved by the U.S. Army Human Research Protections Office (Protocol ARL 12-040) before 
the study began. 
 
A.9 ARL RSVP Baseline Task (ARL-RSVPB) 
The ARL RSVP Baseline Task (Touryan et al., 2014) was a rapid serial visual presentation 
(RSVP) task utilizing natural photographs containing common objects (chairs, containers, doors, 
posters, and stairs). A different object was the target for each 10 minute block with a 2-minute 
break between blocks (6 blocks in total). Images were presented at approximately 5 Hz, and the 
subject was instructed to press a button each time a target image was perceived. The subject pool 
consisted of 16 females and 11 males ranging in age from 21 to 57 years old. 22 subjects were 
right-handed, 3 subjects were left-handed, and 2 subjects were ambidextrous. This study was 
conducted by SAIC (Louisville, CO) using a BioSemi 256-channel headset. The study was 
reviewed and approved by the U.S. Army Human Research Protections Office (Protocol ARL 
12-041) before the study began. 
 
A.10 ARL RSVP Cognitive Technology Threat Warning System Task (ARL-RSVPC) 
The ARL RSVP Cognitive Technology Threat Warning System Task (Marathe et al., 2014), 
which was designed to detect neural responses during multitasking, incorporated three 
simultaneous tasks on different displays (RSVP, target detection, and formation deviation). The 
center display had a primary RSVP task that presented video clips consisting of five consecutive 
images, each 100 ms in duration. There was no interval between videos so that the first frame 
was presented immediately after the last frame of the prior video. Targets included vehicles, 
animals, and humans, both moving and stationary with varied backgrounds. After receiving a 
target detection cue, the subject initiates the target detection task on the left display by pressing 
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the “Start” button. The subject sees a set of 20 images selected from the previous RSVP for 
further evaluation and performs a more detailed assessment by labeling each image as “Target” 
or “No Target”.  After receiving a formation deviation cue, the subject evaluates (vehicle) 
formation deviation information and indicates the appropriate corrective action to be taken. The 
cue was presented on the central display (condition 1) or on one of the secondary displays 
(condition 2). No demographics were reported for the subject pool. The experiment was 
conducted by ARL HRED (Aberdeen, MD) using a BioSemi 64-channel headset. The study was 
reviewed and approved by the U.S. Army Human Research Protections Office (Protocol ARL 
20098-10025) before the study began. 
 
A.11 ARL RSVP Expertise Task (ARL-RSVPE) 
ARL RSVP Expertise Task (Touryan et al., 2014) used a paradigm similar to the ARL RSVP 
Baseline Task with images of common objects (chairs, containers, doors, posters, and stairs). A 
different object was the target for each session. The subject was instructed to press a button each 
time a target image was perceived. Each subject competed 5 sessions, run on subsequent days. 
Images were presented at approximately 5 Hz. The subject pool consisted of 2 females and 8 
males ranging in age from 22 to 51 years old. 8 subjects were right-handed, 1 subject was left-
handed, and 1 subject was ambidextrous. The experiment was conducted by SAIC (Louisville, 
CO) using a Biosemi 256-channel headset. The study was reviewed and approved by the U.S. 
Army Human Research Protections Office (Protocol ARL 12-041) before the study began. 
 
A.12 ARL RSVP Insurgent-Civilian Task (ARL-RSVPI) 
The ARL RSVP Insurgent-Civilian Task (Marathe et al., 2015) was an RSVP study with visually 
similar targets and non-targets presented at a rate of 2 Hz. Target images contained one or more 
persons holding guns (target), while non-target images contained scenes without people or with 
people who did not have guns. The experiment was conducted under 4 different RSVP conditions: 1) 
presentation of only targets with subject counting, 2) presentation of only targets with subject 
counting and pressing a button for each, 3) presentation of targets and non-targets with subjects 
counting targets, and 4) presentation of targets and non-targets with subjects both counting and 
pressing a button for targets. Subjects also performed a baseline condition in which they listed to 
tones, blinked their eyes in time to audio tones, fixated on a cross, and closed their eyes, each for one 
minute. The subject pool consisted of 3 females and 15 males ranging in age from 23 to 58 years 
old. 17 subjects were right-handed, and 1 subject was left-handed. The experiment was 
conducted by ARL HRED (Aberdeen, MD) using a BioSemi 64-channel headset. The study was 
reviewed and approved by the U.S. Army Human Research Protections Office (Protocol ARL 
20098-09021) before the study began. 
 
A.13 ARL Visually Evoked Potential Task (ARL-VEP) 
The ARL Visually Evoked Potential Task (Hairston et al., 2014) was part of a larger study 
comparing neural responses for the same subjects on four different commercial headsets and 
several distinct paradigms. In the VEP task, 18 subjects performed a visual oddball task where 
target (enemy combatants) and non-target (US soldiers) images were presented at a rate of 0.5 
Hz with roughly 1 out of 7 images being targets. Subject information was not available for this 
study. The experiment conducted by ARL HRED (Aberdeen, MD) using a BioSemi 64-channel 
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headset. This dataset has been used in a number of papers as summarized in a recent Data In 
Brief (Robbins et al., 2018). The dataset has also been made publicly available on NITRC 
(https://www.nitrc.org/projects/vep_eeg_raw/). The study was reviewed and approved by the 
U.S. Army Human Research Protections Office (Protocol ARL 14-042) before the study began. 
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A.14 NCTU Dynamic Attention Shifting Task (NCTU-DAS) 
The NCTU Dynamic Attention Shifting Task was a lateral perturbation lane-keeping task that 
was performed on a motion platform and included auditory or visual distractions. On some 
perturbations, subjects received an attend cue (auditory or visual) along with a direction (left or 
right). Subjects then received a stimuli (spoken or written word). If the word was a target 
(animal) subjects pressed the left or right button (corresponding to stimulus position). Subjects 
heard a “ding” for correctly identified targets and a “buzz” in all other cases. The subject pool 
consisted of 46 females and 57 males ranging in age from 18 to 30 years old. Handedness 
information was not available for this study. Data was acquired using a Neuroscan 62-channel 
headset. The study was approved (VFHIRB no.: 2013-01-029BC) by the Taipei Veterans 
General Hospital. 
 
A.15 NCTU Distracted Driving Task (NCTU-DD) 
The NCTU Distracted Driving Task (Wang et al., 2015) was a lateral perturbation lane-keeping 
task performed on a motion platform combined with visual math problems intermittently 
presented on the dashboard to mimic distracted driving. Subjects pressed a button on the right 
side of dashboard if the presented equation was correct, and a button on the left side of the 
dashboard if the presented equation was incorrect. Stimulus onset synchrony was randomly 
selected to be -400, 0, or 400 ms. Subjects performed four 15-minute blocks separated by 10 
minute rest periods. Five conditions included left perturbation (with or without math), right 
perturbation (with or without math), and math alone. The subject pool consisted of 15 males. 
Age and handedness was not available for this study. Data was acquired using a Neuroscan 30-
channel headset. The study was approved (VFHIRB no.: 2013-01-029BC) by the Taipei 
Veterans General Hospital. 
 
A.16 NCTU Lane-keeping with Arousing Feedback Task (NCTU-LKwAF) 
The NCTU Lane-keeping with Arousing Feedback Task (Lin et al., 2010) (Huang et al., 2016) 
was a lateral perturbation lane-keeping task conducted in VR-based driving simulator with 
perturbations presented at random intervals of between 8 and 12 seconds. Trials that had reaction 
time 3x longer than trials at the beginning of the session were designated as “drowsy trials”. The 
alert reaction time was computed as the mean reaction time in the first 5 minutes of the task. In 
50% of the “drowsy” trials, the system triggered a 1,750 Hz tone-burst. The subject pool 
consisted of 5 females and 3 males ranging in age from 20 to 30 years old. These subjects were 
all right-handed. Two additional subjects provided no demographic information. Data was 
acquired using a Neuroscan 30-channel headset. The study was approved (VFHIRB no.: 2012-
01-019BCY) by the Taipei Veterans General Hospital. 
 
A.17 TNO Adaptive Cruise Control Task (TNO-ACC) 
The TNO Adaptive Cruise Control Task was conducted at the Netherlands Organization for 
Applied Scientific Research (Brouwer et al., 2017). Subjects drove a Toyota Prius on a closed 
test track with cruise control set at 35 km/h.  An automated human voice indicated whether 
strong or weak deceleration was desired.  The subject then engaged ACC deceleration by 
pressing a button. Before deceleration a computer voice announced whether the ACC would 
decelerate strongly or weakly. The ACC decelerated to 25 km/h between 0.5 and 3.5 s after the 
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computer announcement following a steep or a shallow velocity profile (strong or weak 
deceleration). In 20% of the trials, the deceleration profile did not match the stated desire. The 
automated human voice then asked the driver to accelerate back to 35km/h. The subject pool 
consisted of 6 females and 9 males ranging in age from 24 to 60 years old. One subject did not 
provide age information, and handedness was not available for any of the subjects. Data was 
acquired using a BioSemi 64-channel headset. The study was reviewed and approved by the U.S. 
Army Human Research Protections Office (Protocol ARL 16-038) before the study began. 
 
A.18 UCSD RSVP Target Detection Task (UCSD-RSVPU) 
 
The UCSD RSVP Target Detection Task (Bigdely-Shamlo et al., 2008) used a standard RSVP 
paradigm with 4.1 second bursts of images presented at 12-Hz. Images consisted of satellite 
photograph vignettes of London with small airplane targets overlaid. Subjects pressed a button at 
the end of each 49-image block (left = saw plane, right = didn’t see plane) to indicate whether or 
not the target was detected. Half of the datasets (train) had “correct/incorrect” visual feedback 
after button press.  The other half of the datasets (test) did not provide feedback. The subject 
pool consisted of 7 females and 1 male range in age from 19 to 29. Four subjects did not provide 
age information. Handedness information was not available. Data was acquired using a BioSemi 
256-channel headset using a custom cap design. The study was approved (#071254) by the 
Institutional Review Board (IRB) of the University of California, San Diego.  
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Appendix B: LARG preprocessing pipeline summary 
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Figure B.1. LARG pipeline for automated large-scale analysis of EEG. 

Appendix C: Mapping of various headsets to standard 10-20 labels 

In combining studies acquired from different headsets, we chose to use the standard positions 
and labels provided by the manufacturers, rather than individualized headset coordinates (which 
were not available for most recordings). The reasoning behind this choice was that mapping to a 
standardized set of coordinates using signal interpolation would introduce significant errors 
(particularly on the boundaries), which would offset gains in comparability from more exact 
channel mapping.  This appendix illustrates the noticeable differences in channel positions that 
have resulted from these choices. 
 
Fig. C.1 shows correspondence between channel positions in Biosemi 256-channel (B256) and 
Biosemi 64 channel (B64) headsets.  B256 headsets have detectors that exactly match C3, C4, 
Cz, Fpz, Fz, Oz, Pz, T7, and T8.  The remaining detectors are arranged in concentric circular 
patterns around Cz.  We used a closest Euclidean distance to determine which B256 channel 

detector was closest to each B64 detector. These associations were unique except in one case 
where a B64 detector was midway between two B256 detectors.  
 

 
 

Figure C.1. EEGLAB scalp map (left graph) and 3D channel positions (right graph) for two headsets (B256 and 
B64). Large red squares correspond to B64 channel positions. Large black dots correspond to B256 channels that 
have been mapped to B64 channels, and small black dots correspond to B256 channels with no corresponding B64 
channel. 
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Fig. C.2 shows the correspondence between Neuroscan 62-channel headset channel positions and 
Biosemi 64-channel headset channel positions. Although the channel positions appear to agree 
quite well across the front of the head, there appear to be some systematic differences across the 
middle and posterior positions.  Here detector positions for each headset were scaled so that the 
average spherical radius of the head was 1 prior to making an association. Closest Euclidean 
distance then yielded a unique association. 
 

Figure C.2. EEGLAB scalp map (left graph) and 3D channel positions (right graph) for two headsets (N62 and 
B64). Large red squares correspond to B64 channel positions. Large black dots correspond to N62 channel positions. 
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Fig. C.3 shows correspondence between channel positions in legacy custom 256-channel headset 
used at the Swartz Center at the University of California San Diego (S256) and Biosemi 64 
channel (B64) headsets.  The S256 headset had a different channel distribution from the Biosemi 
headsets, particularly in the lower portions of the head. Closest Euclidean distance did not give 
good associations for several of the channels in the lower portions of the head.  After an initial 
closest channel mapping was done, the associations were manually adjusted.  
 
 

 
 

Figure C.3. EEGLAB scalp map (left graph) and 3D channel positions (right graph) for two headsets (S256 and 
B64). Large red squares correspond to B64 channel positions. Large black dots correspond to S256 channels that 
have been mapped to B64 channels, and small black dots correspond to S256 channels with no corresponding B64 
channel. 
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