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Summary	
	
Symmetrical	homomeric	proteins	are	ubiquitous	in	every	domain	of	life,	and	information	about	
their	structure	is	essential	to	decipher	function.	The	size	of	these	complexes	often	makes	them	
intractable	 to	 high-resolution	 structure	 determination	 experiments.	 Computational	 docking	
algorithms	offer	a	promising	alternative	for	modeling	large	complexes	with	arbitrary	symmetry.	
Accuracy	 of	 existing	 algorithms,	 however,	 is	 limited	 by	 backbone	 inaccuracies	 when	 using	
homology-modeled	monomers.	 Here,	 we	 present	 Rosetta	 SymDock2	 with	 a	 broad	 search	 of	
symmetrical	 conformational	 space	 using	 a	 six-dimensional	 coarse-grained	 score	 function	
followed	by	an	all-atom	flexible-backbone	refinement,	which	we	demonstrate	to	be	essential	for	
physically-realistic	modeling	of	tightly	packed	complexes.	In	global	docking	of	a	benchmark	set	
of	complexes	of	different	point	symmetries	—	staring	from	homology-modeled	monomers	—	we	
successfully	 dock	 (defined	 as	 predicting	 three	 near-native	 structures	 in	 the	 five	 top-scoring	
models)	19	out	of	31	cyclic	complexes	and	5	out	of	12	dihedral	complexes.		
	
	

Highlights	
• SymDock2	is	an	algorithm	to	assemble	symmetric	protein	structures	from	monomers	
• Coarse-grained	score	function	discriminates	near-native	conformations	
• Flexible	backbone	refinement	is	necessary	to	create	realistic	all-atom	models	
• Results	improve	six-fold	and	outperform	other	symmetric	docking	algorithms	
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Introduction	
	
The	pervasive	appearance	of	symmetrical	homomeric	proteins	across	all	domains	of	life	has	been	
attributed	to	increased	stability	(Wolynes,	1996),	fine-tuned	functional	regulation	(Monod	et	al.,	
1965;	 Perutz,	 1989),	 better	 synthesis	 error	 control	 (Goodsell	 and	 Olson,	 2000),	 reduced	
aggregation	(Garcia-Seisdedos	et	al.,	2017),	and	genome	compactness	(Crick	and	Watson,	1957).	
While	 these	 evolutionary	 forces	 drive	 proteins	 towards	 larger	 assemblies,	 the	 size	 of	 these	
complexes	 makes	 it	 particularly	 difficult	 to	 obtain	 high-resolution	 structures.	 Despite	 an	
estimated	50-70%	of	proteins	being	symmetric	homomers	(Levy	et	al.,	2006),	less	than	40%	of	
proteins	in	the	Protein	Data	Bank	(Berman	et	al.,	2000)	are	symmetric	(as	of	June	2018).	This	gap	
could	 be	 bridged	 by	 the	 development	 of	 computational	 docking	methods	 to	 obtain	 accurate	
models	of	symmetric	homomeric	complexes.		
	
Especially	desirable	are	versatile	methods	that	incorporate	different	kinds	of	experimental	data	
in	the	modeling	pipeline.	For	low-resolution	cryo-EM,	NMR	or	SAXS	data,	symmetry-constrained	
flexible	refinement	is	essential	for	obtaining	high-quality	models	(Chan	et	al.,	2011;	Joseph	et	al.,	
2016).	In	the	absence	of	such	a	model,	the	method	should	be	able	to	dock	a	homology	modeled	
monomer	(Eswar	et	al.,	2006;	Song	et	al.,	2013;	Yang	and	Zhang,	2015).	This	monomer	model	can	
be	 combined	 with	 experimental	 determination	 of	 the	 oligomeric	 state	 and/or	 symmetrical	
placement	of	subunits	in	homologs	to	prepare	a	preliminary	model	for	refinement.	If	the	relative	
orientations	of	the	subunits	cannot	be	obtained	from	homologous	structures,	the	method	should	
be	able	find	the	correct	arrangement	of	the	subunits	while	restricting	the	search	space	to	relevant	
symmetrical	conformations.	
	
The	 symmetry	 framework	 in	 the	Rosetta	Macromolecular	Modeling	 Suite	 allows	modeling	 of	
complexes	with	arbitrary	 symmetries	 (DiMaio	et	 al.,	 2011).	 The	 framework	has	been	used	 to	
develop	 SymDock,	 a	 docking	 protocol	 for	 point	 symmetries.	 SymDock	 has	 been	 shown	 to	
correctly	model	complex	structures	from	a	monomer	for	a	variety	of	symmetry	groups	(André	et	
al.,	2007).	This	protocol	uses	a	coarse-grained	phase	to	sample	symmetric	conformation	space	
starting	 from	 a	 random	 or	 a	 pre-defined	 orientation	 followed	 by	 an	 all-atom	 phase	 for	
refinement.	To	further	improve	models,	the	Rosetta	suite	also	allows	integration	of	information	
from	a	plethora	of	experimental	methods	like	cross-linking	studies	(Kahraman	et	al.,	2013),	NMR	
(Shen	 et	 al.,	 2008),	 and	 SAXS	 (Sønderby	 et	 al.,	 2017)	 as	 well	 as	 co-evolutionary	 analysis	
(Ovchinnikov	et	al.,	2014)	while	docking.	This	 two-phase	approach	and	the	variety	of	ways	of	
adding	constraints	make	SymDock	an	extremely	versatile	tool.	
	
In	the	last	published	rounds	of	the	blind	docking	challenge,	Critical	Assessment	of	PRediction	of	
Interactions	 (CAPRI),	 although	 multiple	 groups	 generated	 high-quality	 models	 for	 various	
homodimers,	 no	 group	 was	 able	 to	 predict	 high-quality	 models	 for	 the	 five	 homotetramer	
targets,	including	two	for	which	no	acceptable	solutions	were	submitted	(Lensink	et	al.,	2016).	
Recently,	 four	 leading	 symmetric	 docking	 methods	 were	 evaluated	 on	 a	 benchmark	 of	 251	
complexes,	180	of	which	were	homodimers	(Yan	et	al.,	2018).	Despite	a	favorable	benchmark	
composition,	 starting	with	 homology-modeled	monomers,	 none	 of	 the	methods	was	 able	 to	
produce	a	CAPRI-acceptable	model	in	the	top	ten	predictions	for	more	than	half	the	complexes.	
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For	Rosetta	SymDock,	we	have	been	aware	of	two	limitations	preventing	consistently	accurate	
predictions.	 First,	 the	 scoring	method	 used	 in	 the	 coarse-grained	 phase	 does	 not	 sufficiently	
discriminate	between	near-native	and	spurious	interfaces.	Second,	in	tightly	packed	complexes,	
small	steric	clashes	between	the	subunits	were	not	being	resolved.	Specifically,	we	observed	that	
symmetric	side	chain	packing	and	minimization	were	inadequate	for	resolving	clashes	between	
subunits	in	tightly	packed	complexes;	such	cases	additionally	require	small	backbone	motions.	
	
In	this	study,	we	address	these	limitations	and	demonstrate	a	drastically	improved	performance	
of	this	protocol.	First,	to	enhance	model	evaluation	in	the	coarse-grained	phase,	we	employ	a	
fast	and	accurate	scoring	scheme	called	Motif	Dock	Score	(MDS).	We	previously	developed	MDS	
for	docking	heterodimeric	complexes,	and	it	greatly	increased	the	number	of	conformations	with	
near-native	 interfaces	after	a	coarse-grained	search	(Marze	et	al.,	2018).	Second,	we	test	two	
approaches	 to	 backbone	 flexibility	 that	 have	 been	 successfully	 used	 for	 heterodimeric	
complexes,	viz.	imitating	conformational	selection	(Chaudhury	and	Gray,	2008;	Moal	and	Bates,	
2010;	Venkatraman	and	Ritchie,	2012)	and	induced	fit	(Mashiach	et	al.,	2010;	Oliwa	and	Shen,	
2015;	 Schindler	 et	 al.,	 2015).	 For	 conformational	 selection,	we	 pre-generate	 an	 ensemble	 of	
conformations	from	the	monomer	and	used	them	as	input	monomers	for	docking.	For	induced	
fit,	we	minimize	energy	along	the	backbone	dihedrals	and	repack	side	chains	during	refinement,	
starting	with	a	low	repulsion	between	the	atoms	and	progressively	ramping	it	up.	The	refinement	
is	 performed	 after	 the	 rough	 subunit	 arrangement	 had	been	predicted	 in	 the	 coarse-grained	
phase.	
	
We	 evaluate	 the	 enhanced	 protocol,	 SymDock2,	 on	 a	 diverse	 benchmark	 of	 43	 complexes	
belonging	to	the	two	most	common	symmetry	groups,	cyclic	 (described	by	a	single	rotational	
symmetry	axis)	and	dihedral	(described	by	a	rotational	symmetry	axis	and	a	perpendicular	axis	of	
two-fold	 symmetry).	 As	 these	 proteins	 rarely	 crystallize	 as	 monomers,	 we	 use	 monomers	
predicted	by	a	homology	docking	server	as	a	proxy	for	the	‘unbound’	structure.	Given	a	particular	
point	symmetry,	we	perform	a	global	search	of	the	relevant	symmetrical	conformation	space.	
These	 inputs	 represent	 the	 most	 difficult	 case	 described	 earlier	 where	 the	 monomer	
conformation	is	approximate	and	the	subunit	arrangement	is	unknown.	This	workflow	is	similar	
to	one	commonly	employed	 in	CAPRI	blind	docking	(Marze	et	al.,	2017).	The	performance	for	
both	the	coarse-grained	and	the	all-atom	phases	show	marked	improvements	over	the	original	
SymDock	protocol	without	compromising	the	overall	speed	of	the	protocol.	
	

Results	
	
Rosetta	 SymDock	 is	 a	 Monte	 Carlo-plus-minimization	 protocol	 (Li	 and	 Scheraga,	 1987)	 that	
models	symmetric	homomeric	complexes	starting	from	a	monomer	structure	and	a	symmetry	
definition	(André	et	al.,	2007).	Symmetry	definitions	contain	 information	about	the	rigid-body	
arrangement	of	the	subunits,	how	to	yield	the	energy	of	the	whole	complex	from	calculations	on	
one	subunit	(or	a	set	of	subunits),	and	what	the	degrees	of	freedom	are	along	which	the	subunits	
are	allowed	to	move	(DiMaio	et	al.,	2011).	For	local	docking,	specific	symmetry	definitions	can	be	
recapitulated	 from	 a	 PDB	 file	 of	 a	 complex	 whereas	 for	 global	 docking,	 general	 symmetry	
definitions	can	be	loaded	for	any	given	point	symmetry.	In	the	first,	coarse-grained	phase	of	the	
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SymDock	protocol,	side	chains	are	approximated	as	‘pseudoatoms’.	Coarse-graining	allows	the	
subunits	 to	 sample	 the	 symmetrical	 rigid-body	 conformations	 in	 a	 smoothened	 energy	
landscape.	Next,	the	side	chains	are	reintroduced	and	the	putative	encounter	complex	is	refined	
by	symmetrical	 side-chain	optimization	at	 the	 interfaces	with	minimal	 rigid-body	motion.	The	
protocol	is	illustrated	as	a	flowchart	in	Fig.	S1.	
	
Motif	Dock	Score	discriminates	near-native	interfaces	
	
First,	we	sought	to	produce	low-scoring,	near-native	conformations	by	the	broad,	coarse-grained	
search	of	 the	 symmetrical	 conformation	 space.	 To	 recognize	a	near-native	 conformation,	 the	
various	interfaces	between	the	subunits	must	be	scored	accurately.	An	ideal	coarse-grained	score	
function	would	recover	the	broad	features	of	 the	all-atom	energy	 landscape	while	smoothing	
over	the	local	ruggedness.		
	
The	performance	of	the	previous	SymDock	algorithm	of	André	et	al	is	shown	in	Figs.	1A,	B,	D,	and	
E,	which	compare	the	docking	landscapes	after	the	coarse-grained	phase	and	the	full	protocol	for	
two	example	proteins,	viz.	Rhamnulose-1-phosphate	aldolase	(PDBID:	2V9N,	symmetry:	C4)	and	
snRNP	Sm-like	protein	(1H64,	C7).	Each	model	is	the	end-state	of	a	global	docking	simulation	and	
is	 represented	as	a	point	 in	 terms	of	 its	deviation	 from	 the	native	 conformation	 (root-mean-
square	deviation	of	Cα	atoms)	and	its	energy	predicted	by	the	given	score	function.	The	Rosetta	
all-atom	score	function	(Alford	et	al.,	2017;	Park	et	al.,	2016)	scores	models	close	to	the	native	
conformation	more	 favorably	 than	non-native	models	 (Figs.	 1A	 and	D).	However,	 the	 energy	
‘funnels’	are	absent	for	SymDock’s	coarse-grained	centroid	score	function	(Figs.	1B	and	E,	grey	
circles).	The	centroid	score	function	does	not	score	models	under	5	Å	RMSDCα	any	better	than	
those	far	away	from	the	native.	Thus,	the	lowest-scoring	structures	in	the	coarse-grained	phase	
are	not	useful	input	models	for	high-resolution	refinement.	
	
We	considered	the	characteristics	of	the	centroid	score	function	to	help	identify	opportunities	to	
improve	its	accuracy.	For	the	centroid	score	function	environment	and	interacting	residue	pair	
terms,	 only	 the	 distance	 between	 backbone	 Cα	 atoms	 of	 two	 interacting	 residues	 across	 the	
interface	is	considered		(Gray	et	al.,	2003).	Previous	studies	showed	that	this	score	function	does	
not	sufficiently	discriminate	near-native	interfaces	of	heterodimers	(Zhang	et	al.,	2013).	Also,	to	
prevent	favoring	non-specific	interactions	across	large,	spurious	interfaces,	the	residue-residue	
contact	count	of	the	centroid	score	function	is	capped,	but	this	cap	hinders	the	discrimination	of	
large	interfaces.	Together,	these	score	function	features	 lead	to	the	flat	 landscapes	and	false-
positive	energy	wells	observed	in	Figs.	1B	and	D.	
	
Next,	we	tested	whether	better	discrimination	could	be	obtained	by	replacing	the	environment,	
pair,	and	contact	scores	with	higher-resolution	information	about	residue	backbone	orientation.	
For	heterodimeric	complexes,	we	recently	developed	Motif	Dock	Score	(MDS),	which	radically	
improved	coarse-grained	interface	detection	(Marze	et	al.,	2018).	MDS	is	based	on	a	residue-pair	
transform	 framework	 (Fallas	 et	 al.,	 2017).	 It	 estimates	 the	minimum	 all-atom	 score	 for	 two	
residues	interacting	with	a	given	backbone	geometry	defined	by	the	six-dimensional	transform	
(three	 rotations	and	 three	 translations)	 required	 to	 superimpose	 the	backbone	atoms	of	one	
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residue	onto	the	other.	To	discretize	the	transform	space,	we	use	2	Å	grids	for	the	translational	
dimensions	and	22.5°	grids	for	the	rotational	dimensions.	For	each	residue	type	pair,	we	have	
pre-tabulated	 the	 lowest	 observed	 all-atom	 scores	 for	 every	 orientation	 present	 in	 high-
resolution	protein	structures	in	the	Protein	Data	Bank	(Berman	et	al.,	2000).	If	the	orientation	is	
not	observed	for	that	residue	type	pair	(as	is	the	case	for	the	majority	of	the	orientations),	we	
score	it	as	zero.	To	score	a	particular	conformation	in	the	coarse-grained	phase,	we	look	up	the	
residue	pair	scores	from	these	tables	for	every	residue	pair	across	the	interface(s)	of	the	principal	
subunit	and	sum	them.	The	symmetry	definition	is	then	used	to	scale	the	score	for	the	complex.	
	
Figs.	1C	and	F	(grey	circles)	shows	that	MDS	scores	near-native	(<5	Å	RMSDCα)	models	better	than	
far-away	models.	The	general	shape	of	the	MDS	energy	landscape	resembles	that	of	the	all-atom	
score	 function,	with	 the	 aforementioned	 energy	 funnel	 near	 zero	 RMSDCα.	Moreover,	 of	 the	
5,000	coarse-grained	models	obtained	with	MDS,	101	and	130	of	them	have	RMSDCα	values	of	
less	 than	 2	 Å	 for	 Rhamnulose-1-phosphate	 aldolase	 and	 snRNP	 Sm-like	 protein,	 respectively,	
including	86	sub-angstrom	models	for	the	former.	For	comparison,	there	are	no	models	within	2	
Å	RMSDCα	for	the	coarse-grained	phase	with	centroid	score.		
	
Another	comparison	of	MDS	score	to	the	centroid	score	function	is	in	the	ranking	of	near-native	
models	 generated	 by	 re-docking	 the	 native	 assemblies.	 Ideally,	 the	 spread	 of	 RMSDCα	 values	
should	be	minimal	and	the	models	should	score	better	than	the	global	docking	models,	as	they	
represent	the	optimal	solutions.	Starting	from	the	native	configuration,	centroid	score	forces	the	
subunits	to	move	away,	with	median	RMSDCα	of	3.4	Å	and	4.6	Å	for	Rhamnulose-1-phosphate	
aldolase	and	snRNP	Sm-like	protein,	respectively	(Figs.	1B	and	E,	triangles).	They	also	do	not	score	
better	than	the	global	docking	models.	 In	contrast,	MDS	scores	them	the	 lowest	with	median	
RMSDCα	 of	 0.6	 Å	 and	 0.8	 Å	 for	 the	 aforementioned	 complexes,	 respectively	 (Figs.	 1C	 and	 F,	
triangles).	Thus,	MDS	improves	the	docking	performance	of	the	coarse-grained	phase,	both	in	
terms	of	the	number	of	near-native	models	obtained	and	the	ability	to	discriminate	them.	
	
Next,	we	expanded	the	comparison	to	a	balanced	benchmark	of	43	complexes	from	the	two	most	
commonly	found	symmetry	groups,	cyclic	and	dihedral:	five	each	for	C2,	C3,	C4,	C5,	C6,	D2,	and	
D3	symmetries	and	two	each	for	C7,	C8,	C9,	and	D4	symmetries.	We	challenged	the	methods	
with	the	hardest	use-case,	viz.	no	information	is	known	apart	from	the	sequence	and	the	point	
symmetry.	 This	 test	 is	 akin	 to	 a	 round	 of	 the	 blind	 docking	 challenge,	 Critical	 Assessment	 of	
PRediction	of	Interactions	(CAPRI),	where	no	homologous	complex	exists	for	the	modeling	target.	
Starting	from	a	homology-modeled	monomer	each	complex,	we	generated	5,000	models	(see	
Method	Details	and	Table	S1).	In	the	5,	50,	and	500	top-scoring	models,	we	counted	the	number	
of	 models	 within	 5	 Å	 RMSDCα	 of	 the	 native	 structure.	 Table	 1	 compares	 the	 bootstrapped	
averages	 for	 the	 coarse-grained	 phase	 run	 with	 centroid	 score	 and	 with	MDS.	 For	MDS,	 on	
average	1.96	of	the	5	top-scoring	models	are	near-native	compared	to	0.32	for	centroid.	MDS	
has	a	superior	performance	for	the	50	and	500	top-scoring	models	as	well.	
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Fixed-backbone	refinement	is	insufficient	to	enter	the	binding	funnel	
	
After	 the	 initial	 arrangement	of	 the	 subunits	was	 calculated	 in	 the	 coarse-grained	phase,	we	
sought	to	produce	a	physically-realistic	all-atom	model.	To	do	so,	SymDock	reintroduces	the	side	
chains,	packs	interface	side	chains,	and	refines	the	model	by	fixed-backbone	energy	minimization	
while	allowing	small	 rigid-body	motions.	With	the	coarse-grained	phase	using	MDS	producing	
accurate	subunit	arrangements,	we	presumed	that	this	refinement	would	produce	high-quality	
models.	Surprisingly,	models	that	were	near-native	after	the	coarse-grained	phase	had	positive	
(unfavorable)	 interaction	energy	 scores	 after	 refinement,	 indicating	 that	 the	docked	 subunits	
scores	worse	than	non-interacting	monomers.	Fig.	2A	shows	the	MDS	binding	funnel	for	Xenopus	
Nucleophosmin	(1XB9,	C5)	with	models	that	have	a	positive	post-refinement	interaction	score	
labelled	red.	About	22%	of	all	structures	are	unfavorable,	and	all	but	one	near-native	(less	than	
5	Å	RMSDCα)	are	unfavorable.	To	confirm	steric	obstruction,	we	counted	clashes	as	per	the	CAPRI	
definition	(Méndez	et	al.,	2003).	Fig.	S2	shows	that	in	the	20	lowest-RMSDCα	models	after	fixed-
backbone	refinement,	the	average	number	of	inter-chain	atom-atom	clashes	is	50.6,	compared	
to	21	in	the	native	structure.	We	observed	this	insufficient	refinement	of	near-native	models	for	
most	complexes.	
	
To	test	whether	the	refinement	protocol	works	with	an	amenable	backbone	conformation,	we	
generated	100	all-atom	models	starting	from	the	native	structure	of	Nucleophosmin.	The	average	
number	of	inter-chain	clashes	after	refinement	was	18.7,	which	was	significantly	lower	than	that	
of	 the	 global	 docked	models	 (Fig.	 S4).	 All	models	were	 under	 0.7	 Å	 RMSDCα	 from	 the	 native	
structure	and	had	highly	 favorable	 interaction	energies	 (Fig.	2B).	 Since	 (a)	 the	coarse-grained	
phase	 produces	 near-native	 subunit	 arrangements,	 and	 (b)	 fixed-backbone	 refinement	 can	
discover	 the	 binding	 funnel	 with	 the	 right	 backbone	 conformation,	 backbone	 errors	 in	 the	
homology-modeled	monomers	were	likely	causing	the	clashes	in	the	docked	models.	
	
For	the	global	docking	simulations,	four	of	the	five	homology-modeled	monomers	had	backbones	
under	0.4	Å	RMSDCα,	which	was	sufficient	for	assembling	the	subunits	at	the	coarse-grained	level,	
but	insufficient	for	avoiding	steric	clashes	with	the	side	chains	present.	[In	heterodimer	docking,	
a	monomer	backbone	with	RMSD	of	0.6	Å	is	typically	sufficient	for	docking	(Kuroda	and	Gray,	
2016).]	We	speculated	that	when	symmetry	is	enforced	on	an	all-atom	model,	the	leeway	for	
backbone	variation	 is	markedly	reduced.	Minor	deviations	 from	the	native	backbone	result	 in	
substantially	higher	energies	as	exemplified	in	Fig.	2B	where	a	drop	of	117	energy	units	takes	
place	in	0.25	Å	RMSDCα.	
	
Compared	to	heterodimers	where	the	average	binding	funnel	slope	is	15	Å-1,	the	slope	for	this	
complex	was	unusually	steep.	For	the	homomeric	complexes	in	our	benchmark,	we	found	the	
average	 slope	of	 the	binding	 funnel	 to	be	249	Å-1.	 Further,	 the	average	 radius	of	 the	binding	
funnel	was	found	to	be	0.26	Å	for	these	complexes	as	opposed	to	0.41	Å	for	heterodimers	(see	
Quantification	and	Statistical	Analysis).	These	observations	are	conceptually	represented	in	Figs.	
2C	 and	 D,	 where	 homomers	 have	 a	 narrower,	 steeper	 well	 in	 the	 rugged	 all-atom	 energy	
landscape	as	compared	to	heterodimers.	More	examples	of	binding	funnel	data	for	homomers	
and	 heterodimers	 can	 be	 found	 in	 Fig.	 S3.	 As	 homomers	 generally	 have	 extensive	 interfaces	
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owing	 to	multivalent	 interactions,	 we	 normalized	 the	 slopes	 by	 dividing	 them	 by	 the	 lowest	
interface	score	observed	for	the	complex	to	obtain	slopes	of	0.62	Å-1	and	0.31	Å-1,	respectively	
for	homomeric	and	heterodimeric	complexes.	Even	after	normalization,	funnels	in	homomers	are	
twice	as	steep	as	heterodimers.	We	concluded	that	in	homomers,	for	a	backbone	with	errors,	no	
amount	 of	 side	 chain	 packing	 can	 help	 it	 find	 the	 narrow	 binding	 funnel.	 Flexible-backbone	
strategies	are	required	to	reduce	steric	clashes	and	build	physically-realistic	models.	
	
In	context,	flexible	backbone	refinement	is	crucial	to	enter	the	binding	funnel	
	
To	find	alternative	routes	to	enter	the	binding	funnel,	we	tried	mimicking	natural	mechanisms	of	
backbone	 flexibility.	 Two	 kinetic	mechanisms	widely	 observed	 in	 assembly	 and	 regulation	 of	
proteins	are	conformational	selection	and	induced	fit	(Changeux	and	Edelstein,	2011).	
	
Imitating	Conformational	Selection	
	
We	have	previously	leveraged	conformational	selection	to	improve	the	docking	performance	of	
heterodimeric	complexes	by	pre-generating	an	ensemble	of	backbone	conformations	from	the	
individual	monomers	and	docking	the	optimal	backbones	(Marze	et	al.,	2018).	Using	a	similar	
approach,	starting	from	a	homology-modeled	monomer,	we	generated	50	conformers	each	using	
three	conformer	generation	methods:	perturbations	along	the	normal	modes	by	1	Å	(Go	et	al.,	
1983),	small	backbone	perturbations	using	Backrub	(Smith	and	Kortemme,	2008),	and	general	
refinement	 using	 Rosetta’s	 Relax	 protocol	 (Tyka	 et	 al.,	 2011)	 (see	 Method	 Details).	 We	
supplemented	the	ensemble	of	the	five	original	homology-modeled	backbones	with	the	new	150	
backbone	conformations.	We	ran	500	independent	fixed-backbone	simulations	with	each	of	the	
155	monomer	backbones	and	bootstrapped	the	results	to	simulate	the	selection	of	2,500	models	
(see	Method	Details	and	Quantification	and	Statistical	Analysis).	
	
Next,	 we	 tested	 the	 efficacy	 of	 starting	 with	 these	 large,	 diverse	 ensembles	 using	 a	 small	
benchmark	of	10	cyclic	complexes.	We	compared	the	number	of	structures	with	RMSDCα	 less	
than	5	Å	from	the	native	in	the	1%	top-scoring	models,	i.e.	the	25	top-scoring	models.	Fig.	3	shows	
a	 case-by-case	 comparison.	 Docking	 with	 just	 the	 homology	 models	 (HM/Fixed-bb)	 gives	 a	
median	value	of	9.6	near-native	models	after	the	coarse-grained	phase,	which	goes	down	to	3.0	
after	 the	 full	 protocol.	 Using	 a	mixture	 of	 conformations	 (HM+Ens/Fixed-bb),	 the	 results	 get	
marginally	worse	with	median	values	of	6.8	and	2.8	near-native	models,	 respectively,	 for	 the	
coarse-grained	phase	and	the	full	protocol.	Starting	with	a	large	ensemble	improves	performance	
for	 some	 complexes	 and	 makes	 it	 worse	 for	 others.	 In	 general,	 backbone	 conformations	
generated	 from	 the	 monomer	 lack	 information	 about	 where	 the	 other	 subunits	 are	 and	
encounter	the	same	barriers	as	the	original	homology	models.	Thus,	our	conformational	selection	
approach	was	unable	to	improve	docking	accuracy	for	symmetric	homomers.	
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Imitating	Induced	Fit	
	
We	next	hypothesized	that	the	backbone	needed	to	be	adjusted	in	the	context	of	the	complex	
and	not	independent	of	it.	That	is,	since	the	coarse-grained	phase	was	correctly	predicting	the	
rigid-body	arrangement	of	the	subunits,	we	tested	using	these	coordinates	to	induce	a	backbone	
fit	at	the	interface.		Specifically,	we	alternately	repacked	side	chains	and	minimized	the	energy	
of	 the	whole	protein	while	slowly	 ramping	up	the	repulsive	component	of	 the	van	der	Waals	
potential	 from	2%	to	100%.	Gradient-based	energy	minimization	along	the	backbone	dihedral	
angles	(φ	and	ψ)	provided	an	avenue	for	the	backbones	to	relieve	clashes.	The	presence	of	the	
other	subunits	provided	the	necessary	constraints	to	move	the	backbone	to	best	fit	the	complex.	
To	 ensure	 a	 constant	 context,	 we	 removed	 rigid-body	 moves.	 Starting	 with	 just	 the	 five	
homology-modeled	monomers	per	complex,	we	generated	5,000	docked	models.	
	
Finally,	we	tested	this	approach	for	the	same	benchmark	of	ten	proteins	(HM/Flexible-bb)	and	
bootstrapped	 the	 results	 to	 simulate	 the	 selection	 of	 2,500	 models	 (see	 Quantification	 and	
Statistical	Analysis).	In	the	top-scoring	1%	of	models,	the	median	counts	of	near-native	models	
increased	to	21.1	after	the	coarse-grained	phase	and	22.3	after	the	full	protocol	(Fig.	3).	Thus,	we	
conclude	that	inducing	a	change	in	the	backbone	retains	good	coarse-grained	models	and	gains	
additional	near-native	models	 for	all	complexes	tested.	Further,	 the	average	number	of	 inter-
chain	clashes	in	the	20	lowest-RMSDCα	models	decreases	from	50.6	in	fixed-backbone	refinement	
to	14.5	(Fig.	S4).	
	
Improvement	in	global	docking	performance	over	a	diverse	benchmark	
	
In	the	two-stage	Rosetta	SymDock2	protocol,	we	combine	the	coarse-grained	phase	with	MDS	
with	 an	 in-context,	 flexible-backbone,	 all-atom	 refinement.	 To	 evaluate	 the	 performance	 of	
Rosetta	SymDock2	and	compare	it	to	SymDock	across	a	benchmark	of	43	proteins,	we	performed	
a	 global	 docking	 search	 along	 symmetrical	 conformation	 space	 starting	 from	 five	 homology-
modeled	input	monomers	per	target	to	generate	5,000	candidate	models	for	each	complex.	Next,	
we	resampled	the	docked	models	and	reported	averages	and	medians	for	targets	success	metrics	
based	on	the	near-native	model	counts.	For	the	coarse-grained	phase,	we	defined	a	near-native	
model	as	one	with	RMSDCα	under	5	Å.	For	the	full	protocol,	we	defined	near-native	as	acceptable,	
medium-quality,	or	high-quality	as	per	the	CAPRI	criteria,	which	are	based	on	the	ligand	RMSDbb,	
interface	RMSDbb,	and	fraction	of	native	contacts	recovered		(Méndez	et	al.,	2003)	and	detailed	
in	Quantification	and	Statistical	Analysis.	
	
To	test	near-native	sampling	and	discrimination	ability,	we	counted	the	number	of	near-native	
models	in	the	five	top-scoring	models	and	averaged	over	resampling	attempts	to	calculate	the	
⟨N5⟩	metric	 (see	Quantification	 and	 Statistical	 Analysis).	 ⟨N5⟩	 after	 the	 coarse-grained	 phase	
indicates	 the	 ability	 of	 the	 broad	 search	 in	 the	 coarse-grained	 space	 to	 find	 approximate	
solutions.	Most	importantly,	⟨N5⟩	after	the	full	protocol	determines	the	overall	accuracy	of	the	
method.	For	SymDock2,	the	average	⟨N5⟩	value	improved	from	2.0	to	2.8	going	from	the	coarse-
grained	phase	to	the	full	protocol,	indicating	that	while	the	broad	search	in	the	coarse-grained	
space	 found	 approximate	 solutions,	 the	 introduction	 of	 side	 chains	 and	 flexible-backbone	
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refinement	further	discriminated	near-native	models.	SymDock	had	an	average	⟨N5⟩	value	of	0.3	
for	both	the	coarse-grained	phase	and	0.8	for	the	full	protocol	suggesting	a	failure	to	sample	and	
discriminate	near-native	models	in	most	complexes.	Fig.	4	presents	a	case-by-case	comparison	
between	the	two	methods,	and	Table	2	provides	a	category-wise	summary	of	the	benchmark	
results.	The	average	performance	on	cyclic	complexes	is	better	than	on	dihedral	complexes	on	
every	metric.	Detailed	metrics	and	plots	for	each	complex	can	be	found	in	Table	S2	and	Figs.	S5–
S8.	
	
We	classified	a	homomeric	complex	as	successfully	docked	if	⟨N5⟩	≥	3,	i.e.	at	least	3	of	the	5	top-
scoring	models	are	near-native	on	average.	This	criterion	indicates	that	the	protocol	converges	
on	the	native	structure.	While	SymDock	docked	4	of	the	43	complexes	successfully,	SymDock2	
docked	24	of	them	successfully,	representing	a	six-fold	improvement	in	the	success	rate	of	blind	
docking	for	a	general	case.	We	observed	performance	gains	for	both	symmetry	groups,	with	15	
new	cyclic	complexes	and	5	new	dihedral	complexes	being	docked	successfully.	
	
To	estimate	how	many	independent	trajectories	must	be	run	to	completion,	we	evaluated	the	
fold-enrichment	of	near-native	models	for	the	top-scoring	1%	of	models	after	the	coarse-grained	
phase,	 ⟨E1%⟩.	 SymDock2	had	an	average	 ⟨E1%⟩	value	of	29.3,	 indicating	a	highly	enriched	 low-
scoring	model	set,	while	SymDock	had	a	lower	average	⟨E1%⟩	value	of	6.6.	Thus,	if	we	were	to	only	
refine	the	top-scoring	1%	of	models	after	the	coarse-grained	phase	of	SymDock2,	the	average	
⟨N5⟩	 value	 after	 the	 full	 protocol	 would	 be	 2.9.	 Furthermore,	 the	 number	 of	 complexes	
successfully	docked	for	SymDock2	increases	to	25.	To	explain	the	increase	in	success	rates,	we	
consider	the	example	of	Acylhomoserine	lactonase	(4ZO2,	C2).	With	the	all-atom	score	function,	
a	non-native	binding	mode	around	10	Å	RMSDCα	from	the	native	is	scored	more	favorably	than	
near-native	conformations	 (Fig.	S7).	MDS	discriminates	 the	native	biding	mode	better	and	no	
models	having	the	aforementioned	non-native	binding	mode	are	selected	in	the	top	1%	(Fig.	S5).	
By	reducing	the	number	of	false	positives,	the	success	rates	are	increased.	Thus,	we	recommend	
running	 SymDock2	 as	 a	 two-step	 protocol	 where	 only	 the	 top-scoring	 1%	 of	 coarse-grained	
models	are	refined	(see	flowchart	in	Fig.	S2).	
	
Flexible-backbone	refinement	does	not	affect	net	efficiency		
	
Compared	 to	 fixed-backbone	 refinement,	 modeling	 backbone	 motions	 requires	 sampling	 an	
exponentially	larger	conformational	space.	Instead	of	explicitly	sampling	backbone	changes,	we	
employed	 systematic	 energy	 minimization	 along	 backbone	 torsions	 to	 induce	 a	 fit.	 In	 fixed-
backbone	refinement	of	the	 interfaces,	the	computational	time	depends	on	the	 interface	size	
and	is	largely	independent	of	the	monomer	size.	On	the	other	hand,	energy	minimization	along	
the	backbone	involves	small	changes	in	the	subunit	core	to	better	accommodate	the	interfaces	
and	hence,	the	time	increases	with	monomer	size.	In	fact,	SymDock2	was	between	2	and	3	times	
slower	than	SymDock	for	models	that	had	larger	interfaces	to	be	fit	(data	not	shown).	Flexible	
backbone	refinement	also	led	to	the	fitting	of	spurious	interfaces	that	were	then	weeded	out	by	
their	relatively	poor	interface	scores.	As	a	result,	almost	every	SymDock2	model	had	a	negative	
interface	score.	Compared	to	SymDock,	where	a	significant	number	of	models	are	filtered	out	
because	of	positive	 interface	scores,	 induced	fit	 reduces	the	total	number	of	models	rejected	
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with	the	same	filters	(see	Method	Details	for	filter	values).	As	a	result	of	the	low	rejection	rate,	
SymDock2	can	compensate	for	the	additional	time	required	for	flexible-backbone	refinement	by	
attempting	 fewer	 trajectories.	We	have	 previously	 shown	 that	MDS	 is	marginally	 faster	 than	
centroid	 score	 in	 the	 coarse-grained	phase	 (Marze	 et	 al.,	 2018),	which	 too	works	 in	 favor	 of	
SymDock2.	For	an	even	comparison,	in	Fig.	5,	we	show	the	time	per	model	for	the	two	methods	
for	 every	 complex	 when	 all	 coarse-grained	 models	 are	 refined.	 SymDock	 was	 faster	 for	 22	
complexes	and	SymDock2	for	20	complexes.	SymDock	was	typically	faster	for	larger	complexes	
and	SymDock2	for	smaller	complexes.	In	31	of	the	43	complexes	the	run	time	difference	was	less	
than	±	20%,	with	the	largest	difference	being	less	than	70%.	
	
High	 fold-enrichment	 of	 near-native	models	 for	 the	 1%	 top-scoring	models	 after	 the	 coarse-
grained	 phase	 allowed	 us	 to	 considerably	 reduce	 the	 number	 of	 models	 refined	 using	 the	
expensive	all-atom	refinement.	Broad	sampling	in	the	coarse-grained	phase	takes	51-78%	of	the	
time	in	each	trajectory.	By	carrying	forward	only	the	top	1%	from	the	coarse-grained	phase	to	
the	refinement	phase,	we	could	save	22-49%	of	the	total	time.	For	the	average	complex	in	our	
benchmark,	 to	generate	5,000	coarse-grained	models	and	 then	 refine	50	of	 them,	SymDock2	
requires	89	hours	on	a	4-core	personal	computer	or	under	1	hour	on	a	360-core	cluster.	
	

Discussion	
	
Here,	 we	 have	 developed	 and	 benchmarked	 a	 method	 to	 accurately	 model	 homomeric	
assemblies	 from	 an	 approximate	 monomer	 structure	 and	 the	 point	 symmetry.	 Our	 first	
innovation	 was	 using	 a	 six-dimensional	 coarse-grained	 scoring	 scheme,	MDS,	 to	 successfully	
discriminate	near-native	interfaces	with	accuracy	comparable	to	an	all-atom	score	function.	The	
second	 innovation	was	 refining	approximate	models	with	 small	backbone	motions	 to	 fit	 tight	
complexes	together.	Taken	together,	these	two	advances	achieve	successful	blind	global	docking	
of	six	times	as	many	complexes	as	Rosetta’s	original	SymDock	(André	et	al.,	2007).	In	Table	3,	we	
compare	the	global	docking	performance	of	Rosetta	SymDock	and	the	new	SymDock2	to	four	
leading	 homomer	 docking	 methods	 recently	 tested	 by	 Yan	 et	 al:	 	 SymmDock	 (Schneidman-
Duhovny	et	 al.,	 2005),	M-ZDOCK	 (Pierce	 et	 al.,	 2005),	 SAM	 (Ritchie	 and	Grudinin,	 2016),	 and	
HSYMDOCK	(Yan	et	al.,	2018).	In	this	table,	to	compare	to	the	other	methods,	we	changed	our	
success	criterion	to	match	their	criterion	of	⟨N10⟩	≥	1,	 i.e.	at	 least	one	of	 the	ten	top-scoring	
models	should	be	CAPRI	acceptable,	medium-	or	high-quality.	While	the	methods	are	tested	on	
different	benchmarks	with	different	ways	of	generating	unbound	structures,	general	patterns	
can	be	observed.	With	a	success	rate	of	71%	for	cyclic	complexes,	Rosetta	SymDock2	outperforms	
other	 methods.	 For	 dihedral	 complexes,	 SymDock2’s	 success	 rate	 of	 50%	 is	 comparable	 to	
HSYMDOCK.	Moreover,	flexible	refinement	in	SymDock2	ensures	that	the	interfaces	are	relatively	
free	of	clashes,	which	were	frequently	observed	with	fixed-backbone	docking	of	tightly-packed	
homomers.		
	
We	also	explored	some	characteristics	of	 the	 interfaces	of	homomers	and	compared	them	to	
those	 of	 heterodimers.	 We	 developed	 MDS	 with	 the	 conjecture	 that	 given	 the	 relative	
orientation	between	backbones	of	interacting	residues,	we	can	estimate	the	optimal	side	chain	
interaction	energy.	The	broad	bin	size	of	the	score	tables	prevents	overfitting	to	any	particular	
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protein	class	(Marze	et	al.,	2018).	Although	MDS	was	developed	to	recognize	hetero-oligomeric	
interfaces,	it	performs	just	as	well	for	homomers,	which	suggests	that	at	the	level	of	individual	
residue	pairs,	the	interfaces	of	homo-	and	hetero-mers	have	similar	interactions.	
	
We	found	that	the	near-native	binding	energy	landscape	was	14	times	steeper	on	average	than	
that	of	heterodimers.	Even	after	normalizing	for	the	depth	of	the	binding	funnels,	the	homomer	
funnels	were	twice	as	steep	as	those	of	heterodimers.	This	energy	landscape	is	seen	by	symmetric	
docking	protocols	with	enforced	symmetry,	which	is	not	a	constraint	for	the	natural	association	
of	the	subunits	for	symmetries	higher	than	C2.	For	example,	D2	complexes	 likely	assemble	as	
dimer	of	dimers	with	the	ratio	of	the	interaction	strengths	of	the	different	interfaces	dictating	
the	hierarchy	of	assembly	(Villar	et	al.,	2009).	For	some	proteins,	inter-subunit	interactions	may	
be	essential	to	find	an	energy	funnel	while	folding	(Wolynes,	1996),	and	hence	an	independent	
docking	landscape	may	not	exist.	Reproducing	these	multi-state	interactions	becomes	infeasible	
for	a	general	case	where	the	pathway	of	association	is	unknown,	and	so	we	resort	to	docking	all	
the	subunits	together	symmetrically.	However,	once	assembled,	the	depth	of	the	energy	funnel	
suggests	that	symmetry	confers	stability	through	multivalent	associations.	
	
Most	of	the	proteins	that	we	have	considered	in	the	benchmark	are	globular,	which	allowed	us	
to	deconstruct	 the	problem	 into	generating	an	approximate	monomer	and	 then	docking	and	
refining	 it.	 The	 homology	 server	 we	 used,	 Robetta,	 performed	 admirably	 with	 monomer	
modeling.	For	the	few	cases	for	which	it	did	not	produce	a	monomer	model	under	2	Å	RMSD,	our	
docking	performance	suffered.	For	example,	for	phage	SF6	terminase	small	subunit	(3ZQO),	the	
complex	 is	 stabilized	 by	 intertwined	 interfaces,	 and	 hence	 Robetta	 failed	 to	 create	 a	 good	
monomer	model.	 Such	proteins	 require	 simultaneous	 folding	and	docking.	Previous	 fold-and-
dock	attempts	have	achieved	success	rates	similar	to	that	of	symmetrically	docking	small	globular	
proteins	(Das	et	al.,	2009).	However,	owing	to	the	sheer	size	of	the	conformational	space	that	
needs	to	be	sampled,	without	experimental	constraints,	de	novo	folding	and	docking	is	currently	
feasible	 only	 when	 subunits	 are	 smaller	 than	 100	 residues.	 Instead,	 incorporating	 symmetry	
information	while	homology	modeling	provides	a	promising	avenue,	which	servers	like	Robetta	
(Park	et	al.,	2018),	SWISS-MODEL	Oligo	(Bertoni	et	al.,	2017)	and	GalaxyHomomer	(Baek	et	al.,	
2017)	 have	 recently	 demonstrated.	 Unfortunately,	 >90%	 sequence	 identity	 is	 required	 to	
guarantee	symmetry	 type	conservation	 (Levy	et	al.,	2008);	at	<30%	 identity,	 interactions	may	
differ	completely	(Aloy	et	al.,	2003).	In	case	of	Robetta,	11	of	the	22	complexes	of	the	CASP12	
experiment	(Kryshtafovych	et	al.,	2018)	did	not	have	sufficient	symmetric	templates	and	in	case	
of	 SWISS-MODEL	Oligo,	20%	of	 the	 complexes	 considered	did	not	have	any	viable	 symmetric	
templates.	Thus,	for	 large	homomers,	especially	for	those	without	close	homologs,	symmetric	
docking	methods	are	required	for	modeling	the	complex.	
	
The	versatility	of	the	techniques	developed	here	facilitates	application	across	a	broad	spectrum	
of	problems.	 Integration	with	Rosetta’s	 input	system	allows	us	 to	 incorporate	cryo-EM,	NMR,	
SAXS,	cross-linking,	and	sequence	co-evolution	data	(Kahraman	et	al.,	2013;	Ovchinnikov	et	al.,	
2014;	Shen	et	al.,	2008;	Sønderby	et	al.,	2017).	In	combination	with	these	data,	SymDock2	is	a	
powerful	tool	for	understanding	homomer	assembly	and	function.		
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Figure	Legends	

	
Figure	1.	Comparison	of	energy	landscapes	in	all-atom	phase	and	coarse-grained	phase.		
Score	versus	RMSDCα	plots	for	two	representative	complexes,	Rhamnulose-1-phosphate	aldolase	
(A,	B	and	C)	and	 snRNP	Sm-like	protein	 (C,	D	and	E)	 for	5,000	models	generated	 from	global	
docking	of	homology-modeled	monomers	(black,	grey	circles)	and	100	models	generated	by	re-
docking	of	bound	subunits	(triangles).	Coarse-grained	energy	landscapes	with	Motif	Dock	Score	
(MDS)	 (C	and	F)	 resemble	 the	all-atom	energy	 landscapes	 (A	and	D),	but	 those	with	Centroid	
Score	(B	and	E)	do	not.	Starting	from	the	homology-modeled	monomers,	none	of	the	50	top-
scoring	models	generated	using	Centroid	Score	are	within	5	Å	RMSDCα.	All	the	100	top-scoring	
models	generated	using	MDS	are	under	3	Å	RMSDCα.	When	re-docking	bound	subunits,	closest	
models	generated	using	Centroid	Score	(B	and	E)	have	1.9	Å	RMSDCα	and	high	relative	scores	in	
both	cases.	Bound	re-docking	with	MDS	(C	and	F)	produces	over	80%	of	the	models	docked	to	
within	 1	 Å	 RMSDCα	 in	 both	 cases.	 These	 sub-angstrom	 re-docked	 models	 also	 score	 more	
favorably	than	all	docking	models	made	using	homology-modeled	monomers.	Hence,	Centroid	
Score	does	not	recognize	the	energy	well	near	the	native	conformation,	whereas	MDS	does.	
	
Figure	 2.	 Fixed-backbone	 refinement	 is	 insufficient	 to	 enter	 narrow	 binding	 funnel.	
(A)	 Coarse-grained	 score	 versus	 RMSDCα	 (after	 coarse-grained	 phase)	 plots	 for	 Xenopus	
Nucleophosmin	 for	 5,000	 models.	 Models	 are	 colored	 by	 their	 interface	 score	 after	 fixed-
backbone	refinement.	Almost	all	models	under	5	Å	RMSDCα	have	a	positive	interface	after	fixed-
backbone	refinement	arising	from	minor	clashes	due	to	the	introduction	of	side	chains,	despite	
repacking.	Consequently,	these	models	are	discarded. 
(B)	Interface	score	versus	RMSDCα	(after	full-protocol)	plots	for	Xenopus	Nucleophosmin.	A	rapid	
drop	in	interface	score	between	0.6	and	0.4	Å	RMSDCα	leads	to	an	energy	funnel	with	steep	slope	
(dashed	line)	of	423	Å-1	and	a	radius	of	0.25	Å.	
(C)	Conceptual	representation	of	the	energy	landscape	near	the	binding	funnel	for	heterodimers.	
The	funnel	is	comparatively	shallow	with	local	minima	near	it.	
(D)	Conceptual	representation	of	the	energy	landscape	near	the	binding	funnel	for	homodimers	
as	seen	by	symmetrical	docking	protocols.	The	funnel	is	narrow	and	steep	with	no	comparable	
local	minima.	
	
Figure	3.	Flexible-backbone	refinement	improves	docking	performance.	
Comparison	of	bootstrapped	averages	of	the	number	of	near-native	structures	in	the	set	of	2,500	
docking	models	using:	[white]	the	homology	models	(HM)	and	fixed-backbone	refinement,	[light	
grey]	 homology	 models	 supplemented	 with	 an	 ensemble	 of	 150	 pre-generated	 backbone	
conformations	(HM+Ens)	and	[dark	grey]	fixed-backbone	refinement,	and	the	homology	models	
and	flexible-backbone	refinement	after	the	coarse-grained	phase	(A)	and	after	the	full	protocol	
(B).	Starting	with	150	additional	backbone	conformations	generated	without	the	context	of	the	
complex	 improves	docking	performance	 for	4	out	of	10	 complexes,	but	makes	 it	worse	 for	5	
complexes.	 Starting	 with	 just	 the	 homology	 models	 and	 performing	 flexible-backbone	
refinement	leads	to	improvements	in	9	out	of	10	complexes	after	the	coarse-grained	phase	and	
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in	all	complexes	after	the	full	protocol.	After	flexible-backbone	refinement,	more	than	70%	of	the	
top-scoring	models	were	near-native	for	9	out	of	the	10	complexes.	
	
Figure	4.	Rosetta	SymDock2	compares	favorably	with	SymDock	on	various	assessment	metrics.	
Comparison	of	bootstrapped-averaged	metrics	for	43	individual	complexes	(31	cyclic	complexes	
[triangle]	and	12	dihedral	complexes	[diamond])	both	after	the	coarse-grained	phase	(A	and	B)	
and	after	the	full	protocol	(C)	shows	significant	performance	gains.	All	complexes	(points)	above	
the	diagonal	line	are	improved	in	SymDock2.	
(A)	Comparison	of	fold-enrichment	of	near-native	models	in	the	1%	top-scoring	models,	⟨E1%⟩	on	
a	log-log	scale	shows	a	higher	enrichment	in	19	cyclics	and	3	dihedrals	and	a	lower	value	in	4	
cyclics	 and	 0	 dihedrals.	 Complexes	 to	 the	 right	 of	 the	 vertical	 dashed	 line	 are	 enriched	 in	
SymDock,	and	complexes	above	the	horizontal	dashed	line	are	enriched	in	SymDock2.	
(B	 and	C)	Comparison	of	number	of	near-native	models	 in	 the	 five	 top-scoring	models,	 ⟨N5⟩,	
shows	marked	improvements	both	after	the	coarse-grained	phase	(B)	and	after	the	full	protocol	
(C).	 Areas	 above	 and	 below	 the	 dashed	 lines	 indicate	 cases	 where	 the	 two	 methods	 differ	
significantly,	i.e.	by	more	than	1	model	on	average.	SymDock2	has	significant	improvements	in	
16	cyclics	and	1	dihedral	complex	after	the	coarse-grained	phase,	and	most	importantly,	in	17	
cyclics	and	5	dihedrals	after	the	full	protocol.	No	complexes	were	modeled	significantly	worse	
with	SymDock2.	
	
Figure	5.	On	average,	Rosetta	SymDock	and	SymDock2	have	similar	per-decoy	runtimes	in	the	
benchmark.	
Comparison	 of	 average	 time	 per	 decoy	 on	 a	 log-log	 plot	 demonstrates	 similar	 scaling	 with	
complex	size	and	symmetry	for	SymDock	(×)	and	SymDock2	(+).	Despite	having	a	slower	all-atom	
refinement	phase,	no	complex	had	a	more	than	a	70%	overhead	with	SymDock2.	For	the	two	
methods,	run	times	were	within	±	20%	for	31	out	of	43	complexes.	
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Tables	
	
	
Table	1.	Average	counts	of	near-native	structures	for	the	5,	50,	and	500	top-scoring	models	
after	the	coarse-grained	phase	for	coarse-grained	score	functions.	
	

	
	
	 	

Score	Function	 ⟨N5⟩	 ⟨N50⟩	 ⟨N500⟩	
Centroid	Score	 0.32	±	0.13	 4.2	±	0.8	 25.5	±	2.7	
Motif	Dock	Score	 1.96	±	0.18	 14.9	±	1.1	 41.3	±	4.0	
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Table	2.	Category-wise	summary	of	 the	results	of	Rosetta	SymDock	and	SymDock2	across	a	
benchmark	of	43	complexes.	
	

	 Category	

SymDock	 SymDock2	
Coarse-
grained	
⟨E1%⟩	

Coarse-
grained	
⟨N5⟩	

Full	
protocol	
⟨N5⟩	

Coarse-
grained	
⟨E1%⟩	

Coarse-
grained	
⟨N5⟩	

Full	
protocol	
⟨N5⟩	

Average	
Value	a	

Cyclic	(n	=	31)	 6.7	 0.4	 1.1	 34.6	 2.6	 3.1	
Dihedral	(n	=	12)	 6.4	 0.1	 0.2	 15.8	 0.2	 1.8	
All	(n	=	43)	 6.6	 0.3	 0.8	 29.3	 2.0	 2.8	
All	w/	1%	filter	c	 N/A	 N/A	 1.0	 N/A	 N/A	 2.9	

Expected	
Success	b	
	

Cyclic	(n	=	31)	 6	 2	 4	 14	 16	 19	
Dihedral	(n	=	12)	 0	 0	 0	 0	 0	 5	
All	(n	=	43)	 6	 2	 4	 14	 16	 24	
All	w/	1%	filter	c	 N/A	 N/A	 4	 N/A	 N/A	 25	

	
a	Values	are	the	average	of	bootstrapped	means	across	all	complexes	of	the	specified	category.	
b	 Expected	 success	 is	 the	 number	 of	 successfully-docked	 complexes	 based	 on	 the	 following	
criteria:	for	N5,	⟨N5⟩	≥	3;	for	E1%,	⟨N50⟩	≥	15.	
c	Only	the	1%	top-scoring	models	after	the	coarse-grained	phase	underwent	all-atom	refinement.	
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Table	 3.	 Comparison	 of	 leading	 symmetrical	 homomer	 docking	 methods	 with	 Rosetta	
SymDock2.	
	
	 Accuracy	

Method	 Description	 Cyclic	
Complexes	

Dihedral	
Complexes	

SymmDock		
(Schneidman-Duhovny	et	al.,	2005)a	

Local	feature	matching,	
cluster	evaluation	

79/213	
(37.1%)	

N.A.d	

M-ZDOCK	
(Pierce	et	al.,	2005)a	

FFT	docking,	model	
evaluation	

86/213	
(40.4%)	

N.A.d	

SAM	
(Ritchie	and	Grudinin,	2016)a	

Spherical	polar	FFT	
docking,	model	evaluation	

94/213	
(44.1%)	

13/35	
(37.1%)	

HSYMDOCK	
(Yan	et	al.,	2018)a	

FFT	docking,	cluster	
evaluation	

104/213	
(48.8%)	

19/35	
(54.3%)	

Rosetta	SymDock	
(André	et	al.,	2007)b,c	

Monte	Carlo	docking,	
model	evaluation	

15/31	
(48.4%)	

2/12	
(16.7%)	

Rosetta	SymDock2	
(This	article)b,c	

Monte	Carlo	docking,	
model	evaluation	

22/31	
(71.0%)	

6/12	
(50.0%)	

	

a	Benchmark	set:	Yan	et	al.,	2018	
b	Benchmark	set:	this	article	
c	For	an	even	comparison	of	all	the	methods,	the	metric	for	success	was	changed	from	⟨N5⟩	≥	3	
to	⟨N10⟩	≥	1.	
d	Dihedral	complex	docking	is	not	available	with	this	method.	
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STAR�Methods	
	
Key	Resources	Table	
	
Software	and	Algorithms	
Rosetta	SymDock	 André	et	al.,	2007	 https://www.rosettacommons.org/software	

Rosetta	SymDock2	 This	article	 https://www.rosettacommons.org/software	

Rosetta	Relax	 Tyka	et	al.,	2011	 https://www.rosettacommons.org/software	

Rosetta	Backrub	 Smith	and	Kortemme,	2008	 https://www.rosettacommons.org/software	

RosettaScripts	 Fleishman	et	al.,	2011	 https://www.rosettacommons.org/software	

PyRosetta	 Chaudhury	et	al.,	2010	 http://www.pyrosetta.org/	

	
Method	Details	
	
Benchmark	set	generation	
We	generated	a	benchmark	of	symmetric	homomeric	proteins	from	structures	deposited	in	the	
Protein	Data	Bank	(PDB)	having	either	cyclic	(C2-C9)	or	dihedral	(D2-D4)	point	symmetries.	First,	
we	filtered	structures	by	resolution,	retaining	those	with	a	resolution	of	1.5	Å	or	better	for	C2-C4	
and	D2-D4,	with	a	resolution	of	2.0	Å	or	better	for	C5-C7,	and	with	a	resolution	of	2.5	Å	or	better	
for	C8-C9.	We	then	randomly	chose	complexes	from	each	symmetry	group	and	retained	those	
that	passed	the	following	selection	criteria.	We	discarded	entries	with	atoms	having	B	factors	
greater	 than	 40	 or	 ligands	 with	 more	 than	 5	 atoms	 at	 the	 interfaces.	 Additionally,	 we	 only	
included	entries	for	which	the	biologically	relevant	symmetry	is	confirmed	in	a	publication.	Next,	
we	discarded	any	entry	for	which	the	earliest	REVDAT	record	date	was	earlier	than	2002.	Within	
each	symmetry	group,	we	selected	complexes	to	include	a	range	of	monomer	sizes	and	diversity	
in	secondary	structural	elements.	We	did	not	filter	out	complexes	with	intertwined	interfaces.	In	
total,	we	selected	a	benchmark	of	43	complexes	of	different	symmetries:	five	each	for	C2,	C3,	C4,	
C5,	C6,	D2,	and	D3	symmetries	and	two	each	for	C7,	C8,	C9,	and	D4	symmetries.	The	PDBs	chosen	
were:	
	

Symmetric	Benchmark	Set 

Target	 Symmetry	 Resolution	
(Å)	 Type	 Subunit	size	

(residues)	
Earliest	
REVDAT	

3urr	 C2	 1.4	 transferase	 153	 21-Dec-11	

1wpn*	 C2	 1.3	 hydrolase	 188	 23-Nov-04	

2nlv	 C2	 1.3	
XisI-like	
(unknown	function)	

112	 5-Dec-06	

3m1z*	 C2	 1.42	 lyase	 228	 16-Jun-10	

4zo2	 C2	 1.09	 hydrolase	 294	 15-Jul-15	

1sg4*	 C3	 1.3	 isomerase	 260	 18-Jan-05	
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4co0	 C3	 1.4	 signaling	protein	 112	 28-May-14	

4d7y*	 C3	 1.44	 signaling	protein	 146	 28-Jan-15	

4xla	 C3	 1.47	 viral	protein	 600	 20-Jan-16	

5i6n	 C3	 1.22	 oxidoreductase	 332	 13-Jul-16	

1p5b	 C4	 1.35	 oxidoreductase	 380	 28-Oct-03	

2o6n*	 C4	 1.1	 de	novo	protein	 35	 23-Oct-07	

2v9n*	 C4	 1.4	 lyase	 274	 15-Jan-08	

4z0g	 C4	 1.25	 oxidoreductase	 413	 25-Nov-15	

3v9o*	 C4	 1.45	 lyase	 143	 25-Jan-12	

1xb9*	 C5	 1.9	 chaperone	 114	 21-Dec-04	

4avs	 C5	 1.4	
sugar	binding	
protein	

204	 19-Jun-13	

4u62	 C5	 1.55	 viral	protein	 280	 5-Aug-15	

5a12	 C5	 1.4	 oxidoreductase	 242	 2-Sep-15	

5lzh	 C5	 1.13	 toxin	 103	 31-May-17	

3h47*	 C6	 1.9	 viral	protein	 231	 23-Jun-09	

4ox6*	 C6	 1.34	 structural	protein	 127	 27-Aug-14	

2xf7	 C6	 1.61	 viral	protein	 51	 11-Aug-10	

1nlf	 C6	 1.95	 replication	 279	 29-Apr-03	

4w64	 C6	 1.55	
Hcp1	protein	
(Unknown	
function)	

171	 1-Jul-15	

4owk	 C7	 2.0	 toxin	 138	 28-May-14	

1h64	 C7	 1.9	 Sm-like	protein	 75	 19-Dec-02	

4f87	 C8	 1.4	
antimicrobial	
protein;	viral	
protein	

72	 25-Jul-12	

3b8o	 C8	 2.4	
biosynthetic	
protein	

265	 22-Jan-08	

3zqo	 C9	 1.68	
DNA	binding	
protein	

72	
28-Dec-11	
	

3p9a	 C9	 1.75	
DNA	binding	
protein	

162	 9-May-12	

1orr	 D2	 1.5	 isomerase	 347	 26-Aug-03	

1zjz	 D2	 1.1	 oxidoreductase	 251	 21-Jun-05	

2bv4	 D2	 1.0	 lectin	 113	 25-May-06	
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4oqc	 D2	 1.3	 oxygen	binding	 302	 24-Dec-14	

2vqr	 D2	 1.42	 hydrolase	 543	 30-Sep-08	

3v4f	 D3	 1.39	 signaling	protein	 166	 8-Aug-12	

2bhq	 D3	 1.4	 oxidoreductase	 516	 9-Mar-06	

3qns	 D3	 1.4	 oxidoreductase	 353	 27-Apr-11	

2j5g	 D3	 1.46	 hydrolase	 263	 16-Jan-07	

1gxu	 D3	 1.27	 phosphatase	 91	 12-Sep-02	

2r8e	 D4	 1.4	 hydrolase	 188	 23-Sep-08	

3r1m	 D4	 1.5	
metal	binding	
protein	

385	 12-Oct-11	

 
From	the	set	of	available	structures,	we	randomly	chose	10	cyclic	complexes	for	testing	flexible-
backbone	strategies.	These	complexes	are	listed	with	*	after	the	PDB	ID	in	the	table	above.	The	
full	benchmark	could	not	be	used	as	ensemble	generation	and	global	docking	starting	with	150+	
monomer	conformations	were	extremely	resource	consuming.		
	
Generation	of	homology-modeled	monomers	
	
For	each	protein,	we	obtained	five	homology-modeled	monomers	from	the	Robetta	server	(Song	
et	al.,	2013).	We	submitted	the	FASTA	sequence	for	the	first	monomer	chain	to	Robetta.	To	best	
simulate	CAPRI	conditions,	we	instructed	Robetta	to	only	consider	templates	older	than	the	first	
REVDAT	 record	 for	 the	 complex	 being	 modeled,	 i.e.	 only	 those	 templates	 that	 would	 have	
existed	 before	 the	 PDB	was	 deposited.	 Secondly,	we	 instructed	 Robetta	 not	 to	 consider	 any	
symmetry	 information	while	modeling	 the	monomers.	The	monomers	obtained	were	used	as	
input	structures	for	the	SymDock2	docking	protocol. 
	

Generation	of	alternative	conformations	from	the	monomer	
	
From	the	five	monomer	models	produced	for	each	target	by	Robetta,	the	model	with	the	highest	
backbone	RMSD	less	than	1.5	Å	was	selected	as	input	for	three	alternative	conformer	generation	
methods	in	order	to	sample	a	variety	of	backbone	conformations.	This	RMSD	cutoff	was	chosen	
so	that	the	conformations	are	not	too	close	to	the	native	structure	and	not	so	different	that	they	
do	 not	 fit	 in	 with	 other	 subunits.	 Relax,	 Backrub,	 and	 normal	 mode	 analysis	 (NMA)	 with	
perturbation	steps	of	1	Å	were	each	used	to	produce	50	structures,	resulting	in	an	ensemble	of	
150	 structures	 per	 target.	 The	 conformations	 in	 these	 ensembles	 were	 pooled	 with	 the	
homology-modeled	monomers	and	used	as	input	structures	for	the	SymDock2	docking	protocol.	
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Relax	
	
Rosetta	Relax	is	a	refinement	protocol	in	which	the	protein	is	perturbed	using	a	series	of	small	
backbone	torsion	moves	(Tyka	et	al.,	2011),	which	is	followed	by	side-chain	repacking	and	energy	
minimization	along	all	 torsion	angles	 (φ,	ψ	 and	χi).	 Each	perturbation	 step	 is	 carried	out	at	a	
particular	 weight	 of	 the	 van	 der	Waals	 repulsive	 component	 of	 the	 all-atom	 score	 function	
(fa_rep).	In	each	cycle,	the	weight	is	progressively	ramped	from	20%	of	the	maximum	(to	allow	
atoms	to	come	closer)	to	100%	(to	resolve	clashes).	The	lowest	energy	structure	after	20	such	
cycles	is	chosen	as	the	final	structure	for	that	trajectory.	Relax	was	used	to	generate	50	monomer	
conformations.	
	
The	Relax	protocol	was	implemented	using	the	following	command:		
	
relax.linuxgccrelease	

-in:file:s <PDB> -nstruct 50 -relax:thorough 	
			

Backrub	
	
Rosetta	 Backrub	 attempts	 to	 capture	 small	 conformational	 changes	 that	 proteins	 undergo	 in	
solution	(Smith	and	Kortemme,	2008).	The	protein	backbone	is	divided	into	segments	and	each	
segment	is	rotated	about	the	axis	joining	the	first	and	the	last	backbone	atom	of	the	segment,	
while	fixing	the	rest	of	the	protein.	The	rotational	movements	are	along	six	internal	backbone	
degrees	of	freedom:	the	φ,	ψ,	and	the	N-Cα-C	bond	angles	at	each	pivot.	This	is	followed	by	side-
chain	repacking	and	energy	minimization	along	all	torsion	angles	(φ,	ψ	and	χi).	This	process	 is	
repeated	 for	 20,000	 trials	 and	 the	 lowest	 energy	 structure	 is	 chosen.	 Backrub	 was	 used	 to	
generate	50	monomer	conformations.	
	
The	Backrub	protocol	in	Rosetta	was	implemented	using	the	following	command:	
	
backrub.linuxgccrelease 

-in:file:s <PDB>	   -backrub:mc_kt 0.6	 	
-nstruct 50 -backrub:ntrials 20000		

	
Perturbation	along	normal	modes	
	
A	normal	mode	of	the	protein	is	a	collective	motion	in	which	all	bonds	are	vibrating	with	the	same	
frequency	and	phase:	normal	mode	analysis	(NMA)	reveals	accessible	low-frequency	vibrational	
modes	 that	 are	 thought	 to	 capture	biologically	 relevant	protein	motions	 (Go	et	 al.,	 1983).	 In	
Rosetta,	NMA	is	implemented	via	the	XML	interface	RosettaScripts	(Fleishman	et	al.,	2011).	To	
generate	monomer	conformations,	the	protein	is	perturbed	by	steps	of	1	Å	randomly	distributed	
over	 the	 first	 five	normal	modes.	As	 this	motion	disrupts	bond	angles	 and	bond	 lengths,	 the	
perturbed	 structure	 is	 subsequently	 relaxed	 using	 the	 aforementioned	 method	 with	 the	
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exception	 of	 energy	minimization	 being	 along	Cartesian	 coordinates	 of	 the	 atoms.	 The	 score	
function	of	Relax	is	biased	to	favor	ideal	bond	angles	and	bond	lengths.	This	method	was	used	to	
generate	50	monomer	conformations.	
	
The	following	command	was	used	for	running	NMA-Relax	in	Rosetta:	 	
	
rosettascripts.linuxgccrelease	

-in:file:s <PDB> -nstruct 50 -parser:protocol nma.xml 	
 
In	this	command,	nma.xml contains	the	details	of	the	protocol	which	is	outlined	below: 
		
<ROSETTASCRIPTS> 
    <SCOREFXNS> 
       <ScoreFunction name="ref_cart" weights="ref2015_cart" /> 
    </SCOREFXNS> 
    <RESIDUE_SELECTORS> 
    </RESIDUE_SELECTORS> 
    <TASKOPERATIONS> 
    </TASKOPERATIONS> 
<FILTERS> 
    </FILTERS> 
    <MOVERS> 
        <NormalModeRelax name="nma" cartesian="true" 
        centroid="false" scorefxn="ref_cart" nmodes="5"  
        mix_modes="true" pertscale="1.0" randomselect="false"  
        relaxmode="relax" nsample="20"  

   cartesian_minimize="false"  
   /> 

    </MOVERS> 
    <APPLY_TO_POSE> 
    </APPLY_TO_POSE> 
    <PROTOCOLS> 
        <Add mover="nma" /> 
    </PROTOCOLS> 
    <OUTPUT scorefxn="ref_cart" /> 
</ROSETTASCRIPTS> 
		
Symmetry	Definitions	
	
We	 symmetrized	 the	 monomeric	 input	 structure	 using	 symmetry	 definitions	 in	 Rosetta’s	
symmetry	framework	(DiMaio	et	al.,	2011).	We	used	two	kinds	of	symmetry	definitions:	general	
(also	called	de	novo),	and	specific.	Symmetry	definitions	contain	information	about	the	rigid-body	
arrangement	of	the	subunits,	how	to	scale	the	energy	from	calculations	on	one	subunit	(or	a	set	
of	subunits),	and	specification	of	the	degrees	of	freedom	for	the	system.	
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We	 generated	 general	 or	 de	 novo	 symmetry	 definitions	 for	 each	 point	 symmetry	 in	 the	
benchmark	using	the	pre-packaged	Rosetta	script,	make_symmdef_file_denovo.py.	This	
script	inputs	the	symmetry	group	(Cn	or	Dn)	along	with	the	number	of	subunits.	No	information	
about	any	specific	PDB	is	supplied.	We	used	these	definitions	for	global	docking	simulations.	For	
example,	the	following	command	generates	a	general	C2	symmetry	definition:	
 
make_symmdef_file_denovo.py –symm_type cn –nsub 2 > C2.symm 
	
We	generated	specific	symmetry	definitions	for	each	complex	using	the	pre-packaged	Rosetta	
script,	make_symmdef_file.pl.	This	script	inputs	a	symmetric	PDB	along	with	chain	ID’s	of	
the	principal	subunit	(A),	an	interacting	subunit	(B),	and	in	case	of	dihedrals,	the	chain	ID	of	a	
chain	in	the	sub-system	in	which	A	is	not	present	(X).	We	also	specified	that	we	were	using	non-
crystallographic	symmetry	(NCS)	and	the	farthest	interacting	subunits	were	at	a	distance	of	d	Å.	
We	 used	 these	 definitions	 for	 local	 docking,	 bound	 re-docking	 and	 bound	 refinement.	 The	
following	command	generates	a	specific	symmetry	definition	from	<PDB>:	
	
make_symmdef_file.pl –m NCS –p <PDB> –a A -i B X –r d -f > 
<PDB>.symm 
	
The	symmetry	definitions	were	used	as	inputs	for	the	SymDock	and	SymDock2	protocols.		
	
Global	docking	simulations	
	
We	performed	global	docking	using	general	symmetry	definitions	for	the	point	symmetry	of	the	
given	complex.	The	five	homology-modeled	monomers	were	used	as	inputs,	each	of	which	was	
used	to	start	1,000	 independent	trajectories	to	generate	a	total	of	5,000	models.	To	evaluate	
backbone	 flexibility	 using	 conformational	 selection,	 the	 five	 monomer	 conformations	 were	
supplemented	with	another	150	conformations	generated	using	Relax,	Backrub	and	NMA.	For	
these	simulations,	each	input	conformation	was	used	to	start	500	trajectories,	thus	generating	a	
total	of	77,500	models.	
	
Global	docking	simulations	with	SymDock/SymDock2	used	the	following	command:		
	
SymDock.linuxgccrelease	

-in:file:l <list_of_input_PDBs> -nstruct n (where	n	 =	 500	or	
1000)	
-symmetry:symmetry_definition <general_symm_def_file>	
-symmetry:initialize_rigid_body_dofs	
-symmetry:symmetric_rmsd	
-ex1 -ex2aro -out:file:fullatom 

 
To	run	just	the	coarse-grained	phase,	we	removed		

-ex1 -ex2aro -out:file:fullatom	
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In	SymDock2,	the	following	options	were	added	to	enable	Motif	Dock	Score:	
-docking_low_res_score motif_dock_score 

     -mh:path:scores_BB_BB <Path to MDS tables> 
     -mh:score:use_ss1 false -mh:score:use_ss2 false 
     -mh:score:use_aa1 true -mh:score:use_aa2 true 
	
Local	docking	simulations	
	
We	performed	local	docking	using	specific	symmetry	definitions	generated	from	the	native	PDB.	
The	five	homology-modeled	monomers	were	used	as	 inputs,	each	of	which	was	used	to	start	
1,000	independent	trajectories.	This	generated	a	total	of	5,000	models.	The	starting	structure	
was	randomly	perturbed	by	5	Å	and	60°	after	symmetrization.	
	
Local	docking	simulations	with	SymDock2	used	the	following	command:		
	
SymDock.linuxgccrelease	

-in:file:l <list_of_input_PDBs> -nstruct 500 	
-symmetry:symmetry_definition <specific_symm_def_file>	
-symmetry:initialize_rigid_body_dofs	
-symmetry:symmetric_rmsd 
-symmetry:perturb_rigid_body_dofs 5 60 
-ex1 -ex2aro -out:file:fullatom 
-docking_low_res_score motif_dock_score 

     -mh:path:scores_BB_BB <Path to MDS tables> 
     -mh:score:use_ss1 false -mh:score:use_ss2 false 
     -mh:score:use_aa1 true -mh:score:use_aa2 true 

	
	
Bound	re-docking	
	
In	order	to	assess	the	ability	of	the	coarse-grained	phase	in	SymDock	and	SymDock2	to	correctly	
identify	and	score	near-native	subunit	arrangement,	we	re-docked	the	bound	conformation.	We	
started	with	the	native	monomer	and	specific	symmetry	definition	taken	from	the	native	PDB,	
and	ran	the	coarse-grained	phase	using	the	following	command:	
	
SymDock.linuxgccrelease	

-in:file:s <PDB_with_native_chain_A> -nstruct 100 	
-symmetry:symmetry_definition <specific_symm_def_file>	
-symmetry:initialize_rigid_body_dofs	
-symmetry:symmetric_rmsd 

	
In	SymDock2,	the	following	options	were	added	to	enable	Motif	Dock	Score:	

-docking_low_res_score motif_dock_score 
     -mh:path:scores_BB_BB <Path to MDS tables> 
     -mh:score:use_ss1 false -mh:score:use_ss2 false 
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     -mh:score:use_aa1 true -mh:score:use_aa2 true 
	
Bound	refinement	
	
In	order	to	assess	the	shape	of	the	energy	landscape	near	the	bound	conformation,	we	started	
with	the	native	structure	and	perturbed	it	by	iteratively	re-packing	side	chains	and	minimizing	
energy	along	torsion	angles	at	the	interface	and	along	the	inter-subunit	distance.	We	started	with	
the	native	monomer	and	specific	symmetry	definition	taken	from	the	native	PDB,	and	ran	only	
the	all-atom	refinement	protocol	using	the	following	command:	
	
SymDock.linuxgccrelease	

-in:file:s <PDB_with_native_chain_A> -nstruct 100 	
-symmetry:symmetry_definition <specific_symm_def_file>	
-symmetry:initialize_rigid_body_dofs	
-symmetry:symmetric_rmsd 
-docking:docking_local_refine 
-ex1 -ex2aro -out:file:fullatom 
 

Filtering	Docking	Models	
	
Both	Rosetta	 SymDock	 and	 SymDock2	 filter	 out	 demonstrably	 poor	models	 after	 the	 coarse-
grained	stage	and	after	refinement	(see	Figures	S1	and	S2).	The	low-resolution	filter	after	the	
coarse-grained	phase	in	SymDock	is	based	on	terms	of	the	centroid	score	function.	This	filter	is	
interchain_vdw	(penalizes	clashes	across	chains)	≤	1,	interchain_contact	(penalizes	
small	interfaces)	≤	10,	and	atom_pair_constraint	(penalizes	deviations	from	constraints)	
≤	1.	For	SymDock2,	the	low-resolution	filter	is	based	on	MDS	and	is	interchain_vdw	≤	5.	The	
high-resolution	filter	after	all-atom	refinement	is	more	general	and	is	common	to	SymDock	and	
SymDock2.	It	is	total_score	≤	1,000,000	(total	score	of	the	model	should	not	be	ridiculously	
high)	 and	I_sc	 ≤	 0	 (it	 should	be	more	 favorable	 for	 the	monomers	 to	 interact	 than	 remain	
separate).	
	
Simulation	of	Conformational	Selection	and	Induced	Fit	
	
Once	 the	 ensembles	 are	 generated,	 in	 heterodimers,	 by	 superimposing	 different	 backbone	
conformations	 of	 a	 partner	 onto	 the	 current	 backbone	 along	 the	 interface,	 RosettaDock	
simultaneously	 samples	 rigid	 body	 orientations	 and	 backbone	 conformations	 (Marze	 et	 al.,	
2018).	 In	SymDock,	owing	to	multiple	independent	interfaces	in	homomers,	this	simultaneous	
sampling	 is	not	 feasible	since	a	conformation	aligned	with	one	 interface	may	have	significant	
clashes	with	the	other	interfaces.	Thus,	instead	of	sampling	backbones	during	docking,	we	ran	
independent	fixed-backbone	simulations	with	each	of	the	155	monomer	backbones.	By	creating	
500	docked	models	per	backbone,	we	generated	a	total	of	77,500	models	per	complex.	As	the	
total	number	of	docked	models	was	different	when	using	just	the	homology-modeled	monomers	
and	when	supplementing	it	with	the	ensemble,	we	simulated	the	selection	of	2,500	models	for	
analysis.	 (If	 we	 had	 only	 generated	 500	 models	 starting	 from	 the	 five	 homology-modeled	
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monomers,	 we	 would	 have	 obtained	 2,500	 docked	 models;	 hence,	 this	 value.)	 Unlike	
conformational	 selection,	 simulating	 induced	 fit	 does	 not	 require	 a	 multitude	 of	 backbone	
conformations	 to	 be	 sampled	 independently.	 Starting	 with	 just	 the	 five	 homology-modeled	
monomers,	we	generated	5,000	models.	For	an	even	comparison,	we	simulated	the	selection	of	
2,500	models	 for	 analysis.	 Thus,	 not	 only	 does	 inducing	 a	 fit	 after	 the	 coarse-grained	 phase	
improve	the	docking	performance,	it	requires	far	fewer	models	than	conformational	selection	to	
capture	relevant	backbone	motion.	
	
	
Quantification	and	Statistical	Analysis	
	
Binding	energy	funnel	characterization	
	
We	compared	the	characteristics	of	the	binding	energy	funnel	in	the	43	homomeric	complexes	
in	this	study	with	87	hetero-dimers	previously	studied	(Marze	et	al.,	2018).		After	fixed-backbone	
refinement	of	the	native	structure,	the	slope	of	the	binding	funnel	is	defined	as	the	slope	of	the	
least-squares	fit	line	for	all	models	under	2	Å	RMSDCα	from	the	native	complex.	For	homomeric	
complexes,	21	of	the	43	complexes	examined	converged	to	the	same	state	for	all	models	(not	
necessarily	 at	 zero	 RMSDCα),	 but	 none	 of	 the	 87	 hetero-dimeric	 complexes	 did	 so,	 which	
demonstrated	the	narrowness	of	the	funnel	in	homomeric	complexes.	For	16	of	the	remaining	
homomeric	complexes	and	60	hetero-dimeric	complexes,	where	a	binding	funnel	was	recovered,	
the	average	values	were	calculated.	As	homomers	generally	have	extensive	interfaces	owing	to	
multivalent	interactions,	we	needed	to	normalize	the	values.	Dividing	by	the	number	of	subunits	
would	 not	 account	 for	 the	 fact	 that	 each	 subunit	 in	 a	 homomer	 has	more	 interfaces	 than	 a	
heterodimer.	The	number	of	interfaces	is	difficult	to	define	as	different	homomers	have	different	
extents	of	 interactions	with	non-neighboring	 interfaces.	 Instead,	we	normalized	the	slopes	by	
dividing	 them	 by	 the	 lowest	 interface	 score	 observed	 for	 the	 complex	 and	 compared	 the	
normalized	values.	The	radius	of	the	funnel	is	defined	as	the	difference	between	the	models	with	
the	largest	and	the	smallest	interface	RMSDCα	from	the	native	structure.	For	the	complexes	in	
which	all	models	 converged	 to	 the	 same	RMSDCα,	 the	 funnel	 radius	 is	 zero.	While	 calculating	
average	 funnel	 radius,	we	excluded	complexes	 for	which	 funnels	could	not	be	recovered,	but	
included	complexes	with	a	zero	funnel	radius.	
	
Bootstrapping	
	
As	SymDock	and	SymDock2	rely	on	random	moves	to	dock	homomers,	the	final	output	model	of	
each	trajectory	is	different.	To	produce	more	information	about	the	underlying	distribution	of	
each	success	metric,	we	resample	with	replacement	from	the	available	model	set.	Bootstrapping	
also	allows	us	to	compare	results	of	runs	where	different	number	of	models	were	generated.	For	
example,	 when	 using	 conformational	 selection	 from	 an	 ensemble	 of	 155	 conformations,	 we	
generated	77,500	models,	but	using	 induced	fit	refinement,	we	generated	only	5,000	models.	
Resampling	allows	us	to	simulate	selection	of	a	desired	number	of	models,	which	in	this	case	was	
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2,500	models.	For	 the	various	 success	metrics,	we	 reported	medians,	averages,	and	standard	
deviations	across	1,000	re-sampling	attempts.	
	
Success	evaluation	criteria	
	
To	evaluate	the	success	of	the	docking	simulations	on	the	symmetric	benchmark	targets,	we	used	
two	 kinds	 of	 metrics:	 a	 near-native	 model	 count	 in	 the	 top-scoring	 models	 (N#)	 and	 fold-
enrichment	of	near-native	models	in	the	low-scoring	set	(EN%).	For	example,	N5,	N50	and	N500	
are	the	number	of	near-native	models	in	the	5,	50	and	500	top-scoring	models,	respectively.	Fold-
enrichment	in	the	N%	top-scoring	models	is	defined	as:	
	

!"% =
			#	near-native	in	top	&%#	models	in	top	&% 			

#	near-native
#	models

	

	
The	bootstrapped	averages	for	the	success	metrics	are	denoted	by	⟨·⟩.	
	
For	coarse-grained	models,	near-native	is	refined	as	RMSDCα	≤	5	Å.	For	all-atom	models,	near-
native	is	defined	as	acceptable,	medium-quality,	or	high-quality	as	per	the	CAPRI	criteria	listed	
below,	which	are	based	on	the	ligand	RMSDbb,	interface	RMSDbb,	and	fraction	of	native	contacts	
recovered		(Méndez	et	al.,	2003).	
	

Rank	 Criteria	
High-quality	 Fnat	≥0.5	and	(L_rmsd	≤	1.0	or	I_rmsd	≤	1.0)	
Medium-quality	 Fnat	≥0.3	and	(1.0	<	L_rmsd	≤	5.0	or	1.0	<	I_rmsd	≤	2.0)	
Acceptable	 Fnat	≥0.1	and	(5.0	<	L_rmsd	≤	10.0	or	2.0	<	I_rmsd	≤4.0)	
Incorrect	 Fnat	<0.1	or	(L_rmsd	>	10.0	and	I_rmsd	>	4.0)	

	
After	the	full	protocol,	if	⟨N5⟩	≥	3,	i.e.	if,	on	average,	at	least	3	of	the	5	top-scoring	models	are	
near-native,	the	complex	is	said	to	be	successfully	docked.	This	criterion	was	relaxed	to	⟨N10⟩	≥	
1	when	comparing	to	other	methods	to	allow	a	fair	comparison.	
	
Data	and	Software	Availability	
	
As	 a	 part	 of	 the	 Rosetta	 software	 suite,	 Rosetta	 SymDock2	 is	 available	 at	
https://www.rosettacommons.org	to	all	non-commercial	users	for	free	and	to	commercial	users	
for	a	fee.	
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