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Abstract 

Reliable detection of structural variants (SVs) from short-read sequencing remains challenging, mainly 

due to the presence of repetitive DNA elements that are longer than typical short reads (~100-150bp). 

Linked-read sequencing provides long-range information from short-read sequencing data by linking 

reads originating from the same HMW DNA molecule, and thus has the potential to improve the 

sensitivity of SV detection and accuracy of breakpoint identification for certain classes of SVs. We 

present LinkedSV (https://github.com/WGLab/LinkedSV), a novel SV detection algorithm which 

combines two types of evidence. Simulation and real data analysis demonstrated that LinkedSV 

outperforms several existing tools including Longranger, GROC-SVs and NAIBR. LinkedSV works 

particularly well on exome sequencing data and on SVs with low variant allele frequencies due to somatic 

mosaicism. Our results support the use of linked-read sequencing to detect hidden SVs missed by 

conventional short-read sequencing approaches and helps resolve negative cases from clinical genome or 

exome sequencing.  

 

Introduction 

Genomic structural variants (SVs) have been implicated in a variety of phenotypic diversity and human 

diseases[1]. Several approaches such as split-reads [2, 3], discordant read-pairs [3, 4], and assembly-based 

methods [5, 6] have been developed for SV discovery from short reads. However, reliable detection of 

SVs from these approaches still remains challenging. The split-reads and discordant read-pairs 

approaches require the breakpoint-spanning reads/read-pairs being sequenced and confidently mapped. 

Genomic rearrangements are often mediated by repeats and thus breakpoint junctions of SVs are highly 

likely to reside in repetitive regions [7-9]. Therefore, the breakpoint-spanning reads/read-pairs may be 

multi-mapped and have low mapping qualities. It is also difficult to perform assembly at repeat regions. 

Long-read sequencing such as SMRT sequencing and Nanopore sequencing are better for SV detection 

[10, 11], but their application is limited by the high cost and per-base error rate. 

Linked-read sequencing technology developed by 10X Genomics combines the throughput and accuracy 

of short-read sequencing with the long-range information. In this approach, nanogram amounts of high-

molecular weight (HMW) DNA molecules are dispersed into more than 1 million droplet partitions with 

different barcodes by a microfluidic system [12]. Thus, only a small number of HMW DNA molecules 

(~10) are loaded per partition [13]. The HMW DNA molecules can be ten to several hundred kilobases in 

size and have a length-weighted mean DNA molecule length of about 50 kb. Within an individual droplet 
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partition, HMW DNA molecules are primed and amplified by primers with a partition-specific barcode. 

The barcoded DNA molecules are released from the droplets and sequenced by standard Illumina paired-

end sequencing [12]. The sequenced short reads derived from the same HMW DNA molecule can be 

linked together, providing long-range information for mapping, phasing and SV calling. In addition, 

linked-read whole exome sequencing (WES) has also been developed [12], which provides a more cost-

effective way for clinical genetic testing.  

In linked-read sequencing data, barcode similarities between any two nearby genome locations are very 

high, because the reads tend to originate from the same sets of HMW DNA molecules. In contrast, 

barcode similarities between any two distant genome locations are very low, because the reads of the two 

genome locations originate from two different sets of HMW DNA molecules and it is highly unlikely that 

two different sets of HMW DNA molecules share multiple barcodes. Thus, the presence of multiple 

shared barcodes between two distant locations indicates that the two distant locations are close to each 

other in the alternative genome [14]. A few pipelines and software tools have adopted this principle to call 

SVs from linked-read sequencing data, such as Longranger [12], GROC-SVs [14], NAIBR [15]. 

Longranger is the official pipeline developed by 10X genomics. Longranger bins the genome into 10 kb 

windows and finds the barcodes of high mapping quality reads within each window. A binomial test is 

used to find all pairs of regions that are distant and share more barcodes than what would be expected by 

chance. A probabilistic approach is used to clean up this initial candidate list [12]. GROC-SVs uses a 

similar method to find candidate SV loci but performed assembly to identify precise breakpoint locations. 

GROC-SVS also provides functionality to interpret complex SVs [14]. NAIBR detects structural variants 

using a probabilistic model that incorporates signals from both linked-reads and paired-end reads and into 

a unified model [15].  

However, SV detection from linked-read datasets is still in the early stage. The available SV callers face 

challenges if we want to detect: i) SVs from target region sequencing (e.g. Whole-exome sequencing); ii) 

somatic SVs in cancer or somatic mosaic SVs that have low allele frequencies; iii) SVs of which the exact 

breakpoints have no coverage or located in repeat regions. In this study, we introduce LinkedSV, a novel 

open source SV caller for linked-read sequencing, which aims to address all the above challenges. 

LinkedSV detects candidate breakpoints using two types of evidence and quantified the evidence using a 

novel probabilistic model. We evaluated the performance of LinkedSV on both whole-genome and 

whole-exome sequencing data sets. In each case, LinkedSV performs better than other existing tools 

including Longranger, GROC-SVs and NAIBR. 
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Results 

Illustration of two types of evidence near SV breakpoints 

Two types of evidence may be introduced while a genomic rearrangement happens: 1) reads from one 

HMW DNA molecule which spans the breakpoint being mapped to two genomic locations and 2) reads 

from two distant genome locations being mapped to adjacent positions. Both types of evidence can be 

used for SV detection.  

First, we describe the signals of type 1 evidence. After reads mapping, the original HMW DNA molecules 

can be computationally reconstructed from the sequenced short reads using their barcodes and mapping 

positions. In order to distinguish from the physical DNA molecules, we use “fragments” to refer to the 

computationally reconstructed DNA molecules. A fragment has a left-most mapping position, which we 

call 5’-endpoint, and a right-most mapping position, which we call 3’-endpoint. As a result of genomic 

rearrangement, reads from one breakpoint-spanning HMW DNA molecule would be mapped to two 

different genome loci on the reference genome. This split-molecule event has two consequences: 1) 

observing two fragments sharing the same barcode; 2) each of the two fragment has one endpoint close to 

the true breakpoints. Therefore, in a typical linked-read WGS data set, multiple split-molecule event 

could be captured and we could usually observe: multiple share barcodes between two distant genome 

loci and multiple fragment endpoints near the breakpoints.  

To illustrate this, Figure 1a shows the split-molecule events of a deletion, where breakpoints 1 and 2 are 

marked by red arrows. Multiple fragment endpoints enriched near the two breakpoints of a large deletion, 

which is typically longer than 5 kb for whole-genome sequencing (WGS) data sets. Figure 1b shows the 

patterns of “enriched fragment endpoints” that are introduced by different types of SVs. As an example, 

Figure 1c shows the number of fragment endpoints in a 5-kb sliding window near two deletion 

breakpoints, based on a 35X coverage linked-read WGS data on the NA12878 genome (genome of a 

female individual extensively sequenced by multiple platforms). At the breakpoints, the number of 

fragment endpoints in the 5-kb sliding window is more than 100 and is five times more than normal 

regions, forming “peaks” in the figure.  

Since the fragments can be paired according to their barcodes, we can also observe fragment endpoints of 

this deletion in a two-dimensional view. As shown in Figure 1d, each dot indicates two endpoints from a 

pair of fragments which share the same barcode. The x-value of the dot is the position of the first 

fragment’s 3’-endpoint and the y-value of the dot is the position of the second fragment’s 5’-endpoint. 

The bottom panel and right panel in Figure 1d shows number of dots that are projected to the x-axis and 
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y-axis. Similar with the one-dimensional plot (Figure 1c), a peak is formed near each breakpoint, which is 

marked by the red arrow. The background noise of the two-dimensional plot is cleaner than the one-

dimensional plot since the fragments that do not share barcodes are excluded. Therefore, the two-

dimensional plot is more useful when the variant allele frequency (VAF) is very low and there are only a 

few supporting fragments. 

Next, we describe the signals of type 2 evidence. The barcodes between two nearby genome locations is 

highly similar because the two locations are spanned by almost the same set of input HMW DNA 

molecules. However, due to the genome rearrangement, the reads mapped to the left side and right side of 

a breakpoint may originate from different locations of the alternative genome and thus have different 

barcodes (Figure 1e). Dropped barcode similarity between two nearby loci therefore indicates a SV 

breakpoint. LinkedSV detects this type of evidence by a twin-window method, which uses two adjacent 

sliding windows to scan the genome and find regions where the barcode similarity between the two 

nearby window regions are significantly decreased. Figure 1f illustrates an inversion breakpoint detected 

by LinkedSV on the NA12878 genome. The change of barcode similarity was plotted and a peak was 

formed at the breakpoint. After searching for the two types of evidence, LinkedSV combines the 

candidate SV regions and quantified the evidence using a novel probabilistic model. The breakpoints are 

further refined using short-read information, including discordant read pairs and split-reads. 

 

Performance evaluation on simulated whole-genome sequencing data set 

To assess LinkedSV’s performance, we simulated a 35X linked-read WGS data set with 1175 SVs 

inserted using LRSIM[13] (see Methods for details). The inserted SVs includes 351 deletions, 386 

duplications, 353 inversions, and 85 translocations. The breakpoints of the simulated SVs are designed to 

be located in repeat regions, since we found that the LinkedSV and other available SV callers perform 

very well when the breakpoints are located in non-repeat regions, and thus we set to test the performances 

of all the SV callers under more challenging situations. This makes sense because SV breakpoints are 

more likely to be in repeat regions [7-9], and because these situations represent those that are impractical 

to be addressed by conventional short-read sequencing approaches. 

The simulated reads were aligned to the reference genome using the Longranger [12] package provided 

by 10X genomics. The Longranger pipeline internally uses the Lariat aligner [16], which was designed 

for the alignment of linked reads. SV calling was performed using LinkedSV as well as three other 

available SV callers designed for linked-read sequencing: Longranger, GROC-SVs [14] and NAIBR [15]. 
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We used recalls, precisions and F1 scores to evaluate the four SV callers on this data set. As shown in 

Figure 2a, LinkedSV has the highest recall and F1 score among all methods. NABIR has a good recall 

(0.81), but relatively low precision (0.42). GROC-SVs has a good precision but its recall is lower than 

LinkedSV, so we further analyzed the false negative calls of GROC-SVs to understand this underlying 

reasons. A major portion of the false negative calls by GROC-SVs represents duplications that are smaller 

than twice of the fragment length. For large duplications, the reads of the alternative allele are separated 

by a large gap so that we can observe two sets of fragments with the same set of barcodes, which indicate 

a SV (Supplemental Figure 5a). If the duplication is not large enough, the reads will be probably clustered 

into one fragment (Supplemental Figure 5b). Even in this case, we can observe enriched fragment 

endpoints near the duplication breakpoints in LinkedSV. As an example, Figure 2b shows the endpoint 

signals of a missed duplication call of GROC-SVs. The supporting fragments of this duplication is shown 

in Figure 2c. We also evaluated the breakpoint precision of LinkedSV. Most of breakpoints predicted by 

fragment endpoints are within 20 bp (Figure 2d) and refined breakpoints using discordant read-pairs and 

split-reads have base-pair resolution (Figure 2e). 

 

Performance evaluation on WGS data set with somatic SVs with low variant allele 
frequencies 

Somatic SVs are often found in cancer genomes [17-19]. However, due to the high heterogeneity of 

genomic alteration in cancer genomes, somatic SVs often have low allele frequencies (as opposed to ~50% 

in a germline genome) and thus are more difficult to detect by typical SV callers designed for germline 

SVs. We simulated two WGS data sets with VAF of 10% and 20%. Recalls, precisions and F1 values of 

the four linked-read SV callers were evaluated on the two data sets (Figure 3a, Figure 3b). When the VAF 

was 20%, the recall of LinkedSV (0.803) was much higher than that of Longranger (0.238), GROC-SVs 

(0.402) and NAIBR (0.679). The precisions of the four SV callers range from 0.87-0.95. The F1 score of 

LinkedSV (0.855) was also the highest among all the SV callers. When the VAF was 10%, LinkedSV still 

had a recall of 0.761, which was 72% higher than the second best SV caller NAIBR. Longranger and 

GROC-SVs almost completely failed to detect the SVs. These observations confirmed that other SV 

callers were mainly designed for germline genomes and had substantial difficulty in detecting SVs with 

somatic mosaicism. However, due to the combination of barcode overlapping and enriched fragment 

endpoints in our statistical model (see Methods for details), LinkedSV was able to achieve a good 

performance even when VAF was very low. We manually checked the barcode overlap evidence of some 

SV calls using the Loupe software developed by 10X Genomics. Figure 3c showed an inversion that was 

missed by Longranger, and NAIBR but detected by LinkedSV (at VAF of 10%). Although the variant 
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frequency is low, the overlapped barcodes between the two inversion breakpoints be clearly visualized (in 

the black circle) in the figure. Figure 3d showed the supporting fragments of the inversion detected by 

LinkedSV. Each horizontal line represent two fragments which shared the same barcode and support the 

SV. This suggests that the manufacturer-provided software tool has limitations for SV detection, despite 

its strong functionality in visualization. 

 

Performance evaluation on simulated whole-exome sequencing data set 

Compared with WGS, whole-exome sequencing (WES) is currently widely used in clinical settings to 

identify disease causal variants on patients with suspected genetic diseases, partly due to the slightly 

lower cost of WES and due to reimbursement reasons. Since the WES only cover a small portion of 

regions in the whole genome, it is far more challenging to detect SVs from WES data, especially when the 

SV breakpoints are not in the capture regions. However, by combining linked-read sequencing with WES 

capture platforms, it is possible to alleviate this problem, and significantly improve the sensitivity of SV 

detection using WES.  

To evaluate SV detection on linked-read WES data, we simulated a 40X coverage linked-read WES data 

set with 1160 heterozygous SVs (see Methods for details). 44.3% of the breakpoints are not in exon 

regions. SV calling was performed using LinkedSV, Longranger, GROC-SVs and NAIBR. As shown in 

Figure 4a, LinkedSV has the highest recall (0.79) and highest F1 score (0.86). NAIBR has the highest 

precision (0.97) but its recall is lower (0.69). GROC-SVs has a good precision (0.90) but the recall (0.61) 

is not high.  

We analyzed false negative calls of the second best SV caller NAIBR. NAIBR tends to miss some SV 

events that have shared barcodes but lack short-read support.  For example, Figure 4b shows a deletion 

between chr1:172545561-173504265. Both breakpoints are not located in capture regions. Breakpoint 1 

(chr1:172545561) is 768 bp away from the nearest capture region and breakpoint 2 (chr1: 173504265) is 

392 bp away from the nearest capture region. Unfortunately, no discordant read pairs that support the 

deletion can be found. However, shared barcodes between the two breakpoints can be clearly seen using 

the loupe software (Figure 4b). In addition, LinkedSV also detected 28 pairs of fragments that share the 

same barcodes and support the SV. These fragments were plotted in Figure 4c. Although no short-read 

support was found, the SV type could be determined using the pattern of “enriched fragment endpoints” 

shown in Figure 1b. In this SV event, 3’-endpoints were highly enriched for the first set of fragments and 
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5’-endpoints were highly enriched for second set of fragments. Thus, the SV type was predicted as 

“deletion”.  

 

Detection of F8 inversion from clinical exome sequencing data on a patient with hemophilia 
A 

We also tested the performance of LinkedSV in a WES sample with known SV breakpoints in introns 

from a male patient with Hemophilia A. Previous experiments had shown that the patient had type I 

inversion in intron 22 of F8 gene. The F8 gene is located in Xq28. The intron 22 of F8 gene contains a 

GC-rich sequence (named int22h-1) that is duplicated at two positions towards the Xq-telomere (int22h-2 

and int22h-3). Int22h-2 has the same direction with int22h-1 while int22h-3 has the inverted direction. 

The type I inversion is induced by the recombination between int22h-1 and int22h-3 [20, 21] (Figure 5a). 

BLAST alignment of int22h-1 and int22h-3 showed that the two sequences had 99.88% identity. Since 

the breakpoints were located in two segmental duplications with nearly identical sequences, the inversion 

is undetectable by conventional short-read sequencing. Two popular short-read SV callers Delly [3] and 

Lumpy [22] failed to detect the inversion from the linked-read WES data (results were shown in 

Supplemental Table 1 and Supplemental Table 2).  

Longranger, GROC-SVs, NAIBR and LinkedSV were also used to detect SVs from this sample.  None of 

Longranger, GROC-SVs and NAIBR detected this inversion (results were shown in Supplemental Table 

3, Supplemental Table 4, Supplemental Table 5), although the overlapped barcodes can be visualized 

using the Loupe software (Figure 5b). However, LinkedSV successfully detected this inversion, by 

combining two types of evidence. As described above, barcode similarity between two nearby regions are 

very high but drops suddenly at the breakpoints. Figure 5c shows the suddenly drop of barcode similarity 

at the two breakpoints. Each dot in the figure represents the reciprocal of the barcode similarity between 

its left 40 kb window and right 40 kb window thus the Y value of the dots were reversely related to the 

barcode similarity and positively related to the probability of being a breakpoint. The barcode similarities 

are lowest at the two breakpoints and thus form two peaks in the figure (marked by red arrow). In addition, 

LinkedSV also identified the supporting fragments of the SV using type 1 evidence (Figure 5d). The 

predicted breakpoint positions are consistent with the genomic positions of int22h-1 and int22h-3.  

Methods 

Breakpoint detection from type 1 evidence 
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First, LinkedSV reconstructs the original long DNA fragments from the reads using mapping positions 

and barcode information. All mapped reads are partitioned according to the barcode and sorted by 

mapping position. We define gap distance as the distance between two nearest reads with the same 

barcode. Two nearby reads are considered from the same long DNA fragment if they have the same 

barcode and their gap distance is less than a certain distance G. G is determined using two steps. First, we 

use G = 50 kb (the same as Zheng et.al [12]) to group the reads into fragments. This value is suitable for 

detection of large SVs. However, it may be too large for detection of SVs that are smaller than 50 kb. 

Therefore, we calculate the empirical distribution of intra-fragment gap distance, which is the distance of 

two nearby reads that are grouped in one fragment. We assign G as the 99th percentile of the empirical 

distribution of intra-fragment gap distance. G is usually between 8~15kb, depending on the data set. 

Fragments with a gap distance larger than G will be separated to two fragments. 

In non-SV regions, all the reads from the same HMW DNA molecule would be reconstructed into a single 

DNA fragment. The reads from the breakpoint-spanning HMW DNA molecule will be mapped to two 

different positions in the genome. As illustrated in the Result section, this split-molecule event has two 

consequences: 1) observing two fragments sharing the same barcode; 2) each of the two fragment has one 

endpoint close to the breakpoints. Therefore, we could observe enriched fragment endpoints near the 

breakpoints, in both one-dimensional view (Figure 1c) and two-dimensional view (Figure 1d). The type 

of the endpoints (5’ or 3’) that enriched near the breakpoints depends on the type of SV (Figure 1b). The 

two-dimensional view has less background noise because the fragments that do not share barcodes and 

thus do not support the SVs are excluded. Thus, we detect the enriched endpoints in the two-dimensional 

view. 

We now describe how we use detect the type 1 evidence of deletion calls, but the method can be applied 

to other types of SVs. We define fragment pair to be two fragments sharing the same barcode. Let b1, b2 

be the positions of the two breakpoint candidates (assuming b1 < b2). Let n be the number of fragment 

pairs that may support the SV between b1 and b2. Let Fi1, Fi2 denote the ith fragment pair that support the 

SV. Let B(F) denote the barcode of fragment F. Therefore, we have: 

B(Fi1) = B(Fi2) , i = 1, 2, 3, …, n (1) 

Let L(F) denote the 5’-endpoint position (i.e., left-most position) of fragment F, R(F) denote the 3’-

endpoint position (i.e., right-most position) of fragment F. Since this is a deletion and b1 < b2, R(Fi1) is the 

position on Fi1 that is closest to b1 and L(Fi2) is the position on Fi2 that is closest to b2 (Supplemental 

Figure 6a). The distance between the fragment endpoint and its corresponding breakpoint should be 

within gap distance distribution (explained in Supplemental Figure 4). Therefore, we have: 
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b1 - G ≤ R(Fi1) ≤ b1, b2 ≤ L(Fi2) ≤ b2+ G  (2) 

As described above, G is the 99th percentile of the empirical distribution of intra-fragment gap distance. 

If we regard (R(Fi1), L(Fi2)) as a point in a two-dimensional plane, according to equation (2), ((R(Fi1), 

L(Fi2)) is restricted in a square region with a side length of G and the point (b1, b2) being a vertex 

(Supplemental Figure 6b). 

We used a graph-based method to fast group the points into clusters and find square regions where the 

numbers of points were more than expected. First, every possible pair of endpoints (R(F1), L(F2)) meeting 

B(F1) = B(F2) formed a point in the two-dimensional plane. Each point indicated a pair of fragments that 

share the same barcode. For example, if 10 fragments share the same barcode, 𝐶𝐶102  pairs of endpoints will 

be generated. A point/pair of endpoints may or may not support an SV because there are two possible 

reasons for observing two fragments sharing the same barcode: 1) the two fragments originated from two 

different HMW DNA molecules but were dispersed into the same droplet partition and received the same 

barcode; 2) the two fragments originated from the same HMW DNA molecule but the reads were 

reconstructed into two fragments due to an SV. The points are sparsely distributed in the two-dimensional 

plane and it is highly unlikely to observe multiple points in a specific region. Next, a k-d tree (k = 2) was 

constructed, of which each node stores the (X, Y) coordinates of one point. K-d tree is binary tree that 

enable fast query of nearby nodes. Therefore, we could quickly find all pairs of points within a certain 

distance. Any two points (x1, y1) and (x2, y2) were grouped into one cluster if |x1 - x2| < G and |y1 - y2| < G. 

For each cluster, if the number of points in the cluster was more than a user-defined threshold (default: 5), 

it was considered as a potential region of enriched fragment endpoints. If the points in the cluster were not 

within a G x G square region, we used a G x G moving square to find a square region which contained the 

most of points. The predicted breakpoints were the X and Y coordinates of the right-bottom vertex of the 

square. The points in the square region were subjected to a statistical test describe below. 

 

Quantification of type 1 evidence 

Let n be the number of points in the square region. Each point corresponds to a pair of fragment Fi1, Fi2, (i 

= 1, 2, 3, …, n) that may support the SV. Let b1 and b2 be the coordinates of the predicted breakpoint. 

Equation (1) and (2) hold for all the fragment pairs Fi1, Fi2 (i = 1, 2, 3, …, n). We then test the null 

hypothesis that there is no SV between b1 and b2.  
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First, we test the hypothesis that the n fragment pairs Fi1, Fi2 have originated from different DNA 

molecules, but coincidently received the same barcode. Here we define two fragments Fa and Fb as an 

independent fragment pair if Fa and Fb share the same barcode but have originated from different DNA 

molecules. Thus, R(Fa) and L(Fb) are independent variables. All the fragment pairs that do not support 

SVs are independent fragment pairs. It is reasonable to assume the generation of HMW DNA molecules 

from chromosomal DNA is a random process thus both R(Fa) and L(Fb)  are uniformly distributed across 

the chromosome. Therefore, the point ((R(Fa), L(Fb)) is equal likely to be in any place in the two-

dimensional plane. Technically, we connect all the chromosomes in a head-to-tail order so that both intra-

chromosomal events and inter-chromosomal can be analyzed at the same time. Observing at least n 

independent fragment pairs meeting equation (2) is equivalent to the event that observing at least n points 

((R(Fi1), L(Fi2)) located in a squared region with an area of G2 on the two-dimensional plane. The 

probability of this event is:   

𝑝𝑝1 = ∑ Binomial_pmf (n,𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖, 𝐺𝐺
2

𝐿𝐿2
) 𝑁𝑁

𝑗𝑗=𝑛𝑛  (3) 

where Binomial_pmf is the probability mass function of binomial distribution; L is the total length of the 

genome (also the side length of the two-dimensional plane); Nifp is the total number of independent 

fragment pairs.  

Since we are doing multiple hypothesis testing in the data set, the probability need to be adjusted.  

𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎1 = 𝑝𝑝1
𝐺𝐺2

𝐿𝐿2
 

We reject the hypotheis if padjusted1 < pthreshold. pthreshold is 10-5 by default.  

 

Next, we test the hypothesis that fragment pairs Fi1, Fi2 (i = 1, 2, 3, …, n) have originated from the same 

DNA molecule, but no reads were sequenced in the gap between R(Fi1) and L(Fi2). Let gi denote the 

length of the gap between Fi1 and Fi2, �̅�𝑔 denote the mean of gi, we have: 

gi = L(Fi2) - R(Fi1) (4) 

�̅�𝑔 =  1
𝑛𝑛
∑ 𝑔𝑔𝑖𝑖𝑛𝑛
𝑖𝑖=0   (5) 

If �̅�𝑔 is too large such that the probability of no reads being generated is smaller than a threshold, we can 

reject this hypothesis.   
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Similar to the model described by 10X Genomics[12], we assume the read generation on a DNA molecule 

is a Poisson process with constant rate λ across the genome. Let r be the number of reads generated in a 

region of length g, then r ~ Pois(λg). Let 𝑃𝑃𝑔𝑔𝑎𝑎𝑖𝑖(𝑔𝑔)  denote the probability of no read being generated in 

length g, we have:  

𝑃𝑃𝑔𝑔𝑎𝑎𝑖𝑖(𝑔𝑔) = 𝑃𝑃(𝑟𝑟 = 0|λg) = 𝑎𝑎−𝜆𝜆𝜆𝜆(𝜆𝜆𝑔𝑔)0

0!
=  𝑒𝑒−𝜆𝜆𝑔𝑔  (6) 

Therefore, the gap length gi follows Exponential distribution: gi ~ Exp (λ). Recalling that 1) the 

Exponential distribution with rate parameter λ is a Gamma distribution with shape parameter 1 and rate 

parameter λ; 2) the sum of n independent random variables from Gamma (1, λ) is a Gamma random 

variable from Gamma (n, λ), we have: 

∑ 𝑔𝑔𝑖𝑖𝑛𝑛
𝑖𝑖=0  ~ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 (𝑛𝑛, λ) (7) 

�̅�𝑔 = ∑ 𝑔𝑔𝑖𝑖𝑛𝑛
𝑖𝑖=0
n

 ~ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 (𝑛𝑛,𝑛𝑛λ) (8) 

 

Therefore, the probability that observing n gap regions with mean length equal to or larger than �̅�𝑔 is:  

p2 = 1 - Gamma_cdf (n, nλ) (9) 

where Gamma_cdf is the cumulative distribution function of Gamma distribution.  

 

Since we are doing multiple hypothesis testing in the data set, the probability need to be adjusted.  

𝑝𝑝𝑎𝑎𝑎𝑎𝑗𝑗𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2 = 𝑝𝑝2
𝑁𝑁𝑟𝑟𝑟𝑟
𝑛𝑛

 (10) 

where Nrp is the total number of read pairs.   

We reject the hypothesis if padjusted2 < pthreshold. pthreshold is set as 10-5 by default. If both padjusted1 and padjusted2 

are less than pthreshold, we accept the hypothesis that the SV is true. For each candidate SV, we report a 

confidence score for type 1 evidence as:  

Confidence score1 = -log10(max(padjusted1, padjusted2)) (11) 
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Breakpoint detection from type 2 evidence 

Barcode similarity between two nearby regions is very high because the reads originate from almost the 

same set of HMW DNA molecules. However, at the SV breakpoint, the aligned reads from the left side 

and right side may have originated from different locations in the alternative genome. Thus, the barcode 

similarity between the left side and right side of the breakpoint are dramatically reduced (as described in 

the Result section and shown in Figure 1e-f). To detect this evidence, LinkedSV uses two adjacent sliding 

windows (twin windows, moving 100 bp) to scan the genome and calculate the barcode similarity 

between the twin windows. The window length can be specified by user. By default, it is G for WGS data 

sets and 40 kb for WES data sets.  

The barcode similarity can be simply calculated as the fraction of shared barcodes. This method is 

suitable for whole-genome sequencing (WGS), where the coverage is continuous and uniform. But it does 

not perform well for whole exome sequencing (WES), where the numbers of reads in the sliding windows 

vary a lot due to capture bias and the length of capture regions. Therefore, we use a model that 

considering the variation of sequencing depth and capture region positions. The barcode similarity is 

calculated as: 

𝑆𝑆 =  𝑥𝑥
𝑚𝑚1
𝑎𝑎𝑚𝑚2

𝑏𝑏 𝑛𝑛𝑒𝑒−𝛼𝛼𝑎𝑎   (12) 

where: 

m1 is the number of barcodes in window 1,  

m2 is the number of barcodes in window 2, 

x is the number of barcodes in both windows, 

d is the weight distance between reads of the left window and the right window,  

n is a constant representing the characteristic of the library,  

α is a parameter of fragment length distribution, 

a and b are two parameters between 0 and 1, 

n, α, a and b are estimated from the data using regression. Detailed explanation of this model is in 

supplemental note 1.  

 

Next, we calculate the empirical distribution of barcode similarity. Regions where the barcode similarity 

less than a threshold (5th percentile of the empirical distribution by default) were regarded as breakpoint 

candidates. If a set of consecutive regions have barcode similarity lower than the threshold, we only retain 
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the region that has the lowest barcode similarity. If the barcode similarity of a breakpoint candidate is S0, 

the empirical p-value is calculated as:  

empirical 𝑝𝑝 = 𝑛𝑛𝑎𝑎𝑚𝑚𝑛𝑛𝑎𝑎𝑛𝑛 𝑜𝑜𝑖𝑖 𝑎𝑎𝑡𝑡𝑖𝑖𝑛𝑛 𝑡𝑡𝑖𝑖𝑛𝑛𝑎𝑎𝑜𝑜𝑡𝑡𝑎𝑎 𝑡𝑡𝑖𝑖𝑎𝑎ℎ 𝑆𝑆 ≤𝑆𝑆0 
𝑎𝑎𝑜𝑜𝑎𝑎𝑎𝑎𝑡𝑡 𝑛𝑛𝑎𝑎𝑚𝑚𝑛𝑛𝑎𝑎𝑛𝑛 𝑜𝑜𝑖𝑖 𝑎𝑎𝑡𝑡𝑖𝑖𝑛𝑛 𝑡𝑡𝑖𝑖𝑛𝑛𝑎𝑎𝑜𝑜𝑡𝑡𝑎𝑎

  (13) 

The confidence score of type 2 evidence is:  

Confidence score2 = -log10 (empirical p) (14) 

 

Combination of both types of evidence 

Type 1 evidence gives pairs of endpoints that indicate two genomic positions are joined in the alternative 

genome. Type 2 evidence gives genomic positions where the barcodes suddenly changed, regardless of 

which genomic position can be joined. Therefore, type 1 and type 2 evidence are independent. The 

candidate breakpoints detected from type 2 evidence were searched against the candidate breakpoint pairs 

detected from type 1 evidence so that the calls were merged. The combined confidence score is:  

Combined score = Confidence score1 + Confidence score2a + Confidence score2b 

Where Confidence score1 is the confidence score calculated from type 1 evidence (equation 11); 

Confidence score2a and Confidence score2b are the confidence scores of the two breakpoints calculated 

from type 2 evidence (equation 14).  

 

Refining breakpoints using discordant read-pairs and split-reads 

We search for discordant read-pairs and clipped reads that are within 10 kb to the predicted breakpoint 

pairs by the above approach. We use a graph-based approach that is similar to  DELLY[3] to cluster the 

discordant read-pairs. We define the supporting split-reads as the clipped reads that can be mapped to the 

both breakpoints, and the map direction matches the SV type. If both discordant read-pairs and split-reads 

are found to support the SV, we use the breakpoints inferred by split-reads as the final breakpoint position.  

 

Generation of simulated linked-read WGS data set 
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The linked reads were simulated by LRSIM, which can generate linked-reads from a given FASTA file 

containing the genome sequences. We generated a diploid FASTA file based on hg19 reference genome 

with SNPs and SVs inserted. The purpose of inserting SNPs was to mimic real data. The generation of the 

diploid FASTA file is described below. First, we inserted SNPs to hg19 using vcf2diploid [23]. The 

inserted SNPs were from the gold standard SNP call set (v.3.3.2) of NA12878 genome [24]. The 

vcf2diploid software generated two FASTA files, each of which was a pseudohaplotype (paternal or 

maternal) with the phased SNPs inserted. Next, we insert SVs into the paternal FASTA file using our 

custom script. The breakpoints were located in the repetitive regions in hg19 and the distance between the 

two breakpoints were in the range of 50 kb to 1 Mb. In total, we simulated 351 deletions, 386 duplications, 

353 inversions and 85 translocations, all of which were in the paternal copy and were heterozygous SVs. 

We then concatenate the paternal and maternal FAST file into a single FASTA file and simulated linked-

reads using LRSIM. To mimic real data, the barcode sequences and molecule length distribution used for 

simulation were from the NA12878 whole-genome data set released by 10X genomics. The number of 

read pairs was set to 360 million so that a 35X coverage data set was generated. 

 

Generation of WGS data set with low variant allele frequencies 

In cancer samples or mosaic samples, the total DNA is a mix of a small portion of variant alleles and a 

large portion of normal alleles. To simulate the WGS data sets with low variant frequencies, we used the 

same paternal and maternal FASTA file described above but the combined FASTA file contained 

multiple copies of the normal allele (the maternal FASTA) and only one copy of the variant allele (the 

paternal FASTA). For example, to simulate a WGS data set with VAF of 20%, four copies of the 

maternal FASTA and one copy of the paternal FASTA were combined. The linked reads were simulated 

using LRSIM with the same parameters and a 35X coverage data set was generated. 

 

Generation of simulated linked-read WES data set 

To generate the linked-read WES data set, we first generate a 100X linked-read WGS data set and then 

down-sample it to be a WES data set. Generation of the simulated linked-read WGS data set with SNPs 

and SVs inserted was similar to the method described above. In total, we inserted 1160 heterozygous SVs. 

The SV breakpoints were randomly selected from regions that were within 2000 bp of an exon. Among 

the 2320 breakpoints (two breakpoints per each SV), 1028 breakpoints (44.3%) were in intronic or 

intergenic regions. The SV sizes are in the range of 50 kb to 1 Mb. The number of inserted SVs in the 
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simulated WES data set was slightly smaller than that in the simulated WGS data set because the SV 

breakpoints were designed to reside within 2000 bp of an exon. The simulated reads were generated using 

LRSIM and were mapped to hg19 reference genome using the Longranger pipeline (default settings). The 

phased bam generated by Longranger was down-sampled to be a simulated WES data set. To mimic real 

WES data set, we used the coverage distribution of the linked-read WES data set of NA12878 genome 

(released by 10X genomics) to guide the down-sampling process. We bin the genome into 10 bp windows 

and calculate number of reads mapped to each window (left mapping positions were used) in NA12878 

linked-read WES data. The simulated WES data set was generated by sampling reads from the 100X 

WGS data according to number of reads mapped to the same 10 bp window in the NA12878 WES. In this 

process, if the one read is retained, the paired read will also be retained. 

Discussion  

In this study, we present LinkedSV, a novel open source algorithm for structural variants detection from 

linked-read sequencing data. We assessed the performance of LinkedSV on three simulated data sets and 

one real data set. By incorporating two types of evidence, LinkedSV outperforms all existing linked-read 

SV callers including Longranger, GROC-SVs and NAIBR on both WGS and WES data sets.  

Type 1 evidence gives information about which two genomic positions are connected in the alternative 

genome. It has two observations: 1) fragments with shared barcodes between two genomic locations and 2) 

enriched fragment endpoints near breakpoints. Current existing linked-read SV callers only use the first 

observation to detect SVs while LinkedSV incorporates both observations in the statistical model and is 

therefore more sensitive and can detect SVs with lower allele frequencies, such as somatic SVs in cancer 

genomes and mosaic structural variations. 

Type 2 evidence gives information about which genomic position is “interrupted” with the observation 

that the reads on the left side and right side of a genomic position have different barcodes and should be 

derived from different HMW DNA molecules. LinkedSV is the only SV caller that use type 2 evidence to 

detect breakpoints. Type 2 evidence is independent to type 1 evidence, and gives additional confidence to 

identify the breakpoints. In addition, type 2 evidence can be detected locally, which means we can detect 

a weird genomic location without looking at the barcodes of the other genomic locations. This is 

particularly useful in two situations: 1) novel sequence insertions where there is only one breakpoint; 2) 

only one breakpoint is detectable and the other breakpoint located in a region where there is little 

coverage within 50 kb, which is often the case in target region sequencing. 
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In recent years, WES has been widely used to identify disease causal variants for patients with suspected 

genetic diseases in clinical settings. Identification of SVs from WES data sets are more challenging 

because the SV breakpoints may not be in the capture regions and thus there would be little coverage at 

the breakpoints. Linked-read sequencing increases the chance of resolving such type of SVs by providing 

long-range information. As well as there are a few capture regions nearby, the fragments can still be 

reconstructed and type 1 and type 2 evidence can still be observed. Our statistical models for both type 1 

evidence and type 2 evidence were designed to handle both WGS and WES data sets. GROC-SVs uses a 

local-assembly method to verify the SV call, which requires sufficient coverage at the breakpoints. By 

using two types of evidence, LinkedSV can be less relied on short-read information (e.g. pair-end reads 

and split-reads). We demonstrated that LinkedSV has better recall and balanced accuracy (F1 score) on 

the simulated WES data set and can detect SVs even when the breakpoints were not located in capture 

regions and have no short-read support. In addition, LinkedSV is also the only SV caller that clearly 

detected the F8 intron 22 inversion from the WES data set.  

Linked-read sequencing has several advantages over traditional short-read sequencing on the purpose of 

SV detection. First, the human genome is highly repetitive. Previous studies have shown that SVs are 

closely related to repeats and many SVs are directly mediated by homologous recombination between 

repeats [25]. In traditional short-read sequencing, if the breakpoint falls in a repeat region, the supporting 

reads would be multi-mapped and thus the SV cannot be confidently identified. However, this type of 

SVs are detectable by Linked-read sequencing as well as the HMW DNA molecules span the repeat 

region. We can observe type 1 and type 2 evidence in the non-repeat region nearby. In our benchmarking, 

LinkedSV resolved 95% SVs of which breakpoints located in repeat regions. Secondly, SVs are 

undetectable from traditional short-read sequencing if there is little coverage at the breakpoints, which is 

often the case in WES data sets. As described above, this type of SV can also be resolved by linked-read 

sequencing and LinkedSV. Third, linked-read sequencing requires less coverage for detection of SVs with 

low variant allele frequencies. In linked-read sequencing data, short read pairs are sparsely and randomly 

distributed along the HMW DNA molecule. In a typical linked-read WGS data set, the average distance 

between two read pairs derived from the same HMW DNA molecule is about 1000 bp and each HMW 

DNA molecule only has a short-read coverage of about 0.2X. Therefore, there are about 150 HMW DNA 

molecules (reconstructed fragments) covering a genomic location of 30X depth. A SV of 10% VAF will 

have 15 supporting fragment pairs in a 30X depth location in linked reads WGS data set, which is 

sufficient to be detected by LinkedSV. However, a SV of 10% VAF will only 3 supporting read pairs in a 

30X depth location in traditional short read WGS, which makes the detection more challenging.  
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Linked-read sequencing also has several advantages over long-read sequencing for SV detection. Linked-

read sequencing has a much lower cost compared with long-read sequencing technologies. Thus, it is 

possible to sequencing a sample at very high converge and find SVs with very low VAF. It is also 

possible to do population-based large cohort studies. In addition, long-read sequencing technologies tend 

to have higher error rates (13-15%) and there may be some false positive calls due to sequencing errors 

[11].  

The linked-read technology provides strong evidence to detect large SVs, but it provides little additional 

evidence to detect small SVs. Therefore, LinkedSV has limited power to detect SVs that are shorter than 

10 kb. However, large SVs are more likely to be harmful and to cause diseases. Therefore, we still expect 

a strong ability of linked-read technology to resolve harmful and disease causal SVs. Like the existing 

linked-read SV callers, LinkedSV currently does not handle novel sequence insertions. As future work, 

we plan to detect novel sequence insertions using type 2 evidence, since this type of SV also cause a 

decrease of barcode similarity between nearby regions and can be detected by the twin-window method.  

In summary, we present LinkedSV, a novel SV caller for linked-read sequencing. LinkedSV 

outperformed current existing SV caller, especially for identifying SVs with low allele frequency or 

identifying SVs from target region sequencing such as linked-read WES. We expect LinkedSV will 

facilitate the detection of structural variants from linked-read sequencing data and help solve negative 

cases of conventional short-read sequencing.  
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Figures  

 

Figure 1 

Two types of evidence near SV breakpoints. a) Type 1 evidence. Reads from HMW DNA molecules 

that span the breakpoints of a deletion are mapped to two genomic locations, resulting in two sets of 
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observed fragments and two sets of newly introduced fragment endpoints (solid dots). b) The patterns of 

enriched fragment endpoints indicate the SV types. c) Enriched fragment endpoints detected near two 

breakpoints of a deletion on NA12878 genome. 5’-endpoints and 3’-endpoints are plotted separately. The 

breakpoint positions are marked by red arrows. d) Two-dimensional view of enriched endpoints near the 

two breakpoints of the deletion. Each dot indicates a pair of fragments which share the same barcode and 

thus may support the SV. The x-value of the dot is the position of the first fragment’s 3’-endpoint and the 

y-value of the dot is the position of the second fragment’s 5’-endpoint. The background of the 2D plot is 

cleaner than the 1D plot (panel c) since the fragments that do not share barcodes are excluded. e) Type 2 

evidence. Reads from two breakpoints of an inversion being mapped to nearby positions (in the grey 

rectangles), resulting in decreased barcode similarity between the two nearby positions. f) Decreased 

barcode similarity near the breakpoints of an inversion on NA12878 genome. The reciprocal of barcode 

similarity is shown in the figure. The peaks indicate the positions of the breakpoint. 
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.  

Figure 2 

Performance of LinkedSV on the simulated WGS data set. a) Recalls, precisions and F1 scores of four 

linked-read SV callers on the simulated WGS data set. b) Fragment endpoint signals of a small 

duplication that was missed by GROC-SVs. The peaks indicate the approximate breakpoint positions. c) 

Supporting fragments of the duplications. Horizontal lines represent linked reads with the same barcode; 

dots represent reads; colors indicate barcodes. d) Precision of breakpoints predicted by LinkedSV without 

checking short-read information. e) Precision of LinkedSV refined breakpoints using discordant read-

pairs and split-reads.  
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Figure 3 

Performance of LinkedSV on the simulated WGS data with low variant allele frequencies. a, b) 

Recalls, precisions and F1 scores of four linked-read SV callers on the simulated WGS data set with VAF 

of 10% and 20%. c) An inversion that was missed by Longranger, and NAIBR (VAF = 10%). The 

overlapped barcodes between the two inversion breakpoints can be clearly visualized (in the black circle) 

using the Loupe software developed by 10X Genomics. d) Supporting fragments of the inversion detected 

by LinkedSV. Horizontal lines represent linked reads with the same barcode; dots represent reads; colors 

indicate barcodes. Predicted breakpoint positions are marked by red arrows.  
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Figure 4 
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Performance of LinkedSV on the simulated WES data set. a) Recalls, precisions and F1 scores of four 

linked-read SV callers on the simulated WES data set. b) A deletion that was missed by NAIBR. The 

overlapped barcodes between the two breakpoints can be clearly visualized (in the black circle) using the 

Loupe software. c) Supporting fragments of the deletion detected by LinkedSV. Horizontal lines represent 

linked reads with the same barcode; dots represent reads; colors indicate barcodes. Predicted breakpoint 

positions are marked by red arrows.  

 

 

 

Figure 5 

Detection SVs from clinical exome sequencing data. (a) Illustration of type I inversion of F8 gene. A 

portion of intron 22 is has three copies in chrX (int22h-1, int22h-2, int22h-3). The inversion is induced by 

the homologous recombination between two inverted copies int22h-1 and int22h-3. Int22h-1 is located in 

intron 22 of F8 gene and int22h-3 is located in the intergenic regions. (b) Barcode overlapping between 
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the two breakpoints can be visualized using the Loupe software (black circle). (c) Decreased barcode 

similarity at breakpoints detected by the twin window method of LinkedSV. Window size = 40 kb (d) 

Supporting fragments detected by LinkedSV. Horizontal lines represent linked reads with the same 

barcode; dots represent reads; colors indicate barcodes. Dashed vertical black lines represent breakpoints. 

Capture regions were shown as vertical bars in the bottom. 
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Supplementary Figures 

 

 

 

Supplemental Figure 1 
Pattern of enriched fragment endpoints for tandem duplication. 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 6, 2018. ; https://doi.org/10.1101/409789doi: bioRxiv preprint 

https://doi.org/10.1101/409789


30 

 

 

Supplemental Figure 2 

Pattern of enriched fragment endpoints for inversion. 
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Supplemental Figure 3 

Pattern of enriched fragment endpoints for balanced translocation.  
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Supplemental Figure 4 

The distance between the fragment endpoint and the corresponding breakpoint is not more than the 

distance between two nearby reads (i.e. gap distance). This explains the enrichment of fragment endpoints 

near the breakpoints.  
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Supplemental Figure 5 

a) For large duplications, the reads of the alternative allele are separated by a large gap so that we can 

observe two sets of fragments with the same set of barcodes, which indicate a SV. b) If the duplication is 

not large enough, the reads will be probably clustered into one fragment.  
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Supplemental Figure 6 

Detection of type 1 evidence.  
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Supplementary Tables 

Supplemental Table 1 

SV calls detected by Delly on the F8 inversion sample (10 kb upstream/downstream of the inversion).  
Chrom Start End SV type 
chrX 154002063 154002446 INV 
chrX 154004508 154004709 INV 
chrX 154005670 154005855 INV 
chrX 154011709 154012062 DUP 
chrX 154012155 154012297 INV 
chrX 154014432 154014542 INV 
chrX 154014535 154014759 INV 
chrX 154017795 154017948 INV 
chrX 154020109 154020407 INV 
chrX 154045287 154045525 INV 
chrX 154045633 154045781 INV 
chrX 154057649 154057833 INV 
chrX 154057785 154057923 INV 
chrX 154083952 154084185 INV 
chrX 154091092 154091440 INV 
chrX 154115196 154115584 INV 
chrX 154115667 154115957 INV 
chrX 154124101 154124495 DUP 
chrX 154129769 154129919 INV 
chrX 154130086 154130222 INV 
chrX 154132781 154133165 DUP 
chrX 154146261 154146462 INV 
chrX 154146565 154146775 INV 
chrX 154152621 154152772 INV 
chrX 154157646 154157941 DUP 
chrX 154158133 154158450 DUP 
chrX 154158358 154158630 INV 
chrX 154159826 154160143 INV 
chrX 154175838 154176055 INV 
chrX 154176073 154176451 INV 
chrX 154194502 154194721 INV 
chrX 154208905 154209847 DUP 
chrX 154209557 154209679 INV 
chrX 154212475 154212843 INV 
chrX 154212596 154212733 INV 
chrX 154227431 154227667 INV 
chrX 154272329 154272476 INV 
chrX 154272335 154272592 DUP 
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chrX 154275546 154275664 INV 
chrX 154275671 154275934 INV 
chrX 154290114 154290323 INV 
chrX 154344170 154344430 INV 
chrX 154387813 154429972 INV 
chrX 154387928 154429779 INV 
chrX 154391126 154391291 INV 
chrX 154426121 154426264 INV 
chrX 154428351 154428890 DUP 
chrX 154464614 154464716 INV 
chrX 154508570 154508865 INV 
chrX 154540689 154540872 INV 
chrX 154609922 154610441 DUP 
chrX 154610132 154610342 INV 
chrX 154611498 154611783 INV 
chrX 154611510 154688681 DEL 
chrX 154612459 154612925 DUP 
chrX 154613017 154613356 INV 
chrX 154652935 154653319 DUP 
chrX 154687101 154687535 DUP 
chrX 154687312 154687480 INV 
chrX 154688521 154688851 INV 
chrX 154688714 154688969 INV 
chrX 154689667 154689984 INV 
chrX 154735308 154735475 INV 
chrX 154755098 154755225 INV 
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Supplemental Table 2 

SV calls detected by Lumpy on the F8 inversion sample (all calls in chrX).   
Chrom Start End SV type 
chrX 1413852 1414637 DEL 
chrX 17520630 17520931 DEL 
chrX 28749622 28749739 DUP 
chrX 31189715 31189837 DUP 
chrX 38145097 38145387 DUP 
chrX 38145261 38145866 DUP 
chrX 38145731 38145851 DEL 
chrX 38145513 38145876 DEL 
chrX 38145369 38145943 DUP 
chrX 38145283 38145943 DUP 
chrX 38145180 38145975 DUP 
chrX 38145091 38145976 DUP 
chrX 38145835 38145920 DEL 
chrX 38145729 38145981 DUP 
chrX 38145874 38145914 DEL 
chrX 38145321 38145988 DUP 
chrX 38145471 38145995 DUP 
chrX 38145929 38146016 DUP 
chrX 38145971 38146003 DEL 
chrX 38145885 38146041 DUP 
chrX 38145642 38146055 DUP 
chrX 38146077 38146257 DUP 
chrX 39932139 39932332 DUP 
chrX 41788764 41788966 DUP 
chrX 47308661 47308783 DUP 
chrX 63411862 63412017 DUP 
chrX 64063531 64063690 DUP 
chrX 76890054 76890207 DUP 
chrX 101912168 101912314 DUP 
chrX 142794887 142795158 DUP 
chrX 149745015 149745169 DUP 
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Supplemental Table 3 

SVs on chrX detected by Longranger on the F8 inversion sample. 

Chrom 1 Position 1 Chrom 2 Position 2 SV type Distance 
to int22h-1 

Distance 
to int22h-3 

chrX 3735199 chrX 3855112 Unknown -150380286 -150832314 
chrX 7810783 chrX 8151613 Unknown -146304702 -146535813 
chrX 7810783 chrX 8113116 Unknown -146304702 -146574310 
chrX 134855892 chrX 134985727 Unknown -19259593 -19701699 
chrX 152225317 chrX 152352113 Unknown -1890168 -2335313 
chrX 154091033 chrX 154660067 Unknown -24452 -27359 
chrX 154131339 chrX 154735755 Unknown 15854 48329 
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Supplemental Table 4 
SVs detected by GROC-SVs on the F8 inversion sample. 
Chrom 1 Position 1 Chrom 2 Position 2 Orientation 
chr1 12889258 chr1 12938883 +- 
chr1 12919205 chr1 12853022 -- 
chr1 21754487 chr1 21794667 +- 
chr1 148026036 chr1 144622101 ++ 
chr1 223725671 chr1 223797843 +- 
chr2 98162357 chr2 97860318 -- 
chr2 149687145 chr2 149790581 +- 
chr2 234053740 chr2 234002965 -+ 
chr3 129809651 chr3 129762840 -+ 
chr4 9452594 chr4 9485059 +- 
chr4 69681327 chr4 69893173 -- 
chr5 155137378 chr5 155188725 +- 
chr5 180430554 chr5 180375038 -+ 
chr6 29909733 chr6 29843849 -- 
chr6 29913575 chr6 29844437 ++ 
chr6 160956444 chr6 160877743 -- 
chr7 100550750 chr7 100609409 -- 
chr7 100555813 chr7 100610572 ++ 
chr11 1162747 chr11 1212758 +- 
chr11 5809264 chr11 5777102 -+ 
chr12 7239875 chr12 7189849 -+ 
chr12 11545335 chr12 11503243 -+ 
chr12 18018173 chr12 17922871 -- 
chr12 109372790 chr12 109423610 +- 
chr12 132926655 chr16 86452753 +- 
chr12 133041064 chr2 231869678 +- 
chr13 114325993 chr13 114425990 +- 
chr14 24436900 chr14 24474868 +- 
chr15 20740860 chr15 23406226 +- 
chr15 22743596 chr15 23572115 +- 
chr15 23407964 chr15 20739466 +- 
chr15 23573198 chr15 22742499 +- 
chr15 28597075 chr15 28806596 ++ 
chr15 28804860 chr15 28595402 -- 
chr15 83003956 chr15 82934463 -- 
chr15 83014625 chr15 82936703 ++ 
chr15 84960511 chr15 84859997 ++ 
chr16 14988609 chr16 15031370 -- 
chr16 70009791 chr16 74426101 -+ 
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chr16 86453332 chr12 132926283 +- 
chr17 36297237 chr17 36337601 +- 
chr20 1600172 chr20 1559471 -+ 
chr20 56771729 chr12 2828954 -- 
chr20 56771963 chr12 2830313 ++ 
chr22 18666166 chr22 18737108 -- 
chr22 18737933 chr22 18686213 ++ 
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Supplemental Table 5 

SVs on chrX detected by NAIBR on the F8 inversion sample. 

Chrom 1 Position 1 Chrom 2 Position 2 Orientation Distance 
to int22h-1 

Distance 
to int22h-3 

chrX 1399792 chrX 1400312 +- -152715693 -153287114 
chrX 26179787 chrX 26212951 ++ -127935698 -128474475 
chrX 49162006 chrX 49180528 ++ -104953479 -105506898 
chrX 49208629 chrX 49209218 +- -104906856 -105478208 
chrX 49218203 chrX 49218751 +- -104897282 -105468675 
chrX 52830446 chrX 52830826 +- -101285039 -101856600 
chrX 57147470 chrX 57162963 ++ -96968015 -97524463 
chrX 129651865 chrX 129652250 +- -24463620 -25035176 
chrX 140140043 chrX 140140427 +- -13975442 -14546999 
chrX 154387911 chrX 154430070 -- 272426 -257356 
chrX 155245001 chrX 155245507 +- 1129516 558081 
chrX 155251108 chrX 155252593 +- 1135623 565167 
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Supplementary Notes 

Supplementary Note 1 Explanation of the model for detecting type 2 evidence.  

Barcode similarity between two nearby regions very high because the reads originate from almost the 

same set of HMW DNA molecules. However, the barcode similarity between the left side and right side 

of the breakpoint are dramatically reduced. We call this evidence as type 2 evidence. To detect type 2 

evidence, LinkedSV uses two adjacent sliding windows (window 1 and window 2) to scan the genome 

and calculate the barcode similarity between the window 1 and window 2.  

In WES data sets, the numbers of reads in the sliding windows vary a lot due to capture bias and the 

length of capture regions. To detect type 2 evidence from both WGS and WES data sets, our model 

considers the variation of sequencing depth and capture regions. The barcode similarity is calculated as: 

𝑆𝑆 =  𝑥𝑥
𝑚𝑚1
𝑎𝑎𝑚𝑚2

𝑏𝑏 𝑛𝑛𝑒𝑒−𝛼𝛼𝑎𝑎  (1),  

where: 

m1 is the number of barcodes in window 1,  

m2 is the number of barcodes in window 2, 

x is the number of barcodes in both windows, 

d is the weight distance between reads of the left window and the right window,  

n is a constant representing the characteristic of the library,  

α is a parameter of fragment length distribution, 

a and b are two parameters between 0 and 1, 

n, α, a and b are estimated from the data using regression.  

 

Suppose there are n different HMW DNA molecules span both window 1 and window 2, each of which 

has a different barcode and generates a number of read pairs in the library. The read pairs in the library 

may or may not be sequenced. We assume the n HMW DNA molecules have the same rate to generate 

read pairs in the library, so the n HMW DNA molecules have the same chance to be sequenced (have at 

least 1 read). Let m1 be the number of HMW DNA molecules sequenced in window 1, m2 be the number 

of HMW DNA molecules sequenced in window 2. m1 and m2 can be different due to the bias of target 

enrichment and the total length of target regions in each window. Let X be the number of HMW DNA 

molecules sequenced in both window 1 and window 2. X follows the hypergeometric distribution: 

 

𝑃𝑃(𝑋𝑋 = 𝑥𝑥 |𝐺𝐺1,𝐺𝐺2,𝑛𝑛) =
𝐶𝐶𝑚𝑚1
𝑥𝑥 𝐶𝐶𝑛𝑛−𝑚𝑚1

𝑚𝑚2−𝑥𝑥

𝐶𝐶𝑛𝑛
𝑚𝑚2   (2). 
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The expectation of X is: 

𝐸𝐸(𝑋𝑋) =  𝑚𝑚1𝑚𝑚2
𝑛𝑛

 (3). 

However, the length of sliding windows may be as long as 40 kb and not all the n HMW DNA molecules 

are long enough to span both windows. In addition, the capture regions in window 1 and window 2 may 

be close to each other or far away from each other. Therefore, we need to adjust n to be 

approximately 𝑛𝑛𝑒𝑒−𝛼𝛼𝑎𝑎. d is calculated using the following equation: 

d = w2 – w1 (4), 

where w1 is the mean mapping position of all reads in window 1 and w2 is the mean mapping position of 

all reads in window 2. The larger d, the smaller number of HMW DNA molecules can span a region of 

length d. We choose exponential distribution because the length of HMW DNA molecules follows 

exponential distribution and thus the number of HMW DNA molecules longer than d also follows 

exponential distribution.  

m1 also need to be adjusted because not all HMW DNA molecules being sequenced in window 1 span 

both windows. We adjust m1 to be approximately 𝐺𝐺1
𝑎𝑎 and similarly adjust m2 to be approximately 𝐺𝐺2

𝑛𝑛.  
After the adjustment, the expectation of X is: 

𝐸𝐸(𝑋𝑋) =  𝑚𝑚1
𝑎𝑎𝑚𝑚2

𝑏𝑏

𝑛𝑛𝑎𝑎−𝛼𝛼𝛼𝛼
 (5). 

 

We define barcode similarity as:  

𝑆𝑆 =  𝑥𝑥
𝐸𝐸(𝑋𝑋)

=  𝑥𝑥
𝑚𝑚1
𝑎𝑎𝑚𝑚2

𝑏𝑏 𝑛𝑛𝑒𝑒−𝛼𝛼𝑎𝑎 (6), 

 

where x is the number of shared barcodes between window 1 and 2, E(X) is the expected number of 

shared barcodes between window 1 and 2.  

Take the log of both sides equation (6), we have:  

log(𝑆𝑆) = log(𝑥𝑥) − 𝐺𝐺𝑎𝑎𝑎𝑎𝑔𝑔(𝐺𝐺1)− 𝑏𝑏𝑎𝑎𝑎𝑎𝑔𝑔(𝐺𝐺2) + log (𝑛𝑛) − 𝛼𝛼𝛼𝛼  (7). 

Assuming most regions in the genome do not have breakpoints, we can replace S with 1 and estimate a, b, 

n, 𝛼𝛼 from the data using linear regression.  
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