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Abstract 

Background  

Germline mutations in the BRCA1 and BRCA2 genes predispose carriers to breast and ovarian              

cancer, and there remains a need to identify the specific genomic mechanisms by which cancer               

evolves in these patients. Here we present a systematic genomic analysis of breast tumors with               

BRCA1 and BRCA2 mutations, comparing these to common types of sporadic breast tumors.  

Results  

We identify differences between BRCA-mutated and sporadic breast tumors in patterns of point             

mutation, DNA methylation and structural variation. We show that structural variation           

disproportionately affects tumor suppressor genes and identify specific driver gene candidates that            

are enriched for structural variation.  

Conclusions  

Compared to sporadic tumors, BRCA-mutated breast tumors show signals of reduced DNA            

methylation, more ancestral cell divisions, and elevated rates of structural variation that tend to              

disrupt highly expressed protein-coding genes and known tumor suppressors. Our analysis suggests            

that BRCA-mutated tumors are more aggressive than sporadic breast cancers because loss of the              

BRCA pathway causes multiple processes of mutagenesis and gene dysregulation.  
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Background  

Breast cancer is the most commonly diagnosed cancer and the second leading cause of cancer death                

among women. Approximately 10-15% of cases are associated with familial DNA repair-deficiency            

disorder, among which the most common forms are related to germline variants in BRCA1 and BRCA2,                

two genes involved in homologous recombination repair​1,2,3​. A germline mutation in BRCA1 or BRCA2              

genes is known to be associated with a much higher than average lifetime risk (72% for BRCA1 and 69%                   

for BRCA2 mutation carriers ​4​) of developing breast cancer. In addition, these carriers also have a high                

risk of ovarian and other cancers ​5,6​.  

The reason for this is not entirely clear. It is hypothesized that due to malfunctioning homologous                

repair machinery, tumors with BRCA1/2 mutations have a higher rate of incorrectly repaired             

double-strand DNA breaks ​7​, leading to higher rates of structural variation in the genome, which may               

impact cell death or cell growth genes. In other words, an impaired BRCA complex could be a mutagen,                  

analogous to environmental mutagens such as benzo(a)pyrene in tobacco smoke. But these tumors also              

show a propensity to dedifferentiate into a more primitive state​7​, which could result in a higher rate of cell                   

division, increasing the chance that mutations, which occur as a function of DNA replication, may hit                

genes involved in cell death or growth​8​. Under this hypothesis, lack of BRCA function is not a distinctive                  

mutagen but an amplifier of normal mutational mechanisms ​9​. Either of these phenotypes alone could              

explain the increased risk of cancer in BRCA mutation carriers but it is also possible for the two                  

phenotypes to act synergistically. However, despite increasing literature on the topic, there has been no               

resolution, and the mechanisms underlying breast cancers in patients with BRCA mutations are still not               

fully comprehended.  

Tumors with BRCA gene mutations often display a basal phenotype and are triple-negative             

(lacking ER, PR and HER2 amplifications)​10​. Previous studies have identified differences in point             
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mutational signatures ​11​, copy number profile​12​, gene expression signatures ​13 and patterns of structural            

variation​11 between BRCA-mutated and sporadic breast tumors, indicating that tumor evolution follows a             

distinct path in these cancers. Moreover, in addition to patients with inherited germline mutations in the                

BRCA genes, somatic inactivation of BRCA1 and BRCA2 has also been reported in breast and ovarian                

tumors ​14,15​. Recent studies suggest that such tumors may present similar phenotypes to those with              

germline BRCA inactivation​16​.  

In this work we combine newly generated sequencing data with previous datasets, and perform an               

in-depth integrative analysis of genomic and epigenomic data in order to achieve better insights into the                

mechanism underlying tumor formation in individuals with BRCA gene mutations. Our aim here is to               

characterize the genomic variation in BRCA-mutated tumors and understand whether and how they are              

different from common classes of sporadic breast tumors. We present novel results on the differences in                

point mutation, DNA methylation, and structural variation in BRCA1/2 mutated tumors, and identify             

specific genes including known tumor suppressors that are frequently damaged by structural variation in              

these tumors.  

 

Results  

BRCA1/2-mutated tumors have a high burden of point mutations. ​To compare the point mutation              

profiles of BRCA-mutated tumors with other breast tumors, we analyzed a published dataset of 560 breast                

tumors ​11​. It includes 36 tumors with inactivating germline or somatic mutations in BRCA1 and 39 with                

inactivating germline or somatic mutations in BRCA2, as well as 118 triple-negative tumors, 293 ER+               

(HER2-) tumors and 71 HER2+ tumors. Both BRCA1-mutated and BRCA2-mutated tumors present a             

significantly higher number of point mutations than the other classes (Figure 1), with BRCA1-mutated              
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tumors having a particularly high number of point mutations. Tumors with somatic BRCA1/2 mutations              

present similarly high mutation counts to those with germline inactivation.  

Differences in mutational signature exposures between BRCA1/2-mutated and sporadic tumors.          

Mutational signatures are patterns of point mutations in the genome created by specific mutagenic              

processes, e.g., a chemical mutagen or a defect in a DNA repair enzyme​17​. If BRCA1/2-mutated tumors                

evolve via distinct point mutation-causing processes, they may possess unusual mutational signatures. We             

therefore analyzed whether the BRCA1/2-mutated tumors have a different pattern of mutational            

signatures from the remaining breast tumors.  

A previous study​11 applied a widely used approach​17 for extracting mutational signatures from             

genomic data to the dataset of 560 breast tumors, resulting in 12 mutational signatures. Notably, the                

resulting signatures are very dense, and many are also very similar to each other. While some have been                  

linked to known mutational processes in breast cancers, others still have no known etiology​19​. This may                

be due to the fact that this framework extracts as many signatures as required to improve the fit to the                    

data, without testing whether these signatures perform well at fitting unseen data. This can be expected to                 

result in a high number of signatures that potentially overfit the data. For these reasons, we wished to use                   

a more principled approach that incorporates biological knowledge, as well as statistical methods to              

prevent overfitting.  

We recently developed SparseSignatures ​20​, a novel framework to identify mutational signatures.           

This method incorporates a background model representing the pattern of mutations caused in the normal               

course of cell division by DNA replication errors - a signature that we assume is present in all tumors.                   

The background signature is fixed and additional signatures are discovered while incorporating a LASSO              

constraint to ensure that the signatures are sparse, producing a more biologically accurate and              

interpretable solution. SparseSignatures also applies a repeated bi-cross-validation strategy​20 to select the            
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number of signatures. This allows us to avoid overfitting by selecting a number of signatures that not only                  

fit the data used to discover them but are also capable of predicting unseen data points.  

We applied this approach to 555 breast tumors (we removed 5 tumors with <1000 mutations as                

previously described​20​). We discovered 8 mutational signatures in addition to the background (Figure 2a,              

Supplementary Table 1). These signatures are statistically strongly supported and most of them are related               

to known mutagenic mechanisms. Signatures 1 and 2 are associated with defective DNA mismatch              

repair​21​. Signature 3 is a pattern of elevated TT>GT point mutations, highest in a CTT context. Signature                 

4 is similar to the previously described​11 ‘Signature 18’, which has recently been associated with DNA                

damage caused by reactive oxygen species ​18​. Signatures 5 and 7 are associated with deregulation of               

APOBEC cytidine deaminases ​19​. Signature 6 is caused by deamination of methylated cytosines at CpG              

sites into thymine. Finally, Signature 8 is a relatively dense pattern characterized by an elevated rate of                 

C>A, C>G and T>A mutations.  

It is notable that despite finding fewer signatures, our solution still provides a better fit to the data                  

(MSE = 364.345) than the previous solution​11 with 12 signatures (MSE = 1118.703). Along with               

providing a better fit to the data, our discovered signatures are sparser, more clearly differentiated from                

each other, and lack background noise (Supplementary Table 2).  

We do not find two signatures described in the previous study - the highly dense, flat ‘Signature                 

3’ and ‘Signature 8’. While our Signature 8 bears some similarities to the previous ‘Signature 3’, it is                  

considerably sparser and shows stronger nucleotide preferences, which may be due to our explicit              

separation of the background signature, thus preventing its being confounded with other signatures. We              

also do not find a signature similar to the previous ‘Signature 30’.  

Compared to sporadic tumors, a higher fraction of mutations is attributed to Signature 8 in both                

BRCA1 and BRCA2-mutated tumors. While the etiology of this signature is uncertain, it is not simply                
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indicative of BRCA mutation as many sporadic triple-negative tumors also have a similarly high              

contribution by signature 8. In general, the mutational signature profiles of sporadic triple-negative             

tumors are very close to those of BRCA1/2-mutated tumors, indicating similar underlying mutagenic             

processes.  

BRCA tumors have lower levels of CpG methylation. SparseSignatures also calculates the exposure             

values for each signature, i.e. the number of mutations originating from each signature in each patient                

(Supplementary Table 3). On average, the background signature (representing DNA replication errors)            

contributes more mutations than any other signature. The higher number of point mutations in the               

BRCA-mutated tumors, compared to sporadic tumors, is reflected in a higher exposure to the background               

signature, suggesting that these tumors have gone through more cell divisions (Figure 2b); in addition, the                

BRCA-mutated tumors also show higher exposure to all the discovered signatures except for signature 6,               

which is underrepresented in BRCA-mutated tumors (Figure 2c). This signature is caused by DNA CpG               

methylation and subsequent deamination of methylated cytosine to thymine leading to C>T mutation. The              

ratio of Signature 6 exposure to background signature exposure is significantly lower in both BRCA1 and                

BRCA2 mutated tumors compared to sporadic tumors (p = 2 x 10​-21 and 1 x 10​-9 respectively;                 

Supplementary Figure 1). Taking the background signature exposure as an indicator of cell division, this               

suggests that BRCA1/2-mutated tumors may have lower CpG methylation.  

As DNA methylation data is not available for this dataset, we tested whether DNA methylation is                

lower in BRCA1/2-mutated tumors in a cohort of 682 breast cancers and 82 normal breast tissue samples                 

from The Cancer Genome Atlas ​22​. This dataset included 20 tumors with inactivating germline or somatic               

mutations in BRCA1 and 13 with inactivating germline or somatic mutations in BRCA2. We found that                

global CpG methylation levels are indeed significantly reduced in BRCA1-mutated tumors compared to             

all classes of sporadic tumors as well as normal tissue samples in the same dataset (Figure 2d;                 

p(BRCA1-mutated vs. sporadic) = 3 x 10​-4​; p(BRCA1-mutated vs. normal tissue) = 3 x 10​-5​). On the other                  
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hand, there was no significant difference between BRCA1-mutated and sporadic tumors in the             

methylation level of the 3081 CpA sites measured on the same platform (Supplementary Figure 2). We                

did not observe a significant difference in methylation levels between BRCA2-mutated and sporadic             

tumors. However, we note the low number of samples in this analysis.  

BRCA1-mutated tumors have elevated tandem duplications and interchromosomal translocations.         

We obtained whole-genome sequencing data for 67 of the 560 tumor samples ​11 along with their matched                

normal samples, for which BAM files were available for download from ICGC. In addition, we               

sequenced whole genomes from 14 additional tumors and matched normal samples ​23 from patients             

carrying germline BRCA1/2 mutations, resulting in a dataset of 81 tumor genomes: 27 with germline               

BRCA1 mutations, 19 with BRCA2 mutations (17 germline and 2 somatic), and 35 sporadic breast               

tumors without BRCA inactivation, of which 19 were triple-negative and 16 were ER+. Supplementary              

Table 4 describes the selected samples.  

We used SvABA​24 to identify somatic indels and structural variants in these tumor genomes.              

SvABA is a newly developed indel and structural variant caller that uses genome-wide local assembly to                

obtain superior sensitivity and specificity to previous methods. After filtering the variant calls (see              

Methods), we identified a total of 7,234 high-confidence somatic indels and 19,684 high-confidence             

somatic structural variants in the 81 tumor genomes. We then compared BRCA1/2-mutated tumors             

against sporadic tumors. We included the 2 tumors with somatic BRCA2 inactivation along with those               

showing germline BRCA2 inactivation. We found that both BRCA1 and BRCA2-mutated tumors had             

significantly more indels (p = 1.63 x 10​-5 for BRCA1 and p = 1.37 x 10​-3 for BRCA2) and structural                    

variants (p = 5.12 x 10​-7​ for BRCA1 and p = 0.029 for BRCA2) per tumor than the sporadic tumors.  

We next examined specific types of variation. Both BRCA1 and BRCA2-mutated tumors have             

more deletions than sporadic tumors (Figure 3a; p(BRCA1/2-mutated vs. sporadic) = 1.96 x 10​-7​). While               

most deletions in sporadic tumors are either <5 bp or >10 kb long, BRCA1/2-mutated tumors have a large                  
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number of deletions of intermediate size; the size distribution of these deletions is bimodal, with one peak                 

between 5-100 bp and the other between 100 bp-10 kb (Figure 3b). While the 5-100 bp long deletions                  

mostly lack microhomology at the breakpoints, the majority of the BRCA1/2-mutated samples have short              

regions of microhomology (1-10 bp) at the breakpoints in >50% of the deletions in the 100 bp-10 kb size                   

range (Figure 3c).  

On the other hand, we confirmed previous studies ​11,25 showing that BRCA1-mutated tumors have             

an elevated number of tandem duplications (Figure 3a; p(BRCA1 vs. others) = 5.93 x 10​-7​),               

predominantly ranging in size from 1-100 kb (Figure 3b). Most of the tandem duplications in this size                 

range have short regions of microhomology at the breakpoints (Figure 3c).  

In addition, we observed that the BRCA1-mutated tumors have more interchromosomal           

translocations than the BRCA2-mutated or sporadic tumors (Figure 3a; p(BRCA1-mutated vs. others) =             

4.2 x 10​-4​). To our knowledge this phenomenon has not been described previously. Like the tandem                

duplications described above, these translocations also tend to have microhomology of 1-10 bp at the               

breakpoints (Figure 3c).  

Large copy number alterations in the genome can significantly change genome size. To test              

whether the elevated numbers of point mutations and structural variants in BRCA1/2-mutated samples are              

due to biological differences or are accounted for by the availability of more DNA, we identified copy                 

number variants in the genomes of these 81 tumor samples using Control-FREEC​25​. After correcting the               

size of the genome in each tumor to account for copy number alterations, we find that the                 

BRCA1-mutated samples have larger genomes than BRCA2-mutated or sporadic tumors (Supplementary           

Figure 3). However, normalizing the number of mutations for the actual size of the genome does not                 

affect our results. BRCA1 and BRCA2-mutated tumors still have significantly higher numbers of point              

mutations and deletions than sporadic tumors, and BRCA1-mutated tumors have significantly higher            

numbers of tandem duplications and interchromosomal translocations than all other classes of tumors.  
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Functional regions hit by breakpoints in BRCA-mutated tumors. Since BRCA1/2-mutated tumors           

have an elevated number of structural variants, we tested whether these structural variants tend to disrupt                

functional and regulatory regions of the genome. We found that in BRCA1/2-mutated tumors, the              

breakpoints for interchromosomal translocations, 1-100 kb duplications and 100 bp-10 kb deletions are all              

more likely to occur in open chromatin (p = 3.93 x 10​-6​, p = 6.56 x 10​-6 and p = 0.034 respectively). The                       

breakpoints for 1-100 kb tandem duplications and interchromosomal translocations, both of which are             

elevated in BRCA1-mutated tumors, are also enriched in protein-coding genes (p = 1.73 x 10​-14 and p =                  

0.014 respectively); the tandem duplication breakpoints are also specifically enriched in exons (p = 1.2 x                

10​-3​). We also found that interchromosomal translocation breakpoints are enriched in TAD boundaries (p              

= 2.92 x 10​-4​). Disruption of TAD boundaries has previously been shown to alter gene expression in                 

tumors by modifying 3D contact domains on the chromosome​27​.  

We also tested whether the indels and structural variant breakpoints in BRCA1/2-mutated tumors             

are associated with the local replication timing. The breakpoints for 5-100 bp long deletions (p = 4.33 x                  

10​-4​), and for small (<5 bp) indels (p = 9.62 x 10​-16​) are both enriched in late replicating regions. On the                     

other hand, the breakpoints for 1-100 kb tandem duplications and interchromosomal translocations, both             

of which are elevated in BRCA1-mutated tumors, are enriched in early replicating regions (p = 4.58 x                 

10​-19​ and p = 3.17 x 10​-11​ respectively).  

Structural variants disrupt tumor suppressor genes. ​We examined the genes that are disrupted by              

indel and structural variation breakpoints in BRCA1/2-mutated tumors. The genes disrupted by both             

indels and SVs have significantly (p < 10​-15 for both) higher levels of expression in normal breast tissue,                  

according to RNA-Seq data from GTEx​28 (Supplementary Figure 4). Further, the set of genes disrupted by                

indels and structural variation are both significantly enriched for tumor suppressor genes (p = 1.39 x 10​-5                 

and p = 4.89 x 10​-10​ respectively).  
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We next searched for specific genes enriched for indels or structural variant breakpoints in the               

BRCA1/2-mutated tumors, using a poisson test. The null model here is that breakpoints are randomly               

distributed throughout the genome, and we identify protein-coding genes that have significantly more             

breakpoints than expected from their size. We identified 11 genes enriched for indels/structural variant              

breakpoints: NME7, KLHL8, EFNA5, PTEN, DHX32, ETV6, RB1, ARGLU1, TP53, P4HB, and            

RUNX1 (Table 1). After correcting the length of each gene to take into account its copy number in each                   

tumor, 10 of these genes (KLHL8, EFNA5, PTEN, DHX32, ETV6, RB1, ARGLU1, TP53, P4HB,              

RUNX1) remained significant. 4 of them (PTEN, RB1, TP53 and RUNX1) are known tumor suppressors               

and have also been identified as potential point mutation driver genes ​22 ​, showing that structural variants                

in BRCA1/2-mutated tumors hit some of the same drivers that are normally damaged by point mutations                

in sporadic tumors. However, the remaining 6 genes are not known to be enriched for point mutations in                  

breast cancer, and may therefore represent specific indel/structural variant drivers; of these, ETV6 is              

known to act as a tumor suppressor in leukemias ​29​. Moreover, 4 of these genes (RB1, PTEN, KLHL8, and                  

EFNA5) are also spanned by long deletions in multiple BRCA1/2-mutated samples, representing another             

mode of inactivation.  

Structural variant breakpoints are distributed non-uniformly across the genome. ​In our set of 46              

BRCA1/2-mutated tumor samples, only about 39% of the breakpoints disrupt known genes. While this              

fraction is significantly higher than expected by chance, we also wanted to test whether there are larger                 

regions of the genome, including non-coding regions, that are enriched for breakpoints. These would              

include breakpoints for variants that span across whole genes, as well as those that affect gene expression                 

by disrupting regulatory regions of the genome.  

We divided the genome into 10-Mb long bins, overlapping by 5 Mb. We then combined all the                 

high-confidence indels and structural variants collected from all the BRCA1/2-mutated tumors. We tested             

whether these tumors are enriched for indel/structural variant breakpoints in each bin using a poisson test,                
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with the null model being that breakpoints are distributed uniformly across the genome. We found 48 bins                 

that had a Bonferroni-corrected p-value of less than 0.05 (Figure 3d). All of these regions were disrupted                 

by at least one indel or structural variant in at least 50% of BRCA1/2-mutated tumors. After correcting                 

the number of bases in each bin to account for copy number changes, 28 bins remained significantly                 

enriched (Bonferroni-corrected p<0.05). These bins are located on chromosomes 3, 5, 6, 8, 10, 11, 12, and                 

18, and several of them overlap with each other. Their coordinates are listed in Supplementary Table 5.  

Validation of interchromosomal translocations using 10X genomics. Our analysis above, as well as             

previous studies ​11.24​, highlight the importance of structural variation in the evolution of BRCA-mutated             

cancers. However, short-read sequencing is not ideal for accurate detection of large structural variants due               

to the limited read length. 10X Genomics is a linked-read technology, which uses barcodes to identify                

short fragments that originate from the same large molecules. Thus it provides long-range information              

based on short-read sequencing offering improved resolution and detection of structural variants ​30​. To             

validate our findings on structural variants, we sequenced additional DNA from 3 tumors with BRCA1               

germline mutations using 10X Genomics sequencing. In addition, we sequenced genomic DNA from 1              

BRCA2-mutated tumor and 12 sporadic triple-negative tumors from the same study​22​. We used             

GROC-SVs ​30​ to identify structural variants in these genomes.  

We reported above a novel finding that BRCA1 mutated tumors have unusually high numbers of               

interchromosomal translocations. We were able to confirm several of these translocations using 10X             

sequencing in the 3 BRCA1-mutated samples, providing independent validation of our findings. Further,             

although the sample size is too small for a statistical test, we observed that these BRCA1-mutated samples                 

had more translocations on average than the sporadic tumors (Supplementary Table 6).  

Although structural variants are normally classified into simple categories (such as duplications,            

deletions, and translocations), recent studies have revealed that some tumor genomes also contain a large               

number of complex structural variants (CSVs) that cannot be explained by a simple end-joining or               
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recombination event​31​. In our short-read data, we observe that 16% of structural variants are accompanied               

by a short insertion at the breakpoint; the occurrence of such insertions is not significantly different in                 

BRCA1/2-mutated tumors. However, larger CSVs composed of multiple rearrangements cannot be           

detected by short reads. The use of 10X read clouds and GROC-SVs allows us to resolve larger complex                  

events, since the read clouds span multiple breakpoints.  

Using GROC-SVs, we detected two complex structural variants in the sample T65 which has a               

germline BRCA1 mutation: a complex rearrangement on chromosome 11 (Supplementary Figure 5a) and             

a rearrangement involving a translocation between chromosomes 1 and 2 (Supplementary Figure 5b). The              

mechanisms that give rise to such complex variants are still uncertain, but our observations suggest that                

these may play a role in the evolution of BRCA-mutated tumors. Further studies are required to ascertain                 

whether BRCA-mutated tumors differ from sporadic breast tumors in the number and type of complex               

structural variants, as has been characterized for simple structural variants.  

 

Discussion  

Tumors carrying mutations in the BRCA1 and BRCA2 genes, particularly in BRCA1, have more point               

mutations than sporadic breast tumors, which is not explained by their larger genome size owing to copy                 

number alterations. If the increased number of mutations in BRCA samples was a function of more cell                 

divisions, we would expect this to be explained by higher exposure to the background signature. We do                 

see higher exposure to the background signature in these tumors, indicating that they have passed through                

more cell divisions. However, we also see more mutations attributed to other mutagenic processes,              

particularly Signature 5 (APOBEC dysregulation leading to C>G mutations) and Signature 8, whose             

etiology is unknown. This indicates that more cell division may not be the only factor contributing to the                  
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higher mutational burden of BRCA1/2-mutated tumors, and that other mutagenic processes are also             

elevated.  

Although BRCA1/2-mutated tumors have have a higher exposure to the background signature,            

they do not have a higher exposure to Signature 6, which represents deamination of methylated cytosines                

at CpG sites. Under conditions of constant DNA methylation, we would expect the exposure values for                

these two signatures to be proportional to each other. The disproportionately low contribution of              

Signature 6 to BRCA1/2-mutated tumors suggests a global reduction in methylation levels, which is              

confirmed by an analysis of TCGA data for BRCA1 tumors. If true, the reduced methylation could cause                 

dysregulation of gene expression and altered binding of gene regulatory proteins. An altered methylation              

state is also indicative of dedifferentiation of a tumor, and may be linked to the fact that these tumors have                    

undergone more cell divisions.  

It is notable that BRCA1/2-mutated mutated tumors do not appear to possess any unique              

mutational signatures, suggesting an absence of unique point mutational processes that arise from the              

BRCA gene mutations. (Even Signature 8, which is elevated in BRCA1/2-mutated tumors, has a high               

contribution to triple-negative tumors in general.) Instead, BRCA1 and BRCA2 mutated tumors display a              

clearly distinct profile of structural variants. We confirm previous findings ​11,25 related to tandem             

duplications and deletions, and also find that BRCA1 mutations are associated with an increased number               

of interchromosomal translocations, which to our knowledge has not been shown before.  

The functional relevance of structural variants in BRCA1/2 mutated tumors is shown by their              

enrichment in protein-coding genes, particularly genes with high expression in breast tissue. We identified              

11 genes that are enriched for indels and structural variant breakpoints in BRCA1/2-mutated tumors;              

these include well-known tumor suppressors such as TP53 and RB1, showing that in BRCA1/2-mutated              

tumors, structural variants may carry out the same roles that are more likely to be fulfilled by point                  

mutations in sporadic tumors. We also find additional genes which are candidates for indel/SV-specific              
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driver genes in BRCA1/2 mutated tumors; these frequently damaged genes may have links to the specific                

biology of tumors with BRCA mutations.  

 

Conclusions  

Overall, our study suggests that BRCA1/2-mutated tumors are comparatively more aggressive than            

sporadic breast cancers because loss of the BRCA pathway(s) causes a perfect storm of mutagenic               

processes and gene dysregulation: Less DNA methylation is consistent with the propensity to deregulate              

and dedifferentiate, and the resulting larger numbers of cell divisions cause a greater point mutational               

burden; other point-mutagenic processes that may be linked to the tissue of origin and occur in sporadic                 

breast tumors are also active (e.g., APOBEC dysregulation); and crucially, loss of double-strand break              

repair elevates structural variation rates such that there is a greater chance that driver genes that are hard                  

to functionally affect with point mutations are disrupted at a higher rate than in sporadic tumors.  

 

Methods  

Preprocessing data for mutational signature extraction. ​Point mutations occurring in a genome can be              

divided into 96 categories based on the base being mutated, the base it is mutated into and its two flanking                    

bases. We therefore represent the dataset of 560 patients from Nik-Zainal et al.​11 as a mutation count                 

matrix M of size 560 x 96, where element is the number of mutations belonging to category ​j in         Mi,j            

patient ​i​. As discussed in SparseSignatures ​20​, we removed 5 patients with less than 1000 total mutations,                

giving a final matrix M of size 555 x 96.  
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Modeling mutational signatures. A mutational signature can be represented by a vector of length 96;            s     

where each element represents the probability that this mutagenic process generates as ... s ]s = [ 1 96     sj           

mutation of category . Since these are probabilities, they sum to 1.j   

Alexandrov et al.​17​  proposed to represent the mutation count matrix  as follows:M    

, ≈ αβM   

where is the exposure matrix (giving the number of mutations contributed by each αn × K              

signature to each patient). is the exposure for the signature in the patient. is the    αij       jth     ith   βK × J    

signature matrix, where each row represents a signature. is the proportion of mutations in the        β ij         ith  

signature that fall into the  category.jth   

SparseSignatures ​19 incorporates a null model based on mutation rates in the germline. This is the               

pattern of mutations that would be expected in the course of normal cell division, and is denoted by a                   

vector  of length  , leading to the following representation:β0 J   

, ≈ α β  αβM 0 0 +    

where is a vector of exposures, representing the number of mutations contributed by the null α0                

(‘background’) signature to each patient.  

SparseSignatures also includes two other conceptual improvements: (1) a sparsity constraint           

based on the LASSO on the matrix in order to reduce noise and enhance sparsity and separation of the       β             

discovered signatures; and (2) a bi-cross-validation approach to choose the number of signatures and              

avoid overfitting. For details we refer to the paper describing SparseSignatures ​20​.  

Implementation of SparseSignatures. In our analysis, we repeated the bi-cross-validation procedure 300            

times and we considered values of ranging from 3 to 10 and λ ranging from 0.05 to 0.15. In      K               

cross-validation, the configuration with 8 signatures in addition to the background, and λ=0.15, gave the               
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lowest mean squared error on held-out data points. We used the Bioconductor implementation of              

SparseSignatures (version 1.0.2) in R version 3.3.3.  

Short Read Sequencing. ​Total genomic DNA was extracted from 14 BRCA+ tumor samples from 13               

patients (DNA was extracted from both breasts for one patient) using AllPrep DNA/RNA Mini Kit               

(Qiagen, Cat. No 80204). The matched control DNA was also isolated from blood of the same patients                 

using Gentra Puregene Blood Kit (Qiagen, Cat. No 158467). To generate short-fragment DNA libraries, 1               

ug of total genomic DNA for each sample was sheared to 350 bp. The PCR-free libraries were then                  

constructed from the sheared DNA using Illumina’s TruSeq DNA PCR-Free Sample Preparation Kit.             

Each library was sequenced with one lane of 2x150bp Illumina HiSeqX sequencing run to 40x genomic                

coverage.  

10X Genomics Sequencing. ​We selected 6 BRCA1/2-mutated tumor samples and 12 sporadic            

triple-negative tumor samples ​23 for 10X genomic sequencing. The long genomic DNA was isolated from              

5-10mg tumor core using Gentra Puregene Tissue Kit following the manufacturer’s instructions (Qiagen,             

Cat. No 158667). Briefly, the small tumor tissue was ground in liquid nitrogen, lysed in Cell Lysis                 

Solution and Proteinase K, and RNA was digested with RNase A. Protein was pelleted and removed by                 

the addition of Protein Precipitation Solution followed by centrifugation. Genomic DNA was precipitated             

with isopropanol and resuspended in buffer EB. 1.2ng DNA molecules of long fragment were partitioned               

and barcoded using 10X Genomics Chromium. Each partition had a unique barcode. The barcoded DNA               

fragments were produced in parallel through emulsion isothermal amplification such that all fragments             

generated within a partition shared the same barcode. The resulting DNA fragments (Post GEM DNA)               

from all partitions of the same sample were pooled and recovered. Libraries were constructed following               

the manufacturer’s protocol through End Repairing, A-tailing, Adaptor Ligation and PCR Amplification.            

Each library was then sequenced on one lane with a paired-end 150bp run using the Illumina HiSeqX                 

platform to obtain 30x genomic coverage.  
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Sequencing data analysis. ​BWA​32 v0.7.12 was used to align short-read sequencing data to the human               

genome. Longranger​33​ v1.3 was used to align 10X genomics data.  

Structural variant calling. ​BAM files were generated as described above, and for the publicly available               

data, we downloaded BAM files from the ICGC data portal (https://dcc.icgc.org). We ran SvABA on all                

BAM files using the default parameters ​17​.  

Variants with length >=50 bp, as well as interchromosomal translocations, were defined as             

Structural Variants (SVs) while smaller variants were defined as indels. High-confidence SVs and indels              

were obtained by selecting variants with (1) both breakpoints in chromosomes 1-22 or X (2) 0 supporting                 

reads in the matched normal sample (3) >=10 supporting reads in the tumor sample, at least 2 of which                   

are split reads in the case of SVs (4) QUAL >= 30 and MAPQ of supporting reads >= 30 (5) neither                     

breakpoint in a gap region (6) Both junctions assembled. We also removed variants that were found in                 

more than one tumor sample or unmatched normal sample, as well as variants found in DGV​34​.  

For structural variant detection from 10X genomics prepared samples we used GROC-SVs ​30 with             

default settings.  

Copy number calling. ​We used Control-FREEC​26 to call genome-wide copy number for the samples in               

our cohort. We used the default parameters for the tool.  

Statistical tests. ​Numbers of point mutations and structural variants in various groups of samples were               

compared using the Wilcoxon test. Enrichment of breakpoints in functional regions of the genome was               

tested using a poisson test, with the null model being that breakpoints are distributed uniformly across the                 

genome (excluding gap regions). To calculate enrichment of indels/SV breakpoints in 10-Mb genomic             

bins, all the indels and SVs discovered in 46 BRCA-deficient samples were combined and the density of                 

breakpoints across the genome (excluding gap regions) was calculated as 7.36 x 10​-6​/bp. The genome was                

divided into 574 10-Mb bins overlapping by 5 Mb each. Bins with >25% overlap with gap regions were                  
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removed, leaving 516 bins. For each bin, a p-value for enrichment of breakpoints was calculated using a                 

poisson test and bins with a Bonferroni-corrected p-value less than 0.05 were selected. The same               

procedure was carried out using gene bodies instead of genomic bins to identify genes enriched for                

breakpoints.  

External data​. The hg19 human genome was used for all analyses. Positions of genes, exons, open                

chromatin regions and gap regions were obtained from the UCSC genome browser. Positions of TAD               

boundaries in MCF-10a cell lines were obtained from Barutcu et al.​35​. Lists of oncogenes and tumor                

suppressor genes were obtained from the Cancer Gene Census (https://cancer.sanger.ac.uk/census).  

Data on replication timing was obtained from Carithers et al.​36​. Genomic regions were divided              

into early-replicating, mid-replicating and late-replicating categories such that a third of the genome for              

which data was provided was included in each category.  

Expression levels in normal human breast tissue was obtained from GTex​28​.  
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Table 1  

 Gene Chromosome Length 
(bp) 

Number of 
indels/SV 

breakpoint
s 

p-value Adjusted 
p-value 

Adjusted p-value 
(corrected for copy 

number) 

1 RB1 13 176159 17 6.83x10​-14 1.31x10​-9 1.69x10​-10 

2 TP53 17 6986 5 2.87x10​-9 5.48x10​-5 2.13x10​-5 

3 PTEN 10 101523 10 7.58x10​-9 1.45x10​-4 7.53x10​-5 

4 ETV6 12 240919 13 5.33x10​-8 0.00102 0.00243 

5 RUNX1 21 256765 13 1.10x10​-7 0.00210 0.00275 

6 KLHL8 4 32021 6 1.94x10​-7 0.00372 0.00293 

7 P4HB 17 16460 5 1.96x10​-7 0.00380 0.00592 

8 NME7 1 234926 12 3.04x10​-7 0.00581 0.0695 

9 EFNA5 5 289359 13 4.16x10​-7 0.0080 0.00193 

10 ARGLU1 13 23924 5 1.22x10​-6 0.0233 0.0234 

11 DHX32 10 44138 6 1.24x10​-6 0.0236 0.0168 

Table 1: ​11 protein-coding genes show enrichment for indels/structural variant breakpoints in            

BRCA1/2-mutated tumors.  

 

Figure Legends  

 

Figure 1. ​Boxplots showing the number of single nucleotide variants in the whole genomes of different                

classes of breast tumors, based on data from 560 breast tumors ​11​. TN = Triple-negative.  

 

Figure 2. ​a) 9 signatures (including background) discovered by applying SparseSignatures to the whole              

genomes of 555 breast tumors. b) Boxplots showing the number of mutations attributed to each signature                
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in different classes of breast tumors. c) Boxplots showing the fraction of mutations attributed to each                

signature in each sample, for different classes of breast tumors. d) Average beta-value (representing the               

extent of cytosine methylation) of CpG sites, in different classes of breast tumors, based on data from                 

TCGA​22​.  

 

Figure 3. a) Boxplots showing the number of deletions, tandem duplications, and interchromosomal             

translocations, in the genomes of 81 breast tumors. b) Probability distributions of the sizes of deletions                

and tandem duplications in the genomes of 81 breast tumors. c) Boxplots showing the fraction of                

structural variants in a tumor genome that contain regions of microhomology at the breakpoint, divided               

into deletions, tandem duplications and interchromosomal translocations, for 46 BRCA1/2-mutated          

tumors. The x-axis shows size of the structural variants. d) Manhattan plot with the y-axis showing the                 

bonferroni-corrected p-value for enrichment of structural variants in 10-Mb long genomic bins, for 46              

BRCA1/2-mutated tumors. The y-axis shows the position of the bin. Chromosomes are ordered from 1 to                

22 followed by X.  

 

Supplementary Material Legends  

 

Supplementary Figure 1. ​Boxplots showing the ratio between exposures to Signature 6 (DNA CpG              

methylation) and the background signature, in BRCA1/2-mutated tumors and various classes if sporadic             

breast tumors.  

 

Supplementary Figure 2. ​Boxplots showing the average beta-value (extent of DNA cytosine            

methylation) across 3081 CpA sites, in BRCA1/2-mutated and sporadic breast tumors, based on data from               

TCGA.  
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Supplementary Figure 3. ​Boxplots showing the total ​number of bases in the genome (accounting for               

copy number changes) in BRCA1-mutated, BRCA2-mutated, and sporadic breast tumors, for the dataset             

of 81 selected breast tumors.  

 

Supplementary Figure 4. Boxplots showing the level of expression in normal breast tissue for genes               

disrupted by a) indels and b) SVs in 46 BRCA1/2-mutated tumors, based on RNA-Seq data from GTEx​27​.                 

Expression for each gene was measured as median TPM level across all breast tissue samples in the GTEx                  

dataset.  

 

Supplementary Figure 5. ​Two complex structural variants discovered by 10X Genomics sequencing and             

GROC-SVs in the genome of tumor T65 containing a germline BRCA1 mutation. Inferred extent of               

breakpoint-supporting read clouds (corresponding to input fragments). The x-axes show chromosomal           

position. Each row is one read cloud (a cluster of identically barcoded linked reads). The long fragments                 

tile across the breakpoints when ordered by their leftmost position in the left panel.  

 

Supplementary Table 1. ​9 signatures (including the background) discovered by SparseSignatures on the             

whole genomes of 560 breast tumors.  

 

Supplementary Table 2. ​Comparison of the 9 signatures (including background) obtained by            

SparseSignatures with those obtained in a previous study​11​.  

 

Supplementary Table 3. ​Exposure values (number of mutations attributed to each signature) for each of               

the 9 signatures, in each of the 560 breast tumors.  
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Supplementary Table 4. ​Details of the 81 samples used for structural variant analysis with SvABA.  

 

Supplementary Table 5. ​Details of 10-Mb genomic bins with significant enrichment of structural variant              

breakpoints, in the combined genomes of 46 BRCA1/2 mutated tumors.  

 

Supplementary Table 6. ​Validation of interchromosomal translocations in BRCA1-mutated tumors          

using 10X genomics.  
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