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Abstract

Next generation sequencing has yielded an unparalleled means of quickly determining
the molecular make-up of patient tumors. In conjunction with emerging, effective
immunotherapeutics for a number of cancers, this rapid data generation necessitates a
paired high-throughput means of predicting and assessing neoantigens from tumor
variants that may stimulate immune response. Here we offer NeoPredPipe (Neoantigen
Prediction Pipeline) as a contiguous means of predicting putative neoantigens and their
corresponding recognition potentials for both single and multi-region tumor samples.
NeoPredPipe is able to quickly provide summary information for researchers, and
clinicians alike, on neoantigen burdens while providing high-level insights into tumor
heterogeneity given somatic mutation calls and, optionally, patient HLA haplotypes.
Given an example dataset we show how NeoPredPipe is able to rapidly provide insights
into neoantigen heterogeneity, burden, and immune stimulation potential. Through the
integration of widely adopted tools for neoantigen discovery NeoPredPipe offers a
contiguous means of processing single and multi-region sequence data. NeoPredPipe is
user-friendly and adaptable for high-throughput performance. NeoPredPipe is freely
available at https://github.com/MathOnco/NeoPredPipe.

Introduction 1

Cancer cells are fraught with genomic variants in all regions of the genome with high 2

degrees of heterogeneity in a spatially complex tumor. This intra-tumor heterogeneity 3

(ITH) realizes a fitness landscape upon which natural selection can act (reviewed by [5]). 4

Neoantigens, epitopes derived from proteins translated from non-synonymous variants, 5

are able to make their way to the cell surface in the hopes of stimulating an immune 6

response after a number of cellular processing steps have occurred, primarily 7

proteosomal cleavage and binding with major histocompatibility complexes (MHC) I or 8

II. This binding depends upon the patient specific human leukocyte antigen (HLA) 9

alleles. From here, the bound neoantigen with its MHC-Class I complex makes its way 10
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Figure 1. NeoPredPipe workflow differentiating between user steps (green) and execu-
tion processes (purple). NeoPredPipe provides low level details and high level summary
statistics as output for downstream analysis (red).

to the cell surface where it may bind with cytotoxic T-cell receptors thereby eliciting 11

infiltration of cytotoxic T-cells capable of detecting and eliminating cells carrying the 12

neoantigen in the absence of immune evading tactics. The immune response is strongly 13

influenced by the total number of neoantigens within a tumor, especially in 14

hyper-mutated cancers ( [6]), as well as the ITH of antigenic mutations ( [4]). ITH is 15

now being further evaluated using multi-region sequencing approaches whereby adjacent 16

regions of the same tumor or tissue are able to provide greater insights into variant 17

clonality (i.e. truly clonal, subclonal, or shared). 18

A number of tools have provided means of variant annotation, assessing neoantigen 19

candidacy, and T-Cell receptor (TCR) binding probabilities, but none possess the 20

capability of providing these on multi-region sequence data in bulk or run contiguously 21

as a single tool. Here, we present NeoPredPipe, capable of processing single and 22

multi-region variant call format (VCF) files, carrying out variant annotations, 23

neoantigen predictions, cross-referencing with known epitopes, and performing TCR 24

recognition potential predictions in a single, clear, and proficient pipeline (Figure 1). 25

Implementation 26

The first stage in neoantigen identification from a VCF file is the proper annotation of 27

variants to identify non-synonymous variants. To this end, NeoPredPipe employs the 28

widely used and efficient ANNOVAR ( [8]). Specifically, ANNOVAR processes samples 29
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in a way that prioritizes exonic variants, this step provides a useful means for quickly 30

partitioning variant calls for downstream applications. The user is able to specify the 31

genome build that they would like to use, provided it is compatible with ANNOVAR. 32

This annotation phase also results in the extracted peptide sequence given the variant 33

base(s) from the annotated variant calls. 34

Once the VCF files have been annotated and partitioned with ANNOVAR the 35

program determines if HLA haplotypes have been provided by the user containing the 36

HLA-A, -B, and -C haplotypes. NeoPredPipe does not include HLA allele identification 37

as this step in the pipeline is highly dependent upon the source of the data (WES, WGS, 38

targeted gene panels, transcriptome data, or conducted via experimental methods). In 39

cases where no HLA haplotype information is available the most common alleles of each 40

haplotype are assessed; while cases where the HLA haplotypes are homozygous only 41

that HLA haplotype is used for prediction. HLA haplotypes are cross-referenced with 42

available HLA haplotypes prior to executing netMHCpan ( [7]) for the primary 43

neoantigen predictions. As with the primary tool, the user is able to specify the epitope 44

to conduct predictions for (typically epitopes of 8-, 9-, or 10-mer lengths). The output 45

from this process yields a single file containing either filtered or unfiltered (dependent 46

on user options) neoantigen predictions with information on the sample possessing the 47

neoantigen and, in the case of multi-region variant calling, a presence/absence indicator 48

for each of the sequenced regions. These predicted neoantigens are then, optionally, 49

cross-referenced with known epitopes utilizing PeptideMatch ( [1]), whereby the 50

candidate epitopes are assessed for novelty against a reference proteome that can be 51

supplied by the user as a fasta file (e.g. from Ensembl or UniProt). 52

The steps outlined above deliver candidate information for neoantigens from 53

provided variant calls that may be presented to cytotoxic T-Cells, however, this does 54

not inform the likelihood of a neoantigen eliciting an immune response (i.e. binds with a 55

TCR). In order to assess the recognition potential we employ the algorithms and 56

process utilized by [3]. The recognition potential is defined as the product of A and R, 57

where A is the amplitude of the ratio of the relative probabilities of binding for the 58

wildtype and mutant epitopes to the MHC-class I molecules, and R is the probability 59

that the neoantigen in question will be recognized by a TCR. To define A it is necessary 60

to perform neoantigen predictions for the wildtype and mutant epitope, this is not 61

performed by default by NeoPredPipe, but is supplied as an option to employ as a 62

contiguous pipeline. To define R, NeoPredPipe utilizes the multistate thermodynamic 63

model employed by [3], which requires alignment scores for each epitope to a curated 64

Immune Epitope Database list of known epitopes (can be refined and updated by the 65

user, but is provided). In order to incorporate the ability to assess ITH in regards to 66

both effective mutations (non-synonymous variants) and neoantigen burdens, 67

NeoPredPipe is capable of handling multi-region VCF files; further these files can be 68

multi-region in only a select number of samples. Thus NeoPredPipe is able to efficiently 69

handle various experimental designs for neoantigen prediction and assessments 70

providing a summary table for downstream statistical and in-depth analysis. 71

Results 72

The output of the pipeline depends largely on the options set by the user, but at the 73

very least, NeoPredPipe provides a single table of putative neoantigens and their 74

predicted binding affinities. With additional options selected it is possible to include, 75

within a single output, whether an epitope matches a reference proteome and the 76

neoantigen’s recognition potential. In additon, for rapid assessment, NeoPredPipe yields 77

summary statistics on the neoantigen burden for each sample as well as information to 78

assess ITH by reporting neoantigen burdens for clonal, subclonal, and shared variants 79
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Figure 2. Analysis of neoantigens in two colorectal tumours using NeoPredPipe. (A)
Venn diagram of all neoantigens in the five regions of Adenoma 3. (B) Number of
neoantigens in the two samples that are clonal (present in all regions, shown in blue),
shared (present in at least two regions, in yellow) or subclonal (present in a single
region, red). Separate counts of weak and strong MHC-binding neoantigens (WB and
SB, respectively) are also shown. (C) Distribution of recognition potential values of
neoantigens present in Adenoma 3 (green) and Carcinoma 7 (red). The boxplots represent
the median and upper and lower 25 percentile. (D) Phylogenetic tree reconstructed from
all exonic mutations for Adenoma 3 (left) and Carcinoma 7 (right). Pie-charts and the
bar-charts represent the number of weak (orange) and strong (red) binder neoantigens
assigned to each branch. The size of each circle is proportional to the percentage of total
of neoantigens on that branch.
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for multi-region samples. 80

Use Case 81

While a small, two sample, multi-region example dataset is provided with the source 82

code for users, we demonstrate the usefulness of NeoPredPipe by applying it to a 83

previously published dataset examining the evolutionary landscape of colorectal 84

tumors [2]. We select two exemplary patient samples (Adenoma 3 and Carcinoma 7 in 85

the original paper) from the dataset, and apply our pipeline using default parameters to 86

evaluate neoantigens in each sample. Figure 2 illustrates the information included in the 87

standard output of NeoPredPipe and potential analysis that can be performed if 88

NeoPredPipe is combined with the output of other standard bioinformatic methods. 89

Figure 2A provides a summary of the complex interactions between different regions 90

of Adenoma 3, and highlights both Region 4, which harbours the highest amount of 91

subclonal (only present in a single region) neoantigens, and the overall clonality of the 92

sample, with 72 neoantigens detected in all regions. For quick analysis, NeoPredPipe 93

directly outputs a summary of the clonality of neoantigens, also divided into categories 94

of strong and weak binders (peptides with a netMHCpan rank ≤ 0.5 and ≤ 2, 95

respectively). Figure 2B visualizes this summary on two bar-charts for Adenoma 3 and 96

Carcinoma 7. We find that whilst the number of shared neoantigens (present in more 97

than one, but not all regions) is highly similar between the two samples, Carcinoma 7 98

harbours both more clonal (present in all regions) and subclonal neoantigens; and in 99

total 26% of the neoantigens are clonal, compared to 16% of Adenoma 3. Figure 2C 100

shows the recognition potential value for all neoantigens in the two samples. 101

NeoPredPipe identified 10 peptides in Adenoma 3 and 9 in Carcinoma 7 with a 102

recognition potential value above 1. In Figure 2D, we provide an example of integrating 103

NeoPredPipe outputs with downstream multi-region variant analysis. By inferring 104

phylogenetic trees of each tumor, constructed using all exonic mutations with a variant 105

allele frequency above 0.05 (see [2] for full methods), we find that neoantigen 106

distributions across regions can reflect the phylogenetic distance of regions and clonal 107

structure of samples. 31% and 23.5% of total exonic mutations are clonal in Adenoma 3 108

and Carcinoma 7, similarly to the clonality of neoantigens shown in Panel B. This 109

approach also highlights regions with neoantigen loads different from their closest 110

neighbors, such as Region61 and Region62 of Carcinoma 7. Therefore the analysis can 111

inform future experimental and bioinformatic investigations of samples allowing for new 112

evolutionary and mechanistic insights into tumor development, evolution, and 113

progression. 114

Conclusions 115

We present NeoPredPipe, an efficient, high-throughput, and user-friendly pipeline for 116

neoantigen prediction and interrogation for single and multi-region tumor VCF files. By 117

tying together commonly utilized bioinformatics toolsets and integrating recent 118

advances in neoantigen assessment, NeoPredPipe yields concise information typically 119

required by researchers and clinicians. Through user options based on computational 120

limitations the pipeline is scalable and customizable for individual research questions. 121

All source code and an extensive read me with all pipeline options are available at 122

https://github.com/MathOnco/NeoPredPipe. 123

Availability and requirements 124

Project name: NeoPredPipe 125
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Project home page: https://github.com/MathOnco/NeoPredPipe 126

Operating system: Unix-based operating system 127

Programming languages: Python and Bash 128

Other requirements: Python 2.7, ANNOVAR, netMHCpan, PeptideMatch, and, 129

optionally, NCBI BlastX+. 130
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