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 25 

Abstract 26 

Linear mixed models (LMMs) have become the standard approach for genetic association 27 

testing in the presence of sample structure.  However, the performance of LMMs has primarily 28 

been evaluated in relatively homogeneous populations of European ancestry, despite many of 29 

the recent genetic association studies including samples from worldwide populations with 30 

diverse ancestries. In this paper, we demonstrate that existing LMM methods can have 31 

systematic miscalibration of association test statistics genome-wide in samples with 32 

heterogenous ancestry, resulting in both increased type-I error rates and a loss of power.  33 

Furthermore, we show that this miscalibration arises due to varying allele frequency differences 34 

across the genome among populations.  To overcome this problem, we developed LMM-OPS, an 35 

LMM approach which orthogonally partitions diverse genetic structure into two components: 36 

distant population structure and recent genetic relatedness.  In simulation studies with real and 37 

simulated genotype data, we demonstrate that LMM-OPS is appropriately calibrated in the 38 

presence of ancestry heterogeneity and outperforms existing LMM approaches, including 39 

EMMAX, GCTA, and GEMMA. We conduct a GWAS of white blood cell (WBC) count in an 40 

admixed sample of 3,551 Hispanic/Latino American women from the Women’s Health Initiative 41 

SNP Health Association Resource where LMM-OPS detects genome-wide significant associations 42 

with corresponding p-values that are one or more orders of magnitude smaller than those from 43 

competing LMM methods.  We also identify a genome-wide significant association with 44 

regulatory variant rs2814778 in the DARC gene on chromosome 1, which generalizes to 45 

Hispanic/Latino Americans a previous association with reduced WBC count identified in African 46 

Americans. 47 

 48 
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Introduction 49 

The complete genealogy of individuals consists of recent genetic relatedness, such as pedigree 50 

relationships of family members, as well as more distant genetic relatedness, such as that due to 51 

population structure. In genetic association studies, it is well known that failure to appropriately 52 

account for either recent or distant genetic relatedness among sampled individuals can result in 53 

spurious association. To address this, linear mixed models (LMMs) have emerged as the 54 

standard approach for genetic association testing in samples with population structure, family 55 

structure, and/or cryptic relatedness1-10.  Existing LMM implementations developed for GWAS 56 

model the entire genealogy of sampled individuals as a random effect, with the covariance 57 

structure of the phenotype specified by a single empirical genetic relationship matrix (GRM)11-13. 58 

This approach typically provides an acceptable genomic control inflation factor14, which is 59 

evaluated based on the median of the test statistics across all SNPs genome-wide.  However, in 60 

the presence of population stratification, previous studies15,16 have shown that there may be 61 

SNPs for which type-I error rates are not properly controlled, such as those SNPs with unusually 62 

large allele frequency differences between populations.  63 

Here, we utilize SNP genotyping data from release 3 of phase III of the International 64 

Haplotype Map Project (HapMap)17 to demonstrate that existing LMM approaches provide 65 

miscalibrated association test statistics when phenotypes are correlated with ancestry. This 66 

miscalibration arises due to variation across the genome in allele frequency differences between 67 

the populations from which the sampled individuals descend, and we show that it impacts all 68 

SNPs genome-wide, not only those with unusually large allele frequency differences.  While 69 

standard LMM approaches appropriately control type-I error rates at SNPs with typical allele 70 

frequency differences, there is systematically inflated or deflated test statistics for SNPs with 71 

greater or smaller differences, respectively.  Interestingly, we demonstrate that this pattern of 72 
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test statistic inflation/deflation can occur not only in samples with continental ancestry 73 

differences, but also in samples with subtle or fine-scale population structure.  Furthermore, the 74 

miscalibration of test statistics is observed for LMM methods that estimate variance 75 

components once per genome screen, such as EMMAX3 and GCTA13, as well as those that re-76 

estimate variance components for every tested variant, such as GEMMA8. 77 

 To address the shortfalls of existing LMM methods, we propose a linear mixed model 78 

with orthogonally partitioned structure (LMM-OPS) method for genetic association testing of 79 

quantitative traits in samples with diverse ancestries. LMM-OPS appropriately accounts for 80 

variable population allele frequency differentiation across the genome to provide well-81 

calibrated association test statistics at all SNPs genome-wide. With LMM-OPS, genetic sample 82 

structure is orthogonally partitioned into two separate components: a component for the 83 

sharing of alleles inherited identical by descent (IBD) from recent common ancestors, which 84 

represents familial relatedness, and another component for allele sharing due to more distant 85 

common ancestry, which represents population structure. LMM-OPS models population 86 

structure as a fixed effect by including vectors that are representative of genome-wide ancestry 87 

(e.g. principal components (PCs) or admixture proportions calculated from genome-wide data) 88 

as covariates, while recent genetic relatedness among individuals is modeled using a random 89 

effect, with covariance structure specified by an ancestry-adjusted empirical GRM. An important 90 

feature of the GRM used by LMM-OPS is that it is constructed to be orthogonal to the ancestry-91 

representative vectors that are included as fixed effects. This ancestry-adjusted GRM measures 92 

the residual genetic covariance among sampled individuals, after adjusting for ancestry, as a 93 

way of capturing only recent genetic relatedness. As a result, the ancestry-adjusted GRM and 94 

the ancestry-representative vectors represent orthogonal information on sample structure, and 95 
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LMM-OPS avoids issues of double-fitting information in both the fixed and random effects, 96 

which could lead to over-correction of sample structure and a loss of power6,10. 97 

 We conduct simulation studies to demonstrate that LMM-OPS effectively accounts for 98 

complex sample genealogy, including population stratification, ancestry admixture, and familial 99 

relatedness, resulting in proper control of type-I error rates at all SNPs, as well as increased 100 

power over existing LMM methods for detecting genetic association. We also apply LMM-OPS 101 

and the LMM methods implemented in EMMAX3, GEMMA8, and GCTA13 to a GWAS of white 102 

blood cell (WBC) count in a sample of 3,551 Hispanic American postmenopausal women from 103 

the Women’s Health Initiative SNP Health Association Resource (WHI-SHARe) study18,19.  The 104 

WHI-SHARe Hispanics have complex sample structure, including continental and sub-continental 105 

population structure as well as cryptic familial relatedness20.  Consistent with our simulation 106 

study results, the LMM-OPS p-values for genome-wide significant SNPs are one or more orders 107 

of magnitude smaller than those from the competing LMM methods.  Based on our analysis, we 108 

replicate21 and generalize to Hispanic/Latino Americans a genome-wide significant association 109 

with regulatory variant rs2814778 in the Duffy Antigen Receptor for Chemokines (DARC) gene 110 

that was previously found to associate with lower WBC count in African Americans22,23.   111 

 112 

Materials and Methods 113 

Standard Empirical GRM 114 

A genetic relationship matrix (GRM), Ψ, measures a weighted covariance of genotypes, 115 

averaged over all SNPs across the genome, between each pair of individuals. Consider a set  116 

of sampled individuals that have been genotyped at a set  of SNP genotype markers. A 117 

standard empirical estimator13 of a GRM that is widely used scales the contribution of each SNP 118 

by the sample genotype variance under HWE and has   element  119 
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  , (1) 120 

where  is the number of SNPs in the set ,  is the genotype value for individual  at 121 

SNP , and  is the sample average allele frequency at SNP , as 122 

 is the number of sampled individuals.  The genotype covariance structure captured by , 123 

the empirical GRM constructed using the estimator "#$%  in Equation (1), includes contributions 124 

from both distant population structure and recent familial relatedness24.   125 

 126 

Construction of an Empirical GRM Orthogonal to Genome-wide Ancestry 127 

Similar to the aforementioned standard GRM, an ancestry-adjusted GRM, Φ, also measures a 128 

weighted covariance of genotypes, averaged over all SNPs across the genome, between each 129 

pair of individuals, however with the covariance is obtained conditional on the genome-wide 130 

ancestries of the sampled individuals. Let  be an  matrix whose column vectors 131 

include an intercept and  ancestry-representative vectors (e.g. principal components (PCs) or 132 

admixture proportions calculated from genome-wide data). One empirical estimator of an 133 

ancestry-adjusted GRM has element  134 

 ,  (2) 135 

where is the  element of the vector   of fitted 136 

values from a linear regression of , the genotype values for all individuals at SNP , on .  137 

To see that the ancestry-adjusted empirical GRM, , constructed using the estimator  in 138 
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Equation (2) is orthogonal to genome-wide ancestry, let  be an  matrix whose  139 

column vector is the residual vector from the linear regression of  on ; i.e. .  140 

Because the residuals from a linear regression are orthogonal to the predictors, , and 141 

since the ancestry adjusted empirical GRM can be written as , we have that 142 

, indicating orthogonality of  and .  If  fully captures the 143 

population structure in the sample, then the genotype covariance structure represented by  144 

only includes that due to the sharing of alleles IBD from recent common ancestors; i.e. recent 145 

familial relatedness24. 146 

 A potential limitation with , which we refer to as the ‘centered only’ ancestry-147 

adjusted empirical GRM, is that its elements have no meaningful biological interpretation 148 

without scaling.  To address this, an alternative ancestry-adjusted empirical GRM, , can be 149 

obtained using the PC-Relate method24, where the  element of this matrix is 150 

 ,  (3) 151 

which is an estimator of twice the kinship coefficient for the pair of individuals  and .  We 152 

refer to  as either the ‘PC-Relate’ or the ‘centered and standardized’ ancestry-adjusted 153 

empirical GRM.  While  has improved biological interpretability over , it is no longer 154 

strictly orthogonal to the  ancestry-representative vectors  because the scaling factor in the 155 

denominator of Equation (3) depends on  and .  However, in practice we have found that the 156 

scaling factors for each pair of individuals are generally similar, as they are computed as an 157 
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average across all SNPs in , and the elements of  and  are very highly correlated (see 158 

Results), indicating that  is approximately orthogonal to . 159 

 160 

Linear Mixed Models for GWAS 161 

A standard linear mixed model (LMM) used in GWAS to test for genetic association at SNP 162 

 can be written as 163 

  , (4) 164 

where  is a vector of phenotype values for all individuals,  is a matrix of covariates 165 

including an intercept,  is a corresponding vector of effect sizes,  is the vector of genotype 166 

values for all individuals at SNP ,  is the effect size of SNP ,  is a random effect that 167 

captures the polygenic effect of other SNPs,  is a parameter that measures the additive 168 

genetic variance of the phenotype,  is the standard genetic relationship matrix (GRM)25,   is 169 

a random effect that captures independent residual effects,  is a parameter that measures 170 

residual variance, and  is an identity matrix.  Generalized least squares (GLS) can be used to 171 

fit the LMM in Equation (4) and test the null hypothesis that ; however, the overall 172 

covariance structure of the phenotype, , is unknown in practice and 173 

must first be estimated.  In order to do so, an empirical GRM, such as  with  element 174 

given by Equation (1), is estimated from the available SNP data.  Utilizing this empirical GRM in 175 

the null model (i.e. the model with  fixed at 0), estimates of the variance components  176 
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and  are obtained, typically with restricted maximum likelihood (REML).  GLS can then be 177 

performed using the estimate of the overall phenotypic covariance structure, 178 

. 179 

 180 

The LMM-OPS Model 181 

The LMM-OPS model that we propose has a similar form to the LMM presented in Equation (4), 182 

but with the genealogical structure of the sample orthogonally partitioned into fixed and 183 

random effects.  Population structure is adjusted for as a fixed effect, and recent genetic 184 

relatedness is accounted for as a random effect.  The LMM-OPS model can be written as 185 

 .  (5) 186 

The differences in the LMM-OPS model in Equation (5) from the standard LMM model in 187 

Equation (4) are that it includes , the matrix of ancestry-representative vectors with 188 

corresponding effect sizes , in the mean model to adjust for population structure, and it uses 189 

an ancestry-adjusted GRM, , that only measures recent familial relatedness, in place of the 190 

standard GRM, .  Therefore, with population structure modeled as a fixed effect in the mean,  191 

the overall covariance structure of the phenotype in LMM-OPS model is given by 192 

.  As with the standard LMM in the previous section, GLS can be used to 193 

fit the LMM-OPS model and test for genetic association.  The procedure is identical, except that 194 

, , and  are obtained utilizing an ancestry-adjusted empirical GRM estimated 195 

from the available SNP data.  Either the ‘centered only’ ancestry-adjusted empirical GRM, , 196 
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with  element given by Equation (2), or the ‘centered and standardized’ ancestry-adjusted 197 

empirical GRM, , with element given by Equation (3), can be used for LMM-OPS.  198 

Throughout the remainder of this manuscript, unless specified otherwise, we use the centered 199 

and standardized ancestry-adjusted empirical GRM when presenting LMM-OPS results. 200 

 201 

Simulation Studies 202 

In all simulation studies, association testing was performed using LMM-OPS, EMMAX, GCTA, 203 

GEMMA, and linear regression adjusted for PCs.  LMM-OPS included the top PC from PC-AiR26 as 204 

a fixed effect to adjust for ancestry in the mean model, and it used an ancestry-adjusted 205 

empirical GRM constructed with PC-Relate24 to account for correlation among genotypes due to 206 

recent genetic relatedness.  All analyses with EMMAX, GCTA and GEMMA used the default 207 

genetic relationship matrices implemented in their respective software to account for sample 208 

structure.  Details are provided in Appendix A.  Throughout the simulation studies, EMMAX and 209 

GCTA gave nearly identical results; therefore, only those from EMMAX are presented.  Linear 210 

regression adjusted for PCs used the top PC from PC-AiR, rather than EIGENSTRAT27, to ensure 211 

that ancestry was accurately captured and not confounded by pedigree structure26. 212 

Simulation studies were used to investigate the impact of variation across the genome 213 

in allele frequency differences between populations on association test statistics at null SNPs.  214 

Two simulation studies were conducted using samples from two different pairs of HapMap 215 

populations: (1) the closely related CEU (Utah residents with Northern and Western European 216 

ancestry from the CEPH collection; n = 165) and TSI (Toscans in Italy; n = 88) populations, which 217 

are both European, and (2) the highly divergent CEU and YRI (Yoruba in Ibadan, Nigeria; n = 172) 218 

populations, which are inter-continental.  For each study, we simulated 1,000 replicates of a 219 

heritable quantitative phenotype with a mean shift due to an individual’s population 220 
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membership.  To make each replicate of the phenotype 10% heritable, 100 SNPs from 221 

chromosome 1 were randomly selected to be causal, each with an effect size chosen based on 222 

allele frequency to account for 0.1% of the total phenotypic variability. The effects due to 223 

population membership accounted for 18% of the phenotypic variability on average across 224 

phenotype replicates in both studies.  For each phenotype replicate, the SNPs on chromosomes 225 

2-22, which had no direct causal link to the phenotype, were tested for association.  Despite not 226 

being causal, SNPs on these chromosomes could be indirectly correlated with the phenotype if 227 

they had different allele frequencies in the two populations, resulting in inflated type-I error 228 

rates if population stratification was not adequately accounted for. 229 

Additional simulation studies were also carried out to assess the performance of the 230 

association testing methods in the presence of ancestry admixture.  We simulated genotypes for 231 

three separate samples, each with two-way ancestry admixture, but each with a different choice 232 

of FST
28 (0.01, 0.05, and 0.15) for the underlying populations.  An FST of 0.01 is a typical value 233 

between European populations, such as the CEU and TSI, while FST = 0.15 is representative of 234 

divergent inter-continental populations, similar to what has previously been estimated between 235 

the CEU and YRI populations29,30.  To generate data sets under each choice of FST, allele 236 

frequencies for the two underlying populations were generated for 200,000 independent SNPs 237 

using the Balding-Nichols model31, and genotype data at these SNPs were simulated for 3,000 238 

individuals with admixed ancestry derived from the two populations.  These SNPs were then 239 

split into two disjoint sets of 100,000, which we refer to as Set 1 and Set 2.  Each sample 240 

included 2,160 unrelated individuals, 120 cousin pairs, and 30 four-generation, twenty-person 241 

pedigrees (Figure S1).  Individual ancestry proportions for unrelated individuals and pedigree 242 

founders were randomly drawn from various beta distributions, and ancestry proportions for 243 

pedigree descendants were calculated as the average of their parents’.  For each of the three 244 
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admixed samples, we simulated 1,000 replicates of a quantitative phenotype with 10% 245 

heritability and with a mean shift due to an individual’s genome-wide ancestry that accounted 246 

for 17% of the phenotypic variability on average.  Causal SNPs for generating each phenotype 247 

replicate were randomly selected from Set 2. The 100,000 SNPs in Set 1, which had no direct 248 

causal link to the phenotype but could be indirectly correlated with it if they were associated 249 

with genome-wide ancestry, were tested for association.  For each association testing method, 250 

sample genealogical structure was inferred using the SNPs in Set 1.   251 

Finally, we performed simulation studies in the admixed setting with FST = 0.15 to assess 252 

the power of each of the association testing methods to detect causal SNPs.  Phenotypes were 253 

simulated exactly as for the null SNP studies, but with an additional main effect due to a single 254 

causal SNP of interest, s’, randomly selected from Set 2.  The effect size for this causal SNP was 255 

chosen based on allele frequency to account for a pre-specified percentage (  = 0.75%, 1.00%, 256 

1.25%, or 1.50%) of the total phenotypic variability.  For each choice of , a total of 10,000 257 

phenotype-SNP pair replicates were generated and tested for association.  Additional details on 258 

how phenotypes and genotypes were generated for all simulations are provided in Appendix B. 259 

 260 

GWAS of WBC Count in WHI Hispanics. 261 

The Women’s Health Initiative (WHI) is a long-term national health study focused on identifying 262 

risk factors for common diseases in postmenopausal women.  A total of 161,838 women aged 263 

50–79 years were recruited from 40 clinical centers in the United States between 1993 and 264 

1998.  Detailed cohort characteristics and recruitment methods have been described 265 

previously18,19.  Approximately 17% of participants in this study are under-represented U.S. 266 

minority women, and the WHI SNP Health Association Research (WHI-SHARe) minority cohort 267 
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includes 3,587 self-reported Hispanics who provided consent for DNA analysis.  Affymetrix 6.0 268 

genotyping and quality control filtering of these Hispanic-American samples was performed as 269 

described previously32.  Total circulating white blood cell (WBC) count was measured on a fresh 270 

blood sample at local clinical laboratories using automated hematology cell counters and 271 

standardized quality assurance procedures. Total WBC count was reported in millions of cells 272 

per ml, and was log transformed prior to analysis to reduce skewness in the distributions of the 273 

phenotypic data.  A GWAS of the log-transformed WBC counts measured on women in the WHI-274 

SHARe Hispanic cohort was performed using LMM-OPS, EMMAX, GCTA, and GEMMA.  For the 275 

LMM-OPS analysis, the first 6 PCs generated with PC-AiR were included as fixed effects to adjust 276 

for population stratification, and an ancestry-adjusted empirical GRM calculated conditionally 277 

on these PCs with PC-Relate was used to account for recent familial relatedness.  The other 278 

LMM methods were run with their default settings, filters, and relationship matrices.  A total of 279 

616,556 autosomal SNPs were tested for association in the GWAS.  Further details are provided 280 

in Appendix A. 281 

 282 

Results 283 

Impact of Variable Allele Frequency Differences on Association Test Statistics  284 

Using the two HapMap based simulation studies, we compared the test statistics obtained from 285 

each association testing method for null SNPs.  Penalized cubic regression splines were used to 286 

find smoothed curves showing the relationship between the absolute value of the allele 287 

frequency difference between the pair of populations at SNP s, denoted Ds, and the mean of the 288 

test statistics from each method (Figure 1).  Test statistics should follow a  distribution at 289 

null SNPs, so the mean of the test statistics for a well-calibrated method should be 1, regardless 290 

of allele frequency differences between the two populations.  However, in both HapMap 291 
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studies, the mean of the test statistics from EMMAX and GEMMA increased with increasing 292 

values of Ds.  Test statistics from these methods were substantially inflated (i.e. under-293 

corrected) at SNPs with the largest values of Ds and deflated (i.e. over-corrected) at SNPs with 294 

the smallest values of Ds.  In contrast, the mean of the test statistics from both LMM-OPS and 295 

linear regression adjusted for the top PC from PC-AiR showed no relationship with the value of 296 

Ds.  This indicates that including the ancestry-representative PC as a fixed effect in the mean 297 

model effectively accounted for the variable allele frequency differences across SNPs. However, 298 

since linear regression adjusted for the top PC from PC-AiR did not account for the correlation of 299 

phenotypes among relatives, its test statistics were equally inflated across all values of Ds (1.027 300 

on average for the CEU/TSI sample, and 1.032 on average for the CEU/YRI sample). In both 301 

studies, LMM-OPS was the only method that provided well-calibrated test statistics for all null 302 

SNPs, with the mean of the test statistics near 1 for all values of Ds.   303 

Comparing the results from EMMAX and GEMMA for the joint CEU/YRI sample (Figures 304 

1A and 1B) to those for the joint CEU/TSI sample (Figures 1C and 1D), it is apparent that the 305 

particular values of Ds for which the mean of the test statistics are either inflated or deflated 306 

depends on the pair of populations being analyzed.  To further understand this relationship, we 307 

investigated the distribution of allele frequency differences across the genome for different 308 

pairs of populations by estimating population specific allele frequencies at 1,423,833 autosomal 309 

SNPs in the consensus data set for six HapMap populations:  the previously mentioned CEU, TSI, 310 

and YRI populations, as well as the LWK (Luhya in Webuye, Kenya; n = 90), CHB (Han Chinese in 311 

Beijing, China ; n = 137), and JPT (Japanese in Tokyo, Japan; n = 86) populations.  For each pair of 312 

these populations, select quantiles (Table S1) of Ds and its cumulative distribution function 313 

across all autosomal SNPs (Figure S2) were calculated.  As expected, the distribution of Ds is 314 

more concentrated at smaller values for pairs of populations from the same continent (i.e. 315 
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CEU/TSI, CHB/JPT, and LWK/YRI) as compared to pairs of populations from different continents.  316 

Over 90% of SNPs have Ds < 0.1 for the three intra-continental pairs of populations, while at 317 

least 49.8% of SNPs have Ds ≥ 0.1 for each of the inter-continental pairs.  When SNP s has a large 318 

(small) Ds value relative to the other SNPs used to construct the GRM, both EMMAX and 319 

GEMMA provide an inflated (deflated) test statistic for SNP s on average.  Therefore, as a 320 

consequence of the different distributions of Ds, inflation of EMMAX and GEMMA test statistics 321 

is observed at smaller absolute values of Ds when jointly analyzing more closely related 322 

populations, such as the CEU and TSI, compared to more divergent populations, such as the CEU 323 

and YRI.  324 

 325 

Performance at Null SNPs in Admixed Populations 326 

We also compared the test statistics obtained from each association testing method for null 327 

SNPs in the simulated admixed populations.  Penalized cubic regression splines showing the 328 

relationship between the local mean of the test statistics from each method and Ds showed the 329 

same patterns as those from the HapMap simulations (Figures 2A-2C).  Specifically, LMM-OPS 330 

was the only method that provided well-calibrated test statistics for all Ds, test statistics from 331 

linear regression adjusted for the top PC from PC-AiR were uniformly inflated for all values of Ds, 332 

and EMMAX and GEMMA provided test statistics that were inflated at SNPs with the largest 333 

values of Ds and deflated at SNPs with the smallest values of Ds.  The distribution of Ds values 334 

depended on the FST for the pair of populations contributing to the admixed sample (Figure 2D).  335 

However, as demonstrated with the HapMap data, the qualitative patterns of test statistic 336 

inflation and deflation for each method were the same across all choices of FST, regardless of the 337 

range of Ds. 338 
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To further examine the performance of each method for null SNPs in the simulation 339 

study with FST = 0.15, we defined three classes of SNPs based on the magnitude of their allele 340 

frequency difference. SNPs were classified as weakly, moderately, or highly differentiated if they 341 

were in the first (Ds < 0.07), second/third (0.07 < Ds < 0.28), or fourth (Ds > 0.28) quartile of the 342 

distribution of the magnitude of allele frequency differences, respectively. Genomic inflation 343 

factors, '(), were calculated genome-wide, as well as in each of these three classes of SNPs, for 344 

each of the 1,000 simulation replicates (Table 1). The genomic inflation factor is commonly used 345 

in genetic association studies to evaluate confounding due to unaccounted for sample structure, 346 

where '() ≈ 1 suggests appropriate correction, while '() > 1 indicates an elevated type-I error 347 

rate.  LMM-OPS was the only method that obtained '() values near 1 genome-wide as well as 348 

within all three classes of SNPs. For linear regression adjusted for the top PC from PC-AiR, the 349 

average genomic inflation factor was nearly the same ('() ≈ 1.026) genome-wide and within all 350 

three classes of SNPs.  Interestingly, both EMMAX and GEMMA obtained '() values near 1 351 

when calculated from the median of the test statistics for all SNPs genome-wide, but obtained 352 

'() values that were greater than 1 for highly differentiated SNPs and less than 1 for weakly 353 

differentiated SNPs. 354 

Additionally, modified QQ plots were generated for each LMM method using the p-355 

values for all 100,000,000 null SNPs pooled across the 1,000 phenotype replicates, as well as for 356 

the subsets of these SNPs that were highly, moderately, or weakly differentiated (Figure 3).  As 357 

with the genomic-inflation factors, the QQ plots indicate that LMM-OPS is well calibrated 358 

genome-wide as well as in all three classes of SNPs.  In contrast, EMMAX and GEMMA appear 359 

well calibrated when examining all SNPs genome-wide, but show deviation in the observed p-360 

values from those expected under the null when examining each of the three classes of SNPs 361 

separately. 362 
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Detection of Causal SNPs 363 

We also performed simulation studies in the setting with FST = 0.15 to assess the power of each 364 

of the LMM methods. Linear regression with PCs was omitted from these comparisons because 365 

it had consistent inflation of type-I error rates across all SNPs. Power to detect causal SNPs with 366 

ℎ+,-  = 0.75%, 1.00%, 1.25%, and 1.50% was computed at the genome-wide significance level . = 367 

5 x 10–8 across all SNPs, as well as within the highly, moderately, and weakly differentiated 368 

classes. When considering all causal SNPs, LMM-OPS had significantly higher power than 369 

EMMAX and GEMMA by about 2-3% for each choice of ℎ+,-  (Figure 4 and Table S2). This 370 

difference in power corresponded with LMM-OPS detecting between 2% and 10% more causal 371 

SNPs than the other LMM methods. Furthermore, LMM-OPS provided the highest power to 372 

detect causal SNPs within each class of allele frequency differentiation. Perhaps surprisingly, this 373 

included highly differentiated SNPs, for which EMMAX and GEMMA provide systematically 374 

inflated test statistics at null SNPs and have inflated type-I error rates. 375 

 376 

GWAS of WBC Count in the WHI SHARe Hispanic Cohort 377 

LMM-OPS, EMMAX, GCTA, and GEMMA all obtained satisfactory genome-wide genomic 378 

inflation '() values (Table S3), but the QQ-plots of the –log10(p-values) from each method 379 

appeared to show some early deviation from expectation (Figure 5A).  The only SNPs 380 

approaching genome-wide significance were on chromosome 1, so we recalculated '() and 381 

generated new QQ-plots with chromosome 1 excluded to investigate this deviation.  The QQ-382 

plots excluding SNPs from chromosome 1 appeared well behaved for all four methods (Figure 383 

5B), indicating that the early deviation in the genome-wide QQ-plots was due to a large number 384 

of associated SNPs on chromosome 1.  The corresponding '() values were 1.005, 0.993, 0.993, 385 

and 0.994 for LMM-OPS, EMMAX, GCTA, and GEMMA, respectively.  We also conducted a GWAS 386 
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using standard linear regression including the top 6 PCs from PC-AiR as fixed effects.  As 387 

expected, the test statistics were inflated, giving '() = 1.045 when excluding chromosome 1.  388 

This inflation was most likely due to unaccounted for familial relatedness in the sample20,24. 389 

 The genotype effect size estimates from all four LMM methods were similar on average, 390 

however LMM-OPS consistently provided the smallest standard error estimates, and thus a 391 

more efficient association test (Figure S3).  The Manhattan plot of the LMM-OPS –log10(p-values) 392 

shows a strong association signal for WBC count in a region on chromosome 1 (Figure 5C).  393 

LMM-OPS attained the highest significance in this region, and all genome-wide significant p-394 

values with LMM-OPS were one or more orders of magnitude smaller than those from the 395 

competing LMM methods (Figure 5D and Table 2). The most significant SNP on chromosome 1 396 

was rs11265198 (LMM-OPS p = 6.49 x 10–13; EMMAX p = 2.49 x 10–10; GCTA p = 2.77 x 10-10; 397 

GEMMA p = 4.00 x 10–11).  In addition, there was one SNP in this region, rs6656586, which 398 

attained genome-wide significance with LMM-OPS but did not with any of the other methods. 399 

The most significant SNP, rs11265198, is near the Duffy Antigen Receptor for 400 

Chemokines (DARC) gene.  An African derived regulatory variant in DARC, rs2814778, was 401 

previously found to associate with lower WBC count in African Americans22,23.  Genotype 402 

dosages for rs2814778 were imputed using MaCH-Admix32 in the WHI-SHARe Hispanics and 403 

tested for association using LMM-OPS.  The p-value for rs2814778 was 1.89 x 10–18, providing a 404 

stronger signal than any of the directly genotyped SNPs tested for association with WBC count.  405 

Additionally, we re-ran a GWAS with LMM-OPS conditional on rs2814778, and all of the 406 

previously identified genome-wide significant SNPs on chromosome 1 became non-significant 407 

(Figure S4), indicating that these SNPs were tagging this regulatory variant.  Thus, we were able  408 

replicate and generalize21 to Hispanics/Latinos the previously identified association in African 409 

Americans for WBC count and this regulatory variant in the DARC gene.   410 
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 411 

 412 

Importance of Orthogonality 413 

The key feature of LMM-OPS that differentiates it from existing LMM methods for GWAS is the 414 

partitioning of sample structure into separate orthogonal components due to recent and distant 415 

genetic relatedness.  For each of the LMM-OPS analyses presented here, the PC-Relate kinship 416 

coefficient matrix, which is calculated conditionally on PCs, was used as the ancestry-adjusted 417 

GRM to account for recent genetic relatedness.  However, this matrix is actually only 418 

approximately orthogonal to the PCs used to account for distant genetic relatedness (see 419 

Methods). In order to construct a strictly orthogonal matrix, one could compute an ancestry-420 

adjusted GRM from genotype values that are centered conditional on PCs, without any scaling.  421 

Nevertheless, we consistently find that the entries in either of these ancestry-adjusted GRMs 422 

are very highly correlated across all pairs of individuals, and the resulting LMM-OPS association 423 

test statistics and p-values are nearly identical when using either matrix (Figures S5 – S7 and 424 

Table 2).  Due to this observation, we typically recommend using the PC-Relate kinship 425 

coefficient matrix in practice, as it has the advantage of biological interpretability of the matrix 426 

elements as kinship coefficient estimates.  427 

To further explore the impact of using an empirical GRM that is orthogonal to the PCs 428 

included in the analysis as fixed effect covariates, we re-ran the EMMAX, GCTA, and GEMMA 429 

analyses of WBC count, but included the same 6 PCs that were used in the LMM-OPS analysis as 430 

fixed effect covariates, which corresponds to an approach that was previously proposed for 431 

associating testing in structured samples with unusually differentiated SNPs15,26.    In these 432 

analyses, the PCs and the GRM were both adjusting for the population structure. The results 433 

from these models were very similar to those from the corresponding models without PCs 434 
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(Figure S8 and Table 2).  These results demonstrate that the efficiency gain achieved with LMM-435 

OPS cannot be replicated by simply including ancestry representative PCs in an LMM with a 436 

standard empirical GRM.  Partitioning sample structure due to population stratification and 437 

recent genetic relatedness into separate, orthogonal components, as is done with LMM-OPS, is 438 

essential for  improved efficiency in association testing.   439 

 440 

Computation Time 441 

We compared the computation time required by LMM-OPS, EMMAX, GEMMA (v0.94), and GCTA 442 

(v1.24.7) to perform the association analysis of WBC count at all 616,556 autosomal SNPs for 443 

the 3,551 women in the WHI-SHARe sample. The computation times required to construct the 444 

relationship matrices were not included in this assessment since all of the LMM methods can 445 

use a pre-computed GRM, and each GRM has similar computational complexity10.  Each method 446 

was run using a single core 2.4 GHz Intel Xeon E5-2630L processor with 128 GB of RAM.  LMM-447 

OPS is implemented in R, and was run using R v3.2.0 configured to use the BLAS and LAPACK 448 

libraries within the Intel Math Kernel Library (MKL).  LMM-OPS was substantially faster than the 449 

other methods, which took at least twice as long, and up to over seven times as long to perform 450 

the analysis. The computation time for LMM-OPS to complete the analysis was 20.4 minutes 451 

(0.34 hours).  In comparison, the computation time for GCTA was 44.6 minutes (0.74 hours), for 452 

GEMMA was 1.84 hours, and for EMMAX was 2.43 hours. 453 

 454 

Discussion 455 

Genetic association studies involving ancestrally diverse populations from around the world 456 

have recently become more common as there is increased interest in both identifying novel, 457 

population specific variants that underlie phenotypic diversity and generalizing associations 458 
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across populations.  Confounding due to ancestry is a serious concern for genetic association 459 

studies since different ethnic groups often share distinct dietary habits and other lifestyle 460 

characteristics that lead to many traits of interest being correlated with ancestry.  Linear mixed 461 

models (LMMs) have become the go-to approach for genome-wide association testing of 462 

quantitative traits, as they are both computationally fast and statistically powerful10.  463 

Furthermore, it has been reported that LMMs are effective at controlling type I error rates in 464 

samples with relatedness and population structure, as they tend to provide acceptable genomic 465 

control inflation factors.  However, we demonstrated through simulation studies that existing 466 

implementations of LMMs for GWAS can provide systematically biased test statistics in samples 467 

with population stratification when phenotypes are correlated with ancestry.  Interestingly, we 468 

found that the miscalibration of test statistics from widely used LMM approaches is a problem 469 

that can occur when samples descend from either highly divergent inter-continental populations 470 

or closely related intra-continental populations.  Additionally, the problem manifests in the 471 

presence of both discrete population substructure and ancestry admixture. 472 

Incorrect calibration of association test statistics from existing LMM methods arises 473 

because they use an empirical GRM calculated as a genome-wide average genotype covariance 474 

to account for the entire sample genealogy, including both distant population structure and 475 

recent familial relatedness.  However, as we demonstrated using genotype data from release 3 476 

of phase III of HapMap, allele frequency differences among human populations vary greatly by 477 

SNP across the genome.  As a consequence, the strength of the genetic covariance due to 478 

ancestry also varies by SNP across the genome, and existing LMM methods can provide 479 

inadequate correction for population stratification. The ancestry correction provided by these 480 

methods is of appropriate size only for SNPs with typical allele frequency differences between 481 

populations, while SNPs with relatively larger or smaller allele frequency differences receive an 482 
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under- or over-correction, respectively.  This result is contrary to what has previously been 483 

suggested10, that SNPs with larger allele frequency differences between populations receive a 484 

larger correction from these LMM methods.  Notably, the deflation of test statistics for SNPs 485 

with similar allele frequencies across populations, and the inflation of test statistics for SNPs 486 

that are highly differentiated across populations, balances out across the genome, typically 487 

leading to a genomic control inflation factor near 1 and QQ-plots that look acceptable when 488 

considering all SNPs genome-wide, which likely contributed to why this phenomenon had not 489 

been previously reported.  490 

To address this issue, we developed LMM-OPS, which orthogonally partitions the 491 

genealogical structure among sampled individuals into two separate components.  Ancestry-492 

representative vectors are included as fixed effects in the mean model of LMM-OPS to account 493 

for population stratification, and an ancestry-adjusted empirical GRM that is orthogonal to the 494 

ancestry-representative vectors is used to model recent familial relatedness as a random effect.  495 

In simulation studies with real and simulated genotype data, we demonstrated that the LMM-496 

OPS testing procedure provides well-calibrated association test statistics at all SNPs genome-497 

wide, regardless of the distribution of allele frequency differences among the underlying 498 

populations.  In addition to providing better protection against false positives, we also 499 

demonstrated that, compared to existing LMM methods, LMM-OPS provides a more efficient 500 

test with improved power to detect true SNP-phenotype associations. This increase in power 501 

holds even at highly differentiated SNPs, for which existing LMM methods provide 502 

systematically inflated test statistics resulting in an inflated type-I error rate.  503 

We also compared the performance of LMM-OPS to existing implementations of LMMs 504 

through a GWAS analysis of white blood cell (WBC) count in the Hispanic cohort of the WHI 505 

SHARe study.  This cohort contains multi-way continental ancestry admixture as well as cryptic 506 
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familial relatedness.  All four methods gave similar genotype effect size estimates at SNPs for 507 

WBC count, but LMM-OPS was the most efficient, providing consistently smaller standard errors 508 

and genome-wide significant p-values that were more significant, by one or more orders of 509 

magnitude, than EMMAX, GEMMA, and GCTA.  Using LMM-OPS, we were able to replicate 510 

generalize to this Hispanic American population (p = 1.89 x 10–18) the association at regulatory 511 

variant rs2814778 in the Duffy Antigen Receptor for Chemokines (DARC) gene previously 512 

identified in African Americans. Because of natural selection, rs2814778 is highly differentiated 513 

between African and European ancestral populations, likely due to a protective effect against P. 514 

vivax malaria34,35.  Furthermore, through a conditional analysis including rs2814778 as a 515 

covariate, we were able to demonstrate that other genome-wide significant associations in this 516 

region on chromosome 1 could be explained by LD with this particular variant.   517 

 In the implementation of LMM-OPS presented here, we utilized ancestry-representative 518 

principal components (PCs) from PC-AiR to adjust for population structure and construct an 519 

orthogonal ancestry-adjusted empirical GRM to account for relatedness.  Alternatively, vectors 520 

of estimated individual admixture proportions from model-based methods such as 521 

ADMIXTURE36 or FRAPPE37 could be used in place of PCs.  We also performed the LMM-OPS 522 

analysis of WBC count in the Hispanic American cohort of the WHI-SHARe using model-based 523 

estimates of individual ancestry from a supervised ADMIXTURE analysis that included reference 524 

population samples from the International Haplotype Map Project (HapMap) and the Human 525 

Genome Diversity Project (HGDP)38 for European, Native American, African, and East Asian 526 

ancestry.  The results were nearly identical to the analysis that used PCs (Figure S9).  In general, 527 

using model-based estimates of ancestry with LMM-OPS is expected to work well, provided that 528 

prior assumptions regarding the underlying populations contributing ancestry to the sample are 529 

accurate and suitable reference population panels representative of these populations are 530 
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available for reliable estimation of ancestry.  For many genetic studies, however, the underlying 531 

ancestral populations may not be completely known or well defined, and misspecification of the 532 

ancestral populations will result in less efficient association tests due to biased estimates of 533 

individual ancestry from model-based methods.  For this reason, we recommend using PCs with 534 

LMM-OPS, as they do not rely on strong modeling assumptions. 535 

 Numerous LMM approaches for GWAS have been proposed in the past few years, each 536 

with small variations on the testing procedure.  One variation among these methods lies in SNP 537 

selection for constructing the empirical GRM.  In each of the analyses performed here, the GRM 538 

was constructed from all SNPs genome-wide with sample minor allele frequency (MAF) greater 539 

than 1%.  Others have suggested that including the SNP being tested, or SNPs in LD with the one 540 

being tested, leads to proximal contamination and a loss of power6,10.  This has led to the 541 

development of automated methods for selecting subsets of SNPs to be used in the GRM6, as 542 

well as the leave-one-chromosome-out (LOCO) approach10, where the GRM is constructed from 543 

all autosomal SNPs not on the same chromosome as the SNP being tested.  While not presented 544 

here, LMM-OPS can easily incorporate using a subset of SNPs or a LOCO approach for 545 

constructing the ancestry-adjusted GRM.  However, it remains unclear as to what the optimal 546 

set of SNPs is for obtaining the GRM.  Using a subset of SNPs, as is done with FaST-LMM-Select6, 547 

may improve power, but it may also provide inadequate control of type-I error rates39.  When 548 

there is family relatedness among samples, this remains true even if PCs are included in the 549 

model39.  Similarly, using a LOCO approach, such as that implemented in GCTA-LOCO10, may also 550 

improve power, but may inadequately account for the effects of SNPs on the same chromosome 551 

as the SNP being tested.  A hybrid method that uses two GRMs, one constructed from all SNPs, 552 

and the other from a selected subset of SNPs, has also been proposed39.  However, this 553 

approach remains susceptible to the systematic inflation/deflation issues illustrated in this work 554 
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for phenotypes correlated with ancestry.  We have demonstrated that LMMs for GWAS should 555 

certainly include ancestry-representative vectors as fixed effects to account for population 556 

stratification, but exactly which SNPs should be used to construct the empirical GRM in order to 557 

optimize power, while still adequately protecting against false positives due to family structure, 558 

remains an open area of research. 559 

 560 

Appendix A 561 

Sample Structure Inference 562 

Population structure inference for LMM-OPS and for linear regression adjusted with PCs was 563 

performed using PC-AiR25.  PC-AiR used SNPs LD-pruned with an r2 = 0.1 threshold in a sliding 564 

10Mb window for the HapMap and WHI-SHARe analyses, and it used all SNPs in Set 1 for the 565 

simulations with admixture.  Inference on recent genetic relatedness due to family structure for 566 

LMM-OPS was performed using PC-Relate23; these kinship coefficient estimates were used to 567 

construct the ancestry-adjusted empirical GRM.  EMMAX, GEMMA, and GCTA each used the 568 

default empirical GRM created by the respective software to infer all sample structure.  The 569 

GRM for each method was constructed from all of the autosomal SNPs with minor allele 570 

frequency (MAF) > 1% in the HapMap and WHI-SHARe analyses, and from all SNPs in Set 1 in the 571 

simulations with admixture. 572 

 573 

Appendix B 574 

Simulated Genotype Data with Admixture 575 

For each of the three simulated data sets with admixture, allele frequencies for the two 576 

populations at all 200,000 SNPs were generated using the Balding-Nichols model30.  More 577 

precisely, for each SNP s, the allele frequency ps in the ancestral population was drawn from a 578 
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uniform distribution on [0.1, 0.9].  The allele frequency in each population was then drawn from 579 

a beta distribution with parameters ps(1–FST)/FST and (1–ps)(1–FST)/FST, where the quantity FST is 580 

Wright's measure of genetic distance between populations27.  The vector  contains the allele 581 

frequencies at SNP s for each population.  An individual’s vector of ancestry proportions from 582 

each of the two populations can be represented by .  The parameter a was 583 

drawn from a beta distribution with mean 0.3 and s.d. 0.1 for one third of unrelated individuals 584 

and pedigree founders, a beta distribution with mean 0.7 and s.d. 0.1 for another third, and a 585 

uniform distribution on [0,1] for the remaining third.  Within any given pedigree, every founder 586 

had  drawn from the same distribution.  As a result, individuals in a pedigree for which 587 

founder ancestry proportions were drawn from either of the beta distributions had similar 588 

ancestry to each other, which could be viewed as a type of ancestry-related assortative mating.  589 

Ancestry proportions for pedigree descendants were calculated as the average of their parents’ 590 

ancestry proportions. Genotypes for unrelated individuals and pedigree founders were 591 

randomly drawn from a  distribution, and alleles were passed down the pedigree 592 

to generate genotypes for pedigree descendants (including the cousin pairs). 593 

 594 

Simulated Phenotypes 595 

For the simulations used to assess behavior at null SNPs, each replicate of the heritable 596 

phenotype whose mean depended on genome-wide ancestry (or population membership) was 597 

generated according to the model 598 

 , (6)      599 

!!ps

!!!ai
T = (a,1−a)

!a

!!!Bin(2,ai
Tps )

!!  
Y = Σ s∈Sc

x sβs +γ a+ε
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where  is a set of 100 randomly selected causal SNPs,  is the vector of genotype values for 600 

all individuals at SNP  with effect size  chosen using sample allele frequencies so that 601 

SNP s explains 0.1% of the phenotypic variability,  is the vector of ancestry proportions for all 602 

individuals with effect size , and  is independent random noise.  In the simulations 603 

using the HapMap genotype data, SNPs for  were selected randomly from chromosome 1,  604 

was 1 for an individual in the CEU population and 0 otherwise, and .  In the simulations 605 

using the simulated genotype data with admixture, SNPs for  were randomly chosen from Set 606 

2,  was an individual’s ancestry proportion from population 1, and . 607 

For the simulations used to evaluate detection of causal SNPs, each of the causal SNP-608 

phenotype pairs was generated according to the model 609 

 .  (7) 610 

This is the same model as in Equation (6) but with one additional causal SNP of interest, s’.  In 611 

the simulations using the simulated genotype data with admixture, s’ was selected at random 612 

from Set 2.  The effect size  for SNP s’ was chosen to explain a pre-specified proportion of the 613 

phenotypic variability, denoted , and 10,000 replicate SNP-phenotype pairs were simulated 614 

for each choice of {0.75%, 1.00%, 1.25%, 1.50%}. 615 

 616 

Supplemental Data 617 

Supplemental data include 9 Figures and 3 Tables. 618 

 619 

 620 

! Sc !!x s
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!a

γ !! εi ~N(0,1)
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!!  
Y = x ′s β ′s +Σ s∈Sc
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Figure Titles and Legends 785 

Figure 1.  Performance of association methods at null SNPs for a phenotype associated with 786 
ancestry in the presence of population structure.   787 
Penalized cubic regression splines were used to fit smoothed curves showing the relationship 788 
between the absolute value of the allele frequency difference between the two populations at 789 
SNP s, Ds, and the local mean of the test statistics from each method for the simulations with (A-790 
B) the joint CEU/YRI sample, and (C-D) the joint CEU/TSI sample. The curves shown are the 791 
average relationship across all 1,000 simulated replicates (individual points are omitted for 792 
visual clarity). The shaded regions show estimated 95% confidence intervals.  (A and C) The 793 
curves are fit to all SNPs, and the range of Ds is held to [0,1].  (B) The curves are fit to the 98.6% 794 
of SNPs with Ds ≤ 0.6.  (D) The curves are fit to the 99.9% of SNPs with Ds ≤ 0.2. 795 
 796 
 797 
Figure 2.  Performance of association methods at null SNPs for a phenotype associated with 798 
ancestry in admixed populations.   799 
Penalized cubic regression splines were used to fit smoothed curves showing the relationship 800 
between the absolute value of the allele frequency difference between the two populations at 801 
SNP s, Ds, and the local mean of the test statistics from each method for the simulations with 802 
admixture from a pair of populations with (A) FST = 0.15, (B) FST = 0.05, and (C) FST = 0.01. The 803 
curves shown are the average relationship across all 1,000 simulated replicates (individual 804 
points are omitted for visual clarity). The shaded regions show estimated 95% confidence 805 
intervals. The range of Ds is kept the same in each panel to emphasize that EMMAX and GEMMA 806 
provide inflated (deflated) test statistics at the largest (smallest) values of Ds, regardless of its 807 
range.  (D) Cumulative distribution functions showing the distribution of Ds values for each 808 
choice of FST. 809 
 810 
 811 
Figure 3.  Modified p-value QQ-plots for different classes of null SNPs.   812 
QQ-plots of p-values for (A) all SNPs, (B) highly differentiated SNPs, (C) moderately 813 
differentiated SNPs, and (D) weakly differentiated SNPs are presented for LMM-OPS, EMMAX, 814 
and GEMMA from the simulation with admixture from a pair of populations with FST = 0.15.  To 815 
more easily see deviation from the null, the y-axis is the difference between the observed and 816 
expected –log10(p-values) rather than the observed.  Points above the gray cone indicate 817 
inflation, and points below indicate deflation. 818 
 819 
 820 
Figure 4.  Comparison of power of LMM methods for a phenotype associated with ancestry in 821 
the simulation study with admixture and FST = 0.15.   822 
The power of LMM-OPS, EMMAX, and GEMMA to detect causal SNPs with h2 = 0.75%, 1.00%, 823 
1.25%, and 1.50% is shown across all SNPs as well as within the three classes of SNPs defined by 824 
allele frequency differentiation. The points represent the power estimates, and the vertical bars 825 
represent the 95% confidence intervals 826 
 827 
 828 
 829 
 830 
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Figure 5.  Association testing results for white blood cell (WBC) count in the Hispanic cohort of 831 
the WHI-SHARe study.   832 
QQ-plots for each of the LMM methods with (A) all autosomal SNPs, and (B) autosomal SNPs 833 
excluding chromosome 1. (C) Manhattan plot of the –log10(p-values) from LMM-OPS. (D) Direct 834 
comparison of –log10(p-values) for all autosomal SNPs from LMM-OPS to each of the other LMM 835 
methods. The EMMAX and GCTA results are presented together, as they were nearly identical 836 
and could not be distinguished in the figures. 837 
 838 
 839 
 840 
Tables 841 
 842 
Table 1.  Genomic inflation factors, /01, at null SNPs for the simulation study with admixture 843 
and FST = 0.15 844 

Method Genome-Wide Highlya 
Differentiated 

Moderatelyb 
Differentiated 

Weaklyc 
Differentiated 

LMM-OPS 1.000 (0.0002) 0.999 (0.0004) 1.001 (0.0003) 1.001 (0.0005) 
EMMAX 1.001 (0.0002) 1.059 (0.0007) 0.989 (0.0003) 0.973 (0.0005) 
GEMMA 1.004 (0.0002) 1.067 (0.0007) 0.990 (0.0003) 0.973 (0.0005) 
Linear Reg. +PCs 1.026 (0.0006) 1.026 (0.0007) 1.027 (0.0007) 1.027 (0.0007) 
The values presented are the mean (s.e.) across all 1,000 phenotype replicates. 845 
a Highly differentiated SNPs:  Ds > 0.28 between the two populations 846 
b Moderately differentiated SNPs:  0.07 < Ds < 0.28 between the two populations 847 
c Weakly differentiated SNPs:  Ds < 0.07 between the two populations 848 
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Table 2.  Genome-wide significant SNPs on chromosome 1 for WBC count in WHI-SHARe Hispanics  

SNP ID Position 

p-value 

LMM-OPSa LMM-OPSb  EMMAX 
EMMAX  

+PCsc GCTA 
GCTA  

+PCsc GEMMA 
GEMMA  

+PCsc 

rs11265198 159450517 6.49 x 10–13 5.75 x 10–13 2.49 x 10–10 2.45 x 10–10 2.77 x 10-10 3.39 x 10-10 4.00 x 10–11 4.14 x 10–11 

rs2808666 159591526 1.16 x 10–10 1.07 x 10–10 2.53 x 10–9 3.65 x 10–9 2.75 x 10-9 4.44 x 10-9 1.05 x 10–9 1.70 x 10–9 

rs7534472 159500861 2.62 x 10–10 2.45 x 10–10 1.34 x 10–8 1.36 x 10–8 1.44 x 10-8 1.63 x 10-8 3.94 x 10–9 4.21 x 10–9 

rs857682 158670244 7.92 x 10–10 6.84 x 10–10 2.14 x 10–8 2.23 x 10–8 2.28 x 10-8 2.73 x 10-8 9.53 x 10–9 1.07 x 10–8 

rs856065 159013653 1.47 x 10–9 1.44 x 10–9 5.41 x 10–8 6.55 x 10–8 5.73 x 10-8 7.56 x 10-8 1.82 x 10–8 2.45 x 10–8 

s6656586 159013653 2.40 x 10–8 2.14 x 10–8 3.53 x 10–7 3.92 x 10–7 3.69 x 10-7 4.61 x 10-7 1.91 x 10–7 2.30 x 10–7 

The p-values are presented for all six SNPs reaching genome-wide significance for WBC count with any of the LMM methods.   
aLMM-OPS when using the PC-Relate ancestry-adjusted empirical GRM; bLMM-OPS when using the centered only ancestry-adjusted empirical 

GRM.  cThe results labeled “+PCs” are from each of the respective LMM methods when the top 6 PCs from PC-AiR are included as fixed effect 

covariates
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