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Summary: Quantifying the similarity of clusterings is a fundamental step in
data analysis. Clustering similarity is the basis for method evaluation, consen-
sus clustering, and tracking the temporal evolution of clusters, among many
other tasks. Here we provide CluSim, a comprehensive Python package for the
comparison of partitions, overlapping clusterings, and hierarchical clusterings
(dendrograms) with more than 20 similarity measures. The CluSim package
provides both analytic and empirical methods for assessing the similarity of
clusterings in the context of a random model, and provides the novel element-
centric approaches for clustering similarity measure that we introduced recently.
We illustrate the use of the package through two examples: an evaluation of the
clustering of Gene Expression data in the context of different random models,
and detailed analysis of model incongruence using element-centric comparisons
between a set of phylogentic trees (dendrograms).

Availability and implementation: The CluSim Python package and accom-
panying jupyter notebook is available at https://github.com/Hoosier-Clusters/clusim
with the MIT open source licence.

Contact: ajgates42@gmail.com or yyahn@iu.edu

1 Introduction

Clustering is a primary method to reveal the structure of data [1]. To under-
stand, evaluate, and leverage data clusterings, we need to quantitatively com-
pare them. Clustering comparison is the basis for method evaluation, consensus
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clustering, and tracking the temporal evolution of clusters, among many other
tasks. For instance, clustering method evaluation is usually achieved by compar-
ing the method’s result to a planted reference clustering, under the assumption
that the more similar the method’s solution is to the reference clustering, the
better the method. Despite the importance of clustering comparison, no con-
sensus has been reached for a standardized assessment; each similarity measure
rewards and penalizes different criteria, sometimes producing contradictory con-
clusions. Each scientific community has adopted their own standard practices,
often without considering whether the measures’ underlying assumptions are
appropriate for the given task.

Clustering similarity measures can be classified based on the cluster types:
i) partitions that group elements into non-overlapping clusters, ii) hierarchical
clusterings that group elements into a nested series of partitions (a.k.a. den-
drogram), or iii) overlapping clusterings with elements belonging to multiple
clusters. Furthermore, in order to establish a baseline and interpret the sim-
ilarity score, it is often argued that clustering similarity should be assessed
in the context of a random ensemble of clusterings. Such a correction proce-
dure requires two choices: a model for random clusterings and how clusterings
are drawn from the random model. With few exceptions, similarity measures
are only designed to compare clusterings of the same type, and the decisions
required for the correction procedure are usually ignored or relegated to the
status of technical trivialities even though such decisions can sometimes reverse
one’s conclusions completely [2].

Here, we introduce CluSim, a python package that provides a unified li-
brary of over 20 clustering similarity measures for partitions, dendrograms, and
overlapping clusterings. To our knowledge, this package constitutes the first
collection of clustering similarity measures for all three clustering types and
extended access to random models of clusterings. The package also includes
the element-centric similarity measure that naturally unifies the comparison of
all three clustering types [3]. We illustrate the use of the package through two
examples: comparing clusterings of Gene Expression data in the context of ran-
dom models, and element-centric comparisons between a set of phylogentic trees
(dendrograms).

2 Materials and Methods

The basic class in the CluSim package is a Clustering, or an assignment of labeled
elements (i.e. data points or network vertices) into clusters (the groups). A
hierarchical Clustering also contains a dendrogram, or more generally an acyclic
graph, capturing the nested structure of the clusters. In CluSim, a Clustering
can be instantiated from 7 common formats, including full support for scipy,
scikit-learn, and dendropy clustering formats [4, 5, 6].

CluSim provides more than 20 clustering similarity and distance measures
for the comparison between two Clusterings. All similarity measures produce a
score in the range [0, 1], where 1 indicates identical clusterings and 0 indicates
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Figure 1: Evaluating clustering comparisons w.r.t. random models. A com-
parison using the Rand Index between the classification of cancer types and
clustering labels derived using Hierarchical Clustering on gene expression data
(0.5, red). above, Pairwise comparisons between samples from the Permutation
model (blue, see Hubert & Arabie[7]) with mean 0.44 (black). below, Pairwise
comparisons between samples from the one-sided model with a Fixed Number of
Clusters (blue, see Gates & Ahn[2]) with mean 0.59 (black). The Permutation
model suggests Hierarchical Clustering is more similar to the ground truth than
a random clustering, while the one-sized fixed number of clusterings model, the
more appropriate model for this scenario, reveals that the result is less similar
than random clusterings.

maximally dissimilar clusterings. See the online documentation for a detailed
list and mathematical definitions of these similarity measures.

To facilitate comparisons within a set of clusterings, the CluSim package
provides two implementations of the correction for chance. Analytic solutions
are available for the Rand index and Normalized Mutual Information using five
random models: the permutation model, both one-sided and two-sided models
for clusterings with a fixed number of clusters, and both one-sided and two-sided
models for all random clusterings [7, 8, 2]. For all other similarity measures, the
correction for chance is estimated by randomly sampling the random ensemble
of Clusterings using the provided random Clustering generators.

3

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 6, 2018. ; https://doi.org/10.1101/410084doi: bioRxiv preprint 

https://doi.org/10.1101/410084
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 Applications

To illustrate the use of our package, we offer two examples that highlight insights
gained from an advanced package on clustering similarity.

In the first example, we assess the performance of Hierarchical Clustering
to identify cancer type from gene expression data. Specifically, we compare a
ground truth classification of patient cancer type to a derived classification using
agglomerative hierarchical clustering of gene expression [9] in the context of two
different random models. The traditional approach assumes the Permutation
Model for random clusterings in which the number and sizes of clusters are held
fixed. As can be seen in Fig. 1, the true comparison (red line) is larger than the
mean of pair-wise comparisons between clusterings in the permutation model
(black line, blue histogram), suggesting the similarity is greater than expected
by chance. However, a more appropriate random model for the given scenario
is the one-sided model with a fixed number of clusters [2]. Fig. 1 (bottom)
shows that the true comparison (red line) is actually smaller than the mean
of pair-wise comparisons between clusterings in the random model (black line,
blue histogram), suggesting that a randomly generated clustering would be more
similar to the ground truth clustering than the computationally derived solution.

In the second example, we identify the loci of gene-tree heterogeneity in an
analysis of 424 nuclear genes from 37 eutherian mammals [10]. Specifically, we
perform all pair-wise comparisons between the 424 phylogenetic trees (dendro-
grams, exemplified in Fig. 2a) derived from individual gene sequence data [11].
The average element-centric similarity between the trees (Fig. 2b) reveals their
overall similarity, with few conflicts near the roots of the trees (high similarity
for the scaling parameter, r < 0), while decreasing similarity suggest greater
conflicts towards the leaves (lower similarity for the scaling parameter,r > 0).
The distribution of element-wise frustration scores over the taxa reveal the loci
of greatest gene tree in-congruence (Fig. 2c). Specifically, the 8 taxa with lowest
frustration correspond to the 5 taxa previously identified with structural discrep-
ancies (bats, shrews, and hedgehog, blue, [11]), and the 3 taxa with the smallest
bootstrapping support in the maximum-pseudolikelihood coalescent tree (pig,
guinea pig, kangaroo rat, purple, [10]). This comparison provides quantitative
insights into the complexities commonly observed in phylogentic data.
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Figure 2: Element-centric comparisons of phylogenetic dendrograms. a, An ex-
ample phylogenetic tree for the 37 mammals from [10]. b, The average element-
centric similarity between 424-gene trees for different scaling parameters reveals
few conflicts near the roots (left, r < 0), while decreasing similarity for in-
creasing r suggests greater conflicts towards the leaves (left, r > 0). c, The
element-centric frustration highlights the 5 taxa previously identified with struc-
tural discrepancies (bats, shrews, and hedgehog, blue, [11]), and the 3 taxa with
the smallest bootstrapping support in the maximum-pseudolikelihood coalescent
tree (pig, guinea pig, kangaroo rat, purple, [10]).
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