Implicit temporal predictability biases slow oscillatory phase in auditory cortex and enhances pitch discrimination sensitivity

Sophie K. Herbst¹,² and Jonas Obleser¹

¹Department of Psychology, University of Lübeck Ratzeburger Allee 160, 23552 Lübeck, Germany
²NeuroSpin, CEA, DRF/Joliot, INSERM Cognitive Neuroimaging Unit, Bât 145, Gif s/ Yvette 91190, France

Abstract

Can human listeners use strictly implicit temporal contingencies in auditory input to form temporal predictions, and if so, how are these predictions represented endogenously? To assess this question, we implicitly manipulated foreperiods in an auditory pitch discrimination task. Unbeknownst to participants, the pitch of the standard tone could either be deterministically predictive of the onset of the target tone, or convey no predictive information. Both conditions were presented interleaved in one stream, and separated by variable inter-stimulus intervals such that there was no dominant stimulus rhythm throughout. Even though participants were unaware of the implicit temporal contingencies, pitch discrimination sensitivity (i.e. the slope of the psychometric function) increased when the onset of the target tone was predictable in time (N = 49). Concurrently recorded EEG data (N = 24) revealed that standard tones which initiated temporal predictions evoked a more negative N1 component than non-predictive standards, and were followed by an increase in delta power during the foreperiod. Furthermore, the phase angle of delta oscillations (1–3Hz) evoked by the standard tone predicted pitch discrimination sensitivity at the target tone (1.75 s later on average), which suggests that temporal predictions can be initiated by an optimized delta phase reset. In sum, we show that auditory perception benefits from implicit temporal contingencies, and provide evidence for a role of slow neural oscillations in the endogenous representation of temporal predictions, in absence of exogenously driven entrainment to rhythmic input.

Significance Statement: Temporal contingencies are ubiquitous in sensory environments, especially in the auditory domain, and have been shown to facilitate perception and action. Yet, how these contingencies in exogenous inputs are transformed into an endogenous representation of temporal predictions is not known. Here, we implicitly induced temporal predictability in the absence of a rhythmic input structure, that is without exogenously driven entrainment of neural oscillations. Our results show that even implicit and non-rhythmic temporal predictions are extracted and used by human observers, underlining the role of timing in sensory processing. Furthermore, our EEG results point towards an instrumental role of delta oscillations in initiating temporal predictions by an optimized phase reset in response to a temporally predictive cue.

Acknowledgments: This research was supported by a DFG grant (HE 7520/1-1) to SKH. The authors would like to thank Anne Herrmann for overseeing the data acquisition, Michael Ploechl for technical support, and Virginie van Wassenhove and the Cognition & Brain Dynamics Group at NeuroSpin for helpful discussions.
Conflict of interest: None.

Number of Pages: 29
Number of Figures: 5
Number of Tables: 0
Number of Words: Abstract: 263, Significance Statement: 116, Introduction: 750, Discussion: 1790
Introduction

The human brain is constantly engaged in forming predictions about its environment, concerning the *where*, the *what*, and crucially also the *when* of future events. These temporal aspects of predictions have only recently become the focus of dedicated investigation (Coull and Nobre, 1998; Nobre et al., 2007; Nobre and van Ede, 2018; Rimmele et al., 2018), contrary to spatial or content-based ones. That discrepancy could be explained by the fact that temporal aspects are inherent to any kind of input and are thus difficult to isolate experimentally.

Implicit temporal statistics of visual and auditory input are extracted by the human cognitive system, and benefit perception and action (Cravo et al., 2011; Herbst and Obleser, 2017). In the auditory domain, rhythmic input structure has been shown to improve detection performance and speed (Henry and Obleser, 2012; Lawrance et al., 2014; Rimmele et al., 2011; Stefanics et al., 2010; Wright and Fitzgerald, 2004). Fewer studies have shown that rhythmic temporal regularities can also improve perceptual sensitivity (i.e. discrimination performance) in the auditory (Jones et al., 2002; Morillon et al., 2016; Schmidt-Kassow et al., 2009; but see Bauer et al., 2015), as well as the visual domain (Cravo et al., 2013; Rohenkoehl et al., 2012).

In order to study implicit timing in the absence of a direct rhythmic input structure, we here induced temporal predictability by repeating single predictive intervals in a so-called foreperiod paradigm (Niemi and Näätänen, 1981; Woodrow, 1914). This type of manipulation has been shown to increase visual perceptual sensitivity (Correa et al., 2004, 2005; Cravo et al., 2011; Rolke and Hoffmann, 2007). In audition, predictable foreperiods have been found to speed up stimulus processing (Bausenhart et al., 2007) and improve short-term memory performance (Wilsch et al., 2018, 2014). To our knowledge, no study has shown an effect of implicit non-rhythmic temporal predictability on perceptual sensitivity in the auditory domain.

An important question is how temporal contingencies in exogenous inputs are transformed into an endogenous representation of temporal predictability (van Wassenhove, 2016). Here, we investigate the hypothesis that slow neural oscillations (in the delta/1–3 Hz and theta/4–7 Hz frequency bands) implement temporal predictions via endogenous phase-resetting and -shifting mechanisms. This hypothesis can be drawn back to the influential proposal of *Dynamic Attending in Time* (DAT; Jones, 1976; Large and Jones, 1999), suggesting that (auditory) attention fluctuates in phase with rhythmic input.

A neural implementation of dynamic attending has been shown through phase-locking of neural delta oscillations to rhythmic inputs, resulting in fluctuations of performance in phase with the oscillation (Arnal et al., 2014; Barczak et al., 2018; Besle et al., 2011; Henry and Obleser, 2012; Herrmann et al., 2016; Lakatos et al., 2008; Schroeder and Lakatos, 2009; Stefanics et al., 2010). Entrainment reflects an internalization of the exogenous temporal structure, aligning the most efficient brain states for sensory processing to the most likely time points for stimulus occurrence, shown to surface as enhanced phase coherence of slow oscillations in anticipation of temporally predictive input (Breska and Deouell, 2017; Cravo et al., 2013; Wilsch et al., 2015).
It is, however, not trivial to disentangle mechanistic input-driven alignment of neural activity to rhythmic input from an internalized and endogenously activated representation of temporal predictions. Important evidence for an endogenous role of delta oscillations in explaining fluctuations of auditory attention over time comes from two studies showing that auditory processing fluctuates with the phase of spontaneously present delta activity in auditory cortex, in absence of rhythmic stimulation (Henry et al., 2016; Kayser et al., 2015).

Building on these results, we here asked whether endogenous delta oscillations can implement temporal predictions that need to be instantiated on a single trial basis (Haegens and Golumbic, 2017; Rimmele et al., 2018). Few studies have reported a role of slow oscillations in single trial temporal predictions, but used either visual stimulation (Cravo et al., 2011, theta band), or explicit temporal predictions in audition (Stefanics et al., 2010, Exp.II, delta band). Furthermore, a recent study by Barne et al. (2017) showed that delta phase in the target-onset time window reflects adjustments to previously encountered violations of temporal predictions in an explicit timing task. To date, to the best of our knowledge, no study has shown that slow oscillations implement implicit temporal predictions for audition.

Here, we investigate the role of neural oscillatory dynamics for an endogenous representation of temporal predictions in auditory inputs, in absence of direct local temporal structures, using a deliberately non-rhythmic foreperiod paradigm in which the relevant intervals have to be internalized by the auditory system (i.e., extracted, stored, and activated) to actively generate a prediction when a new trial is presented (Haegens and Golumbic, 2017).

We implicitly associated temporal predictability to a sensory feature of the standard tone in an auditory pitch discrimination task: the standard’s pitch could be deterministically predictive of the onset time (but not the pitch) of the target tone, or convey no predictive information. Both conditions were presented interleaved in one stream, and separated by variable inter-stimulus intervals such that there was no dominant stimulus rhythm throughout.

We show that, behaviourally, temporal predictability increases pitch discrimination sensitivity, assessed via the slope of the psychometric function. Concurrently recorded EEG data provide indices of temporally predictive processing in auditory cortex evoked by both the standard and target tone. Furthermore, we show enhanced delta power in the predictive compared to the non-predictive condition, and (by applying an auditory spatial filter) a predictive relationship between delta phase angle in auditory areas evoked by the temporal cue and pitch discrimination performance. Together, these results suggest an instrumental role of delta oscillations in forming temporal predictions.

Methods

Participants

In total, 51 participants were tested (23.6 years on average (SD = 3.5), 28 female, 6 left handed), 26 of which also underwent electroencephalography (EEG). All participants signed informed consent and received either course credit or payment for their participation (8 € per hour). The study
was approved by the local ethics committee at the University of Lübeck. We excluded two of the participants who only underwent the behavioral testing, because of ceiling effects (their slopes for the psychometric function in one of the two conditions exceeded the mean of the slope distributions of all participants by more than 2.5 standard deviations). Furthermore, we excluded the EEG data from two participants who had blinked in synchrony with the auditory stimulation and for whom we were not able to separate blinks from the auditory evoked potentials during EEG preprocessing. The behavioural data of these two participants were kept in the analyses.

Stimuli and Procedure

The experiment was conducted in an electrically shielded sound-attenuated EEG booth. Stimulus presentation and collection of behavioural responses was achieved using the Psychophysics Toolbox (Brainard, 1997; Pelli, 1997) under Windows 7. Responses were collected on a standard keyboard. All participants were instructed to use the index and middle fingers of the right hand.

Participants performed a pitch discrimination task, comparing tone pairs embedded in noise, as illustrated in Figure 1A. They were instructed to indicate after each tone pair whether the second tone was lower or higher than the first. After the target tone, participants had 2 s to respond. The stimulation continued automatically, even if no response was given.

A black fixation cross was displayed on gray background throughout the whole block. Auditory stimuli were delivered via headphones (Sennheiser HD 25-SP II). Lowpass (5kHz) filtered white noise was presented constantly throughout each block, at 50 dB above the individual sensation level, which was determined for the noise alone at the beginning of the experiment using the method of limits. Pure tones of varying frequencies (duration 50 ms with a 10 ms on- and offset ramp), were presented with a tone-to-noise ratio fixed at ~18 dB relative to the noise level.

The first tone, to which we will refer as the standard in the following was always at one of two frequencies: 550 or 950 Hz. The second tone, the target, was varied in individually predetermined steps around its respective standard. The same step size was used for both standards, but logarithmically transformed and multiplied with the standard frequency, to obtain a log-spaced frequency scale around each standard. To predetermine the step size, each participant was first presented with one experimental block to familiarize themselves with the task. Then, a second block was performed, and if pitch discrimination performance was below 65%, the tone-steps were increased, which was repeated up to three times. All participants reached the minimum performance level after minimally two and maximally four rounds of training. As a result of this procedure, the average lowest target tone presented with the 550 Hz standard was 508.3 Hz (range 490.0–519.1 Hz), and the highest target tone 595.3 Hz (range 582.7–617.4 Hz); the lowest target tone presented with the 950 Hz standard was 878.0 Hz (range 846.4–896.7 Hz), and the highest target tone 1028.3 Hz (range 1006.5–1066.3 Hz). The high and low tones never overlapped. In the behavioural experiment, eleven tone frequencies were used from the lowest to highest tone, including the standard; in the EEG experiment we used 7 discrete frequencies.

Critically, and unbeknownst to participants, we manipulated the interval between standard and target tones, the foreperiod, by either pseudo-randomly drawing foreperiods from a discretized
uniform foreperiod duration (11 foreperiods in the behavioral experiment and 7 in the EEG experiment, all ranging from 0.5–3 s, blue distribution in Figure 1 A), or used the same foreperiod duration (1.75 s, green distribution in Figure 1 A). This resulted in one condition in which the target onset was perfectly predictable in time, the predictive condition, and one condition in which the target onset was maximally jittered, the non-predictive condition. To allow participants to implicitly dissociate the conditions, the foreperiod distributions were associated with one of the standard pitches, for example for one participant the 550 Hz standard was always followed by a predictive foreperiod and the 950 Hz standard was always followed by a non-predictive foreperiod. The assignment was counterbalanced over participants. The two conditions were presented interleaved, such that participants had to encode the standard pitch on each trial. Importantly, the manipulation of foreperiod intervals was strictly implicit, and participants were not informed about it.

To avoid build-up of a rhythm over trials, the inter-stimulus interval between a target tone and the standard tone of the next trial was drawn from a truncated exponential distribution (mean 1.5 s, truncated at 3 s) added to a minimum interval of 3 s (resulting in values between 3–6 s).

One block consisted of 22 trials in the behavioural (one repetition per tone step and condition), and 56 trials in the EEG experiment (4 repetitions per tone step and condition). In the behavioural experiment participants performed 20 blocks (440 trials), and in the EEG experiment minimally 12 and maximally 15 blocks (672–840 trials). Between blocks, participants could take breaks of self-determined length. Feedback was given per trial during the training, and at the end of each block (as proportion of correctly answered trials) during the main experiment.

After the experiment, all participants were asked the same four questions by the experimenter. First, the experimenter asked whether participants had noticed that the interval between the first and second tone of a pair was variable. Second, they were asked to describe whether they noticed any systematic variation therein. Third, they were told that either the low or high tones were always presented with the same separating interval and asked whether they noticed this. Fourth, they were asked to guess whether in their case the low or high pitch tones were the ones presented with the constant interval. Finally, they filled in a musicality survey (Schaal et al., 2014). The full experimental session lasted about 2.5 h.

EEG recording and preprocessing

EEG was recorded with 64 electrodes Acticap (Easy Cap) connected to an ActiChamp (Brain Products) amplifier. EEG signals were recorded with the software Brain Recorder (Brain Products) at a sampling rate of 1 kHz, using no online high-pass filter and a 200 Hz low-pass filter. Impedances were kept below 10 kΩ. Electrode TP9 (left mastoid) served as reference during recording. Electrode positions were digitized.

EEG data were analysed using the Fieldtrip software package for Matlab (MATLAB 2016a, MATLAB 2017a), and the lme4 package in R (Bates et al., 2015; R Core Team, 2016). First, we re-referenced the data to linked mastoids. Then we applied a low-pass filter to the continuous data (firws filter from the firfilt plugin, Widmann et al., 2015, cut-off 45 Hz, two-pass, transition band-
width 3 Hz). No high-pass filter was applied. For the time-frequency analysis, we produced a parallel version of the data, that was not filtered during pre-processing. Filtering two-pass as done for the analyses of event related potentials might smear data back in time, which would be problematic for analyses in the pre-target time window (Rousselet, 2012; Zoefel and Heil, 2013). Filtering the data only in the forward direction, however, leads to phase shifts (Widmann et al., 2015) which we wanted to avoid for the phase angle analyses.

Next, we epoched the data around the standard tone onset (−3–6 s), and down-sampled to 100 Hz. All data were visually inspected to mark bad channels that were interpolated (1.2 channels on average). Then ICA were computed using the ‘runica’ algorithm, with the number of output components adjusted by subtracting the number of bad channels. Blinks, muscular artefacts, and

Figure 1: Paradigm and Behavioural Results. A. Paradigm: Tone-pairs were presented embedded in low-pass filtered white noise. Participants’ task was to judge whether the target tone (T) was lower or higher in pitch than the preceding standard (S). Unbeknownst to participants, the pitch of the standard tone was associated with predictive (green) or non-predictive foreperiod intervals (blue). For the non-predictive condition, foreperiods were drawn from a uniform distribution (upper right panel), while for the predictive condition, foreperiods were fixed at 1.75 s (lower right panel). B. Accuracy and response times: Top: Accuracy improved significantly in the predictive condition (left panel), which was nominally also true at the intermediate foreperiod only. Bottom: Response times were faster in the predictive condition (left panel). The difference was driven by slower response times at short foreperiods on the non-predictive condition (right panel). C. Averaged psychometric functions: The slope of the psychometric function was steeper in the predictive compared to the non-predictive condition. There were no differences in threshold, guess rate or lapse rate. D. Slopes for single participants: for the non-predictive (x-axis) versus predictive (y-axis) conditions. E. Thresholds for single participants: for the non-predictive (x-axis) versus predictive (y-axis) conditions.
unspecific noise occurring temporarily in a channel or trial were excluded, using the semi-automatic inspection of ICA components provided by the SASICA toolbox for fieldtrip (Chaumon et al., 2015) and removal of these (on average 33.7 components per participant).

Analyses
Analyses of the behavioural data

We analysed accuracy as proportion correct (after removing trials in which the standard and target were equal in pitch) and response times, defined as the interval between the onset of the target tone and the registered button press. Response times shorter than 0.2 s were considered outliers and removed. We compared accuracy and response times between conditions and over foreperiods for the non-predictive condition. Tone-steps and foreperiods used in the behavioral experiment were binned to reduce the 11 steps used to 7 as in the EEG-experiment.

To obtain a measure of pitch discrimination sensitivity, we fitted psychometric functions to model participants’ responses in the pitch discrimination task, using bayesian inference, implemented in the Psignifit toolbox for Matlab (Version 4, Schütt et al., 2016). The psychometric function describes the relationship between the stimulus level (on the abscissa, here: the difference in pitch between the target and the respective standard tone) and the participant’s answer (on the ordinate, here: proportion of trials on which the target pitch was judged as higher). To accommodate the different standard tones per condition, and the individual pitch steps obtained during the training, we normed the discrete pitch differences per participant and condition to range between -1 and 1, with 0 being the pitch of the standard tone.

To select the options for the psychometric function (logistic versus cumulative normal function, number of free parameters), we assessed deviance pooled for both conditions. Deviance reflects a monotonic transformation of the log-likelihood-ratio between the fitted model and the saturated model (a model with no residual error), allowing for an absolute interpretation, or a comparison between different models (Wichmann and Hill, 2001). The best fits (i.e. lowest deviance, 3.80 for the best model) were obtained by fitting a cumulative normal function with four free parameters: threshold, slope, guess rate, lapse rate.

For a yes-no-task as the one used here, threshold indicates the stimulus level at which a participant is as likely to judge the stimulus as ‘low’ or ‘high’. Divergence from the actual midpoint of all stimulus levels (here: 0) can be interpreted as a response bias. Slope reflects the amount of stimulus change needed to increase the proportion of responding ‘high’, and can be interpreted as the sensitivity of the listener. The guess rate indicates the proportion of answering ‘high’ for the lowest pitches in the tested range, and the lapse rate the proportion of answering ‘low’ for the highest pitches, that is they reflect the errors made by the listener at different frequencies.

Psignifit uses default priors for the threshold, slope, guess, and lapse-rates, based on the given stimulus range (Schütt et al., 2016, p.109). Psignifit’s version 4 fits a beta-binomial model (instead of a binomial model), which assumes that the probability for a given proportion of answers is itself a random variable, drawn from a beta distribution. This has been shown to provide better fits for
overdispersed data, that is data in which answer probabilities over blocks and trials are not independent as assumed by the conventional model.

We fitted psychometric functions to each individual’s data separately per condition and compared the resulting parameters between conditions (threshold, slope, guess- and lapse rates) using two-sided t-tests. Additionally, we calculated Bayes Factors for all statistical tests, using the Bayes Factors package for Matlab (Rouder et al., 2009).

We computed a logistic regression on the single-trial responses of the pitch-discrimination task, to parallel the analysis of delta phase angles performed for the EEG (see below). Pitch difference and condition were used as interacting fixed effects (with random intercepts and random slopes for both predictors and their interaction), using the lme4 package in R (function glmer, Bates et al., 2015) with a binomial link function.

Event related potentials

We examined the time-domain data with respect to responses evoked by standard and target tones, contrasting the predictive and non-predictive condition. For the standard-evoked response, we detrended the data based on the whole epoch and applied baseline correction from −0.1–0 s pre-standard. We only examined the time-window between standard onset and 0.5 s after, because this was the maximal interval in which no target events occurred (earliest target onset was 0.5 s in the non-predictive condition). For the target-evoked response, we first applied detrending and the same pre-standard baseline as described above, and then re-epoched to the target event. We examined the time interval from −0.5–0.5 s around the target event. We averaged over trials within participants and condition, and then over participants, to obtain the average event related potential (ERP, depicted in Figure 2).

To test for statistically significant differences in the time-domain data, we applied cluster permutation tests on two levels. First, we contrasted trials from the non-predictive and predictive condition within each participant using independent samples regression coefficient t-tests implemented in FieldTrip (ft_timelockstatistics). This resulted in t-values for each time-electrode data point for the ERPs. Next, the group-level analysis was performed with a dependent samples t-test to contrast the statistics from the subject-level analysis against zero. A permutation test (5000 Monte Carlo random iterations) was performed with cluster-based control of type I error at a level of $\alpha=0.05$ as implemented in FieldTrip. The condition assignment (i.e. whether the predictive condition was presented at the low or high pitch tones) was added as a control variable. This analysis resulted in time-electrode clusters exhibiting significant condition differences in the ERPs.

-Time-frequency representations

Time-frequency representations were computed for epochs time-locked to the standard tones, separately for the predictive and non-predictive condition. We performed this analysis on trials with foreperiods equal or longer then 1.75 s only to avoid evoked activity from target onsets occurring early in the non-predictive condition. We matched the smaller number of trials available from the non-predictive condition, by randomly sampling the same number of trials from the predictive condition.
tion. To obtain stable results, we repeated the random sampling 50 times and averaged over the resulting time-frequency representations. Additionally, we ruled out potential back-smearing of evoked activity related to target-onset by replacing all data points after 1.75 s by the value at this time point for the respective trial and channel before performing the time-frequency transformation.

Data were transformed to time-frequency representations for frequencies ranging from 0.5 to 34.5 Hz (linear steps, 1 Hz) and time points between −0.5–2.5 s, using convolution with a single adaptive Hanning taper with frequency-dependent time windows (increasing linearly from 2 to 4 cycles per frequency). To provide sufficiently long data epochs for the lowest frequencies, we appended the epochs (−3–6 s, time locked to the standard tone) with their inverted and right-left flipped version to the left and right before applying the time-frequency transform.

Power estimates were extracted as the squared modulus of the complex-valued Fourier spectra and baseline corrected to relative change (first subtracting, then dividing by the trial-average baseline value per frequency) using the condition average in the interval from −0.5 s to standard onset. Inter-trial phase coherence (ITC) was extracted as the magnitude of the amplitude-normalized complex values, averaged across trials for each time-frequency bin and channel. Statistics were performed in the time-window between 0–1.7 s post standard onset and for all frequencies jointly. For power, we used a two-level procedure as described for the ERPs (but using ft_freqstatistics, 1000 permutations). For the ITC, we only computed the second-level statistics since it represents a measure that already combines single trials. An additional, hypotheses-driven cluster test for power and ITC effects was performed, restricted to the delta band (0.5–4 Hz).

Delta phase angle analyses

A timing mechanism that predicts the onset of the target tone would have to start timing at the standard tone which serves as a temporal cue. Therefore, we examined the data for any signatures of such a mechanism in the phase of the delta band (see Figure 5B for a schematic depiction). To not confound target evoked activity with pre-target activity, we used the same version of the data as for the time-frequency transformations described above, to which no filters had been applied during preprocessing. To reduce the dimensionality of the data, and to focus our analysis on auditory activity, we computed a weighted average of single electrodes at each time point. The weights reflected each participant’s N1-peak topography, computed as the average absolute value per channel in the time interval from 0.14–0.18 s following the standard (see topography shown in Figure 5B). We then multiplied the time-domain data at all latencies and channels with these weights and averaged over channels, resulting in one virtual channel. Target-onset ERPs were muted (as described above) from the time point of target onset on each trial (1.75 s in the predictive condition and 0.5–3 s in the non-predictive condition).

We then applied a band-pass filter to the data (3rd order Butterworth, two-pass), with cutoff frequencies of 1 and 3 Hz for the delta band. After filtering, we applied the Hilbert transform and extracted phase angles as the imaginary value of the complex fourier spectrum averaged over latencies from 0.14–0.18 s, the peak latency of the N1. We chose the peak of the N1 as the window of interest, the time point at which we measure the first reaction to the standard tone, possibly
reflecting a phase reset of ongoing oscillations. Note that we did not choose the later time window in which the difference in the standard-evoked ERP significantly differed between conditions to avoid biasing our analysis for a between-condition effect.

We subjected the phase angles to a logistic regression to test for an effect of phase angle on the behavioural response, using the lme4 package in R (function glmer with a binomial link function, Bates et al., 2015). Per trial, we predicted the participant’s response in the pitch discrimination task (second tone lower or higher) with two numerical predictors, (1) the normalized pitch difference between standard and target tone (∆pitch in eq. 1, range −1–1, a.u.), and (2) the standard-evoked phase angle extracted as described above (ϕ), plus their interaction.

The predictors of the logistic regression can be interpreted following the logic of the psychometric function (DeCarlo, 1998), which models a behavioural measure (on the ordinate) based on variations of a stimulus feature (on the abscissa), and is described by two main parameters: threshold and slope. A threshold effect, that is a horizontal shift of the psychometric function, would be reflected by a main effect of the predictor ϕ. A slope effect, that is a shift in the steepness of the psychometric function, would be reflected by an interaction between the predictors ∆pitch and ϕ.

Here, we were particularly interested in a slope effect, that is an interaction between the predictors pitch and phase angle. Due to computational constraints, we only specified a random intercept, but no random slopes for the predictors.

To account for the circularity of the phase angles, we followed an approach previously described by Wyart et al. (2012; see also Cravo et al. 2013, Barne et al. 2017) of using the sine and cosine of the phase angles jointly as linear predictors in a regression. For both, the sin(ϕ) and cos(ϕ), we specified an interaction with ∆pitch:

\[y = \beta_0 + \beta_1 \cdot (∆pitch \cdot \sin(ϕ)) + \beta_2 \cdot (∆pitch \cdot \cos(ϕ)) \]

Then, we recomputed the regression weights obtained for the interactions of sin(ϕ) and cos(ϕ) with ∆pitch:

\[\beta_{combined} = \sqrt{\beta_1^2 + \beta_2^2} \]

The resulting \(\beta_{combined} \) is always positive and can thus not be tested against zero. We computed a reference distribution of \(\beta_{combined} \) based on 1000 permutations, by permuting, per participant, the response values over trials, recomputed the model and retained the \(\beta_{combined} \). To assess significance of the interaction between pitch and phase angle, we assessed 99% one-sided confidence intervals, and computed p-values from the permutation distribution (following Phipson and Smyth, 2010):

\[p_{perm} = \frac{N(\beta_{perm,combined} > \beta_{combined}) + 1}{N(perm) + 1} \]

We additionally computed the phase analysis on data filtered for the low delta (0.5–2 Hz), theta (4–7 Hz), alpha (8–12 Hz), and beta (15–30 Hz) frequency bands and tested the resulting \(\beta_{combined} \) for significance using the permutation approach. P-values were Bonferroni-corrected (ac-
counting for five tests with a p-value threshold of 0.05, one for each frequency band), resulting in an
adjusted alpha level of 0.01.

To visualize the modulation of pitch discrimination sensitivity over phase angles, we predicted
responses from the logistic regression model (using the R package emmeans, Lenth, 2018), for a range
of \(\Delta \text{pitch}, \sin(\varphi), \) and \(\cos(\varphi) \) values, and plotted the resulting values for the recombined and binned
\(\varphi \) (shown in Figure 5C).

Finally, to assess the temporal specificity of the effect in the delta frequency band, we com-
puted the logistic regression for each time point from -0.1 to 2 s and for each of the two conditions
separately. We also computed a permutation distribution over time (using 200 permutations only,
due to the time-consuming procedure).

Distinguishing oscillatory from aperiodic activity

To separate oscillatory activity from aperiodic 1/f activity we applied irregular resampling (IRASA;
Wen and Liu, 2016; see also Helfrich et al., 2018; Henry et al., 2016). This technique consists in
down sampling the data at pairwise non-integer values and computing the geometric mean of the
resulting power spectra. The resampling leaves the 1/f activity intact but removes narrow-band
oscillatory activity.

We applied IRASA to the trial-wise data time-locked to the standard tone (-3 to 6 s), to the trial-
averaged data per participant (ERP), and to 9 s of simulated data with a brown noise spectrum (see
Figure 4A), as well as to single trial data from a 3 s snippet during the inter-trial interval (see Figure
4B). Power spectral density (PSD) was computed in sliding windows of 3 s in 0.25 s steps, using
fast a Fourier transform tapered with a Hanning window for a frequency range of 0.33 – 25 Hz,
without detrending, and the default resampling parameter (1.1 to 1.9, 0.05 increment). The PSD
was normalized by dividing all values by the maximum value of the respective total PSD (trial data,
ERP, and simulated data).

Results

Temporal predictability improves pitch discrimination

On average, participants’ responses were correct in 86% percent of trials. Using the full sample of 49
participants, we found that accuracy was significantly higher in the predictive compared to the non-
predictive condition (\(T(48)=3.77, p<0.001, BF = 89.6 \); Figure 1B). We found a marginally significant
increase in accuracy at the intermediate foreperiod for the predictive compared to the non-predictive
condition (\(T(48)=1.8, p = 0.07, BF = 0.93 \); Figure 1B), suggesting that the performance improvement
occurred not only at unexpectedly early or late foreperiods, but reflects a difference between condi-
tions.

We furthermore analysed response times between conditions and over foreperiods. Response
times were faster in the predictive (average 0.85 s), compared to the non-predictive condition (0.92 s),
by about 70 ms (\(T(48)=8.3, p < 0.001, BF = 1^{10} \)). As shown in Figure 1B, the difference is mainly
driven by slower responses at early foreperiods in the non-predictive condition, but there is still a significant difference between the response times at the intermediate foreperiod (T(48)=2.10, p = 0.04, BF = 1.47).

For the psychometric functions (depicted in Figure 1C), we observed a significant increase of the slope in the predictive compared to the non-predictive condition (T(48)=3.85, p<0.001, Bayes Factor (BF)=114.3); Figure 1D), but no threshold effect (T(48)=1.05, p = 0.30, BF = 0.35); Figure 1E), nor effects on the guess rate (p = 0.48, BF = 0.27) or lapse rate (p = 0.44, BF = 0.28).

To test whether the slope effect might be driven by the shorter or longer foreperiods only, we computed psychometric functions on the trials with intermediate foreperiods (1.25–1.5 s in the behavioral sample, 1.33 – 2.17 s in the EEG sample). We found a smaller but significant slope effect between conditions (T(48)= 2.73; p<0.01; BF = 5.46) showing that the slope difference was not solely driven by the short or long foreperiods.

All of the above results held, albeit with smaller effect sizes, when analysing only the participants for whom we had recorded EEG: predictability resulted in marginally higher accuracy, (T(25)=1.82, p = 0.08, BF = 1.07), significantly larger PMF slopes (T(25)=2.60, p = 0.02, BF = 4.04), and no effects for the threshold, guess, and lapse rate (all p > 0.18, BF: 0.43, 0.61, 0.29).

To parallel the analysis of delta phase angles reported below, we also computed logistic regression or the behavioural data with the predictors pitch difference (Δpitch), condition, and their interaction (plus random effects for all three), only for the participants from the EEG sample. The analysis confirms the results described above, namely a significant main effect for Δpitch (p<0.001), no main effect for condition (p = 0.9), but an interaction between Δpitch and condition (p<0.01), that is a slope effect (see Figure 5A).

Finally, we assessed to what extend the predictability manipulation had been noticed by participants. During debriefing, no participant spontaneously reported to have noticed the manipulation of temporal predictability. Four participants from the behavioral and eight participants from the EEG sample said they had noticed the manipulation after the experimenter explained the it. 16 (70%) of the behavioral and 17 (65%) of the EEG participants guessed correctly whether the high or low tones were temporally predictive in their case. Neither the participants who recognized the manipulation once it was explained, nor the ones who guessed correctly which tones were temporally predictive in their case showed a larger behavioral slope difference than the other ones (one-tailed Wilcoxon signed rank test, p = 0.88, p = 0.94, respectively). This suggests that the fact that participants were able to recognize the manipulation once it was explained did not reflect active engagement in timing during the experiment.

Temporal predictability affects both, standard- and target-evoked event related potentials:

Standard-evoked activity: Event related potentials were examined time-locked to the standard-tone (Figure 2A). Both conditions showed a negative deflection between 0.1–0.2 s after the standard onset, with a peak at 0.16 s and a fronto-central topography. We refer to this component as the
standard-evoked N1. We observed a significant difference between conditions in the time window of the late N1/early P2 component, where amplitude was more negative for standards that were temporally predictive of the onset of the target (predictive condition; 0.21–0.26 s, p = 0.04). This difference is important in that it shows that standard tones were processed differently if they served as a temporal cue for the target onset versus did not serve as a temporal cue. The latency and topography of the standard-evoked N1 (not the time-range in which the difference was found which was slightly later) was used for the analysis of phase angles described below. When directly comparing the ERPs evoked by the 550 versus 950 Hz standards (randomly assigned to the predictive and non-predictive condition over participants), there was no statistically significant difference in the early time window following the standard tone.

Figure 2: Event related potentials. **A. ERPs time-locked to the standard tone:** Left: The predictive condition (green line) evoked a more negative N1 than the non-predictive condition (blue line). The fine blue and green lines depict single participants’ ERPs. The inset shows the topographies in the time windows of 0.1–0.2 s and 0.2–0.3 s for both conditions separately. Right: condition difference. The grey shades indicates the two-sided 95% confidence interval, estimated from the t-distribution. The cyan shade marks the time points at which a significant condition difference occurred, and the topography shows the scalp distribution of the activity during these time windows. Channels at which the difference was significant are marked in black. **B. ERPs time-locked to the target tone:** Left: The predictive condition (green line) evoked an earlier N1 than the non-predictive condition (blue line). The upper inset shows the topographies in the time windows of 0.1–0.2 s and 0.2–0.3 s for both conditions separately. The lower inset exemplary depicts the target-evoked ERP for the 20% longest, intermediate, and 20% shortest foreperiods. Right: condition difference. The cyan and pink shades mark the time points at which a significant condition difference occurred, and the topographies show the scalp distributions of the activity during these time windows.
Target-evoked activity: Event related potentials time-locked to the target-tone (Figure 2B) also showed a negative deflection between 0.1–0.2 s after the target onset, with a fronto-central topography. We refer to this component as the target-evoked N1. For targets in the predictive condition, the N1 was larger (0.09–0.14 s, p = 0.03). Importantly, the difference is not solely due to the onset time of the target (see inset in Figure 3B), which would be reflected by a difference only for long or short foreperiods in the non-predictive condition.

To test for an apparent latency shift in the N1 between the non-predictive and predictive conditions, we computed the half-area measurement (Luck, 2005), which indexes the time-point at which half the area of a deflection has been reached. Compared to peak-latencies, this measure accounts better for asymmetric deflections. We found a significantly earlier N1-latency for the predictive, compared to the non-predictive condition (Cz, 0.13 s versus 0.15 s; T(23)=3.03, p < 0.01). Furthermore, there was an amplitude difference at the later positive prolonged component, which was positive at posterior and negative at frontal electrodes (0.20–0.38 s, p<0.01; 0.28–0.37 s, p = 0.02). An additional analysis using only the trials with either short or long foreperiods in the non-predictive condition revealed that the positive difference at posterior channels (cluster marked in pink in Figure 2B) was driven by the short foreperiod trials, and the negative difference at frontal channels (cluster marked in light blue in Figure 2B) was driven by the long foreperiod trials.

Delta (1–3 Hz) oscillatory changes during predictive foreperiods

We assessed power in a frequency range between 0.5–34.5 Hz for the predictive and non-predictive conditions (see Figure 3A), time-locked to standard onset. Both conditions showed an increase in power in the delta-range (1–3 Hz, Figure 3B) after standard onset, and a prolonged increase in the alpha-range (8–12 Hz) relative to baseline. Subtracting power in the non-predictive from the predictive condition showed an increase in power for the predictive condition in frequencies ranging between 0.5–5.5 Hz (0.05–1.7 s, p = 0.056), mainly over right temporal and occipital electrodes (see Figure 3C). Despite testing for effects at all frequencies jointly, we found no other significant clusters. A hypotheses-driven cluster test restricted to the delta band (0.5–4 Hz) revealed a similar cluster (0.52–3.52 Hz, 0.3–1.7 s, p < 0.01).

When comparing inter-trial phase coherence (ITC) for all frequencies between conditions, no significant differences were observed. However, ITC across the 1–10 Hz range did show the expected increase following the standard tone, ranging from 1–10 Hz, and a prolonged increase in the delta band in both conditions (Figure 3C).

Standard-evoked delta phase angle predicts pitch discrimination sensitivity

To test whether delta oscillations play a role in temporally predictive processing in this study, we tested for a relation between delta phase angles evoked by the standard-tone and pitch discrimination performance using a logistic regression approach (see Figure 5B for a schematic depiction). A timing mechanism that predicts the onset of the target tone would have to start timing at the standard tone, which is why we were particularly interested in this time window.
Figure 3: Time-frequency representations. A. Power, time-locked to standard-onset. Power estimates were baseline-corrected to the pre-standard interval and display relative change. Top panel: non-predictive condition, bottom panel: predictive condition. The topographies show the power scalp distributions in the interval from 0.2–0.4 s for frequencies from 1–3 Hz. B. Delta power (1–3 Hz) over time for the non-predictive (blue) and predictive conditions (green). Fine lines depict single participants’ power values. C. Power-difference between conditions (T-values). The black shape marks the statistically significant cluster, and the topography shows the scalp distribution of the cluster. The scatterplot to the right shows average power values extracted from the cluster peak for each participant. D. Inter-trial phase coherence (ITC), time-locked to standard-onset. Top panel: non-predictive condition, bottom panel: predictive condition. The topographies show the ITC scalp distributions in the interval from 0.2–0.4 s for frequencies from 1–3 Hz. E. Delta ITC (1–3 Hz) over time for the non-predictive (blue) and predictive conditions (green). Fine lines depict single participants’ ITC values. F. ITC-difference between conditions (T-values). No significant condition differences were found. The scatterplot to the right shows average ITC values extracted from the peak of the power-difference cluster (above) for each participant.

Phase angles in the post-standard time window (0.14–0.18 s) were extracted by applying the Hilbert transform to band-pass filtered (1–3 Hz) single trial data with one virtual channel (see Methods for details) representing the sum of all channels weighted by the N1-topography. We subjected the phase angles (as their sine and cosine) to a logistic regression with two numerical predictors, the normalized pitch difference between standard and target tone, and the standard-evoked phase angle, plus their interaction. To assess significance of the interaction effect, we used a permutation approach. We found a significant interaction between pitch and phase angle, which indicates that the slope of the psychometric function varied depending on the delta phase angle evoked by the standard tone (Figure 5 C). The interaction effect was significant only for the delta band (1–3 Hz), but not for other frequency bands tested (0.5–2 Hz; 4–7 Hz; 8–12 Hz; 15–30 Hz; Figure 5 F). Note that this procedure was performed on all trials, without separation into conditions, and thus is generally valid, both for trials on which the standard served as a temporal cue and trials for which it did not.

Next, we tested whether the interaction between delta phase angle and pitch discrimination sensitivity was specifically driven by our manipulation of temporal predictability. We examined the regression weight for the interaction at different time points over the trial, and independently for the predictive and non-predictive conditions. This analysis (Figure 5E) showed that the interaction...
effect between delta phase angle and the slope of the psychometric function was largest at time points after the standard tone (0–0.5 s), and that the effect was significant (i.e. exceeded the 99% confidence interval of the permutation distribution) only for the predictive condition, suggesting that it was driven by temporal predictability. We therefore conclude that the interaction effect was mainly driven by the predictive condition.

We also assessed the relationship between phase angle (binned into 6 bins for this purpose) and condition (indexed as -1 for the non-predictive and 1 for the predictive condition; Figure 5 D). If the trials would be equally distributed over conditions per phase angle bin, this should result in an average condition of 0 at all phase angles, which was not the case. Instead we found more trials of the predictive condition to occur at the phase angles at which we had found the higher slopes (Figure 5 C), which suggests that phase angles varied between the two conditions. As a post-hoc test for a quadratic effect of phase bin on condition, we computed a generalized linear model predicting condition from phase bins (coded as 1,0,-1,-1,0,1) and obtained a marginally significant weight for this contrast (p = 0.09), suggesting that there was no significant phase angle difference between conditions at the population level.

Additional analyses

To test for the presence of oscillatory activity in the delta band, we subtracted fractal power spectra (obtained using the irregular resampling method (IRASA; Wen and Liu, 2016) from the total power spectra. The results (depicted in Figure 4) show that power spectral density (PSD) computed from single trial data was higher in the 1–3 Hz range compared PSD computed on the ERP and simulated data, albeit no clear peaks can be found in the delta range (Figure 4A). If anything, the PSD computed on single trial data has a small peak around 1 Hz, while the PSD of the ERP has two smaller peaks at 3 and 4 Hz. When computing the same analysis on pre-stimulus data (from the ISI, 3 s signals), we observe residual oscillatory activity in the 1–3 Hz range (Figure 4B). While it is difficult to completely...
separate oscillatory from 1/f activity at slow frequencies – and to our knowledge, no previous study showed a clear oscillatory peak in the PSD in the delta range – our analyses suggest some oscillatory activity in the delta band.

Mediation analysis. We also considered mathematically the possibility that delta phase angle would mediate the effect of temporal predictability on pitch discrimination sensitivity, by comparing the regression weight of the interaction between pitch and temporal predictability estimated from a model with no other predictors (as depicted in 5A), and from a model that additionally contained an interaction term for pitch and phase angle (Baron and Kenny, 1986; Muller et al., 2005). The negligible change in weight between both models (0.307 to 0.304) indicates that there is no evidence for a mediation effect.

Delta phase versus ERP effect. To distinguish between the ERP effect (found on the N1) and the delta phase effect, we tested whether the N1 amplitude could explain the findings. Computing the same logistic regression model with the N1 amplitude instead of the phase angles as above revealed no significant interaction effect (p = 0.15), i.e. the N1 amplitude does not predict pitch discrimination performance on single trials and can thus not simply replace the delta phase angle. However, the N1 amplitude correlated significantly with the standard-evoked phase-angle at all frequency bands, as assessed by a circular-linear correlation (from the Directional package in R Tsagris et al., 2018); R^2: 0.5–2Hz: 0.21, 1–3Hz: 0.27, 4–7Hz: 0.06, 8–12Hz: 0.056, 15–30Hz: 0.004 (all p-values <0.001).
Figure 5: Delta phase angle predicts pitch discrimination sensitivity. A. Replication of the behavioural effect (s. Figure 1) with a logistic regression approach. Model predictions from the logistic regression with the predictors pitch (abscissa) and condition (colors). As illustrated by the bar-plot, there was a slope difference between conditions (i.e. an interaction between pitch and condition), with steeper slopes for the predictive condition. B. Schematic depiction of the delta phase angle analysis. We extracted the time domain data from single trials, from one virtual channel that reflects the weighted sum of the standard-evoked N1 topography (computed in the interval from 0.14–0.18 s), band-pass filtered (1–3 Hz) and applied the Hilbert transform, to extract the instantaneous phase angles in the time-window of 0.14–0.18 s (the N1-peak). C. Effect of delta phase angle on pitch discrimination sensitivity: Model predictions from the logistic regression model with the predictors pitch (abscissa) and phase angle (colors, binned only for visual display). There was a significant interaction between pitch and phase, that is the slopes of the psychometric functions differed depending on delta phase angle (depicted in the bar plot). Note that this analysis was performed on all trials, without separation into conditions. The inset on the bottom right side shows the observed interaction weight (in black) compared to a permutation distribution and its 99% confidence interval (in grey). D. Distribution of conditions over phase bins. Conditions were coded as –1 for the non-predictive and 1 for the predictive condition, therefore an equal distribution of conditions over phase angle bins should result in an average condition (colored bars) of 0, which was not the case. Instead, more trials from the predictive condition occurred at the phase angles that were related to a steeper slope of the psychometric function (panel C).
E. Pitch × phase interaction over time, separated by condition. The thick lines indicate the regression weights for the interaction over time for the predictive (green) and non-predictive condition (blue), the thin lines and grey shade indicate the 99% confidence interval computed with the permutation approach. E. Pitch × phase interaction and confidence intervals for different frequency bands. The grey bar shows the 99% confidence interval, the black bar the observed weight. Only for the delta band (1–3 Hz) the observed weight significantly exceeds the permuted weights.

Discussion

In this study, we asked whether human listeners use strictly implicit temporal contingencies in auditory input to form temporal predictions. If so, how are these predictions represented endogenously? We implicitly manipulated temporal predictability by varying the foreperiod (i.e., the interval between standard and target tone) in a pitch discrimination task. Unbeknownst to participants, one of two possible pitches used as the standard tone was indicative to one of two foreperiod distributions, respectively: a uniform distribution, under which the onset of the target tone is unpredictable, and a single-valued distribution under which the onset of the target tone is fully predictable. The data show several indices that participants formed temporal predictions: an increase in pitch discrimination sensitivity in the predictive condition, condition differences in the evoked response to standard- and target tones, and increased delta power during the foreperiod in the predictive condition. Furthermore, we show that only the phase of delta oscillations in response to the standard tone, which serves as a temporal cue, is indicative of pitch discrimination performance, suggesting that delta oscillations are instrumental for endogenous temporal predictions.

Implicit temporal predictability improves pitch discrimination sensitivity

We observed an increase in pitch discrimination sensitivity in the temporally predictive condition, reflected in a steeper slope of the psychometric function (Figure 1). Importantly, participants were not made aware of the predictability manipulation, and no participant was able to correctly describe it during debriefing. About 25% of participants were able to recognize the manipulation after it was described by the experimenter, but these did not show a larger behavioural effect, suggesting they had not actively engaged in timing. While the absolute difference in behavior is not large, likely due to the implicit nature of our task, we observed a robust set of results (49 participants) converging between response times, accuracy and slope effects. These suggest that listeners can implicitly learn to associate interval-based temporal predictions with sensory stimulus features like pitch, underlining the relevance of timing to human cognitive processing.

To our knowledge, this is the first study to show that pitch discrimination sensitivity is improved by implicit but non-rhythmic temporal predictions. In the auditory domain, detection speed and performance are facilitated by rhythmic temporal predictability (Henry et al., 2014; Henry and Obleser, 2012; Lawrance et al., 2014; Wright and Fitzgerald, 2004), but the use of detection tasks might underlie the timing aspects of the task. One study by Bausenhart and colleagues (2007)
showed that shorter presentation times (difference of about 6 ms) are needed for to achieve correct pitch discrimination performance, when the target tone occurs with a block of constantly short foreperiods. Complementing these previous findings, we show that implicit temporal predictability improves auditory perceptual processing in absence of an embedding rhythm, or any explicit incentive to engage in timing.

Temporal predictions affect sensory processing of predictive and predicted tones

Predictive tones (standards). An important indicator for the successful extraction of temporal predictability is the difference in event related potentials evoked by predictive and non-predictive standard tones (Figure 2A). It suggests that participants learned to associate the pitch of the standard tone to temporal predictability, and flexibly used the standard as a temporal cue on a trial-by-trial basis.

Few studies have investigated effects of predictability on the early sensory processing of the cue stimulus itself. In spatial cueing, there is evidence for an effect of predictions on early positive and negative cue-evoked components (100–200 ms post cue Jongen et al., 2007; Nobre et al., 2000; Yamaguchi et al., 1994). In the temporal domain, there is, to our knowledge, only one study that showed an N1-effect directly at the cue (in 8–12 years old children, Mento and Vallesi, 2016). Our results are in line with this finding and reveal that the standard-evoked N1 in adults is affected even by implicit temporal predictability.

Predicted tones (targets). In response to target tones, we found a larger and faster N1 in the predictive compared to the non-predictive condition, suggesting a facilitation for temporally predicted targets (Figure 2B). This result corroborates a large base of studies reporting mainly amplitude effects of temporal predictability in sensory evoked potentials (Correa et al., 2006; Hsu et al., 2014; Hughes et al., 2013; Kok et al., 2011; Lampar and Lange, 2011; Lange, 2009; Miniussi et al., 1999; Sanders and Astheimer, 2008; Schwartze et al., 2013). The direction of amplitude effects varies with the paradigm used (for an extensive discussion see Lange, 2013) – for probabilistic foreperiod variations as used here, both, reduced (Paris et al., 2016; Sherwell et al., 2017) and enhanced N1 amplitudes (Griffin et al., 2002) have been reported.

The observed latency-shift of the N1 by temporal predictions is in line with one previous study using a manipulation of foreperiods (Seibold et al., 2011), and one study on rhythmic temporal predictability (Rimmele et al., 2011). Further evidence comes from experiments reporting a faster N1 for auditory speech and non-speech events combined with visual events (Paris et al., 2017; Stekelenburg and Vroomen, 2007; Vroomen and Stekelenburg, 2010; Wassenhove et al., 2005). Note that in our study, the predictive information conveyed by the cue was purely temporal, since the pitch of the target tones was unpredictable. Thus, the facilitation of the N1 suggests that temporal predictions alone can enhance early auditory processing.
The role of slow neural oscillations in temporal prediction

A central aim of this study was to assess the role of slow neural oscillations in the endogenous representation of temporal predictions. Previous studies convincingly established a mechanism of sensory enhancement via phase alignment of delta oscillations for stimuli that occur during the preferred phase, i.e. in synchrony with the preceding rhythm (Cravo et al., 2013; Henry et al., 2014; Kösem et al., 2018; Lakatos et al., 2008; Schroeder and Lakatos, 2009). An open question is, however, whether the alignment of slow neural oscillations towards predicted stimulus onsets is contingent on rhythmic entrainment to the exogenous stimulation, or whether slow oscillations also implement endogenous temporal predictions, for example via single-trial phase-resets.

Increased delta power during the foreperiod in the predictive compared to the non-predictive condition (see Figure 3) suggests a relevance of delta oscillations for temporal predictions. The predictive and non-predictive conditions were alternated trial-by-trial, indicating that delta power can be regulated flexibly, possibly reflecting an up-regulation, or large-scale synchronization of delta oscillations necessary to represent temporal predictions (Herrmann et al., 2016). This suggests that a variant of the rhythmic mode of attention, reflected by increased delta power (Schroeder and Lakatos, 2009) can also apply to interval-based temporal predictions.

The absence of condition differences in phase coherence during the foreperiod (Figure 3F) replicates our previous results (Herbst and Obleser, 2017) and suggests that enhanced phase alignment (Breska and Deouell, 2017; Cravo et al., 2011) depends on dedicated or residual periodicity in the stimulation (Obleser et al., 2017), or overt engagement in timing (Stefanics et al., 2010). As a side note, it is important to emphasize the methodological challenge of analysing low frequency oscillations in the pre-target window. The probabilistic manipulation of foreperiods as applied here results in differential time-locking of target activity between conditions, and our conservative approach of removing this might have weakened existing pre-target differences. Thus, our findings suggest that the representation of temporal predictions by enhanced phase coherence – or at least our ability to measure this in human EEG – is contingent on rhythmic stimulation.

Crucially, we found that the absolute phase angle of the delta oscillation in auditory areas shortly after the temporal cue predicted behavioural sensitivity in response to the later-occurring target tone (see Figure 5C). The effect was observed for data spatially filtered with a topography relevant for auditory stimulus processing (from the N1), suggesting auditory cortex as the most likely generator. Furthermore, the effect was specific for the delta band (1–3 Hz) with the highest sensitivity occurring at phase angles closest to the trough of the delta oscillation ($\pm \pi$) at the cue and about 1.7 s post-cue (average period of 0.5 s). Albeit interpreting the absolute phase angle from EEG data demands caution, this corroborates the idea that the trough of the delta oscillation is a particularly beneficial state for auditory perception (Henry et al., 2016; Lakatos et al., 2013).

While the relationship between delta phase and behavioural sensitivity was true for all trials, regardless of their experimental condition, follow-up analyses showed that the interaction effect was stronger in the predictive condition (Figure 5E), and that the phase angle evoked by the standard tone...
differed marginally between the predictive and non-predictive conditions (Figure 5D), suggesting that the effect was driven by temporal predictability.

An important question is to what respect the observed phase effect reflects truly oscillatory activity, rather than a modulation of the evoked response to the standard tone. On theoretical grounds, we have good reason to assume that auditory processing fluctuates with the phase of delta oscillations in the absence of evoked activity (Henry et al., 2016; Kayser et al., 2015; Stefanics et al., 2010).

Here, we observe a phase effect that is specific to the frequency range identified by the above-cited studies, rather than resulting from broad-band activity as one would expect from a purely evoked effect. Furthermore, spectral analyses suggest some oscillatory activity in the delta band after subtracting the 1/f spectrum, which is not explained by the ERP (see Figure 4). The effect is strongest in the 1–3 Hz range, and not at the frequencies that would reflect the stimulation (0.57 Hz for the intermediate foreperiod of 1.75 s), which is in line with a study that showed selective entrainment at 1.33 Hz despite stimulation at 0.67 Hz (Gomez-Ramirez et al., 2011). We further showed that the N1 amplitude itself does not show the critical relationship with behavioural sensitivity, although the two measures correlate, arguing for a more specific role of delta oscillations in temporal prediction. In fact, the ERP might at least partially result from a reset of ongoing neural dynamics by the onset of a stimulus (Makeig et al., 2002).

Taken together, these findings point towards a dedicated mechanism for temporal prediction involving delta oscillations. Further research is needed to investigate whether the spontaneously present low frequency oscillations in the above-cited studies are recruited to implement temporal predictions, for example by comparing the exact frequency bands and neural generators.

Clearly, we have not proven a causal link of temporal predictability increasing auditory sensitivity via an optimized phase angle of delta oscillations. Our analysis failed to establish a mediation effect. We cannot rule out that the different steps necessary to accommodate the complexity of our data in the model (dealing with the circular measure of phase angle and assessing an interaction effect as a measure of behavioural sensitivity), and the small proportion of variance explained by the experimental manipulation (a common problem in cognitive neuroscience) might have prevented us from observing a mediation effect (but see Benwell et al., 2017, for a successful example).

As an alternative explanation, it is conceivable that the activity we observe reflects the extraction of temporal predictions from the temporal cue, but that another process is responsible for maintaining this prediction throughout the foreperiod interval to alert the system when it is time to expect the target stimulus. For instance, this could be achieved via top-down projections from auditory areas towards thalamic and thalamostriatal pathways described as crucial for auditory timing (Barczak et al., 2018; Ponvert and Jaramillo, 2018), converging with an instrumental role of the striatum in explicit timing (Mello et al., 2015).

In sum, our findings underline the relevance and specificity of delta oscillations to the endogenous representation of temporal predictions. The adjustment of phase angles at the cue can be seen as the initiation of a timing process, which prepares the system to be in a beneficial state at an anticipated time point.
Conclusions

Here we show that human listeners use strictly implicit temporal contingencies to perform a sensory task for which timing is not an explicit requirement. The neural signatures observed suggest that the standard tone is used as a temporal cue and provokes an optimized phase reset of delta oscillations on single trials and an increase in delta power, associated with enhanced behavioural sensitivity in the predictive condition.
References

