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Abstract

Can human listeners use strictly implicit temporal contingencies in auditory input to form temporal
predictions, and if so, how are these predictions represented endogenously? To assess this question,
we implicitly manipulated foreperiods in an auditory pitch discrimination task. Unbeknownst to
participants, the pitch of the standard tone could either be deterministically predictive of the onset
of the target tone, or convey no predictive information. Both conditions were presented interleaved
in one stream, and separated by variable inter-stimulus intervals such that there was no dominant
stimulus rhythm throughout. Even though participants were unaware of the implicit temporal con-
tingencies, pitch discrimination sensitivity (i.e. the slope of the psychometric function) increased
when the onset of the target tone was predictable in time (N = 49). Concurrently recorded EEG
data (N = 24) revealed that standard tones which initiated temporal predictions evoked a more neg-
ative N1 component than non-predictive standards, and were followed by an increase in delta power
during the foreperiod. Furthermore, the phase angle of delta oscillations (1–3Hz) evoked by the
standard tone predicted pitch discrimination sensitivity at the target tone (1.75 s later on average),
which suggests that temporal predictions can be initiated by an optimized delta phase reset. In sum,
we show that auditory perception benefits from implicit temporal contingencies, and provide evi-
dence for a role of slow neural oscillations in the endogenous representation of temporal predictions,
in absence of exogenously driven entrainment to rhythmic input.

Significance Statement: Temporal contingencies are ubiquitous in sensory environments, espe-
cially in the auditory domain, and have been shown to facilitate perception and action. Yet, how
these contingencies in exogenous inputs are transformed into an endogenous representation of tem-
poral predictions is not known. Here, we implicitly induced temporal predictability in the absence
of a rhythmic input structure, that is without exogenously driven entrainment of neural oscillations.
Our results show that even implicit and non-rhythmic temporal predictions are extracted and used
by human observers, underlining the role of timing in sensory processing. Furthermore, our EEG
results point towards an instrumental role of delta oscillations in initiating temporal predictions by
an optimized phase reset in response to a temporally predictive cue.
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Introduction1

The human brain is constantly engaged in forming predictions about its environment, concerning the2

where, the what, and crucially also the when of future events. These temporal aspects of predictions3

have only recently become the focus of dedicated investigation (Coull and Nobre, 1998; Nobre et al.,4

2007; Nobre and van Ede, 2018; Rimmele et al., 2018), contrary to spatial or content-based ones.5

That discrepancy could be explained by the fact that temporal aspects are inherent to any kind of6

input and are thus difficult to isolate experimentally.7

Implicit temporal statistics of visual and auditory input are extracted by the human cognitive8

system, and benefit perception and action (Cravo et al., 2011; Herbst and Obleser, 2017). In the9

auditory domain, rhythmic input structure has been shown to improve detection performance and10

speed (Henry and Obleser, 2012; Lawrance et al., 2014; Rimmele et al., 2011; Stefanics et al., 2010;11

Wright and Fitzgerald, 2004). Fewer studies have shown that rhythmic temporal regularities can also12

improve perceptual sensitivity (i.e. discrimination performance) in the auditory (Jones et al., 2002;13

Morillon et al., 2016; Schmidt-Kassow et al., 2009; but see Bauer et al., 2015), as well as the visual14

domain (Cravo et al., 2013; Rohenkohl et al., 2012).15

In order to study implicit timing in the absence of a direct rhythmic input structure, we here16

induced temporal predictability by repeating single predictive intervals in a so-called foreperiod17

paradigm (Niemi and Näätänen, 1981; Woodrow, 1914). This type of manipulation has been shown18

to increase visual perceptual sensitivity (Correa et al., 2004, 2005; Cravo et al., 2011; Rolke and Hof-19

mann, 2007). In audition, predictable foreperiods have been found to speed up stimulus processing20

(Bausenhart et al., 2007) and improve short-term memory performance (Wilsch et al., 2018, 2014).21

To our knowledge, no study has shown an effect of implicit non-rhythmic temporal predictability on22

perceptual sensitivity in the auditory domain.23

An important question is how temporal contingencies in exogenous inputs are transformed24

into an endogenous representation of temporal predictability (van Wassenhove, 2016). Here, we25

investigate the hypothesis that slow neural oscillations (in the delta/1–3 Hz and theta/4–7 Hz fre-26

quency bands) implement temporal predictions via endogenous phase-resetting and -shifting mech-27

anisms. This hypothesis can be drawn back to the influential proposal of Dynamic Attending in Time28

(DAT; Jones, 1976; Large and Jones, 1999), suggesting that (auditory) attention fluctuates in phase29

with rhythmic input.30

A neural implementation of dynamic attending has been shown through phase-locking of31

neural delta oscillations to rhythmic inputs, resulting in fluctuations of performance in phase with32

the oscillation (Arnal et al., 2014; Barczak et al., 2018; Besle et al., 2011; Henry and Obleser, 2012;33

Herrmann et al., 2016; Lakatos et al., 2008; Schroeder and Lakatos, 2009; Stefanics et al., 2010). En-34

trainment reflects an internalization of the exogenous temporal structure, aligning the most efficient35

brain states for sensory processing to the most likely time points for stimulus occurrence, shown36

to surface as enhanced phase coherence of slow oscillations in anticipation of temporally predictive37

input (Breska and Deouell, 2017; Cravo et al., 2013; Wilsch et al., 2015).38
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It is, however, not trivial to disentangle mechanistic input-driven alignment of neural activity39

to rhythmic input from an internalized and endogenously activated representation of temporal pre-40

dictions. Important evidence for an endogenous role of delta oscillations in explaining fluctuations41

of auditory attention over time comes from two studies showing that auditory processing fluctuates42

with the phase of spontaneously present delta activity in auditory cortex, in absence of rhythmic43

stimulation (Henry et al., 2016; Kayser et al., 2015).44

Building on these results, we here asked whether endogenous delta oscillations can implement45

temporal predictions that need to be instantiated on a single trial basis (Haegens and Golumbic,46

2017; Rimmele et al., 2018). Few studies have reported a role of slow oscillations in single trial47

temporal predictions, but used either visual stimulation (Cravo et al., 2011, theta band), or explicit48

temporal predictions in audition (Stefanics et al., 2010, Exp.II, delta band). Furthermore, a recent49

study by Barne et al. (2017) showed that delta phase in the target-onset time window reflects ad-50

justments to previously encountered violations of temporal predictions in an explicit timing task.51

To date, to the best of our knowledge, no study has shown that slow oscillations implement implicit52

temporal predictions for audition.53

Here, we investigate the role of neural oscillatory dynamics for an endogenous representation54

of temporal predictions in auditory inputs, in absence of direct local temporal structures, using a de-55

liberately non-rhythmic foreperiod paradigm in which the relevant intervals have to be internalized56

by the auditory system (i.e., extracted, stored, and activated) to actively generate a prediction when57

a new trial is presented (Haegens and Golumbic, 2017).58

We implicitly associated temporal predictability to a sensory feature of the standard tone in an59

auditory pitch discrimination task: the standard’s pitch could be deterministically predictive of the60

onset time (but not the pitch) of the target tone, or convey no predictive information. Both conditions61

were presented interleaved in one stream, and separated by variable inter-stimulus intervals such62

that there was no dominant stimulus rhythm throughout.63

We show that, behaviourally, temporal predictability increases pitch discrimination sensitiv-64

ity, assessed via the slope of the psychometric function. Concurrently recorded EEG data provide65

indices of temporally predictive processing in auditory cortex evoked by both the standard and target66

tone. Furthermore, we show enhanced delta power in the predictive compared to the non-predictive67

condition, and (by applying an auditory spatial filter) a predictive relationship between delta phase68

angle in auditory areas evoked by the temporal cue and pitch discrimination performance. Together,69

these results suggest an instrumental role of delta oscillations in forming temporal predictions.70

Methods71

Participants72

In total, 51 participants were tested (23.6 years on average (SD = 3.5), 28 female, 6 left handed),73

26 of which also underwent electroencephalography (EEG). All participants signed informed con-74

sent and received either course credit or payment for their participation (8 e per hour). The study75
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was approved by the local ethics committee at the University of Lübeck. We excluded two of the76

participants who only underwent the behavioral testing, because of ceiling effects (their slopes for77

the psychometric function in one of the two conditions exceeded the mean of the slope distributions78

of all participants by more than 2.5 standard deviations). Furthermore, we excluded the EEG data79

from two participants who had blinked in synchrony with the auditory stimulation and for whom80

we were not able to separate blinks from the auditory evoked potentials during EEG preprocessing.81

The behavioural data of these two participants were kept in the analyses.82

Stimuli and Procedure83

The experiment was conducted in an electrically shielded sound-attenuated EEG booth. Stimulus84

presentation and collection of behavioural responses was achieved using the Psychophysics Toolbox85

(Brainard, 1997; Pelli, 1997) under Windows 7. Responses were collected on a standard keyboard.86

All participants were instructed to use the index and middle fingers of the right hand.87

Participants performed a pitch discrimination task, comparing tone pairs embedded in noise,88

as illustrated in Figure 1A. They were instructed to indicate after each tone pair whether the second89

tone was lower or higher than the first. After the target tone, participants had 2 s to respond. The90

stimulation continued automatically, even if no response was given.91

A black fixation cross was displayed on gray background throughout the whole block. Audi-92

tory stimuli were delivered via headphones (Sennheiser HD 25-SP II). Lowpass (5kHz) filtered white93

noise was presented constantly throughout each block, at 50 dB above the individual sensation level,94

which was determined for the noise alone at the beginning of the experiment using the method of95

limits. Pure tones of varying frequencies (duration 50 ms with a 10 ms on- and offset ramp), were96

presented with a tone-to-noise ratio fixed at −18 dB relative to the noise level.97

The first tone, to which we will refer as the standard in the following was always at one of two98

frequencies: 550 or 950 Hz. The second tone, the target, was varied in individually predetermined99

steps around its respective standard. The same step size was used for both standards, but logarith-100

mically transformed and multiplied with the standard frequency, to obtain a log-spaced frequency101

scale around each standard. To predetermine the step size, each participant was first presented with102

one experimental block to familiarize themselves with the task. Then, a second block was performed,103

and if pitch discrimination performance was below 65%, the tone-steps were increased, which was104

repeated up to three times. All participants reached the minimum performance level after mini-105

mally two and maximally four rounds of training. As a result of this procedure, the average lowest106

target tone presented with the 550 Hz standard was 508.3 Hz (range 490.0–519.1 Hz), and the high-107

est target tone 595.3 Hz (range 582.7–617.4 Hz); the lowest target tone presented with the 950 Hz108

standard was 878.0 Hz (range 846.4–896.7 Hz), and the highest target tone 1028.3 Hz (range 1006.5–109

1066.3 Hz). The high and low tones never overlapped. In the behavioural experiment, eleven tone110

frequencies were used from the lowest to highest tone, including the standard; in the EEG experi-111

ment we used 7 discrete frequencies.112

Critically, and unbeknownst to participants, we manipulated the interval between standard113

and target tones, the foreperiod, by either pseudo-randomly drawing foreperiods from a discretized114
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uniform foreperiod duration (11 foreperiods in the behavioral experiment and 7 in the EEG experi-115

ment, all ranging from 0.5–3 s, blue distribution in Figure 1 A), or used the same foreperiod duration116

(1.75 s, green distribution in Figure 1 A). This resulted in one condition in which the target onset117

was perfectly predictable in time, the predictive condition, and one condition in which the target onset118

was maximally jittered, the non-predictive condition. To allow participants to implicitly dissociate the119

conditions, the foreperiod distributions were associated with one of the standard pitches, for exam-120

ple for one participant the 550 Hz standard was always followed by a predictive foreperiod and the121

950 Hz standard was always followed by a non-predictive foreperiod. The assignment was counter-122

balanced over participants. The two conditions were presented interleaved, such that participants123

had to encode the standard pitch on each trial. Importantly, the manipulation of foreperiod intervals124

was strictly implicit, and participants were not informed about it.125

To avoid build-up of a rhythm over trials, the inter-stimulus interval between a target tone126

and the standard tone of the next trial was drawn from a truncated exponential distribution (mean127

1.5 s, truncated at 3 s) added to a minimum interval of 3 s (resulting in values between 3–6 s).128

One block consisted of 22 trials in the behavioural (one repetition per tone step and condition),129

and 56 trials in the EEG experiment (4 repetitions per tone step and condition). In the behavioural130

experiment participants performed 20 blocks (440 trials), and in the EEG experiment minimally 12131

and maximally 15 blocks (672–840 trials). Between blocks, participants could take breaks of self-132

determined length. Feedback was given per trial during the training, and at the end of each block133

(as proportion of correctly answered trials) during the main experiment.134

After the experiment, all participants were asked the same four questions by the experimenter.135

First, the experimenter asked whether participants had noticed that the interval between the first and136

second tone of a pair was variable. Second, they were asked to describe whether they noticed any137

systematic variation therein. Third, they were told that either the low or high tones were always138

presented with the same separating interval and asked whether they noticed this. Fourth, they were139

asked to guess whether in their case the low or high pitch tones were the ones presented with the con-140

stant interval. Finally, they filled in a musicality survey (Schaal et al., 2014). The full experimental141

session lasted about 2.5 h.142

EEG recording and preprocessing143

EEG was recorded with 64 electrodes Acticap (Easy Cap) connected to an ActiChamp (Brain Prod-144

ucts) amplifier. EEG signals were recorded with the software Brain Recorder (Brain Products) at a145

sampling rate of 1 kHz, using no online high-pass filter and a 200 Hz low-pass filter. Impedances146

were kept below 10 kΩ. Electrode TP9 (left mastoid) served as reference during recording. Electrode147

positions were digitized.148

EEG data were analysed using the Fieldtrip software package for Matlab (MATLAB 2016a,149

MATLAB 2017a), and the lme4 package in R (Bates et al., 2015; R Core Team, 2016). First, we re-150

referenced the data to linked mastoids. Then we applied a low-pass filter to the continuous data151

(firws filter from the firfilt plugin, Widmann et al., 2015, cut-off 45 Hz, two-pass, transition band-152

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 24, 2019. ; https://doi.org/10.1101/410274doi: bioRxiv preprint 

https://doi.org/10.1101/410274
http://creativecommons.org/licenses/by-nd/4.0/


Herbst and Obleser: Implicit temporal predictability enhances pitch discrimination 7

width 3 Hz). No high-pass filter was applied. For the time-frequency analysis, we produced a par-153

allel version of the data, that was not filtered during pre-processing. Filtering two-pass as done for154

the analyses of event related potentials might smear data back in time, which would be problematic155

for analyses in the pre-target time window (Rousselet, 2012; Zoefel and Heil, 2013). Filtering the156

data only in the forward direction, however, leads to phase shifts (Widmann et al., 2015) which we157

wanted to avoid for the phase angle analyses.158

Next, we epoched the data around the standard tone onset (−3–6 s), and down-sampled to159

100 Hz. All data were visually inspected to mark bad channels that were interpolated (1.2 channels160

on average). Then ICA were computed using the ’runica’ algorithm, with the number of output161

components adjusted by subtracting the number of bad channels. Blinks, muscular artefacts, and162

Figure 1: Paradigm and Behavioural Results. A. Paradigm: Tone-pairs were presented embedded in
low-pass filtered white noise. Participants’ task was to judge whether the target tone (T) was lower
or higher in pitch than the preceding standard (S). Unbeknownst to participants, the pitch of the
standard tone was associated with predictive (green) or non-predictive foreperiod intervals (blue).
For the non-predictive condition, foreperiods were drawn from a uniform distribution (upper right
panel), while for the predictive condition, foreperiods were fixed at 1.75 s (lower right panel). B. Ac-
curacy and response times: Top: Accuracy improved significantly in the predictive condition (left
panel), which was nominally also true at the intermediate foreperiod only. Bottom: Response times
were faster in the predictive condition (left panel). The difference was driven by slower response
times at short foreperiods on the non-predictive condition (right panel) C. Averaged psychomet-
ric functions: The slope of the psychometric function was steeper in the predictive compared to
the non-predictive condition. There were no differences in threshold, guess rate or lapse rate. D.
Slopes for single participants: for the non-predictive (x-axis) versus predictive (y-axis) conditions.
E. Thresholds for single participants: for the non-predictive (x-axis) versus predictive (y-axis) con-
ditions.
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unspecific noise occurring temporarily in a channel or trial were excluded, using the semi-automatic163

inspection of ICA components provided by the SASICA toolbox for fieldtrip (Chaumon et al., 2015)164

and removal of these (on average 33.7 components per participant).165

Analyses166

Analyses of the behavioural data167

We analysed accuracy as proportion correct (after removing trials in which the standard and target168

were equal in pitch) and response times, defined as the interval between the onset of the target tone169

and the registered button press. Response times shorter than 0.2 s were considered outliers and170

removed. We compared accuracy and response times between conditions and over foreperiods for171

the non-predictive condition. Tone-steps and foreperiods used in the behavioral experiment were172

binned to reduce the 11 steps used to 7 as in the EEG-experiment.173

To obtain a measure of pitch discrimination sensitivity, we fitted psychometric functions to174

model participants’ responses in the pitch discrimination task, using bayesian inference, imple-175

mented in the Psignifit toolbox for Matlab (Version 4, Schütt et al., 2016). The psychometric function176

describes the relationship between the stimulus level (on the abscissa, here: the difference in pitch177

between the target and the respective standard tone) and the participant’s answer (on the ordinate,178

here: proportion of trials on which the target pitch was judged as higher). To accommodate the dif-179

ferent standard tones per condition, and the individual pitch steps obtained during the training, we180

normed the discrete pitch differences per participant and condition to range between -1 and 1, with181

0 being the pitch of the standard tone.182

To select the options for the psychometric function (logistic versus cumulative normal func-183

tion, number of free parameters), we assessed deviance pooled for both conditions. Deviance reflects184

a monotonic transformation of the log-likelihood-ratio between the fitted model and the saturated185

model (a model with no residual error), allowing for an absolute interpretation, or a comparison186

between different models (Wichmann and Hill, 2001). The best fits (i.e. lowest deviance, 3.80 for187

the best model) were obtained by fitting a cumulative normal function with four free parameters:188

threshold, slope, guess rate, lapse rate.189

For a yes-no-task as the one used here, threshold indicates the stimulus level at which a par-190

ticipant is as likely to judge the stimulus as ’low’ or ’high’. Divergence from the actual midpoint191

of all stimulus levels (here: 0) can be interpreted as a response bias. Slope reflects the amount of192

stimulus change needed to increase the proportion of responding ’high’, and can be interpreted as193

the sensitivity of the listener. The guess rate indicates the proportion of answering ’high’ for the low-194

est pitches in the tested range, and the lapse rate the proportion of answering ’low’ for the highest195

pitches, that is they reflect the errors made by the listener at different frequencies.196

Psignifit uses default priors for the threshold, slope, guess, and lapse-rates, based on the given197

stimulus range (Schütt et al., 2016, p.109). Psignifit’s version 4 fits a beta-binomial model (instead198

of a binomial model), which assumes that the probability for a given proportion of answers is itself199

a random variable, drawn from a beta distribution. This has been shown to provide better fits for200
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overdispersed data, that is data in which answer probabilities over blocks and trials are not indepen-201

dent as assumed by the conventional model.202

We fitted psychometric functions to each individual’s data separately per condition and com-203

pared the resulting parameters between conditions (threshold, slope, guess- and lapse rates) using204

two-sided t-tests. Additionally, we calculated Bayes Factors for all statistical tests, using the Bayes205

Factors package for Matlab (Rouder et al., 2009).206

We computed a logistic regression on the single-trial responses of the pitch-discrimination207

task, to parallel the analysis of delta phase angles performed for the EEG (see below). Pitch difference208

and condition were used as interacting fixed effects (with random intercepts and random slopes for209

both predictors and their interaction), using the lme4 package in R (function glmer, Bates et al., 2015)210

with a binomial link function.211

Event related potentials212

We examined the time-domain data with respect to responses evoked by standard and target tones,213

contrasting the predictive and non-predictive condition. For the standard-evoked response, we214

detrended the data based on the whole epoch and applied baseline correction from −0.1–0 s pre-215

standard. We only examined the time-window between standard onset and 0.5 s after, because this216

was the maximal interval in which no target events occurred (earliest target onset was 0.5 s in the217

non-predictive condition). For the target-evoked response, we first applied detrending and the same218

pre-standard baseline as described above, and then re-epoched to the target event. We examined219

the time interval from −0.5–0.5 s around the target event. We averaged over trials within partici-220

pants and condition, and then over participants, to obtain the average event related potential (ERP,221

depicted in Figure 2).222

To test for statistically significant differences in the time-domain data, we applied cluster223

permutation tests on two levels. First, we contrasted trials from the non-predictive and predictive224

condition within each participant using independent samples regression coefficient t-tests imple-225

mented in FieldTrip (ft_timelockstatistics). This resulted in t-values for each time-electrode data226

point for the ERPs. Next, the group-level analysis was performed with a dependent samples t-test to227

contrast the statistics from the subject-level analysis against zero. A permutation test (5000 Monte228

Carlo random iterations) was performed with cluster-based control of type I error at a level of α=0.05229

as implemented in FieldTrip. The condition assignment (i.e. whether the predictive condition was230

presented at the low or high pitch tones) was added as a control variable. This analysis resulted in231

time-electrode clusters exhibiting significant condition differences in the ERPs.232

Time-frequency representations233

Time-frequency representations were computed for epochs time-locked to the standard tones, sep-234

arately for the predictive and non-predictive condition. We performed this analysis on trials with235

foreperiods equal or longer then 1.75 s only to avoid evoked activity from target onsets occurring236

early in the non-predictive condition. We matched the smaller number of trials available from the237

non-predictive condition, by randomly sampling the same number of trials from the predictive con-238
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dition. To obtain stable results, we repeated the random sampling 50 times and averaged over the239

resulting time-frequency representations. Additionally, we ruled out potential back-smearing of240

evoked activity related to target-onset by replacing all data points after 1.75 s by the value at this241

time point for the respective trial and channel before performing the time-frequency transformation.242

Data were transformed to time-frequency representations for frequencies ranging from 0.5243

to 34.5 Hz (linear steps, 1 Hz) and time points between −0.5–2.5 s, using convolution with a sin-244

gle adaptive Hanning taper with frequency-dependent time windows (increasing linearly from 2245

to 4 cycles per frequency). To provide sufficiently long data epochs for the lowest frequencies, we246

appended the epochs (−3–6 s, time locked to the standard tone) with their inverted and right-left247

flipped version to the left and right before applying the time-frequency transform.248

Power estimates were extracted as the squared modulus of the complex-valued Fourier spec-249

tra and baseline corrected to relative change (first subtracting, then dividing by the trial-average250

baseline value per frequency) using the condition average in the interval from −0.5 s to standard on-251

set. Inter-trial phase coherence (ITC) was extracted as the magnitude of the amplitude-normalized252

complex values, averaged across trials for each time-frequency bin and channel. Statistics were per-253

formed in the time-window between 0–1.7 s post standard onset and for all frequencies jointly. For254

power, we used a two-level procedure as described for the ERPs (but using ft_freqstatistics, 1000255

permutations). For the ITC, we only computed the second-level statistics since it represents a mea-256

sure that already combines single trials. An additional, hypotheses-driven cluster test for power and257

ITC effects was performed, restricted to the delta band (0.5–4 Hz).258

Delta phase angle analyses259

A timing mechanism that predicts the onset of the target tone would have to start timing at the stan-260

dard tone which serves as a temporal cue. Therefore, we examined the data for any signatures of261

such a mechanism in the phase of the delta band (see Figure 5B for a schematic depiction). To not262

confound target evoked activity with pre-target activity, we used the same version of the data as for263

the time-frequency transformations described above, to which no filters had been applied during264

preprocessing. To reduce the dimensionality of the data, and to focus our analysis on auditory activ-265

ity, we computed a weighted average of single electrodes at each time point. The weights reflected266

each participant’s N1-peak topography, computed as the average absolute value per channel in the267

time interval from 0.14–0.18 s following the standard (see topography shown in Figure 5B). We then268

multiplied the time-domain data at all latencies and channels with these weights and averaged over269

channels, resulting in one virtual channel. Target-onset ERPs were muted (as described above) from270

the time point of target onset on each trial (1.75 s in the predictive condition and 0.5–3 s in the271

non-predictive condition).272

We then applied a band-pass filter to the data (3rd order Butterworth, two-pass), with cut-273

off frequencies of 1 and 3 Hz for the delta band. After filtering, we applied the Hilbert transform274

and extracted phase angles as the imaginary value of the complex fourier spectrum averaged over275

latencies from 0.14–0.18 s, the peak latency of the N1. We chose the peak of the N1 as the window276

of interest, the time point at which we measure the first reaction to the standard tone, possibly277
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reflecting a phase reset of ongoing oscillations. Note that we did not choose the later time window in278

which the difference in the standard-evoked ERP significantly differed between conditions to avoid279

biasing our analysis for a between-condition effect.280

We subjected the phase angles to a logistic regression to test for an effect of phase angle on the281

behavioural response, using the lme4 package in R (function glmer with a binomial link function,282

Bates et al., 2015). Per trial, we predicted the participant’s response in the pitch discrimination task283

(second tone lower or higher) with two numerical predictors, (1) the normalized pitch difference284

between standard and target tone (∆pitch in eq. 1, range −1–1, a.u.), and (2) the standard-evoked285

phase angle extracted as described above (ϕ), plus their interaction.286

The predictors of the logistic regression can be interpreted following the logic of the psycho-287

metric function (DeCarlo, 1998), which models a behavioural measure (on the ordinate) based on288

variations of a stimulus feature (on the abscissa), and is described by two main parameters: thresh-289

old and slope. A threshold effect, that is a horizontal shift of the psychometric function, would be290

reflected by a main effect of the predictor ϕ. A slope effect, that is a shift in the steepness of the291

psychometric function, would be reflected by an interaction between the predictors ∆pitch and ϕ.292

Here, we were particularly interested in a slope effect, that is an interaction between the predictors293

pitch and phase angle. Due to computational constraints, we only specified a random intercept, but294

no random slopes for the predictors.295

To account for the circularity of the phase angles, we followed an approach previously de-296

scribed by Wyart et al. (2012; see also Cravo et al. 2013, Barne et al. 2017) of using the sine and297

cosine of the phase angles jointly as linear predictors in a regression. For both, the sin(ϕ) and cos(ϕ),298

we specified an interaction with ∆pitch:299

y = β0 + β1 · (∆pitch · sin(ϕ)) + β2 · (∆pitch · cos(ϕ)) (1)

Then, we recombined the regression weights obtained for the interactions of sin(ϕ) and cos(ϕ)300

with ∆pitch:301

βcombined =
√
β2

1 + β2
2 (2)

The resulting βcombined is always positive and can thus not be tested against zero. We computed302

a reference distribution of βcombined based on 1000 permutations, by permuting, per participant, the303

response values over trials, recomputed the model and retained the βcombined . To assess significance304

of the interaction between pitch and phase angle, we assessed 99% one-sided confidence intervals,305

and computed p-values from the permutation distribution (following Phipson and Smyth, 2010):306

pperm =
N (βpermcombined > βcombined) + 1

N (perm) + 1
(3)

We additionally computed the phase analysis on data filtered for the low delta (0.5–2 Hz),307

theta (4–7 Hz), alpha (8–12 Hz), and beta (15–30 Hz) frequency bands and tested the resulting308

βcombined for significance using the permutation approach. P-values were Bonferroni-corrected (ac-309
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counting for five tests with a p-value threshold of 0.05, one for each frequency band), resulting in an310

adjusted alpha level of 0.01.311

To visualize the modulation of pitch discrimination sensitivity over phase angles, we predicted312

responses from the logistic regression model (using the R package emmeans, Lenth, 2018), for a range313

of ∆pitch, sin(ϕ), and cos(ϕ) values, and plotted the resulting values for the recombined and binned314

ϕ (shown in Figure 5C).315

Finally, to assess the temporal specificity of the effect in the delta frequency band, we com-316

puted the logistic regression for each time point from -0.1 to 2 s and for each of the two conditions317

separately. We also computed a permutation distribution over time (using 200 permutations only,318

due to the time-consuming procedure).319

Distinguishing oscillatory from aperiodic activity320

To separate oscillatory activity from aperiodic 1/f activity we applied irregular resampling (IRASA;321

Wen and Liu, 2016; see also Helfrich et al., 2018; Henry et al., 2016). This technique consists in322

downsampling the data at pairwise non-integer values and computing the geometric mean of the323

resulting power spectra. The resampling leaves the 1/f activity intact but removes narrow-band324

oscillatory activity.325

We applied IRASA to the trial-wise data time-locked to the standard tone (-3 to 6 s), to the trial-326

averaged data per participant (ERP), and to 9 s of simulated data with a brown noise spectrum (see327

Figure 4A), as well as to single trial data from a 3 s snippet during the inter-trial interval (see Figure328

4B). Power spectral density (PSD) was computed in sliding windows of 3 s in 0.25 s steps, using329

fast a Fourier transform tapered with a Hanning window for a frequency range of 0.33 – 25 Hz,330

without detrending, and the default resampling parameter (1.1 to 1.9, 0.05 increment). The PSD331

was normalized by dividing all values by the maximum value of the respective total PSD (trial data,332

ERP, and simulated data).333

Results334

Temporal predictability improves pitch discrimination335

On average, participants’ responses were correct in 86% percent of trials. Using the full sample of 49336

participants, we found that accuracy was significantly higher in the predictive compared to the non-337

predictive condition (T(48)=3.77, p<0.001, BF = 89.6); Figure 1B). We found a marginally significant338

increase in accuracy at the intermediate foreperiod for the predictive compared to the non-predictive339

condition (T(48)=1.8, p = 0.07, BF = 0.93); Figure 1B), suggesting that the performance improvement340

occurred not only at unexpectedly early or late foreperiods, but reflects a difference between condi-341

tions.342

We furthermore analysed response times between conditions and over foreperiods. Response343

times were faster in the predictive (average 0.85 s), compared to the non-predictive condition (0.92 s),344

by about 70 ms (T(48)=8.3, p < 0.001, BF = 110). As shown in Figure 1B, the difference is mainly345
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driven by slower responses at early foreperiods in the non-predictive condition, but there is still a346

significant difference between the response times at the intermediate foreperiod (T(48)=2.10, p =347

0.04, BF = 1.47).348

For the psychometric functions (depicted in Figure 1C), we observed a significant increase of349

the slope in the predictive compared to the non-predictive condition (T(48)=3.85, p<0.001, Bayes350

Factor (BF)=114.3); Figure 1D), but no threshold effect (T(48)=1.05, p = 0.30, BF = 0.35); Figure 1E),351

nor effects on the guess rate (p = 0.48, BF = 0.27) or lapse rate (p = 0.44, BF = 0.28).352

To test whether the slope effect might be driven by the shorter or longer foreperiods only,353

we computed psychometric functions on the trials with intermediate foreperiods (1.25–1.5 s in the354

behavioral sample, 1.33 – 2.17 s in the EEG sample). We found a smaller but significant slope effect355

between conditions (T(48)= 2.73; p<0.01; BF = 5.46) showing that the slope difference was not solely356

driven by the short or long foreperiods.357

All of the above results held, albeit with smaller effect sizes, when analysing only the par-358

ticipants for whom we had recorded EEG: predictability resulted in marginally higher accuracy,359

(T(25)=1.82, p = 0.08, BF = 1.07), significantly larger PMF slopes (T(25)=2.60, p = 0.02, BF = 4.04),360

and no effects for the threshold, guess, and lapse rate (all p > 0.18, BF: 0.43, 0.61, 0.29).361

To parallel the analysis of delta phase angles reported below, we also computed logistic re-362

gression or the behavioural data with the predictors pitch difference (∆pitch), condition, and their363

interaction (plus random effects for all three), only for the participants from the EEG sample. The364

analysis confirms the results described above, namely a significant main effect for ∆pitch (p<0.001),365

no main effect for condition (p = 0.9), but an interaction between ∆pitch and condition ( p<0.01),366

that is a slope effect (see Figure 5A).367

Finally, we assessed to what extend the predictability manipulation had been noticed by par-368

ticipants. During debriefing, no participant spontaneously reported to have noticed the manipula-369

tion of temporal predictability. Four participants from the behavioral and eight participants from370

the EEG sample said they had noticed the manipulation after the experimenter explained the it. 16371

(70%) of the behavioral and 17 (65%) of the EEG participants guessed correctly whether the high372

or low tones were temporally predictive in their case. Neither the participants who recognized the373

manipulation once it was explained, nor the ones who guessed correctly which tones were tempo-374

rally predictive in their case showed a larger behavioral slope difference than the other ones (one-375

tailed Wilcoxon signed rank test, p = 0.88, p = 0.94, respectively). This suggests that the fact that376

participants were able to recognize the manipulation once it was explained did not reflect active377

engagement in timing during the experiment.378

Temporal predictability affects both, standard- and target-evoked event related379

potentials:380

Standard-evoked activity: Event related potentials were examined time-locked to the standard-381

tone (Figure 2A). Both conditions showed a negative deflection between 0.1–0.2 s after the standard382

onset, with a peak at 0.16 s and a fronto-central topography. We refer to this component as the383
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standard-evoked N1. We observed a significant difference between conditions in the time window384

of the late N1/ early P2 component, where amplitude was more negative for standards that were385

temporally predictive of the onset of the target (predictive condition; 0.21–0.26 s, p = 0.04). This386

difference is important in that it shows that standard tones were processed differently if they served387

as a temporal cue for the target onset versus did not serve as a temporal cue. The latency and topog-388

raphy of the standard-evoked N1 (not the time-range in which the difference was found which was389

slightly later) was used for the analysis of phase angles described below. When directly comparing390

the ERPs evoked by the 550 versus 950 Hz standards (randomly assigned to the predictive and non-391

predictive condition over participants), there was no statistically significant difference in the early392

time window following the standard tone.393

Figure 2: Event related potentials. A. ERPs time-locked to the standard tone: Left: The predictive
condition (green line) evoked a more negative N1 than the non-predictive condition (blue line). The
fine blue and green lines depict single participants’ ERPs. The inset shows the topographies in the
time windows of 0.1–0.2 s and 0.2–0.3 s for both conditions separately. Right: condition difference.
The grey shades indicates the two-sided 95% confidence interval, estimated from the t-distribution.
The cyan shade marks the time points at which a significant condition difference occurred, and the
topography shows the scalp distribution of the activity during these time windows. Channels at
which the difference was significant are marked in black. B. ERPs time-locked to the target tone:
Left: The predictive condition (green line) evoked an earlier N1 than the non-predictive condition
(blue line). The upper inset shows the topographies in the time windows of 0.1–0.2 s and 0.2–0.3 s
for both conditions separately. The lower inset exemplary depicts the target-evoked ERP for the 20%
longest, intermediate, and 20% shortest foreperiods
. Right: condition difference. The cyan and pink shades mark the time points at which a signifi-
cant condition difference occurred, and the topographies show the scalp distributions of the activity
during these time windows.
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Target-evoked activity: Event related potentials time-locked to the target-tone (Figure 2B) also394

showed a negative deflection between 0.1–0.2 s after the target onset, with a fronto-central topogra-395

phy. We refer to this component as the target-evoked N1. For targets in the predictive condition, the396

N1 was larger (0.09–0.14 s, p = 0.03). Importantly, the difference is not solely due to the onset time397

of the target (see inset in Figure 3B), which would be reflected by a difference only for long or short398

foreperiods in the non-predictive condition.399

To test for an apparent latency shift in the N1 between the non-predictive and predictive400

conditions, we computed the half-area measurement (Luck, 2005), which indexes the time-point at401

which half the area of a deflection has been reached. Compared to peak-latencies, this measure402

accounts better for asymmetric deflections. We found a significantly earlier N1-latency for the pre-403

dictive, compared to the non-predictive condition (Cz, 0.13 s versus 0.15 s; T(23)=3.03, p < 0.01).404

Furthermore, there was an amplitude difference at the later positive prolonged component, which405

was positive at posterior and negative at frontal electrodes (0.20–0.38 s, p<0.01; 0.28–0.37 s, p =406

0.02). An additional analysis using only the trials with either short or long foreperiods in the non-407

predictive condition revealed that the positive difference at posterior channels (cluster marked in408

pink in Figure 2B) was driven by the short foreperiod trials, and the negative difference at frontal409

channels (cluster marked in light blue in Figure 2B) was driven by the long foreperiod trials.410

Delta (1–3 Hz) oscillatory changes during predictive foreperiods411

We assessed power in a frequency range between 0.5–34.5 Hz for the predictive and non-predictive412

conditions (see Figure 3A), time-locked to standard onset. Both conditions showed an increase in413

power in the delta-range (1–3 Hz, Figure 3B) after standard onset, and a prolonged increase in the414

alpha-range (8–12 Hz) relative to baseline. Subtracting power in the non-predictive from the pre-415

dictive condition showed an increase in power for the predictive condition in frequencies ranging416

between 0.5–5.5 Hz (0.05–1.7 s, p = 0.056), mainly over right temporal and occipital electrodes417

(see Figure 3C). Despite testing for effects at all frequencies jointly, we found no other significant418

clusters. A hypotheses-driven cluster test restricted to the delta band (0.5–4 Hz) revealed a similar419

cluster (0.52–3.52 Hz,0.3–1.7 s, p < 0.01).420

When comparing inter-trial phase coherence (ITC) for all frequencies between conditions, no421

significant differences were observed. However, ITC across the 1–10 Hz range did show the expected422

increase following the standard tone, ranging from 1–10 Hz, and a prolonged increase in the delta423

band in both conditions (Figure 3C).424

Standard-evoked delta phase angle predicts pitch discrimination sensitivity425

To test whether delta oscillations play a role in temporally predictive processing in this study, we426

tested for a relation between delta phase angles evoked by the standard-tone and pitch discrimi-427

nation performance using a logistic regression approach (see Figure 5B for a schematic depiction).428

A timing mechanism that predicts the onset of the target tone would have to start timing at the429

standard tone, which is why we were particularly interested in this time window.430
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Figure 3: Time-frequency representations. A. Power, time-locked to standard-onset. Power esti-
mates were baseline-corrected to the pre-standard interval and display relative change. Top panel:
non-predictive condition, bottom panel: predictive condition. The topographies show the power
scalp distributions in the interval from 0.2–0.4 s for frequencies from 1–3 Hz. B. Delta power (1–
3 Hz) over time for the non-predictive (blue) and predictive conditions (green). Fine lines depict
single participants’ power values. C. Power-difference between conditions (T-values). The black
shape marks the statistically significant cluster, and the topography shows the scalp distribution of
the cluster. The scatterplot to the right shows average power values extracted from the cluster peak
for each participant. D. Inter-trial phase coherence (ITC), time-locked to standard-onset. Top
panel: non-predictive condition, bottom panel: predictive condition. The topographies show the
ITC scalp distributions in the interval from 0.2–0.4 s for frequencies from 1–3 Hz. E. Delta ITC
(1–3 Hz) over time for the non-predictive (blue) and predictive conditions (green). Fine lines depict
single participants’ ITC values. F. ITC-difference between conditions (T-values). No significant
condition differences were found. The scatterplot to the right shows average ITC values extracted
from the peak of the power-difference cluster (above) for each participant.

Phase angles in the post-standard time window (0.14–0.18 s) were extracted by applying the431

Hilbert transform to band-pass filtered (1–3 Hz) single trial data with one virtual channel (see Meth-432

ods for details) representing the sum of all channels weighted by the N1-topography. We subjected433

the phase angles (as their sine and cosine) to a logistic regression with two numerical predictors,434

the normalized pitch difference between standard and target tone, and the standard-evoked phase435

angle, plus their interaction. To assess significance of the interaction effect, we used a permutation436

approach. We found a significant interaction between pitch and phase angle, which indicates that437

the slope of the psychometric function varied depending on the delta phase angle evoked by the438

standard tone (Figure 5 C). The interaction effect was significant only for the delta band (1–3 Hz),439

but not for other frequency bands tested (0.5–2 Hz; 4–7 Hz; 8–12 Hz; 15–30 Hz; Figure 5 F). Note440

that this procedure was performed on all trials, without separation into conditions, and thus is gen-441

erally valid, both for trials on which the standard served as a temporal cue and trials for which it did442

not.443

Next, we tested whether the interaction between delta phase angle and pitch discrimination444

sensitivity was specifically driven by our manipulation of temporal predictability. We examined the445

regression weight for the interaction at different time points over the trial, and independently for446

the predictive and non-predictive conditions. This analysis (Figure 5E) showed that the interaction447
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effect between delta phase angle and the slope of the psychometric function was largest at time448

points after the standard tone (0–0.5 s), and that the effect was significant (i.e. exceeded the 99%449

confidence interval of the permutation distribution) only for the predictive condition, suggesting450

that it was driven by temporal predictability. We therefore conclude that the interaction effect was451

mainly driven by the predictive condition.452

We also assessed the relationship between phase angle (binned into 6 bins for this purpose)453

and condition (indexed as -1 for the non-predictive and 1 for the predictive condition; Figure 5 D).454

If the trials would be equally distributed over conditions per phase angle bin, this should result in455

an average condition of 0 at all phase angles, which was not the case. Instead we found more trials456

of the predictive condition to occur at the phase angles at which we had found the higher slopes457

(Figure 5 C), which suggests that phase angles varied between the two conditions. As a post-hoc test458

for a quadratic effect of phase bin on condition, we computed a generalized linear model predicting459

condition from phase bins (coded as 1,0,-1,-1,0,1) and obtained a marginally significant weight for460

this contrast (p = 0.09), suggesting that there was no significant phase angle difference between461

conditions at the population level.462

Additional analyses463

To test for the presence of oscillatory activity in the delta band, we subtracted fractal power spectra464

(obtained using the irregular resampling method (IRASA; Wen and Liu, 2016) from the total power465

spectra. The results (depicted in Figure 4) show that power spectral density (PSD) computed from466

single trial data was higher in the 1–3 Hz range compared PSD computed on the ERP and simulated467

data, albeit no clear peaks can be found in the delta range (Figure 4A). If anything, the PSD computed468

on single trial data has a small peak around 1 Hz, while the PSD of the ERP has two smaller peaks at469

3 and 4 Hz. When computing the same analysis on pre-stimulus data (from the ISI, 3 s signals), we470

observe residual oscillatory activity in the 1–3 Hz range (Figure 4B). While it is difficult to completely471

Figure 4: Testing for oscillatory activity in the 1–3 Hz range using the irregular resampling
method. A: from single trial data (red), trial-averaged data (blue) and simulated brown noise (thick
lines: average, fine lines: single participants). PSD were normed by dividing all values by the max-
imum value of the respective total PSD (trial data, ERP, and simulated data). The left panel shows
the oscillatory activity, obtained by subtracting the fractal PSD from the total PSD. The inset mag-
nifies the delta frequency range from 1–3 Hz, and the shaded areas show 99% confidence intervals
computed from a t-distribution. B: Oscillatory spectrum obtained from resampling the pre-stimulus
time window (3 s, taken from the ISI). Note the residual oscillatory activity in the 1–3 Hz range.
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separate oscillatory from 1/f activity at slow frequencies – and to our knowledge, no previous study472

showed a clear oscillatory peak in the PSD in the delta range – our analyses suggest some oscillatory473

activity in the delta band.474

Mediation analysis. We also considered mathematically the possibility that delta phase angle would475

mediate the effect of temporal predictability on pitch discrimination sensitivity, by comparing the476

regression weight of the interaction between pitch and temporal predictability estimated from a477

model with no other predictors (as depicted in 5A), and from a model that additionally contained478

an interaction term for pitch and phase angle (Baron and Kenny, 1986; Muller et al., 2005). The479

negligible change in weight between both models (0.307 to 0.304) indicates that there is no evidence480

for a mediation effect.481

Delta phase versus ERP effect. To distinguish between the ERP effect (found on the N1) and the482

delta phase effect, we tested whether the N1 amplitude could explain the findings. Computing the483

same logistic regression model with the N1 amplitude instead of the phase angles as above revealed484

no significant interaction effect (p = 0.15), i.e. the N1 amplitude does not predict pitch discrimina-485

tion performance on single trials and can thus not simply replace the delta phase angle. However, the486

N1 amplitude correlated significantly with the standard-evoked phase-angle at all frequency bands,487

as assessed by a circular-linear correlation (from the Directional package in R Tsagris et al., 2018);488

R2: 0.5–2Hz: 0.21, 1–3Hz: 0.27, 4–7Hz: 0.06, 8–12Hz: 0.056, 15–30Hz: 0.004 (all p-values <0.001).489
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Figure 5: Delta phase angle predicts pitch discrimination sensitivity. A. Replication of the be-
havioural effect (s. Figure 1) with a logistic regression approach. Model predictions from the logistic
regression with the predictors pitch (abscissa) and condition (colors). As illustrated by the bar-plot,
there was a slope difference between conditions (i.e. an interaction between pitch and condition),
with steeper slopes for the predictive condition. B. Schematic depiction of the delta phase an-
gle analysis. We extracted the time domain data from single trials, from one virtual channel that
reflects the weighted sum of the standard-evoked N1 topography (computed in the interval from
0.14–0.18 s), band-pass filtered (1–3 Hz) and applied the Hilbert transform, to extract the instanta-
neous phase angles in the time-window of 0.14–0.18 s (the N1-peak). C. Effect of delta phase angle
on pitch discrimination sensitivity: Model predictions from the logistic regression model with the
predictors pitch (abscissa) and phase angle (colors, binned only for visual display). There was a sig-
nificant interaction between pitch and phase, that is the slopes of the psychometric functions differed
depending on delta phase angle (depicted in the bar plot). Note that this analysis was performed on
all trials, without separation into conditions. The inset on the bottom right side shows the observed
interaction weight (in black) compared to a permutation distribution and its 99% confidence inter-
val (in grey). D. Distribution of conditions over phase angles. Conditions were coded as −1 for the
non-predictive and 1 for the predictive condition, therefore an equal distribution of conditions over
phase angle bins should result in an average condition (colored bars) of 0, which was not the case.
Instead, more trials from the predictive condition occurred at the phase angles that were related to
a steeper slope of the psychometric function (panel C).
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Figure 5: (Continued from previous page.) E. Pitch × phase interaction over time, separated by
condition. The thick lines indicate the regression weights for the interaction over time for the pre-
dictive (green) and non-predictive condition (blue), the thin lines and grey shade indicate the 99%
confidence interval computed with the permutation approach. F. Pitch × phase interaction and con-
fidence intervals for different frequency bands. The grey bar shows the 99% confidence interval,
the black bar the observed weight. Only for the delta band (1–3 Hz) the observed weight significantly
exceeds the permuted weights.490

Discussion491

In this study, we asked whether human listeners use strictly implicit temporal contingencies in audi-492

tory input to form temporal predictions. If so, how are these predictions represented endogenously?493

We implicitly manipulated temporal predictability by varying the foreperiod (i.e., the interval be-494

tween standard and target tone) in a pitch discrimination task. Unbeknownst to participants, one of495

two possible pitches used as the standard tone was indicative to one of two foreperiod distributions,496

respectively: a uniform distribution, under which the onset of the target tone is unpredictable, and497

a single-valued distribution under which the onset of the target tone is fully predictable. The data498

show several indices that participants formed temporal predictions: an increase in pitch discrimina-499

tion sensitivity in the predictive condition, condition differences in the evoked response to standard-500

and target tones, and increased delta power during the foreperiod in the predictive condition. Fur-501

thermore, we show that only the phase of delta oscillations in response to the standard tone, which502

serves as a temporal cue, is indicative of pitch discrimination performance, suggesting that delta503

oscillations are instrumental for endogenous temporal predictions.504

Implicit temporal predictability improves pitch discrimination sensitivity505

We observed an increase in pitch discrimination sensitivity in the temporally predictive condition,506

reflected in a steeper slope of the psychometric function (Figure 1). Importantly, participants were507

not made aware of the predictability manipulation, and no participant was able to correctly describe508

it during debriefing. About 25% of participants were able to recognize the manipulation after it509

was described by the experimenter, but these did not show a larger behavioural effect, suggesting510

they had not actively engaged in timing. While the absolute difference in behavior is not large,511

likely due to the implicit nature of our task, we observed a robust set of results (49 participants)512

converging between response times, accuracy and slope effects. These suggests that listeners can513

implicitly learn to associate interval-based temporal predictions with sensory stimulus features like514

pitch, underlining the relevance of timing to human cognitive processing.515

To our knowledge, this is the first study to show that pitch discrimination sensitivity is im-516

proved by implicit but non-rhythmic temporal predictions. In the auditory domain, detection speed517

and performance are facilitated by rhythmic temporal predictability (Henry et al., 2014; Henry and518

Obleser, 2012,?; Lawrance et al., 2014; Wright and Fitzgerald, 2004), but the use of detection tasks519

might underline the timing aspects of the task. One study by Bausenhart and colleagues (2007)520
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showed that shorter presentation times (difference of about 6 ms) are needed for to achieve cor-521

rect pitch discrimination performance, when the target tone occurs with a block of constantly short522

foreperiods.Complementing these previous findings, we show that implicit temporal predictability523

improves auditory perceptual processing in absence of an embedding rhythm, or any explicit incen-524

tive to engage in timing.525

Temporal predictions affect sensory processing of predictive and predicted tones526

Predictive tones (standards). An important indicator for the successful extraction of temporal527

predictability is the difference in event related potentials evoked by predictive and non-predictive528

standard tones (Figure 2A). It suggests that participants learned to associate the pitch of the standard529

tone to temporal predictability, and flexibly used the standard as a temporal cue on a trial-by-trial530

basis.531

Few studies have investigated effects of predictability on the early sensory processing of the532

cue stimulus itself. In spatial cueing, there is evidence for an effect of predictions on early positive533

and negative cue-evoked components (100–200 ms post cue Jongen et al., 2007; Nobre et al., 2000;534

Yamaguchi et al., 1994). In the temporal domain, there is, to our knowledge, only one study that535

showed an N1-effect directly at the cue (in 8–12 years old children, Mento and Vallesi, 2016). Our536

results are in line with this finding and reveal that the standard-evoked N1 in adults is affected even537

by implicit temporal predictability.538

Predicted tones (targets). In response to target tones, we found a larger and faster N1 in the pre-539

dictive compared to the non-predictive condition, suggesting a facilitation for temporally predicted540

targets (Figure 2B). This result corroborates a large base of studies reporting mainly amplitude effects541

of temporal predictability in sensory evoked potentials (Correa et al., 2006; Hsu et al., 2014; Hughes542

et al., 2013; Kok et al., 2011; Lampar and Lange, 2011; Lange, 2009; Miniussi et al., 1999; Sanders543

and Astheimer, 2008; Schwartze et al., 2013). The direction of amplitude effects varies with the544

paradigm used (for an extensive discussion see Lange, 2013) – for probabilistic foreperiod variations545

as used here, both, reduced (Paris et al., 2016; Sherwell et al., 2017) and enhanced N1 amplitudes546

(Griffin et al., 2002) have been reported.547

The observed latency-shift of the N1 by temporal predictions is in line with one previous study548

using a manipulation of foreperiods (Seibold et al., 2011), and one study on rhythmic temporal pre-549

dictability (Rimmele et al., 2011). Further evidence comes from experiments reporting a faster N1550

for auditory speech and non-speech events combined with visual events (Paris et al., 2017; Stekelen-551

burg and Vroomen, 2007; Vroomen and Stekelenburg, 2010; Wassenhove et al., 2005). Note that in552

our study, the predictive information conveyed by the cue was purely temporal, since the pitch of the553

target tones was unpredictable. Thus, the facilitation of the N1 suggests that temporal predictions554

alone can enhance early auditory processing.555
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The role of slow neural oscillations in temporal prediction556

A central aim of this study was to assess the role of slow neural oscillations in the endogenous557

representation of temporal predictions. Previous studies convincingly established a mechanism of558

sensory enhancement via phase alignment of delta oscillations for stimuli that occur during the559

preferred phase, i.e. in synchrony with the preceding rhythm (Cravo et al., 2013; Henry et al., 2014;560

Kösem et al., 2018; Lakatos et al., 2008; Schroeder and Lakatos, 2009). An open question is, however,561

whether the alignment of slow neural oscillations towards predicted stimulus onsets is contingent562

on rhythmic entrainment to the exogenous stimulation, or whether slow oscillations also implement563

endogenous temporal predictions, for example via single-trial phase-resets.564

Increased delta power during the foreperiod in the predictive compared to the non-predictive565

condition (see Figure 3) suggests a relevance of delta oscillations for temporal predictions. The pre-566

dictive and non-predictive conditions were alternated trial-by-trial, indicating that delta power can567

be regulated flexibly, possibly reflecting an up-regulation, or large-scale synchronization of delta os-568

cillations necessary to represent temporal predictions (Herrmann et al., 2016). This suggests that569

a variant of the rhythmic mode of attention, reflected by increased delta power (Schroeder and570

Lakatos, 2009) can also apply to interval-based temporal predictions.571

The absence of condition differences in phase coherence during the foreperiod (Figure 3F)572

replicates our previous results (Herbst and Obleser, 2017) and suggests that enhanced phase align-573

ment (Breska and Deouell, 2017; Cravo et al., 2011) depends on dedicated or residual periodicity in574

the stimulation (Obleser et al., 2017), or overt engagement in timing (Stefanics et al., 2010). As a side575

note, it is important to emphasize the methodological challenge of analysing low frequency oscilla-576

tions in the pre-target window. The probabilistic manipulation of foreperiods as applied here results577

in differential time-locking of target activity between conditions, and our conservative approach of578

removing this might have weakened existing pre-target differences. Thus, our findings suggest that579

the representation of temporal predictions by enhanced phase coherence – or at least our ability to580

measure this in human EEG – is contingent on rhythmic stimulation.581

Crucially, we found that the absolute phase angle of the delta oscillation in auditory areas582

shortly after the temporal cue predicted behavioural sensitivity in response to the later-occurring583

target tone (see Figure 5C). The effect was observed for data spatially filtered with a topography584

relevant for auditory stimulus processing (from the N1), suggesting auditory cortex as the most585

likely generator. Furthermore, the effect was specific for the delta band (1–3 Hz) with the highest586

sensitivity occurring at phase angles closest to the trough of the delta oscillation (±π) at the cue and587

about 1.7 s post-cue (average period of 0.5 s). Albeit interpreting the absolute phase angle from588

EEG data demands caution, this corroborates the idea that the trough of the delta oscillation is a589

particularly beneficial state for auditory perception (Henry et al., 2016; Lakatos et al., 2013).590

While the relationship between delta phase and behavioural sensitivity was true for all trials,591

regardless of their experimental condition, follow-up analyses showed that the interaction effect was592

stronger in the predictive condition (Figure 5E), and that the phase angle evoked by the standard tone593
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differed marginally between the predictive and non-predictive conditions (Figure 5D), suggesting594

that the effect was driven by temporal predictability.595

An important question is to what respect the observed phase effect reflects truly oscillatory ac-596

tivity, rather than a modulation of the evoked response to the standard tone. On theoretical grounds,597

we have good reason to assume that auditory processing fluctuates with the phase of delta oscilla-598

tions in the absence of evoked activity (Henry et al., 2016; Kayser et al., 2015; Stefanics et al., 2010).599

Here, we observe a phase effect that is specific to the frequency range identified by the above-cited600

studies, rather than resulting from broad-band activity as one would expect from a purely evoked601

effect. Furthermore, spectral analyses suggest some oscillatory activity in the delta band after sub-602

tracting the 1/f spectrum, which is not explained by the ERP (see Figure 4). The effect is strongest603

in the 1–3 Hz range, and not at the frequencies that would reflect the stimulation (0.57 Hz for the604

intermediate foreperiod of 1.75 s), which is in line with a study that showed selective entrainment605

at 1.33 Hz despite stimulation at 0.67 Hz (Gomez-Ramirez et al., 2011). We further showed that the606

N1 amplitude itself does not show the critical relationship with behavioural sensitivity, although the607

two measures correlate, arguing for a more specific role of delta oscillations in temporal prediction.608

In fact, the ERP might at least partially result from a reset of ongoing neural dynamics by the onset609

of a stimulus (Makeig et al., 2002).610

Taken together, these findings point towards a dedicated mechanism for temporal prediction involv-611

ing delta oscillations. Further research is needed to investigate whether the spontaneously present612

low frequency oscillations in the above-cited studies are recruited to implement temporal predic-613

tions, for example by comparing the exact frequency bands and neural generators.614

Clearly, we have not proven a causal link of temporal predictability increasing auditory sensi-615

tivity via an optimized phase angle of delta oscillations. Our analysis failed to establish a mediation616

effect. We cannot rule out that the different steps necessary to accommodate the complexity of our617

data in the model (dealing with the circular measure of phase angle and assessing an interaction618

effect as a measure of behavioural sensitivity), and the small proportion of variance explained by the619

experimental manipulation (a common problem in cognitive neuroscience) might have prevented us620

from observing a mediation effect (but see Benwell et al., 2017, for a successful example).621

As an alternative explanation, it is conceivable that the activity we observe reflects the extraction of622

temporal predictions from the temporal cue, but that another process is responsible for maintaining623

this prediction throughout the foreperiod interval to alert the system when it it is time to expect the624

target stimulus. For instance, this could be achieved via top-down projections from auditory areas625

towards thalamic and thalamostriatal pathways described as crucial for auditory timing (Barczak626

et al., 2018; Ponvert and Jaramillo, 2018), converging with an instrumental role of the striatum in627

explicit timing (Mello et al., 2015).628

In sum, our findings underline the relevance and specificity of delta oscillations to the en-629

dogenous representation of temporal predictions. The adjustment of phase angles at the cue can be630

seen as the initiation of a timing process, which prepares the system to be in a beneficial state at an631

anticipated time point.632
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Conclusions633

Here we show that human listeners use strictly implicit temporal contingencies to perform a sensory634

task for which timing is not an explicit requirement. The neural signatures observed suggest that the635

standard tone is used as a temporal cue and provokes an optimized phase reset of delta oscillations636

on single trials and an increase in delta power, associated with enhanced behavioural sensitivity in637

the predictive condition.638
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