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Abstract

Can human listeners use implicit temporal contingencies in auditory input to form
temporal predictions, and if so, how are these predictions represented endogenously?
To assess this question, we manipulated foreperiods in an auditory pitch discrimination
task: unbeknownst to participants, the pitch of the standard tone could either be
deterministically predictive of the temporal onset of the target tone, or convey no
predictive information. Predictive and non-predictive conditions were presented
interleaved in one stream, and separated by variable inter-stimulus intervals such that
there was no dominant stimulus rhythm throughout. Even though participants were
unaware of the implicit temporal contingencies, pitch discrimination sensitivity (the
slope of the psychometric function) increased when the onset of the target tone was
predictable in time (N = 49, 28 female, 21 male). Concurrently recorded EEG data (N =
24) revealed that standard tones that conveyed temporal predictions evoked a more
negative N1 component than non-predictive standards. We observed no significant
differences in oscillatory power or phase coherence between conditions during the
foreperiod. Importantly, the phase angle of delta oscillations (1-3 Hz) in auditory
areas in the post-standard and pre-target time window predicted behavioral pitch
discrimination sensitivity. This suggests that temporal predictions can be initiated by
an optimized delta phase reset and are encoded in delta oscillatory phase during the
foreperiod interval. In sum, we show that auditory perception benefits from implicit
temporal contingencies, and provide evidence for a role of slow neural phase in the
endogenous representation of temporal predictions, in absence of exogenously driven
entrainment to rhythmic input.

Acknowledgments: This research was supported by a DFG grant (HE 7520/1-1) to
SKH. The authors would like to thank Anne Herrmann for overseeing the data acqui-
sition, Michael Ploechl for technical support, and Virginie van Wassenhove and the
Cognition & Brain Dynamics Team at NeuroSpin for helpful discussions.


https://doi.org/10.1101/410274
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/410274; this version posted May 13, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

Author summary

Auditory environments come with an inherent temporal structure, which human
listeners can use to predict the timing of future inputs. Yet, how these regularities
in sensory inputs are transformed into temporal predictions is not known. Here, we
implicitly induced temporal predictability in the absence of a rhythmic input structure,
to avoid exogenously driven entrainment of neural oscillations. Our results show
that even implicit and non-rhythmic temporal predictions are extracted and used by
human listeners, underlining the role of timing for auditory processing. Furthermore,
our EEG results point towards an instrumental role of delta oscillations in initiating
temporal predictions, possibly by an optimized phase reset in response to a temporally
predictive cue.

Introduction :

The human brain is constantly predicting its environment, and these predictions not
only concern the where and what, but also the when of future events. Temporal
statistics of visual and auditory input are extracted by the human cognitive system,
and benefit perception and action [1} 2,3, 4]. This process does not seem to require
conscious awareness of the underlying temporal structure, meaning it occurs im-
plicitly [516]. Yet little is known about how temporal predictions are extracted from
temporal regularities in sensory input, and how they are internalized in human brain
dynamics.

W W N o U A W N

Temporal predictions are often enabled by periodic structure in sensory input, 1
especially in audition. Accordingly, rhythmic input structure has been shown to im-
prove detection performance and speed [7, 8] (9,10, [11]. Fewer studies have shown 1
that rhythmic temporal regularities can also improve perceptual sensitivity (i.e. dis- 1
crimination performance) in the auditory [12} (13} (14} but see[15], as well as the visual 1
domain [16] [17]. It is, however, not trivial to disentangle mechanistic input-driven 15
alignment of neural activity to rhythmic input from an internalized and endogenously 1
activated representation of temporal predictions [4, (18] 37]. 17

To disentangle exogenous temporal predictions inferred from sensory inputs s
from their endogenous representation, we here induced temporal predictability by ma-  +
nipulating the temporal statistics in a so-called foreperiod paradigm [19] 20]. This type 2
of manipulation has been shown to increase visual perceptual sensitivity [5} 21122 23]. 2
In audition, predictable foreperiods have been found to speed up stimulus process- 2
ing [24] and improve short-term memory performance [25, [26]. To our knowledge, 2
no study has shown an effect of implicit non-rhythmic temporal predictability on 2
perceptual sensitivity in the auditory domain. 2

To assess an endogenous representation of temporal predictions, we investigated 2
the hypothesis that slow neural oscillations (in the delta/1-3 Hz and theta/4-7 Hz  »
frequency bands) implement temporal predictions via endogenous phase-resettingand 2
-shifting mechanisms. This hypothesis can be drawn back to the influential proposal of 2
Dynamic Attending in Time [DAT; 27, (28], suggesting that (auditory) attention fluctuates s
in phase with rhythmic input. A neural implementation of dynamic attending has =«
been postulated through phase-locking of neural delta oscillations to rhythmic inputs, =
also termed entrainment. Entrainment reflects an internalization of the exogenous
temporal structure, to align the most efficient brain states for sensory processing to the
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most likely time points for stimulus occurrence [32][33]. Behaviourally, this results in s
fluctuations of performance in phase with the oscillation [11,[16} 29,30, 31,132,133,[34].

It is currently an open question to what extend entrained neural delta oscillations
are a signature of processing rhythmic input, or whether they pose a more parsimo-
nious mechanism of temporal prediction. Important evidence for an endogenous role
of delta oscillations in auditory temporal attention comes from two studies showing
that auditory processing fluctuates with the phase of spontaneously present delta
activity in auditory cortex, in absence of rhythmic stimulation [38} 39]. @

Furthermore, previous studies have shown that entrainment is subject to top- 4
down modulation, shown by enhanced phase coherence of slow oscillations in antici- 4
pation of temporally predictive input [11} [16] 35]. as

Recently, studies have started to test whether the beneficial phase of an ongoing
neural oscillation can be aligned in a top-down manner to an expected pointintime, as &
an endogenously initiated temporal prediction, without an entraining stimulus struc-
ture [5} 16} 40]. To our knowledge, only one study in the visual domain reported a role 4
of slow oscillations in single trial temporal predictions [5] theta band]. Furthermore, s
a recent study [41] showed that delta phase in the target-onset time window reflects s
adjustments to previously encountered violations of temporal predictions in an explicit =
timing task. To date, to the best of our knowledge, no study has assessed whether s
oscillations implement implicit temporal predictions for audition. sa

Here, to investigate the role of neural oscillatory dynamics for an endogenous s
representation of temporal predictions in auditory inputs, in absence of rhythmic s
structures, we implicitly associated temporal predictability to a sensory feature of the
standard tone in an auditory pitch discrimination task: the standard’s pitch could be s
deterministically predictive of the onset time (but not the pitch) of the target tone, or s
convey no predictive information. Temporally predictive and non-predictive conditions  «
were presented interleaved in one stream, and separated by variable inter-stimulus &
intervals such that there was no dominant stimulus rhythm throughout. 6

We show that, behaviourally, temporal predictability increases pitch discrimina- &
tion sensitivity, assessed via the slope of the psychometric function. Concurrently e
recorded EEG data provide indices of temporally predictive processing in auditory e
cortex evoked by both the standard and target tone. Furthermore, we show enhanced &
delta power in the predictive compared to the non-predictive condition, and (by apply- &
ing an auditory spatial filter) a predictive relationship between delta phase anglein
auditory areas during the foreperiod and pitch discrimination performance. Together, ¢
these results suggest an instrumental role of delta oscillations in forming temporal

predictions. 7
Methods 2
Participants ”»

In total, 51 participants were tested (23.6 years on average (SD = 3.5), 28 female, 6 left 7
handed), 26 of which also underwent electroencephalography (EEG). All participants
signed informed consent and received either course credit or payment for their par- 7
ticipation (8 € per hour). The study was approved by the local ethics committee at »
the University of Libeck. We excluded two of the participants who only underwent 7
the behavioral testing, because of ceiling effects (their slopes for the psychometric = »
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function in one of the two conditions exceeded the mean of the slope distributions of &
all participants by more than 2.5 standard deviations). Furthermore, we excluded the &
EEG data from two participants who had blinked in synchrony with the auditory stimu- &
lation and for whom we were not able to separate blinks from the auditory evoked
potentials during EEG preprocessing. The behavioural data of these two participants s
were kept in the analyses. 85

Stimuli and Procedure 8

The experiment was conducted in an electrically shielded sound-attenuated EEG booth. &
Stimulus presentation and collection of behavioural responses was achieved using s
the Psychophysics Toolbox [42] 143] under Windows 7. Responses were collected on &
a standard keyboard. All participants were instructed to use the index and middle &
fingers of the right hand. 9

Participants performed a pitch discrimination task, comparing tone pairs embed- o
ded in noise, as illustrated in Figure[TA. They were instructed to indicate after each =
tone pair whether the second tone was lower or higher than the first. o

A black fixation cross was displayed on gray background throughout the whole
block. Auditory stimuli were delivered via headphones (Sennheiser HD 25-SP II).
Lowpass (5kHz) filtered white noise was presented constantly throughout each block, o
at 50 dB above the individual sensation level, which was determined for the noise s
alone at the beginning of the experiment using the method of limits. Pure tones of &
varying frequencies (duration 50 ms with a 10 ms on- and offset ramp), were presented 100
with a tone-to-noise ratio fixed at —18 dB relative to the noise level. 101

The first tone, to which we will refer as the standard in the following was always 1
at one of two frequencies: 550 or 950 Hz. The second tone, the target, was varied 10
in individually predetermined steps around its respective standard. The same step 10
size was used for both standards, but logarithmically transformed and multiplied o
with the standard frequency, to obtain a log-spaced frequency scale around each s
standard. To predetermine the step size, each participant was first presented with one 17
experimental block to familiarize themselves with the task. Then, a second block was 1
performed, and if pitch discrimination performance was below 65%, the tone-steps 10
were increased, which was repeated up to three times. All participants reached the 110
minimum performance level after minimally two and maximally four rounds of training. 1
As a result of this procedure, the average lowest target tone presented with the 550 Hz ~ 1x
standard was 508.3 Hz (range 490.0-519.1 Hz), and the highest target tone 595.3 Hz 113
(range 582.7-617.4 Hz); the lowest target tone presented with the 950 Hz standard was 14
878.0 Hz (range 846.4-896.7 Hz), and the highest target tone 1028.3 Hz (range 1006.5- 115
1066.3 Hz). The high and low tones never overlapped. In the behavioural experiment, 1
eleven tone frequencies were used from the lowest to highest tone, including the
standard; in the EEG experiment we used 7 discrete frequencies. 118

Critically, and unbeknownst to participants, we manipulated the interval between 19
standard and target tones, the foreperiod, by either pseudo-randomly drawing forepe- 12
riods from a discretized uniform foreperiod duration (11 foreperiods in the behavioral 1
experiment and 7 in the EEG experiment, all ranging from 0.5-3 s, blue distribution in = 1
Figure[T]A), or used the same foreperiod duration (1.75 s, green distribution in Figure 1
[ A). This resulted in one condition in which the target onset was perfectly predictable 12
in time, the predictive condition, and one condition in which the target onset was s
maximally jittered, the non-predictive condition. To allow participants to implicitly 12
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Fig 1. Paradigm and Behavioural Results. A. Paradigm: Tone-pairs were presented
embedded in low-pass filtered white noise. Participants’ task was to judge whether
the target tone (T) was lower or higher in pitch than the preceding standard (S).
Unbeknownst to participants, the pitch of the standard tone was associated with
predictive (green) or non-predictive foreperiod intervals (blue). For the non-predictive
condition, foreperiods were drawn from a uniform distribution (upper right panel),
while for the predictive condition, foreperiods were fixed at 1.75 s (lower right panel). B.
Accuracy and response times: Top: Accuracy improved significantly in the predictive
condition (left panel), which was nominally also true at the intermediate foreperiod
only (right panel). Bottom: Response times were faster in the predictive condition (left
panel). The difference was driven by slower response times at short foreperiods on
the non-predictive condition (right panel) C. Averaged psychometric functions: The
slope of the psychometric function was steeper in the predictive compared to the non-
predictive condition. There were no differences in threshold, guess rate or lapse rate.
D. Slopes for single participants: for the non-predictive (x-axis) versus predictive
(y-axis) conditions. E. Thresholds for single participants: for the non-predictive
(x-axis) versus predictive (y-axis) conditions.

dissociate the conditions, the foreperiod distributions were associated with one of 1
the standard pitches, for example for one participant the 550 Hz standard was always 12
followed by a predictive foreperiod and the 950 Hz standard was always followed by 1
a non-predictive foreperiod. The assignment was counterbalanced over participants. 1
The two conditions were presented interleaved, such that participants had to encode
the standard pitch on each trial. Importantly, the manipulation of foreperiod intervals 1
was strictly implicit, and participants were not informed about it. 133

To avoid build-up of a rhythm over trials, the inter-stimulus interval between 1
a target tone and the standard tone of the next trial was drawn from a truncated s
exponential distribution (mean 1.5 s, truncated at 3 s) added to a minimum interval of 13
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3 s (resulting in values between 3-6 s). After the target tone, participants had 2sto 1
respond. The stimulation continued automatically, even if no response was given. 138

One block consisted of 22 trials in the behavioural (one repetition per tone step 13
and condition), and 56 trials in the EEG experiment (4 repetitions per tone step and 1o
condition). In the behavioural experiment participants performed 20 blocks (440 trials), 1
and in the EEG experiment minimally 12 and maximally 15 blocks (672-840 trials). 1
Between blocks, participants could take breaks of self-determined length. Feedback 1
was given per trial during the training, and at the end of each block (as proportion of 1
correctly answered trials) during the main experiment. 145

After the experiment, all participants were asked the same four questions by the 14
experimenter. First, the experimenter asked whether participants had noticed that s
the interval between the first and second tone of a pair was variable. Second, they 14
were asked to describe whether they noticed any systematic variation therein. Third, s
they were told that either the low or high tones were always presented with the same 15
separating interval and asked whether they noticed this. Fourth, they were asked s
to guess whether in their case the low or high pitch tones were the ones presented s
with the constant interval. Finally, they filled in a musicality survey [44]. The full s
experimental session lasted about 2.5 h. 154

EEG recording and preprocessing 155

EEG was recorded with 64 electrodes Acticap (Easy Cap) connected to an ActiChamp 156
(Brain Products) amplifier. EEG signals were recorded with the software Brain Recorder s
(Brain Products) at a sampling rate of 1 kHz, using no online high-pass filter and a s
200 Hz low-pass filter. Impedances were kept below 10 kQ2. Electrode TP9 (left mastoid) 15
served as reference during recording. Electrode positions were digitized. 160

EEG data were analysed using the Fieldtrip software package for Matlab (MATLAB e
2016a, MATLAB 2017a), and the Ime4 package in R [45] 46]. First, we re-referenced the e
data to linked mastoids. Then we applied a low-pass filter to the continuous data [firws s
filter from the firfilt plugin, [47| cut-off 45 Hz, two-pass, transition bandwidth 3 Hz]. No e
high-pass filter was applied. For the time-frequency analysis, we produced a parallel s
version of the data, that was not filtered during pre-processing. Filtering two-pass as s
done for the analyses of event-related potentials might smear data back in time, which &
would be problematic for analyses in the pre-target time window [48]/49]. Filtering 1
the data only in the forward direction, however, leads to phase shifts [47] which we 1
wanted to avoid for the phase angle analyses. 170

Next, we epoched the data around the standard tone onset (-3-6 s), and down-
sampled to 100 Hz. All data were visually inspected to mark bad channels that were 7
interpolated (1.2 channels per participant on average). Then ICA were computed using 7
the 'runica’ algorithm, with the number of output components adjusted by subtracting 1
the number of bad channels. Blinks, muscular artefacts, and unspecific noise occurring 1
temporarily in a channel or trial were excluded, using the semi-automatic inspection 1
of ICA components provided by the SASICA toolbox for fieldtrip [50] and removal of 17
these (on average 33.7 components per participant). 178
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Analyses "
Analyses of the behavioural data 180

We analysed accuracy as proportion correct (after removing trials in which the standard 1
and target were equal in pitch) and response times, defined as the interval between the 1
onset of the target tone and the registered button press. Response times shorter than s
0.2 s were considered outliers and removed. We compared accuracy and response s
times between conditions and over foreperiods for the non-predictive condition. Tone- 1ss
steps and foreperiods used in the behavioral experiment were binned to reduce the 1
11 steps used to 7 as in the EEG-experiment. 187

To obtain a measure of pitch discrimination sensitivity, we fitted psychometric s
functions to model participants’ responses in the pitch discrimination task, using s
bayesian inference, implemented in the Psignifit toolbox for Matlab [Version 4,5T]. 19
The psychometric function describes the relationship between the stimulus level (on 1o
the abscissa, here: the difference in pitch between the target and the respective 1
standard tone) and the participant’s answer (on the ordinate, here: proportion of s
trials on which the target pitch was judged as higher). To accommodate the different 1o
standard tones per condition, and the individual pitch steps obtained during the s
training, we normed the discrete pitch differences per participant and condition to 1
range between -1 and 1, with 0 being the pitch of the standard tone. 197

To select the options for the psychometric function (logistic versus cumulative 1
normal function, number of free parameters), we assessed deviance pooled for both 19
conditions. Deviance reflects a monotonic transformation of the log-likelihood-ratio 200
between the fitted model and the saturated model (a model with no residual error), 2o
allowing for an absolute interpretation, or a comparison between different models 22
[52]. The best fits (i.e. lowest deviance, 3.80 for the best model) were obtained by s
fitting a cumulative normal function with four free parameters: threshold, slope, guess 2
rate, lapse rate. 205

For a yes-no-task as the one used here, threshold indicates the stimulus level 20
at which a participant is as likely to judge the stimulus as 'low’ or 'high’. Divergence
from the actual midpoint of all stimulus levels (here: 0) can be thus be interpreted 2
as a response bias. Slope reflects the amount of stimulus change needed to increase 2
the proportion of responding 'high’, and can be interpreted as the sensitivity of the 20
listener. The guess rate indicates the proportion of answering 'high’ for the lowest
pitches in the tested range, and the lapse rate the proportion of answering ‘low’ for the 21
highest pitches, that is they reflect the errors made by the listener at different target 3
tone frequencies. 214

We used Psignifit's default priors for the threshold, slope, guess, and lapse-rates, s
based on the given stimulus range [51, p.109]. Psignifit's version 4 fits a beta-binomial 21
model (instead of a binomial model), which assumes that the probability for a given 217
proportion of answers is itself a random variable, drawn from a beta distribution. This 21
has been shown to provide better fits for overdispersed data, that is data in which 2.
answer probabilities over blocks and trials are not independent as assumed by the 2
conventional model. 21

We fitted psychometric functions to each individual's data separately per condition 2
and compared the resulting parameters between conditions (threshold, slope, guess- 23
and lapse rates) using two-sided t-tests. Additionally, we calculated Bayes Factors for 2
all statistical tests, using the Bayes Factors package for Matlab [53]. 225

May 13, 2019 7


https://doi.org/10.1101/410274
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/410274; this version posted May 13, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

Additionally, we computed a logistic regression on the single-trial responses of 2
the pitch-discrimination task, to parallel the analysis of delta phase angles performed 27
for the EEG (see below). Pitch difference and condition were used as interacting fixed 2
effects (with random intercepts and random slopes for both predictors and their 2
interaction), using the Ime4 package in R [function glmer, [45] with a binomial link 2%
function. 231

Event-related potentials 32

We examined the time-domain data with respect to responses evoked by standard 2
and target tones, contrasting the predictive and non-predictive condition. For the 2.
standard-evoked response, we detrended the data based on the whole epoch and s
applied baseline correction from -0.1-0 s pre-standard. We only examined the time- s
window between standard onset and 0.5 s after, because this was the maximal interval = 27
in which no target events occurred (earliest target onset was 0.5 s in the non-predictive 23
condition). For the target-evoked response, we first applied detrending and the same 23
pre-standard baseline to standard-locked epochs, and then re-epoched to the target 20
event. We examined the time interval from -0.5-0.5 s around the target event. We s
averaged over trials within participants and condition, and then over participants, to 2
obtain the average event-related potential (ERP, depicted in Figure 2). 243

To test for statistically significant differences in the time-domain data, we applied 2
cluster permutation tests on two levels. First, we contrasted trials from the non- s
predictive and predictive condition within each participant using independent samples 2
regression implemented in FieldTrip (ft_timelockstatistics). This resulted in regression 2
coefficients (betas) for each time-electrode data point for the ERPs. Next, the group- 2
level analysis was performed with a dependent samples t-test to contrast the betas o
from the subject-level analysis against zero. A permutation test (5000 Monte Carlo 20
random iterations) was performed with cluster-based control of type I error at a level s
of a=0.05 as implemented in FieldTrip. The condition assignment (i.e. whether the s
predictive condition was presented at the low or high pitch tones) was added as a 2
control variable. This analysis resulted in time-electrode clusters exhibiting significant = 2s
condition differences in the ERPs. 255

Time-frequency representations 256

Time-frequency representations were computed for epochs time-locked to the stan- s
dard tones, separately for the predictive and non-predictive condition. We performed s
this analysis on trials with foreperiods equal or longer then 1.75 s only to avoid evoked 25
activity from target onsets occurring early in the non-predictive condition. We matched 2o
the smaller number of trials available from the non-predictive condition, by randomly 2
sampling the same number of trials from the predictive condition. To obtain stable
results, we repeated the random sampling 50 times and averaged over the resulting 2
time-frequency representations. Additionally, we ruled out potential back-smearing 2
of evoked activity related to target-onset by replacing all data points after 1.75 s by s
the value at this time point for the respective trial and channel before performing the 2
time-frequency transformation. 267

Data were transformed to time-frequency representations for frequencies ranging 2
from 0.5 to 34.5 Hz (linear steps, 1 Hz) and time points between -0.5-2.5 s, using 2
convolution with a single adaptive Hanning taper with frequency-dependent time 2n
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windows (increasing linearly from 2 to 4 cycles per frequency). To provide sufficiently on
long data epochs for the lowest frequencies, we appended the epochs (-3-6 s, time
locked to the standard tone) with their inverted and right-left flipped version to the
left and right before applying the time-frequency transform. 74

Power estimates were extracted as the squared modulus of the complex-valued 2
Fourier spectra and baseline corrected to relative change (first subtracting, then s
dividing by the trial-average baseline value per frequency) using the condition average
in the interval from -0.5 s to standard onset. Inter-trial phase coherence (ITC) was s
extracted as the magnitude of the amplitude-normalized complex values, averaged s
across trials for each time-frequency bin and channel. 280

Statistics were performed in the time-window between 0-1.7 s post standard 2
onset and for all frequencies jointly. For power, we used a two-level procedure as
described for the ERPs (but using ft_freqgstatistics, 1000 permutations). For the ITC, we 2
only computed the second-level statistics since it represents a measure that already 2
combines single trials. An additional, hypotheses-driven cluster test for power and ITC 2
effects was performed, restricted to the delta band (0.5-3 Hz). 286

Delta phase angle analyses 287

A timing mechanism that predicts the onset of the target tone would have to start tim- 2
ing at the standard tone which serves as a temporal cue. Therefore, we examined the 2
data for any signatures of such a mechanism in the phase of the delta band (see Figure 20
[4B for a schematic depiction). To not confound target evoked activity with pre-target 2
activity, we used the same version of the data as for the time-frequency transforma-
tions described above, to which no filters had been applied during preprocessing. 20
Target-onset ERPs were muted (as described above) from the time point of target .
onset on each trial (1.75 s in the predictive condition and 0.5-3 s in the non-predictive 2
condition). To reduce the dimensionality of the data, and to focus our analysis on 2
auditory activity, we computed a weighted average of single electrodes at each time 2
point. The weights reflected each participant’s N1-peak topography, computed as the 2
average absolute value per channel in the time interval from 0.14-0.18 s following the 20
standard (see topography shown in Figure[4B). We then multiplied the time-domain s
data at all latencies and channels with these weights and averaged over channels, 3o
resulting in one virtual channel. 302

We applied a band-pass filter to the data (3rd order Butterworth, two-pass), with 30
cut-off frequencies of 1 and 3 Hz for the delta band. After filtering, we applied the 30
Hilbert transform and extracted phase angles as the imaginary value of the complex s
fourier spectrum averaged over latencies from 0.14-0.18 s, the peak latency of the s
N1. We chose the peak of the N1 as the window of interest, as the time point at which 0
we measure the first reaction to the standard tone, possibly reflecting a phase reset e
of ongoing oscillations. Note that we did not choose the later time window in which 30
the difference in the standard-evoked ERP significantly differed between conditions to s
avoid biasing our analysis for a between-condition effect. 3n

We subjected the phase angles to a logistic regression to test for an effect of phase s
angle on the behavioural response, using the Ime4 package in R [function glmer with 313
a binomial link function, 45]. Per trial, we predicted the participant’s response in the  3u
pitch discrimination task (second tone lower or higher) with two numerical predictors, a5
(1) the normalized pitch difference between standard and target tone (Apitch in eq. s
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range -1-1, a.u.), and (2) the standard-evoked phase angle extracted as described a1y
above (), plus their interaction. 318

The predictors of the logistic regression can be interpreted following the logic of 31
the psychometric function [54], which models a behavioural measure (on the ordinate) s
based on variations of a stimulus feature (on the abscissa), and is described by two
main parameters: threshold and slope. A threshold effect, that is a horizontal shift
of the psychometric function, would be reflected by a main effect of the predictor s
. A slope effect, reflecting a shift in the steepness of the psychometric function,
would result in an interaction between the predictors Apitch and . Here, we were 3
particularly interested in a slope effect, that is an interaction between the predictors s
pitch and phase angle. Due to computational constraints, we only specified a random 3
intercept, but no random slopes for the predictors. 228

To account for the circularity of the phase angles, we followed an approach s
previously described by Wyart et al. [55] (see also [16]/41]) of using the sine and cosine  3x
of the phase angles jointly as linear predictors in a regression. For both, the sin(p)
and cos(p), we specified an interaction with Apitch: 32

y = Bo + b1 - (Apitch - sin(p)) + B2 - (Apitch - cos(p)) @)

Then, we recombined the regression weights obtained for the interactions of
sin(p) and cos(p) with Apitch: 34

Bcombined =\ B% + B% (2)

The resulting B.ompinea IS always positive and can thus not be tested against zero. s
We computed a reference distribution of 3.,/mpines based on 1000 permutations, by
permuting, per participant, the response values over trials, recomputed the model s
and retained the B.ompineq. TO assess significance of the interaction between pitch and 33
phase angle, we assessed 99% one-sided confidence intervals, and computed p-values 3
from the permutation distribution [following Ref.[56]: 340

N(ﬁpermcombined > ﬁcombined) + 1
N(perm) + 1

3)

Pperm =

To visualize the modulation of pitch discrimination sensitivity over phase angles, sx
we predicted responses from the logistic regression model [using the R package 3.
emmeans, 57], for a range of Apitch, sin(yp), and cos(y) values, and plotted the s
resulting values for the recombined and binned ¢ (shown in Figure ). 344

We additionally computed the phase analysis on data filtered for the low delta s
(0.5-2 Hz), theta (4-7 Hz), alpha (8-12 Hz), and beta (15-30 Hz) frequency bands s
and tested the resulting B.ompinea fOr significance using the permutation approach s
(Figure @p). P-values were Bonferroni-corrected (accounting for five tests with a p-value s
threshold of 0.05, one for each frequency band), resulting in an adjusted alpha level of 34
0.01. 350

Furthermore, we assessed the time-course of the regression weights per condition s
by independently computing the model (eq. [1) for each time point from-0.1to2s 3=
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and for each of the two conditions separately (Figure [4F). Here, we did not mute s
the time-domain data at target onset, since the model was computed separately per s
condition. To test for significance, we applied the permutation approach described s
above, using 200 permutations only (due to the time-consuming procedure). Finally, s
to test for condition differences, we computed the time-resolved logistic regression for s
both conditions jointly and added the factor condition to the above-described model s
to test for a three-way interaction. 359

Distinguishing oscillatory from aperiodic activity 360

To assess whether the activity observed in the delta band is truly oscillatory, rather s
than reflecting aperiodic 1/f activity we applied irregular resampling [IRASA; 58} see 3«
also 39 59]. This technique consists in downsampling the data at pairwise non- s
integer values and computing the geometric mean of the resulting power spectra. The e
resampling leaves the 1/f activity intact but removes narrow-band oscillatory activity. s
We applied IRASA to the trial-wise data time-locked to the standard tone (-3t0 6 5), t0 36
the trial-averaged data per participant (ERP), and to 9 s of simulated data with a brown e
noise spectrum (see Figure[5), as well as to single trial data from a 3 s snippet during s
the inter-trial interval (see Figure[5B). Power spectral density (PSD) was computed in 3
sliding windows of 3 s in 0.25 s steps, using fast a Fourier transform tapered with a s
Hanning window for a frequency range of 0.33 - 25 Hz, without detrending, and the »
default resampling parameter (1.1 to 1.9, 0.05 increment). The PSD was normalized by 37
dividing all values by the maximum value of the respective total PSD (trial data, ERP, s

and simulated data). 374
Results
Temporal predictability improves pitch discrimination 276

On average, participants’ responses were correct in 86% percent of trials. Using the s
full sample of 49 participants, we found that accuracy was significantly higher in the s
predictive compared to the non-predictive condition (T(48)=3.77, p<0.001, BF = 89.6); 7
Figure[1B). We found a marginally significant increase in accuracy at the intermediate s«
foreperiod for the predictive compared to the non-predictive condition (T(48)=1.8, p= s
0.07, BF = 0.93); Figure[TB), suggesting that the performance improvement occurred s
not only at unexpectedly early or late foreperiods, but reflects a difference between s
conditions. 384

We furthermore analysed response times between conditions and over forepe- s
riods. Response times were faster in the predictive (average 0.85 s), compared to s
the non-predictive condition (0.92 s), by about 70 ms (T(48)=8.3, p < 0.001, BF = 110). 35
As shown in Figure[TB, the difference is strongly driven by slower responses at early s
foreperiods in the non-predictive condition, but there was still a significant difference 3
between the response times at the intermediate foreperiod only (T(48)=2.10, p = 0.04, 3%
BF = 147) 391

For the psychometric functions (depicted in Figure[T|C), we observed a steeper s
slope in the predictive compared to the non-predictive condition (T(48)=3.85, p<0.001, s
Bayes Factor (BF)=114.3); Figure ), but no threshold effect (T(48)=1.05, p =0.30, BF = 30
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0.35); Figure E), nor effects on the guess rate (p = 0.48, BF = 0.27) or lapse rate (p = 35
0.44, BF = 0.28). 3%

To test whether the slope effect might be driven by shorter or longer foreperiods o
only, we computed psychometric functions on the trials with intermediate foreperiods s
(1.25-1.5 s in the behavioral sample, 1.33 - 2.17 s in the EEG sample; see Figure ). s
We found a smaller but significant slope effect between conditions (T(48)=2.73; p<0.01; 40
BF = 5.46) showing that the slope difference was not solely driven by the shortest or
longest foreperiods. a02

All of the above results held, albeit somewhat weaker, when analysing only data 43
from participants for whom we had recorded EEG: Predictability resulted in marginally o
higher accuracy, (T(25)=1.82, p = 0.08, BF = 1.07), significantly larger PMF slopes s
(T(25)=2.60, p = 0.02, BF = 4.04), and no effects for the threshold, guess, and lapse rate s
(all p>0.18, BF: 0.43, 0.61, 0.29, respectively). a07

To parallel the analysis of delta phase angles reported below, we also computed a 4
logistic regression for the behavioural data, for the participants from the EEG sample 4
only, with the predictors pitch difference (Apitch), condition, and their interaction 4o
(plus random effects for all three). The analysis confirms the results described above,
namely a significant main effect for Apitch (p < 0.001), no main effect for condition
(p =0.9), but an interaction between Apitch and condition (p < 0.01), that is, a slope  u:3
effect (see Figure [4A). a1

Finally, we assessed to what extend the predictability manipulation had been s
noticed by participants. During debriefing, no participant spontaneously reported s
to have noticed the manipulation of temporal predictability. Four participants from
the behavioral and eight participants from the EEG sample said they had noticed the s
manipulation after the experimenter explained the it. 16 (70%) of the behavioral and 41
17 (65%) of the EEG participants guessed correctly whether the high or low tones 4
were temporally predictive in their case. Neither the participants who recognized
the manipulation once it was explained, nor the ones who guessed correctly which s
tones were temporally predictive in their case showed a larger behavioral slope dif- 23
ference than the other ones (one-tailed Wilcoxon signed rank test, p=0.88, p=0.94,
respectively). This suggests that the fact that participants were able to recognize the s
manipulation once it was explained did not reflect active engagement in timing during s
the experiment. a7

Temporal predictability affects both, standard- and target-evoked .
event-related potentials: 2

Standard-evoked activity: Event-related potentials were examined time-locked to  ax
the standard-tone (Figure ). Both conditions showed a negative deflection between
0.1-0.2 s after the standard onset, with a peak at 0.16 s and a fronto-central topography.
We refer to this component as the standard-evoked N1. We observed a significant 4
difference between conditions in the time window of the late N1/ early P2 component, 4
where amplitude was more negative for standards that were temporally predictive s
of the onset of the target (predictive condition; 0.21-0.26 s, p = 0.02). This difference s
is important in that it shows that standard tones were processed differently if they
served as a temporal cue for the target onset versus did not serve as a temporal cue. s
The latency and topography of the standard-evoked N1 (not the time-range in which 43
the difference was found which was slightly later) was used for the analysis of phase o
angles described below. When directly comparing the ERPs evoked by the 550 versus s
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950 Hz standards (randomly assigned to the predictive and non-predictive condition 4
over participants), there was no statistically significant difference in the early time 4
window following the standard tone. as4

A ERP (Fz), time-locked to standard tone
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Fig 2. Event-related potentials. A. ERPs time-locked to the standard tone: Left:
The predictive condition (green line) evoked a more negative N1 than the non-
predictive condition (blue line). The fine blue and green lines depict single participants’
ERPs. The inset shows the topographies in the time windows of 0.1-0.2 s and 0.2-0.3 s
for both conditions separately. Right: condition difference. The grey shades indicates
the two-sided 95% confidence interval, estimated from the t-distribution. The cyan
shade marks the time points at which a significant condition difference occurred, and
the topography shows the scalp distribution of the activity during these time win-
dows. Channels at which the difference was significant are marked in black. B. ERPs
time-locked to the target tone: Left: The predictive condition (green line) evoked
an earlier N1 than the non-predictive condition (blue line). The upper inset shows
the topographies in the time windows of 0.1-0.2 s and 0.2-0.3 s for both conditions
separately. The lower inset exemplary depicts the target-evoked ERP for the 20%
longest, intermediate, and 20% shortest foreperiods. Right: condition difference. The
cyan and pink shades mark the time points at which a significant condition difference
occurred, and the topographies show the scalp distributions of the activity during
these time windows.

Target-evoked activity: Event-related potentials time-locked to the target-tone (Fig- s
ure[2B) also showed a negative deflection between 0.1-0.2 s after the target onset, s
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with a fronto-central topography. We refer to this component as the target-evoked 4
N1. For targets in the predictive condition, the N1 was larger (0.09-0.14 s, p = 0.02). s
Importantly, the difference is not solely due to the onset time of the target (see insetin  as
Figure 3B), which would be reflected by a difference only for long or short foreperiods s
in the non-predictive condition. as1

To test for an apparent latency shift in the N1 between the non-predictive and 4
predictive conditions, we computed the half-area measurement [60], which indexes s
the time-point at which half the area of a deflection has been reached. Compared to s
peak-latencies, this measure accounts better for asymmetric deflections. We found s
a significantly earlier N1-latency for the predictive, compared to the non-predictive s
condition (Cz, 0.13 s versus 0.15 s; T(23)=3.03, p < 0.01). 457

Furthermore, there was an amplitude difference at a later positive prolonged s
component, which was positive at posterior and negative at frontal electrodes (0.20- 45
0.45s, p<0.01; 0.28-0.36 s, p = 0.02). For reasons of visualization, the inset in Figure2B 4o
(manuscript, p[T3) depicts only the 20% longest and 20% shortest foreperiods, while s
when depicting all five bins (see Figure 92), the picture looks more gradual in that e
the second-longest bin has a somewhat larger P2 component then the intermediate s
foreperiod bin. a64

When computing the analysis using only trials with foreperiods >1.75 s (and s
equating the number of trials in the predictive condition for a fair comparison), the s
early cluster and the later frontal clusters remained (0.09-0.14 s, p = 0.04; 0.25-0.37 s, 4s7
p = 0.008, marked in light blue in Figure 2B, right panel). When running the same s
analysis on the trials <1.75 s, we again found the early cluster (0.08-0.14 s, p = 0.01), 4
and the later posterior cluster (0.16-0.49 s, p<0.001, marked in pink in Figure [2B). o
These findings show that the early difference was not driven by the shorter or longer s
foreperiods separately, but resulted from temporal predictability per se. The positive
difference at posterior channels (cluster marked in pink in Figure[2B), however, was
driven by the short foreperiod trials, and the negative difference at frontal channels 4
(cluster marked in light blue in Figure[2B) was driven by the long foreperiod trials. a75

No condition differences in delta (1-3 Hz) power or ITC during the .
foreperiod 7

We assessed power in a frequency range between 0.5-34.5 Hz for the predictive 45
and non-predictive conditions (see Figure ), time-locked to standard onset. Both 4
conditions showed an increase in power in the delta-range (1-3 Hz, Figure BB) after s
standard onset, and a prolonged increase in the alpha-range (8-12 Hz) relative to s
baseline. We found no statistically significant power differences between conditions s
differences at the cluster level (see Figure ). 483

ITC across the 1-10 Hz range did show the expected increase following the s
standard tone, ranging from 1-10 Hz, and a prolonged increase in the delta band in 4
both conditions (Figure3[C). However, when comparing inter-trial phase coherence s
(ITC) for all frequencies between conditions, no significant differences were observed. s
A hypothesis-driven cluster test restricted to the delta frequency band (1-3 Hz) revealed 4
a non-significant cluster of enhanced delta ITC (Figure S3} 0.85-1.1s, 1.5-2.5Hz, p= 4
0.19). This shows that there delta ITC increased nominally, albeit not significantly in the 0
predictive condition, but likely the effect is too weak either because of signal processing s
constraints (muting of target-evoked activity), or the absence of an entraining rhythm. 4
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Fig 3. Time-frequency representations. A. Power, time-locked to standard-
onset. Power estimates were baseline-corrected to the pre-standard interval and
display relative change. Top panel: non-predictive condition, bottom panel: predic-
tive condition. The topographies show the power scalp distributions in the interval
from 0.2-0.4 s for frequencies from 1-3 Hz. B. Delta power (1-3 Hz) over time for
the non-predictive (blue) and predictive conditions (green). Fine lines depict single
participants’ power values. C. Power-difference between conditions (T-values). No
significant condition differences were found. D. Inter-trial phase coherence (ITC),
time-locked to standard-onset. Top panel: non-predictive condition, bottom panel:
predictive condition. The topographies show the ITC scalp distributions in the interval
from 0.2-0.4 s for frequencies from 1-3 Hz. E. Delta ITC (1-3 Hz) over time for the
non-predictive (blue) and predictive conditions (green). Fine lines depict single partici-
pants’ ITC values. F. ITC-difference between conditions (T-values). No significant
condition differences were found.

Standard-evoked delta phase angle predicts pitch discrimination .
sensitivity 04

To test whether delta oscillations play a role in temporally predictive processing in this s
study, we tested for a relation between delta phase angles and pitch discrimination s
performance using a logistic regression approach (see Figure 4B for a schematic
depiction). A timing mechanism that predicts the onset of the target tone would have 4
to start timing at the standard tone, which acts as a temporal cue, which is why we
were particularly interested in this time window. Such a mechanism could possibly be s«
implemented via a phase reset of an ongoing delta oscillation. 501

Phase angles in the post-standard time window (0.14-0.18 s) were extracted by s
applying the Hilbert transform to band-pass filtered (1-3 Hz) single trial data with one s
virtual channel (see Methods for details) representing the sum of all channels weighted o
by the N1-topography. We subjected the phase angles (as their sine and cosine) to s
a logistic regression with two numerical predictors, the normalized pitch difference o
between standard and target tone, and the standard-evoked phase angle, plus their so
interaction. To assess significance of the interaction effect, we used a permutation  se
approach. We found a significant interaction between pitch and phase angle, which s
indicates that the slope of the psychometric function varied depending on the delta s
phase angle evoked by the standard tone (Figure [4 C). The interaction effect was s
significant only for the delta band (1-3 Hz), but not for other frequency bands tested s
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(0.5-2 Hz; 4-7 Hz; 8-12 Hz; 15-30 Hz; Figure [4] D). Note that this procedure was s
performed on all trials, without separation into conditions, and thus is generally valid, s
both for trials on which the standard served as a temporal cue and trials for which it = sis

did not. 516
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Fig 4. Delta phase angle predicts pitch discrimination sensitivity. A. Replication
of the behavioural effect (s. Figure[T) with a logistic regression approach. Model pre-
dictions from the logistic regression with the predictors pitch (abscissa) and condition
(colors). As illustrated by the bar-plot, there was a slope difference between conditions
(i.e. an interaction between pitch and condition), with steeper slopes for the predictive
condition. B. Schematic depiction of the delta phase angle analysis. We extracted
the time domain data from single trials, from one virtual channel that reflects the
weighted sum of the standard-evoked N1 topography (computed in the interval from
0.14-0.18 s), band-pass filtered (1-3 Hz) and applied the Hilbert transform, to extract
the instantaneous phase angles in the time-window of 0.14-0.18 s (the N1-peak).
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Fig 4. (Continued from previous page.) C. Effect of delta phase angle on pitch
discrimination sensitivity: Model predictions from the logistic regression model
with the predictors pitch (abscissa) and phase angle (colors, binned only for visual
display). There was a significant interaction between pitch and phase, that is the slopes
of the psychometric functions differed depending on delta phase angle (depicted in the
bar plot). Note that this analysis was performed on all trials, without separation into
conditions. The inset on the bottom right side shows the observed interaction weight
(in black) compared to a permutation distribution and its 99% confidence interval
(in grey). D. Pitch x phase interaction and confidence intervals for different
frequency bands. The grey bar shows the 99% confidence interval, the black bar the
observed weight. Only for the delta band (1-3 Hz) the observed weight significantly
exceeded the permuted weights. E. Distribution of conditions over phase angles.
Conditions were coded as -1 for the non-predictive and 1 for the predictive condition,
therefore an equal distribution of conditions over phase angle bins should result
in an average condition (colored bars) of 0, which was not the case. Instead, more
trials from the predictive condition occurred at the phase angles that were related
to a steeper slope of the psychometric function (panel C). F. Upper panel: Pitch x
phase interaction over time, separated by condition. The thick lines indicate the
regression weights for the interaction over time for the predictive (green) and non-
predictive condition (blue), the thin lines and grey shade indicate the 99% confidence
interval computed with the permutation approach. Lower panel: Condition x pitch
x phase interaction over time. The three-way interaction was significant only in the
pre-target time window, indicating that only in the predictive condition delta phase
angles predicted pitch discrimination performance during this time. 517

518

Next, we tested whether the interaction between delta phase angle and pitch discrimi- s
nation sensitivity was specifically driven by our manipulation of temporal predictability. s»
We examined the regression weight for the interaction at different time points over the  sx
trial, and independently for the predictive and non-predictive conditions. This analysis sz
(Figure[dF, upper panel) showed that the interaction effect between delta phase angle sz
and the slope of the psychometric function was was significant (i.e. exceeded the 99% s
confidence interval of the permutation distribution) only for the predictive condition, s
and occurred at two time points: after the standard tone (around 0-0.4 s), and prior to s
target onset (around 1.1-1.4 s). We therefore conclude that the interaction effect was  s»
mainly driven by the predictive condition. 528

The three-way interaction between condition, delta phase angle, and pitch dis-  s»
crimination sensitivity was significant only in the later time window (Figure [4F, lower s
panel). A supplementary analysis testing the effect of different foreperiods (target on- sx
set times) on delta phase angles in the non-predictive condition (Figure $4), confirmed s
that phase angles in the time ranges in which we observed the above-described effects s
were not affected by the different target offsets in the non-predictive condition. 534

We also assessed the relationship between phase angle (binned into 6 bins for this s
purpose) and condition (indexed as -1 for the non-predictive and 1 for the predictive s
condition; Figure [4] E). If the trials would be equally distributed over conditions per s»
phase angle bin, this should result in an average condition of O at all phase angles, s
which was not the case. Instead we found more trials of the predictive condition to s
occur at the phase angles at which we had found the higher slopes (Figure[d|C), which s«
suggests that phase angles varied between the two conditions. A post-hoc test for = sa
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a quadratic effect of phase bin on condition (computing a generalized linear model s«
predicting condition from phase bins) yielded only a marginally significant weight for s
this contrast (p = 0.09). We thus conclude that there is no meaningful phase angle s«
difference between conditions at the population level. 545

Additional analyses 546

Oscillatory versus 1/f activity. To test for the presence of oscillatory activity in s
the delta band, we subtracted fractal power spectra (obtained using the irregular s
resampling method [IRASA; (58] from the total power spectra. The results (depicted in s
Figure[5} see also 95) show that power spectral density (PSD) computed from single sz
trial data was higher in the 1-3 Hz range compared PSD computed on the ERP and s
simulated data, albeit no clear peaks can be found in the delta range (Figure 5p). If  ss
anything, the PSD computed on single trial data has a small peak around 1 Hz, while  ss
the PSD of the ERP has two smaller peaks at 3 and 4 Hz. When computing the same s
analysis on pre-stimulus data (from the ISI, 3 s signals), we observe residual oscillatory s
activity in the 1-3 Hz range (Figure [5B). While it is difficult to completely separate s
oscillatory from 1/f activity at slow frequencies - and to our knowledge, no previous ss
study showed a clear oscillatory peak in the PSD in the delta range - our analyses ss

suggest some oscillatory activity in the delta band. 559
A oscillatory spectrum, whole epoch (-3-6 s) B oscillatory spectrum, inter-trial interval (-3—0 s)
0214 BHz

5 = . -- oscillatory

3 S, ! spectrum

5 1] X

g S |
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. — trial data : .
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S — simulated 1/f2 < I\.L_”," .....
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Fig 5. Testing for oscillatory activity in the 1-3 Hz range using the irregular
resampling method. A: from single trial data (red), trial-averaged data (blue) and
simulated brown noise (thick lines: average, fine lines: single participants). The left
panel shows the oscillatory activity, obtained by subtracting the fractal PSD from the
total PSD. The inset magnifies the delta frequency range from 1-3 Hz, and the shaded
areas show 99% confidence intervals computed from a t-distribution. The difference
between the red and blue lines shows that single trials contain additional, non-phase
locked oscillatory activity in the 1-3 Hz band as compared to the ERP (trial average).
B: Oscillatory spectrum obtained from resampling the pre-stimulus time window (3 s,
taken from the ISI). Note the residual oscillatory activity in the 1-3 Hz range.

Mediation analysis. We also considered mathematically the possibility that delta s
phase angle in the post-cue time window would mediate the effect of temporal pre- s«
dictability on pitch discrimination sensitivity, by comparing the regression weight of e
the interaction between pitch and temporal predictability estimated from a model e
with no other predictors (as depicted in[47), and from a model that additionally con- s«
tained an interaction term for pitch and phase angle [61}(62]. The negligible change in  ses
weight between both models (0.307 to 0.304) indicates that there is no evidence fora s
mediation effect. 567
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Delta phase versus ERP effect. To distinguish between the ERP effect (found on the s
N1) and the delta phase effect, we tested whether the N1 amplitude could explain the  se
findings. Computing the same logistic regression model with the N1 amplitude instead s
of the phase angles as above revealed no significant interaction effect (p = 0.15), i.e. s
the N1 amplitude does not predict pitch discrimination performance on single trials  s»
and can thus not simply replace the delta phase angle. However, the N1 amplitude s
correlated significantly with the standard-evoked phase-angle at all frequency bands, s
as assessed by a circular-linear correlation [from the Directional package in R 63]; R?: s
0.5-2Hz: 0.21, 1-3Hz: 0.27, 4-7Hz: 0.06, 8-12Hz: 0.056, 15-30Hz: 0.004 (all p-values s«
<0.001). 577

Discussion

In this study, we asked whether human listeners use strictly implicit temporal contin- s
gencies in auditory input to form temporal predictions. If so, how are these predictions s
represented endogenously? We implicitly manipulated temporal predictability by vary- s
ing the foreperiod (i.e., the interval between standard and target tone) in a pitch s
discrimination task. Unbeknownst to participants, one of two possible pitches used as s
the standard tone was indicative to one of two foreperiod distributions, respectively: ss
drawn either from a uniform distribution, under which the onset of the target toneis  sss
unpredictable, or from a single-valued distribution under which the onset of the target ss
tone is fully predictable. 587

The data contain several indices that participants did form temporal predictions: s
an increase in pitch discrimination sensitivity in the predictive condition and condition  ss
differences in the evoked response to standard- and target tones. However, contrary s«
to our initial hypothesis, classical time-frequency analyses revealed no differences s
in power or inter-trial phase coherence in slow oscillatory frequencies. Yet, a direct s«
analysis of delta phase angles shows that the phase of delta oscillations in response to  ss
the standard tone and in the pre-target time window is indicative of pitch discrimina-  se
tion performance. This is evidence that delta-oscillatory neural phase does encode  sss
endogenous temporal predictions. 596

Implicit temporal predictability improves pitch discrimination -
sensitivity so8

Behaviourally, we observed an increase in pitch discrimination sensitivity in the tem- s
porally predictive condition, reflected in a steeper slope of the psychometric function e
(Figure[T). Even though the absolute difference in behaviour is not large, we observed o
a robust set of converging effects of temporal predictability on response times, ac- e
curacy and slopes (49 participants). These suggests that listeners can implicitly learn e
to associate interval-based temporal predictions with sensory stimulus features like o
pitch, underlining the relevance of timing to human cognitive processing. 605

Importantly, participants were not made aware of the predictability manipula- s
tion, and no participant was able to correctly describe it during debriefing. About 25% e
of participants were able to recognize the manipulation after it was described by the e
experimenter, but did not show a larger behavioural effect, suggesting they had not e
actively engaged in timing. 610
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To our knowledge, this is the first study to show that pitch discrimination sensi-
tivity is improved by implicit but non-rhythmic temporal predictions. In the auditory .
domain, detection speed and performance are facilitated by rhythmic temporal pre- &
dictability [7, 18,19, [9, 64], but the use of detection tasks might underline the timing e
aspects of the task. One previous study ([24]) showed that shorter presentation times s
(difference of about 6 ms) are needed for to achieve correct pitch discrimination s
performance, when the target tone occurs with a block of constantly short foreperiods. -
Complementing these previous findings, we show that implicit temporal predictability &
improves auditory perceptual processing in absence of an embedding rhythm, or any e
explicit incentive to engage in timing. 620

Temporal predictions affect neural processing of predictive and .
predicted tones o2

Predictive tones (standards). An important indicator for the successful extraction e
of temporal predictability is the difference in event-related potentials evoked by e
predictive and non-predictive standard tones (Figure [2A). It suggests that participants s
learned to associate the pitch of the standard tone to temporal predictability, and s
flexibly used the standard as a temporal cue on a trial-by-trial basis. 627

Few studies have investigated effects of predictability on the early sensory s
processing of a cue stimulus itself. In spatial cueing, there is evidence for an effect
of predictions on early positive and negative cue-evoked components [100-200 ms  ex
post cue; 65} 66, [67]. In the temporal domain, there is, to our knowledge, only one
study that showed an N1-effect directly at the cue [in 8-12 years old children; [68]. e
Our results are in line with this finding and reveal that the cue-evoked N1 in adults is e
affected even by implicit temporal predictability. 634

Predicted tones (targets). Inresponse to target tones, we found a larger and faster e
N1 in the predictive compared to the non-predictive condition, suggesting a facili- s
tation of sensory processing of temporally predicted targets (Figure[2B). This result &
corroborates a large base of studies reporting mainly amplitude effects of temporal s
predictability in sensory evoked potentials [69][70] 7172} 73| 74, [75| [76] [77]. The direc- e
tion of amplitude effects varies with the paradigm used [for an extensive discussion e«
see[78] - for probabilistic foreperiod variations as used here, both, reduced [79,80] e
and enhanced N1 amplitudes [81] have been reported. 642

The observed latency-shift of the N1 by temporal predictions is in line with one e
previous study using a manipulation of foreperiods [82], and one study on rhythmic s
temporal predictability [10]. Further evidence comes from experiments reporting a e
faster N1 for auditory speech and non-speech events combined with visual events [83] e
84, [85] 186]. Note that in our study, the predictive information conveyed by the cue &
was purely temporal, since the pitch of the target tones was unpredictable. In sum, es
the facilitation of the N1 suggests that temporal predictions alone can enhance early e
auditory processing. 650
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Implementation of temporal prediction through slow neural oscil-
lations 652

A central aim of this study was to assess the role of slow neural oscillations for an s
endogenous representation of temporal predictions. Previous studies convincingly s
established a mechanism of facilitation of sensory processing via phase alignment s
of delta oscillations for stimuli that occur during the preferred phase, i.e. in syn- s
chrony with the preceding rhythm [16] 132} 33} 64} [87]. An open question is however, s
whether the alignment of slow neural oscillations towards predicted stimulus onsets s
is contingent on rhythmic entrainment to the exogenous stimulation, or whether s
slow oscillations also implement endogenous temporal predictions, for example via e
single-trial phase-resets. 661

We found no robust condition differences in oscillatory power or phase using e
classical time-frequency analyses (see Figure[3). The absence of condition differences &
in phase coherence during the foreperiod (Figure[3F) replicates our previous results [6] s
and suggests that enhanced phase coherence [5][35] depends on dedicated or resid- e
ual periodicity in the stimulation [89], and/or overt engagement in timing [T1]. As s
a side note, it is important to emphasize the methodological challenge of analysing e
low frequency oscillations in the pre-target window. The probabilistic manipulation s
of foreperiods as applied here results in differential time-locking of target activity s
between conditions, and our conservative approach of removing this activity might e
have weakened existing pre-target differences through back-smearing of the muted
activity. Here, a nominal increase in delta phase coherence was found in the predic- &2
tive condition (Figure 3), but failed to pass the threshold for statistical significance, &z
suggesting that a phase coherence effect is not fully absent in non-rhythmic temporal e
predictions, but not strong enough to be measured with the available techniques. Thus, s
the representation of temporal predictions by enhanced phase coherence - or at least &
our ability to measure it in human EEG - is likely contingent on rhythmic stimulation. e~

Crucially, we found that the absolute phase angle of the delta oscillation in s
auditory areas shortly after the temporal cue predicted behavioural sensitivity in e
response to the later-occurring target tone (see Figure[4[C). The effect was observed o
for data spatially filtered with a topography relevant for auditory stimulus processing  es
(from the N1), suggesting auditory cortex as the most likely generator. Furthermore, o
the effect was specific for the delta band (1-3 Hz) with the highest sensitivity occurring s
at phase angles closest to the trough of the delta oscillation (+) at the cue and about e
1.4 s post-cue (average period of 0.5 s). Albeit interpreting the absolute phase angle s
from EEG data demands caution, this corroborates the idea that the trough of the s
delta oscillation is a particularly beneficial state for auditory perception [39]90]. 687

This relationship between delta phase and behavioural sensitivity held across s
all trials, regardless of their experimental condition. However, a follow-up analyses s
per condition found this relationship between delta phase angle in the post-cue time e
window and behavioural sensitivity to occur only in the predictive condition (Figure[dF, e
upper panel). 692

To test whether the relationship between delta phase and behavioural sensitivity e
differed statistically between conditions, we computed the three-way interaction e
between pitch, delta phase angle, and condition (4F, lower panel), which proved s
significant only during the pre-target time window. Presumably, low statistical power s
for this particular analysis prevented us from confirming the condition difference in the e
post-cue time window, which is apparent when analysing both conditions separately s
(4F, upper panel). Tentatively interpreted, this finding suggests that delta phase in s
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the post-cue time window affects behavioural sensitivity in both conditions, while the 70
effect found in the pre-target time window is specific to the predictive condition only. o

An important question is to what respect the observed phase effect reflects truly 7
oscillatory activity, rather than a modulation of the evoked response to the standard or 73
target tones. Admittedly, temporal smearing occurs due to the long analysis windows 7
needed to capture slow oscillations. Importantly, the contingency between delta phase s
angle and auditory sensitivity re-occurs in the pre-target time window at around 1.4s s
and does not rise monotonically into the post-target window. Therefore, it is highly
unlikely the effect resulted from back-smearing of target-evoked activity. 708

The observed phase effect is specific to the frequency range identified by the 7o
above-cited studies, rather than resulting from broad-band activity - as one would 7o
have expected from a purely evoked effect. The effect is strongest in the 1-3 Hz
range, and not at the frequencies that would reflect the stimulation (0.57 Hz for the 7
intermediate foreperiod of 1.75 s), which is in line with a study that showed selective 73
entrainment at 1.33 Hz despite stimulation at 0.67 Hz [91]. These findings align with 7
the assumption that auditory processing fluctuates with the phase of delta oscillations s
in the absence of evoked activity [11] 38} 39]. 716

Not least, additional spectral analyses suggest some oscillatory activity in the 77
delta band after subtracting the 1/f spectrum, which is not explained by the ERP (see 73
Figure[5land 95|for comparison of the spectra). We further showed that the N1 ampli- 75
tude itself does not show the critical relationship with behavioural sensitivity, although 70
the two measures correlate, arguing for a more specific role of delta oscillations in
temporal prediction. In fact, the ERP might at least partially result from a reset of
ongoing neural dynamics by the onset of a stimulus [92]. 723

Taken together, these findings speak towards a dedicated mechanism that 7
exploits temporal predictability in the auditory domain via a phase shift of auditory- s
cortical delta oscillations. 726

Clearly, this per se is not proof of a causal chain from temporal predictability 7
via optimized phase angle of delta oscillations to increased auditory sensitivity. While 7
not state of the art in neuroscience, our analysis did fail to establish hard statistical evi- 7
dence for such a mediation effect. Possibly, different steps necessary to accommodate 7o
the complexity of our data in the model (dealing with the circular measure of phase 7
angle and assessing an interaction effect as a measure of behavioural sensitivity),
and the small proportion of variance explained by the experimental manipulation (a 7
common problem in cognitive neuroscience) might have prevented us from observing 7
a mediation effect [but see[93] for a successful example]. 735

As an alternative explanation, it is conceivable that the activity we observe 7
reflects the extraction of temporal predictions from the temporal cue, but that another 7
process is responsible for maintaining this prediction throughout the foreperiod s
interval to alert the system when it it is time to expect the target stimulus. For s
instance, this could be achieved via top-down projections from auditory areas towards 7o
thalamic and thalamostriatal pathways described as crucial for auditory timing [29](94], 7
converging with an instrumental role of the striatum in explicit timing [95]. 742

In sum, our findings underline the relevance and specificity of delta oscillations 7
for an endogenous representation of temporal predictions. The adjustment of phase 7
angles at the cue can be seen as the initiation of a timing process, which prepares the s
system to be in a beneficial state at an anticipated time point, resulting in an optimized ¢
delta phase angle prior to target onset. 747
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Conclusions 748

Human listeners do use strictly implicit temporal contingencies to better performin s
a sensory task for which timing is not an explicit requirement. Here, we assessed o
how temporal predictions are implemented in neural dynamics by combining psy- 7
chophysics and EEG data. We found endogenous temporal predictions for audition 7
to be reflected in the phase of delta oscillations, likely via an optimized phase reset
of delta oscillations in auditory areas evoked by a temporal cue. These results point 7
towards an instrumental role of delta oscillations in initiating temporal predictions, s
even in the absence of an entraining rhythm. 756
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Supporting information
S1 Fig.: Slope effect at intermediate foreperiods 758
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Fig. S 1. Slope effect at intermediate foreperiods. A. Psychometric curves, fitted
only at a small range of intermediate foreperiods. B. Slopes for the predictive and
non-predictive conditions at intermediate foreperiods only. This additional analysis
was performed to rule out the possibility that the slope effect was solely driven by the
shortest and longest foreperiods in the non-predictive condition.

S2 Fig.: Target-evoked ERP by foreperiod 75
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Fig. S 2. Target-evoked ERP by foreperiod. Target-evoked ERPs for the predictive
(green) and non-predictive (dark blue) condition. The trials for the non-predictive
condition were split into five foreperiod bins from the 20% shortest to the 20% longest
foreperiods (cyan to pink).
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S3 Fig.: Hypotheses-driven test for condition-differences in delta

ITC 761
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Fig. S 3. Hypothesis-driven cluster-test for a condition difference in delta ITC
We did not observe any statistically significant differences in delta ITC during the
foreperiod, but a hypothesis-driven test restricted to the delta band showed a cluster
that failed to pass the threshold for significance. This shows that there was nominally,
albeit not significantly increased delta ITC in the predictive condition, but likely the
effect is too weak either because of signal processing constraints, or its contingency
on an entraining rhythm.

S4 Fig.: Predicting the foreperiod from phase angles in the non- -
predictive condition 763
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Fig. S 4. Predicting the foreperiod from phase angles. We tested whether delta
phase angle time series in the non-predictive condition are affected by the different
target onset times (i.e. foreperiods). To this end, we computed a linear mixed effect
model, prediction foreperiod by phase angles, separately at each time point. Phase
angles were separated into their sine and cosine and the S.ompineq Was tested against a
permutation distribution (200 samples) for which the assignment between foreperiod
and phase angles was randomized. The result shows a relation between phase angles
and foreperiods in the time window between 0.5-1 s, but not in the time windows in
which the critical effects depicted in FigureElF were found.
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S5 Fig.: Power spectral density (PSD) computed using the irregular
resampling method 765
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Fig. S 5. Power spectral density (PSD) computed using the irregular resampling
method (IRASA; Wen & Liu, 2016). A: PSD of single trial data (red), trial-averaged
ERP data (blue) and simulated brown noise (green; thick lines: average, fine lines:
single participants). PSD were normalized by dividing all values by the maximum value
of the respective total PSD (trial data, ERP, and simulated data). Nine second data
snippets were used, time-locked to the standard tone. PSD was computed in sliding
windows of 3 sin 0.25 s steps, using fast a Fourier transform tapered with a Hanning
window for a frequency range of 0.33 - 25 Hz, without detrending. The left panel
shows the total spectrum, computed as the auto-power spectrum of the respective
input data. The middle panel shows the fractal spectrum, computed as the geometric
mean of the auto-spectra of the pairwise resampled time-series (using the default
resampling parameter: 1.1 to 1.9 with a 0.05 increment). The right panel shows the
oscillatory activity, obtained by subtracting the resampled PSD from the total PSD. The
inset magnifies the delta frequency range from 1-3 Hz, and the shaded areas show
99% confidence intervals computed from a t-distribution. B: Irregular resampling
computed in a inter-trial interval (3 s). Left: total (pink) and fractal (grey) spectra; right:
oscillatory spectrum with 99% confidence interval.
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