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Abstract

Can human listeners use implicit temporal contingencies in auditory input to formtemporal predictions, and if so, how are these predictions represented endogenously?To assess this question, we manipulated foreperiods in an auditory pitch discriminationtask: unbeknownst to participants, the pitch of the standard tone could either bedeterministically predictive of the temporal onset of the target tone, or convey nopredictive information. Predictive and non-predictive conditions were presentedinterleaved in one stream, and separated by variable inter-stimulus intervals such thatthere was no dominant stimulus rhythm throughout. Even though participants wereunaware of the implicit temporal contingencies, pitch discrimination sensitivity (theslope of the psychometric function) increased when the onset of the target tone waspredictable in time (N = 49, 28 female, 21 male). Concurrently recorded EEG data (N =24) revealed that standard tones that conveyed temporal predictions evoked a morenegative N1 component than non-predictive standards. We observed no significantdifferences in oscillatory power or phase coherence between conditions during theforeperiod. Importantly, the phase angle of delta oscillations (1–3 Hz) in auditoryareas in the post-standard and pre-target time window predicted behavioral pitchdiscrimination sensitivity. This suggests that temporal predictions can be initiated byan optimized delta phase reset and are encoded in delta oscillatory phase during theforeperiod interval. In sum, we show that auditory perception benefits from implicittemporal contingencies, and provide evidence for a role of slow neural phase in theendogenous representation of temporal predictions, in absence of exogenously drivenentrainment to rhythmic input.
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Author summary

Auditory environments come with an inherent temporal structure, which humanlisteners can use to predict the timing of future inputs. Yet, how these regularitiesin sensory inputs are transformed into temporal predictions is not known. Here, weimplicitly induced temporal predictability in the absence of a rhythmic input structure,to avoid exogenously driven entrainment of neural oscillations. Our results showthat even implicit and non-rhythmic temporal predictions are extracted and used byhuman listeners, underlining the role of timing for auditory processing. Furthermore,our EEG results point towards an instrumental role of delta oscillations in initiatingtemporal predictions, possibly by an optimized phase reset in response to a temporallypredictive cue.

Introduction 1

The human brain is constantly predicting its environment, and these predictions not 2only concern the where and what, but also the when of future events. Temporal 3statistics of visual and auditory input are extracted by the human cognitive system, 4and benefit perception and action [1, 2, 3, 4]. This process does not seem to require 5conscious awareness of the underlying temporal structure, meaning it occurs im- 6plicitly [5, 6]. Yet little is known about how temporal predictions are extracted from 7temporal regularities in sensory input, and how they are internalized in human brain 8dynamics. 9

Temporal predictions are often enabled by periodic structure in sensory input, 10especially in audition. Accordingly, rhythmic input structure has been shown to im- 11prove detection performance and speed [7, 8, 9, 10, 11]. Fewer studies have shown 12that rhythmic temporal regularities can also improve perceptual sensitivity (i.e. dis- 13crimination performance) in the auditory [12, 13, 14; but see 15], as well as the visual 14domain [16, 17]. It is, however, not trivial to disentangle mechanistic input-driven 15alignment of neural activity to rhythmic input from an internalized and endogenously 16activated representation of temporal predictions [4, 18, 37]. 17

To disentangle exogenous temporal predictions inferred from sensory inputs 18from their endogenous representation, we here induced temporal predictability by ma- 19nipulating the temporal statistics in a so-called foreperiod paradigm [19, 20]. This type 20of manipulation has been shown to increase visual perceptual sensitivity [5, 21, 22, 23]. 21In audition, predictable foreperiods have been found to speed up stimulus process- 22ing [24] and improve short-term memory performance [25, 26]. To our knowledge, 23no study has shown an effect of implicit non-rhythmic temporal predictability on 24perceptual sensitivity in the auditory domain. 25

To assess an endogenous representation of temporal predictions, we investigated 26the hypothesis that slow neural oscillations (in the delta/1–3 Hz and theta/4–7 Hz 27frequency bands) implement temporal predictions via endogenous phase-resetting and 28-shifting mechanisms. This hypothesis can be drawn back to the influential proposal of 29
Dynamic Attending in Time [DAT; 27, 28], suggesting that (auditory) attention fluctuates 30in phase with rhythmic input. A neural implementation of dynamic attending has 31been postulated through phase-locking of neural delta oscillations to rhythmic inputs, 32also termed entrainment. Entrainment reflects an internalization of the exogenous 33temporal structure, to align the most efficient brain states for sensory processing to the 34
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most likely time points for stimulus occurrence [32, 33]. Behaviourally, this results in 35fluctuations of performance in phase with the oscillation [11, 16, 29, 30, 31, 32, 33, 34]. 36

It is currently an open question to what extend entrained neural delta oscillations 37are a signature of processing rhythmic input, or whether they pose a more parsimo- 38nious mechanism of temporal prediction. Important evidence for an endogenous role 39of delta oscillations in auditory temporal attention comes from two studies showing 40that auditory processing fluctuates with the phase of spontaneously present delta 41activity in auditory cortex, in absence of rhythmic stimulation [38, 39]. 42

Furthermore, previous studies have shown that entrainment is subject to top- 43down modulation, shown by enhanced phase coherence of slow oscillations in antici- 44pation of temporally predictive input [11, 16, 35]. 45

Recently, studies have started to test whether the beneficial phase of an ongoing 46neural oscillation can be aligned in a top-down manner to an expected point in time, as 47an endogenously initiated temporal prediction, without an entraining stimulus struc- 48ture [5, 6, 40]. To our knowledge, only one study in the visual domain reported a role 49of slow oscillations in single trial temporal predictions [5, theta band]. Furthermore, 50a recent study [41] showed that delta phase in the target-onset time window reflects 51adjustments to previously encountered violations of temporal predictions in an explicit 52timing task. To date, to the best of our knowledge, no study has assessed whether 53oscillations implement implicit temporal predictions for audition. 54

Here, to investigate the role of neural oscillatory dynamics for an endogenous 55representation of temporal predictions in auditory inputs, in absence of rhythmic 56structures, we implicitly associated temporal predictability to a sensory feature of the 57standard tone in an auditory pitch discrimination task: the standard’s pitch could be 58deterministically predictive of the onset time (but not the pitch) of the target tone, or 59convey no predictive information. Temporally predictive and non-predictive conditions 60were presented interleaved in one stream, and separated by variable inter-stimulus 61intervals such that there was no dominant stimulus rhythm throughout. 62

We show that, behaviourally, temporal predictability increases pitch discrimina- 63tion sensitivity, assessed via the slope of the psychometric function. Concurrently 64recorded EEG data provide indices of temporally predictive processing in auditory 65cortex evoked by both the standard and target tone. Furthermore, we show enhanced 66delta power in the predictive compared to the non-predictive condition, and (by apply- 67ing an auditory spatial filter) a predictive relationship between delta phase angle in 68auditory areas during the foreperiod and pitch discrimination performance. Together, 69these results suggest an instrumental role of delta oscillations in forming temporal 70predictions. 71

Methods 72

Participants 73

In total, 51 participants were tested (23.6 years on average (SD = 3.5), 28 female, 6 left 74handed), 26 of which also underwent electroencephalography (EEG). All participants 75signed informed consent and received either course credit or payment for their par- 76ticipation (8 e per hour). The study was approved by the local ethics committee at 77the University of Lübeck. We excluded two of the participants who only underwent 78the behavioral testing, because of ceiling effects (their slopes for the psychometric 79
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function in one of the two conditions exceeded the mean of the slope distributions of 80all participants by more than 2.5 standard deviations). Furthermore, we excluded the 81EEG data from two participants who had blinked in synchrony with the auditory stimu- 82lation and for whom we were not able to separate blinks from the auditory evoked 83potentials during EEG preprocessing. The behavioural data of these two participants 84were kept in the analyses. 85

Stimuli and Procedure 86

The experiment was conducted in an electrically shielded sound-attenuated EEG booth. 87Stimulus presentation and collection of behavioural responses was achieved using 88the Psychophysics Toolbox [42, 43] under Windows 7. Responses were collected on 89a standard keyboard. All participants were instructed to use the index and middle 90fingers of the right hand. 91

Participants performed a pitch discrimination task, comparing tone pairs embed- 92ded in noise, as illustrated in Figure 1A. They were instructed to indicate after each 93tone pair whether the second tone was lower or higher than the first. 94

A black fixation cross was displayed on gray background throughout the whole 95block. Auditory stimuli were delivered via headphones (Sennheiser HD 25-SP II). 96Lowpass (5kHz) filtered white noise was presented constantly throughout each block, 97at 50 dB above the individual sensation level, which was determined for the noise 98alone at the beginning of the experiment using the method of limits. Pure tones of 99varying frequencies (duration 50 ms with a 10 ms on- and offset ramp), were presented 100with a tone-to-noise ratio fixed at −18 dB relative to the noise level. 101

The first tone, to which we will refer as the standard in the following was always 102at one of two frequencies: 550 or 950 Hz. The second tone, the target, was varied 103in individually predetermined steps around its respective standard. The same step 104size was used for both standards, but logarithmically transformed and multiplied 105with the standard frequency, to obtain a log-spaced frequency scale around each 106standard. To predetermine the step size, each participant was first presented with one 107experimental block to familiarize themselves with the task. Then, a second block was 108performed, and if pitch discrimination performance was below 65%, the tone-steps 109were increased, which was repeated up to three times. All participants reached the 110minimum performance level after minimally two andmaximally four rounds of training. 111As a result of this procedure, the average lowest target tone presented with the 550 Hz 112standard was 508.3 Hz (range 490.0–519.1 Hz), and the highest target tone 595.3 Hz 113(range 582.7–617.4 Hz); the lowest target tone presented with the 950 Hz standard was 114878.0 Hz (range 846.4–896.7 Hz), and the highest target tone 1028.3 Hz (range 1006.5– 1151066.3 Hz). The high and low tones never overlapped. In the behavioural experiment, 116eleven tone frequencies were used from the lowest to highest tone, including the 117standard; in the EEG experiment we used 7 discrete frequencies. 118

Critically, and unbeknownst to participants, we manipulated the interval between 119standard and target tones, the foreperiod, by either pseudo-randomly drawing forepe- 120riods from a discretized uniform foreperiod duration (11 foreperiods in the behavioral 121experiment and 7 in the EEG experiment, all ranging from 0.5–3 s, blue distribution in 122Figure 1 A), or used the same foreperiod duration (1.75 s, green distribution in Figure 1231 A). This resulted in one condition in which the target onset was perfectly predictable 124in time, the predictive condition, and one condition in which the target onset was 125maximally jittered, the non-predictive condition. To allow participants to implicitly 126
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Fig 1. Paradigm and Behavioural Results. A. Paradigm: Tone-pairs were presentedembedded in low-pass filtered white noise. Participants’ task was to judge whetherthe target tone (T) was lower or higher in pitch than the preceding standard (S).Unbeknownst to participants, the pitch of the standard tone was associated withpredictive (green) or non-predictive foreperiod intervals (blue). For the non-predictivecondition, foreperiods were drawn from a uniform distribution (upper right panel),while for the predictive condition, foreperiods were fixed at 1.75 s (lower right panel). B.
Accuracy and response times: Top: Accuracy improved significantly in the predictivecondition (left panel), which was nominally also true at the intermediate foreperiodonly (right panel). Bottom: Response times were faster in the predictive condition (leftpanel). The difference was driven by slower response times at short foreperiods onthe non-predictive condition (right panel) C. Averaged psychometric functions: Theslope of the psychometric function was steeper in the predictive compared to the non-predictive condition. There were no differences in threshold, guess rate or lapse rate.
D. Slopes for single participants: for the non-predictive (x-axis) versus predictive(y-axis) conditions. E. Thresholds for single participants: for the non-predictive(x-axis) versus predictive (y-axis) conditions.
dissociate the conditions, the foreperiod distributions were associated with one of 127the standard pitches, for example for one participant the 550 Hz standard was always 128followed by a predictive foreperiod and the 950 Hz standard was always followed by 129a non-predictive foreperiod. The assignment was counterbalanced over participants. 130The two conditions were presented interleaved, such that participants had to encode 131the standard pitch on each trial. Importantly, the manipulation of foreperiod intervals 132was strictly implicit, and participants were not informed about it. 133

To avoid build-up of a rhythm over trials, the inter-stimulus interval between 134a target tone and the standard tone of the next trial was drawn from a truncated 135exponential distribution (mean 1.5 s, truncated at 3 s) added to a minimum interval of 136
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3 s (resulting in values between 3–6 s). After the target tone, participants had 2 s to 137respond. The stimulation continued automatically, even if no response was given. 138

One block consisted of 22 trials in the behavioural (one repetition per tone step 139and condition), and 56 trials in the EEG experiment (4 repetitions per tone step and 140condition). In the behavioural experiment participants performed 20 blocks (440 trials), 141and in the EEG experiment minimally 12 and maximally 15 blocks (672–840 trials). 142Between blocks, participants could take breaks of self-determined length. Feedback 143was given per trial during the training, and at the end of each block (as proportion of 144correctly answered trials) during the main experiment. 145

After the experiment, all participants were asked the same four questions by the 146experimenter. First, the experimenter asked whether participants had noticed that 147the interval between the first and second tone of a pair was variable. Second, they 148were asked to describe whether they noticed any systematic variation therein. Third, 149they were told that either the low or high tones were always presented with the same 150separating interval and asked whether they noticed this. Fourth, they were asked 151to guess whether in their case the low or high pitch tones were the ones presented 152with the constant interval. Finally, they filled in a musicality survey [44]. The full 153experimental session lasted about 2.5 h. 154

EEG recording and preprocessing 155

EEG was recorded with 64 electrodes Acticap (Easy Cap) connected to an ActiChamp 156(Brain Products) amplifier. EEG signals were recorded with the software Brain Recorder 157(Brain Products) at a sampling rate of 1 kHz, using no online high-pass filter and a 158200 Hz low-pass filter. Impedances were kept below 10 kΩ. Electrode TP9 (left mastoid) 159served as reference during recording. Electrode positions were digitized. 160

EEG data were analysed using the Fieldtrip software package for Matlab (MATLAB 1612016a, MATLAB 2017a), and the lme4 package in R [45, 46]. First, we re-referenced the 162data to linked mastoids. Then we applied a low-pass filter to the continuous data [firws 163filter from the firfilt plugin, 47, cut-off 45 Hz, two-pass, transition bandwidth 3 Hz]. No 164high-pass filter was applied. For the time-frequency analysis, we produced a parallel 165version of the data, that was not filtered during pre-processing. Filtering two-pass as 166done for the analyses of event-related potentials might smear data back in time, which 167would be problematic for analyses in the pre-target time window [48, 49]. Filtering 168the data only in the forward direction, however, leads to phase shifts [47] which we 169wanted to avoid for the phase angle analyses. 170

Next, we epoched the data around the standard tone onset (−3–6 s), and down- 171sampled to 100 Hz. All data were visually inspected to mark bad channels that were 172interpolated (1.2 channels per participant on average). Then ICA were computed using 173the ’runica’ algorithm, with the number of output components adjusted by subtracting 174the number of bad channels. Blinks, muscular artefacts, and unspecific noise occurring 175temporarily in a channel or trial were excluded, using the semi-automatic inspection 176of ICA components provided by the SASICA toolbox for fieldtrip [50] and removal of 177these (on average 33.7 components per participant). 178
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Analyses 179

Analyses of the behavioural data 180

We analysed accuracy as proportion correct (after removing trials in which the standard 181and target were equal in pitch) and response times, defined as the interval between the 182onset of the target tone and the registered button press. Response times shorter than 1830.2 s were considered outliers and removed. We compared accuracy and response 184times between conditions and over foreperiods for the non-predictive condition. Tone- 185steps and foreperiods used in the behavioral experiment were binned to reduce the 18611 steps used to 7 as in the EEG-experiment. 187

To obtain a measure of pitch discrimination sensitivity, we fitted psychometric 188functions to model participants’ responses in the pitch discrimination task, using 189bayesian inference, implemented in the Psignifit toolbox for Matlab [Version 4, 51]. 190The psychometric function describes the relationship between the stimulus level (on 191the abscissa, here: the difference in pitch between the target and the respective 192standard tone) and the participant’s answer (on the ordinate, here: proportion of 193trials on which the target pitch was judged as higher). To accommodate the different 194standard tones per condition, and the individual pitch steps obtained during the 195training, we normed the discrete pitch differences per participant and condition to 196range between -1 and 1, with 0 being the pitch of the standard tone. 197

To select the options for the psychometric function (logistic versus cumulative 198normal function, number of free parameters), we assessed deviance pooled for both 199conditions. Deviance reflects a monotonic transformation of the log-likelihood-ratio 200between the fitted model and the saturated model (a model with no residual error), 201allowing for an absolute interpretation, or a comparison between different models 202[52]. The best fits (i.e. lowest deviance, 3.80 for the best model) were obtained by 203fitting a cumulative normal function with four free parameters: threshold, slope, guess 204rate, lapse rate. 205

For a yes-no-task as the one used here, threshold indicates the stimulus level 206at which a participant is as likely to judge the stimulus as ’low’ or ’high’. Divergence 207from the actual midpoint of all stimulus levels (here: 0) can be thus be interpreted 208as a response bias. Slope reflects the amount of stimulus change needed to increase 209the proportion of responding ’high’, and can be interpreted as the sensitivity of the 210listener. The guess rate indicates the proportion of answering ’high’ for the lowest 211pitches in the tested range, and the lapse rate the proportion of answering ’low’ for the 212highest pitches, that is they reflect the errors made by the listener at different target 213tone frequencies. 214

We used Psignifit’s default priors for the threshold, slope, guess, and lapse-rates, 215based on the given stimulus range [51, p.109]. Psignifit’s version 4 fits a beta-binomial 216model (instead of a binomial model), which assumes that the probability for a given 217proportion of answers is itself a random variable, drawn from a beta distribution. This 218has been shown to provide better fits for overdispersed data, that is data in which 219answer probabilities over blocks and trials are not independent as assumed by the 220conventional model. 221

We fitted psychometric functions to each individual’s data separately per condition 222and compared the resulting parameters between conditions (threshold, slope, guess- 223and lapse rates) using two-sided t-tests. Additionally, we calculated Bayes Factors for 224all statistical tests, using the Bayes Factors package for Matlab [53]. 225
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Additionally, we computed a logistic regression on the single-trial responses of 226the pitch-discrimination task, to parallel the analysis of delta phase angles performed 227for the EEG (see below). Pitch difference and condition were used as interacting fixed 228effects (with random intercepts and random slopes for both predictors and their 229interaction), using the lme4 package in R [function glmer, 45] with a binomial link 230function. 231

Event-related potentials 232

We examined the time-domain data with respect to responses evoked by standard 233and target tones, contrasting the predictive and non-predictive condition. For the 234standard-evoked response, we detrended the data based on the whole epoch and 235applied baseline correction from −0.1–0 s pre-standard. We only examined the time- 236window between standard onset and 0.5 s after, because this was the maximal interval 237in which no target events occurred (earliest target onset was 0.5 s in the non-predictive 238condition). For the target-evoked response, we first applied detrending and the same 239pre-standard baseline to standard-locked epochs, and then re-epoched to the target 240event. We examined the time interval from −0.5–0.5 s around the target event. We 241averaged over trials within participants and condition, and then over participants, to 242obtain the average event-related potential (ERP, depicted in Figure 2). 243

To test for statistically significant differences in the time-domain data, we applied 244cluster permutation tests on two levels. First, we contrasted trials from the non- 245predictive and predictive condition within each participant using independent samples 246regression implemented in FieldTrip (ft_timelockstatistics). This resulted in regression 247coefficients (betas) for each time-electrode data point for the ERPs. Next, the group- 248level analysis was performed with a dependent samples t-test to contrast the betas 249from the subject-level analysis against zero. A permutation test (5000 Monte Carlo 250random iterations) was performed with cluster-based control of type I error at a level 251of α=0.05 as implemented in FieldTrip. The condition assignment (i.e. whether the 252predictive condition was presented at the low or high pitch tones) was added as a 253control variable. This analysis resulted in time-electrode clusters exhibiting significant 254condition differences in the ERPs. 255

Time-frequency representations 256

Time-frequency representations were computed for epochs time-locked to the stan- 257dard tones, separately for the predictive and non-predictive condition. We performed 258this analysis on trials with foreperiods equal or longer then 1.75 s only to avoid evoked 259activity from target onsets occurring early in the non-predictive condition. We matched 260the smaller number of trials available from the non-predictive condition, by randomly 261sampling the same number of trials from the predictive condition. To obtain stable 262results, we repeated the random sampling 50 times and averaged over the resulting 263time-frequency representations. Additionally, we ruled out potential back-smearing 264of evoked activity related to target-onset by replacing all data points after 1.75 s by 265the value at this time point for the respective trial and channel before performing the 266time-frequency transformation. 267

Data were transformed to time-frequency representations for frequencies ranging 268from 0.5 to 34.5 Hz (linear steps, 1 Hz) and time points between −0.5–2.5 s, using 269convolution with a single adaptive Hanning taper with frequency-dependent time 270
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windows (increasing linearly from 2 to 4 cycles per frequency). To provide sufficiently 271long data epochs for the lowest frequencies, we appended the epochs (−3–6 s, time 272locked to the standard tone) with their inverted and right-left flipped version to the 273left and right before applying the time-frequency transform. 274

Power estimates were extracted as the squared modulus of the complex-valued 275Fourier spectra and baseline corrected to relative change (first subtracting, then 276dividing by the trial-average baseline value per frequency) using the condition average 277in the interval from −0.5 s to standard onset. Inter-trial phase coherence (ITC) was 278extracted as the magnitude of the amplitude-normalized complex values, averaged 279across trials for each time-frequency bin and channel. 280

Statistics were performed in the time-window between 0–1.7 s post standard 281onset and for all frequencies jointly. For power, we used a two-level procedure as 282described for the ERPs (but using ft_freqstatistics, 1000 permutations). For the ITC, we 283only computed the second-level statistics since it represents a measure that already 284combines single trials. An additional, hypotheses-driven cluster test for power and ITC 285effects was performed, restricted to the delta band (0.5–3 Hz). 286

Delta phase angle analyses 287

A timing mechanism that predicts the onset of the target tone would have to start tim- 288ing at the standard tone which serves as a temporal cue. Therefore, we examined the 289data for any signatures of such a mechanism in the phase of the delta band (see Figure 2904B for a schematic depiction). To not confound target evoked activity with pre-target 291activity, we used the same version of the data as for the time-frequency transforma- 292tions described above, to which no filters had been applied during preprocessing. 293Target-onset ERPs were muted (as described above) from the time point of target 294onset on each trial (1.75 s in the predictive condition and 0.5–3 s in the non-predictive 295condition). To reduce the dimensionality of the data, and to focus our analysis on 296auditory activity, we computed a weighted average of single electrodes at each time 297point. The weights reflected each participant’s N1-peak topography, computed as the 298average absolute value per channel in the time interval from 0.14–0.18 s following the 299standard (see topography shown in Figure 4B). We then multiplied the time-domain 300data at all latencies and channels with these weights and averaged over channels, 301resulting in one virtual channel. 302

We applied a band-pass filter to the data (3rd order Butterworth, two-pass), with 303cut-off frequencies of 1 and 3 Hz for the delta band. After filtering, we applied the 304Hilbert transform and extracted phase angles as the imaginary value of the complex 305fourier spectrum averaged over latencies from 0.14–0.18 s, the peak latency of the 306N1. We chose the peak of the N1 as the window of interest, as the time point at which 307we measure the first reaction to the standard tone, possibly reflecting a phase reset 308of ongoing oscillations. Note that we did not choose the later time window in which 309the difference in the standard-evoked ERP significantly differed between conditions to 310avoid biasing our analysis for a between-condition effect. 311

We subjected the phase angles to a logistic regression to test for an effect of phase 312angle on the behavioural response, using the lme4 package in R [function glmer with 313a binomial link function, 45]. Per trial, we predicted the participant’s response in the 314pitch discrimination task (second tone lower or higher) with two numerical predictors, 315(1) the normalized pitch difference between standard and target tone (∆pitch in eq. 316
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1, range −1–1, a.u.), and (2) the standard-evoked phase angle extracted as described 317above (ϕ), plus their interaction. 318

The predictors of the logistic regression can be interpreted following the logic of 319the psychometric function [54], which models a behavioural measure (on the ordinate) 320based on variations of a stimulus feature (on the abscissa), and is described by two 321main parameters: threshold and slope. A threshold effect, that is a horizontal shift 322of the psychometric function, would be reflected by a main effect of the predictor 323
ϕ. A slope effect, reflecting a shift in the steepness of the psychometric function, 324would result in an interaction between the predictors ∆pitch and ϕ. Here, we were 325particularly interested in a slope effect, that is an interaction between the predictors 326pitch and phase angle. Due to computational constraints, we only specified a random 327intercept, but no random slopes for the predictors. 328

To account for the circularity of the phase angles, we followed an approach 329previously described by Wyart et al. [55] (see also [16, 41]) of using the sine and cosine 330of the phase angles jointly as linear predictors in a regression. For both, the sin(ϕ) 331and cos(ϕ), we specified an interaction with ∆pitch: 332

y = β0 + β1 · (∆pitch · sin(ϕ)) + β2 · (∆pitch · cos(ϕ)) (1)
Then, we recombined the regression weights obtained for the interactions of 333

sin(ϕ) and cos(ϕ) with ∆pitch: 334

βcombined =
√
β2
1 + β2

2 (2)
The resulting βcombined is always positive and can thus not be tested against zero. 335We computed a reference distribution of βcombined based on 1000 permutations, by 336permuting, per participant, the response values over trials, recomputed the model 337and retained the βcombined. To assess significance of the interaction between pitch and 338phase angle, we assessed 99% one-sided confidence intervals, and computed p-values 339from the permutation distribution [following Ref. 56]: 340

pperm =
N(βpermcombined > βcombined) + 1

N(perm) + 1
(3)

To visualize the modulation of pitch discrimination sensitivity over phase angles, 341we predicted responses from the logistic regression model [using the R package 342
emmeans, 57], for a range of ∆pitch, sin(ϕ), and cos(ϕ) values, and plotted the 343resulting values for the recombined and binned ϕ (shown in Figure 4C). 344

We additionally computed the phase analysis on data filtered for the low delta 345(0.5–2 Hz), theta (4–7 Hz), alpha (8–12 Hz), and beta (15–30 Hz) frequency bands 346and tested the resulting βcombined for significance using the permutation approach 347(Figure 4D). P-values were Bonferroni-corrected (accounting for five tests with a p-value 348threshold of 0.05, one for each frequency band), resulting in an adjusted alpha level of 3490.01. 350

Furthermore, we assessed the time-course of the regression weights per condition 351by independently computing the model (eq. 1) for each time point from -0.1 to 2 s 352
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and for each of the two conditions separately (Figure 4F). Here, we did not mute 353the time-domain data at target onset, since the model was computed separately per 354condition. To test for significance, we applied the permutation approach described 355above, using 200 permutations only (due to the time-consuming procedure). Finally, 356to test for condition differences, we computed the time-resolved logistic regression for 357both conditions jointly and added the factor condition to the above-described model 358to test for a three-way interaction. 359

Distinguishing oscillatory from aperiodic activity 360

To assess whether the activity observed in the delta band is truly oscillatory, rather 361than reflecting aperiodic 1/f activity we applied irregular resampling [IRASA; 58; see 362also 39, 59]. This technique consists in downsampling the data at pairwise non- 363integer values and computing the geometric mean of the resulting power spectra. The 364resampling leaves the 1/f activity intact but removes narrow-band oscillatory activity. 365We applied IRASA to the trial-wise data time-locked to the standard tone (-3 to 6 s), to 366the trial-averaged data per participant (ERP), and to 9 s of simulated data with a brown 367noise spectrum (see Figure 5A), as well as to single trial data from a 3 s snippet during 368the inter-trial interval (see Figure 5B). Power spectral density (PSD) was computed in 369sliding windows of 3 s in 0.25 s steps, using fast a Fourier transform tapered with a 370Hanning window for a frequency range of 0.33 – 25 Hz, without detrending, and the 371default resampling parameter (1.1 to 1.9, 0.05 increment). The PSD was normalized by 372dividing all values by the maximum value of the respective total PSD (trial data, ERP, 373and simulated data). 374

Results 375

Temporal predictability improves pitch discrimination 376

On average, participants’ responses were correct in 86% percent of trials. Using the 377full sample of 49 participants, we found that accuracy was significantly higher in the 378predictive compared to the non-predictive condition (T(48)=3.77, p<0.001, BF = 89.6); 379Figure 1B). We found a marginally significant increase in accuracy at the intermediate 380foreperiod for the predictive compared to the non-predictive condition (T(48)=1.8, p = 3810.07, BF = 0.93); Figure 1B), suggesting that the performance improvement occurred 382not only at unexpectedly early or late foreperiods, but reflects a difference between 383conditions. 384

We furthermore analysed response times between conditions and over forepe- 385riods. Response times were faster in the predictive (average 0.85 s), compared to 386the non-predictive condition (0.92 s), by about 70 ms (T(48)=8.3, p < 0.001, BF = 110). 387As shown in Figure 1B, the difference is strongly driven by slower responses at early 388foreperiods in the non-predictive condition, but there was still a significant difference 389between the response times at the intermediate foreperiod only (T(48)=2.10, p = 0.04, 390BF = 1.47). 391

For the psychometric functions (depicted in Figure 1C), we observed a steeper 392slope in the predictive compared to the non-predictive condition (T(48)=3.85, p<0.001, 393Bayes Factor (BF)=114.3); Figure 1D), but no threshold effect (T(48)=1.05, p = 0.30, BF = 394
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0.35); Figure 1E), nor effects on the guess rate (p = 0.48, BF = 0.27) or lapse rate (p = 3950.44, BF = 0.28). 396

To test whether the slope effect might be driven by shorter or longer foreperiods 397only, we computed psychometric functions on the trials with intermediate foreperiods 398(1.25–1.5 s in the behavioral sample, 1.33 – 2.17 s in the EEG sample; see Figure S1). 399We found a smaller but significant slope effect between conditions (T(48)= 2.73; p<0.01; 400BF = 5.46) showing that the slope difference was not solely driven by the shortest or 401longest foreperiods. 402

All of the above results held, albeit somewhat weaker, when analysing only data 403from participants for whom we had recorded EEG: Predictability resulted in marginally 404higher accuracy, (T(25)=1.82, p = 0.08, BF = 1.07), significantly larger PMF slopes 405(T(25)=2.60, p = 0.02, BF = 4.04), and no effects for the threshold, guess, and lapse rate 406(all p > 0.18, BF: 0.43, 0.61, 0.29, respectively). 407

To parallel the analysis of delta phase angles reported below, we also computed a 408logistic regression for the behavioural data, for the participants from the EEG sample 409only, with the predictors pitch difference (∆pitch), condition, and their interaction 410(plus random effects for all three). The analysis confirms the results described above, 411namely a significant main effect for ∆pitch (p < 0.001), no main effect for condition 412(p = 0.9), but an interaction between ∆pitch and condition (p < 0.01), that is, a slope 413effect (see Figure 4A). 414

Finally, we assessed to what extend the predictability manipulation had been 415noticed by participants. During debriefing, no participant spontaneously reported 416to have noticed the manipulation of temporal predictability. Four participants from 417the behavioral and eight participants from the EEG sample said they had noticed the 418manipulation after the experimenter explained the it. 16 (70%) of the behavioral and 41917 (65%) of the EEG participants guessed correctly whether the high or low tones 420were temporally predictive in their case. Neither the participants who recognized 421the manipulation once it was explained, nor the ones who guessed correctly which 422tones were temporally predictive in their case showed a larger behavioral slope dif- 423ference than the other ones (one-tailed Wilcoxon signed rank test, p = 0.88, p = 0.94, 424respectively). This suggests that the fact that participants were able to recognize the 425manipulation once it was explained did not reflect active engagement in timing during 426the experiment. 427

Temporal predictability affects both, standard- and target-evoked 428
event-related potentials: 429

Standard-evoked activity: Event-related potentials were examined time-locked to 430the standard-tone (Figure 2A). Both conditions showed a negative deflection between 4310.1–0.2 s after the standard onset, with a peak at 0.16 s and a fronto-central topography. 432We refer to this component as the standard-evoked N1. We observed a significant 433difference between conditions in the time window of the late N1/ early P2 component, 434where amplitude was more negative for standards that were temporally predictive 435of the onset of the target (predictive condition; 0.21–0.26 s, p = 0.02). This difference 436is important in that it shows that standard tones were processed differently if they 437served as a temporal cue for the target onset versus did not serve as a temporal cue. 438The latency and topography of the standard-evoked N1 (not the time-range in which 439the difference was found which was slightly later) was used for the analysis of phase 440angles described below. When directly comparing the ERPs evoked by the 550 versus 441
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950 Hz standards (randomly assigned to the predictive and non-predictive condition 442over participants), there was no statistically significant difference in the early time 443window following the standard tone. 444

Fig 2. Event-related potentials. A. ERPs time-locked to the standard tone: Left:The predictive condition (green line) evoked a more negative N1 than the non-predictive condition (blue line). The fine blue and green lines depict single participants’ERPs. The inset shows the topographies in the time windows of 0.1–0.2 s and 0.2–0.3 sfor both conditions separately. Right: condition difference. The grey shades indicatesthe two-sided 95% confidence interval, estimated from the t-distribution. The cyanshade marks the time points at which a significant condition difference occurred, andthe topography shows the scalp distribution of the activity during these time win-dows. Channels at which the difference was significant are marked in black. B. ERPs
time-locked to the target tone: Left: The predictive condition (green line) evokedan earlier N1 than the non-predictive condition (blue line). The upper inset showsthe topographies in the time windows of 0.1–0.2 s and 0.2–0.3 s for both conditionsseparately. The lower inset exemplary depicts the target-evoked ERP for the 20%longest, intermediate, and 20% shortest foreperiods. Right: condition difference. Thecyan and pink shades mark the time points at which a significant condition differenceoccurred, and the topographies show the scalp distributions of the activity duringthese time windows.

Target-evoked activity: Event-related potentials time-locked to the target-tone (Fig- 445ure 2B) also showed a negative deflection between 0.1–0.2 s after the target onset, 446
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with a fronto-central topography. We refer to this component as the target-evoked 447N1. For targets in the predictive condition, the N1 was larger (0.09–0.14 s, p = 0.02). 448Importantly, the difference is not solely due to the onset time of the target (see inset in 449Figure 3B), which would be reflected by a difference only for long or short foreperiods 450in the non-predictive condition. 451

To test for an apparent latency shift in the N1 between the non-predictive and 452predictive conditions, we computed the half-area measurement [60], which indexes 453the time-point at which half the area of a deflection has been reached. Compared to 454peak-latencies, this measure accounts better for asymmetric deflections. We found 455a significantly earlier N1-latency for the predictive, compared to the non-predictive 456condition (Cz, 0.13 s versus 0.15 s; T(23)=3.03, p < 0.01). 457

Furthermore, there was an amplitude difference at a later positive prolonged 458component, which was positive at posterior and negative at frontal electrodes (0.20– 4590.45 s, p<0.01; 0.28–0.36 s, p = 0.02). For reasons of visualization, the inset in Figure 2B 460(manuscript, p.13) depicts only the 20% longest and 20% shortest foreperiods, while 461when depicting all five bins (see Figure S2), the picture looks more gradual in that 462the second-longest bin has a somewhat larger P2 component then the intermediate 463foreperiod bin. 464

When computing the analysis using only trials with foreperiods ≥1.75 s (and 465equating the number of trials in the predictive condition for a fair comparison), the 466early cluster and the later frontal clusters remained (0.09–0.14 s, p = 0.04; 0.25–0.37 s, 467p = 0.008, marked in light blue in Figure 2B, right panel). When running the same 468analysis on the trials ≤1.75 s, we again found the early cluster (0.08–0.14 s, p = 0.01), 469and the later posterior cluster (0.16–0.49 s, p<0.001, marked in pink in Figure 2B). 470These findings show that the early difference was not driven by the shorter or longer 471foreperiods separately, but resulted from temporal predictability per se. The positive 472difference at posterior channels (cluster marked in pink in Figure 2B), however, was 473driven by the short foreperiod trials, and the negative difference at frontal channels 474(cluster marked in light blue in Figure 2B) was driven by the long foreperiod trials. 475

No condition differences in delta (1–3 Hz) power or ITC during the 476
foreperiod 477

We assessed power in a frequency range between 0.5–34.5 Hz for the predictive 478and non-predictive conditions (see Figure 3A), time-locked to standard onset. Both 479conditions showed an increase in power in the delta-range (1–3 Hz, Figure 3B) after 480standard onset, and a prolonged increase in the alpha-range (8–12 Hz) relative to 481baseline. We found no statistically significant power differences between conditions 482differences at the cluster level (see Figure 3C). 483

ITC across the 1–10 Hz range did show the expected increase following the 484standard tone, ranging from 1–10 Hz, and a prolonged increase in the delta band in 485both conditions (Figure 3C). However, when comparing inter-trial phase coherence 486(ITC) for all frequencies between conditions, no significant differences were observed. 487A hypothesis-driven cluster test restricted to the delta frequency band (1–3 Hz) revealed 488a non-significant cluster of enhanced delta ITC (Figure S3; 0.85–1.1 s, 1.5–2.5 Hz, p = 4890.19). This shows that there delta ITC increased nominally, albeit not significantly in the 490predictive condition, but likely the effect is too weak either because of signal processing 491constraints (muting of target-evoked activity), or the absence of an entraining rhythm. 492
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Fig 3. Time-frequency representations. A. Power, time-locked to standard-

onset. Power estimates were baseline-corrected to the pre-standard interval anddisplay relative change. Top panel: non-predictive condition, bottom panel: predic-tive condition. The topographies show the power scalp distributions in the intervalfrom 0.2–0.4 s for frequencies from 1–3 Hz. B. Delta power (1–3 Hz) over time forthe non-predictive (blue) and predictive conditions (green). Fine lines depict singleparticipants’ power values. C. Power-difference between conditions (T-values). Nosignificant condition differences were found. D. Inter-trial phase coherence (ITC),
time-locked to standard-onset. Top panel: non-predictive condition, bottom panel:predictive condition. The topographies show the ITC scalp distributions in the intervalfrom 0.2–0.4 s for frequencies from 1–3 Hz. E. Delta ITC (1–3 Hz) over time for thenon-predictive (blue) and predictive conditions (green). Fine lines depict single partici-pants’ ITC values. F. ITC-difference between conditions (T-values). No significantcondition differences were found.
Standard-evoked delta phase angle predicts pitch discrimination 493
sensitivity 494

To test whether delta oscillations play a role in temporally predictive processing in this 495study, we tested for a relation between delta phase angles and pitch discrimination 496performance using a logistic regression approach (see Figure 4B for a schematic 497depiction). A timing mechanism that predicts the onset of the target tone would have 498to start timing at the standard tone, which acts as a temporal cue, which is why we 499were particularly interested in this time window. Such a mechanism could possibly be 500implemented via a phase reset of an ongoing delta oscillation. 501

Phase angles in the post-standard time window (0.14–0.18 s) were extracted by 502applying the Hilbert transform to band-pass filtered (1–3 Hz) single trial data with one 503virtual channel (see Methods for details) representing the sum of all channels weighted 504by the N1-topography. We subjected the phase angles (as their sine and cosine) to 505a logistic regression with two numerical predictors, the normalized pitch difference 506between standard and target tone, and the standard-evoked phase angle, plus their 507interaction. To assess significance of the interaction effect, we used a permutation 508approach. We found a significant interaction between pitch and phase angle, which 509indicates that the slope of the psychometric function varied depending on the delta 510phase angle evoked by the standard tone (Figure 4 C). The interaction effect was 511significant only for the delta band (1–3 Hz), but not for other frequency bands tested 512
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(0.5–2 Hz; 4–7 Hz; 8–12 Hz; 15–30 Hz; Figure 4 D). Note that this procedure was 513performed on all trials, without separation into conditions, and thus is generally valid, 514both for trials on which the standard served as a temporal cue and trials for which it 515did not. 516

Fig 4. Delta phase angle predicts pitch discrimination sensitivity. A. Replication

of the behavioural effect (s. Figure 1) with a logistic regression approach. Model pre-dictions from the logistic regression with the predictors pitch (abscissa) and condition(colors). As illustrated by the bar-plot, there was a slope difference between conditions(i.e. an interaction between pitch and condition), with steeper slopes for the predictivecondition. B. Schematic depiction of the delta phase angle analysis. We extractedthe time domain data from single trials, from one virtual channel that reflects theweighted sum of the standard-evoked N1 topography (computed in the interval from0.14–0.18 s), band-pass filtered (1–3 Hz) and applied the Hilbert transform, to extractthe instantaneous phase angles in the time-window of 0.14–0.18 s (the N1-peak).
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Fig 4. (Continued from previous page.) C. Effect of delta phase angle on pitch
discrimination sensitivity: Model predictions from the logistic regression modelwith the predictors pitch (abscissa) and phase angle (colors, binned only for visualdisplay). There was a significant interaction between pitch and phase, that is the slopesof the psychometric functions differed depending on delta phase angle (depicted in thebar plot). Note that this analysis was performed on all trials, without separation intoconditions. The inset on the bottom right side shows the observed interaction weight(in black) compared to a permutation distribution and its 99% confidence interval(in grey). D. Pitch × phase interaction and confidence intervals for different
frequency bands. The grey bar shows the 99% confidence interval, the black bar theobserved weight. Only for the delta band (1–3 Hz) the observed weight significantlyexceeded the permuted weights. E. Distribution of conditions over phase angles.Conditions were coded as −1 for the non-predictive and 1 for the predictive condition,therefore an equal distribution of conditions over phase angle bins should resultin an average condition (colored bars) of 0, which was not the case. Instead, moretrials from the predictive condition occurred at the phase angles that were relatedto a steeper slope of the psychometric function (panel C). F. Upper panel: Pitch ×
phase interaction over time, separated by condition. The thick lines indicate theregression weights for the interaction over time for the predictive (green) and non-predictive condition (blue), the thin lines and grey shade indicate the 99% confidenceinterval computed with the permutation approach. Lower panel: Condition × pitch
× phase interaction over time. The three-way interaction was significant only in thepre-target time window, indicating that only in the predictive condition delta phaseangles predicted pitch discrimination performance during this time. 517

518

Next, we tested whether the interaction between delta phase angle and pitch discrimi- 519nation sensitivity was specifically driven by our manipulation of temporal predictability. 520We examined the regression weight for the interaction at different time points over the 521trial, and independently for the predictive and non-predictive conditions. This analysis 522(Figure 4F, upper panel) showed that the interaction effect between delta phase angle 523and the slope of the psychometric function was was significant (i.e. exceeded the 99% 524confidence interval of the permutation distribution) only for the predictive condition, 525and occurred at two time points: after the standard tone (around 0–0.4 s), and prior to 526target onset (around 1.1–1.4 s). We therefore conclude that the interaction effect was 527mainly driven by the predictive condition. 528

The three-way interaction between condition, delta phase angle, and pitch dis- 529crimination sensitivity was significant only in the later time window (Figure 4F, lower 530panel). A supplementary analysis testing the effect of different foreperiods (target on- 531set times) on delta phase angles in the non-predictive condition (Figure S4), confirmed 532that phase angles in the time ranges in which we observed the above-described effects 533were not affected by the different target offsets in the non-predictive condition. 534

We also assessed the relationship between phase angle (binned into 6 bins for this 535purpose) and condition (indexed as -1 for the non-predictive and 1 for the predictive 536condition; Figure 4 E). If the trials would be equally distributed over conditions per 537phase angle bin, this should result in an average condition of 0 at all phase angles, 538which was not the case. Instead we found more trials of the predictive condition to 539occur at the phase angles at which we had found the higher slopes (Figure 4 C), which 540suggests that phase angles varied between the two conditions. A post-hoc test for 541
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a quadratic effect of phase bin on condition (computing a generalized linear model 542predicting condition from phase bins) yielded only a marginally significant weight for 543this contrast (p = 0.09). We thus conclude that there is no meaningful phase angle 544difference between conditions at the population level. 545

Additional analyses 546

Oscillatory versus 1/f activity. To test for the presence of oscillatory activity in 547the delta band, we subtracted fractal power spectra (obtained using the irregular 548resampling method [IRASA; 58] from the total power spectra. The results (depicted in 549Figure 5, see also S5) show that power spectral density (PSD) computed from single 550trial data was higher in the 1–3 Hz range compared PSD computed on the ERP and 551simulated data, albeit no clear peaks can be found in the delta range (Figure 5A). If 552anything, the PSD computed on single trial data has a small peak around 1 Hz, while 553the PSD of the ERP has two smaller peaks at 3 and 4 Hz. When computing the same 554analysis on pre-stimulus data (from the ISI, 3 s signals), we observe residual oscillatory 555activity in the 1–3 Hz range (Figure 5B). While it is difficult to completely separate 556oscillatory from 1/f activity at slow frequencies – and to our knowledge, no previous 557study showed a clear oscillatory peak in the PSD in the delta range – our analyses 558suggest some oscillatory activity in the delta band. 559

Fig 5. Testing for oscillatory activity in the 1–3 Hz range using the irregular

resampling method. A: from single trial data (red), trial-averaged data (blue) andsimulated brown noise (thick lines: average, fine lines: single participants). The leftpanel shows the oscillatory activity, obtained by subtracting the fractal PSD from thetotal PSD. The inset magnifies the delta frequency range from 1–3 Hz, and the shadedareas show 99% confidence intervals computed from a t-distribution. The differencebetween the red and blue lines shows that single trials contain additional, non-phaselocked oscillatory activity in the 1–3 Hz band as compared to the ERP (trial average).
B: Oscillatory spectrum obtained from resampling the pre-stimulus time window (3 s,taken from the ISI). Note the residual oscillatory activity in the 1–3 Hz range.

Mediation analysis. We also considered mathematically the possibility that delta 560phase angle in the post-cue time window would mediate the effect of temporal pre- 561dictability on pitch discrimination sensitivity, by comparing the regression weight of 562the interaction between pitch and temporal predictability estimated from a model 563with no other predictors (as depicted in 4A), and from a model that additionally con- 564tained an interaction term for pitch and phase angle [61, 62]. The negligible change in 565weight between both models (0.307 to 0.304) indicates that there is no evidence for a 566mediation effect. 567
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Delta phase versus ERP effect. To distinguish between the ERP effect (found on the 568N1) and the delta phase effect, we tested whether the N1 amplitude could explain the 569findings. Computing the same logistic regression model with the N1 amplitude instead 570of the phase angles as above revealed no significant interaction effect (p = 0.15), i.e. 571the N1 amplitude does not predict pitch discrimination performance on single trials 572and can thus not simply replace the delta phase angle. However, the N1 amplitude 573correlated significantly with the standard-evoked phase-angle at all frequency bands, 574as assessed by a circular-linear correlation [from the Directional package in R 63]; R2: 5750.5–2Hz: 0.21, 1–3Hz: 0.27, 4–7Hz: 0.06, 8–12Hz: 0.056, 15–30Hz: 0.004 (all p-values 576
<0.001). 577

Discussion 578

In this study, we asked whether human listeners use strictly implicit temporal contin- 579gencies in auditory input to form temporal predictions. If so, how are these predictions 580represented endogenously? We implicitly manipulated temporal predictability by vary- 581ing the foreperiod (i.e., the interval between standard and target tone) in a pitch 582discrimination task. Unbeknownst to participants, one of two possible pitches used as 583the standard tone was indicative to one of two foreperiod distributions, respectively: 584drawn either from a uniform distribution, under which the onset of the target tone is 585unpredictable, or from a single-valued distribution under which the onset of the target 586tone is fully predictable. 587

The data contain several indices that participants did form temporal predictions: 588an increase in pitch discrimination sensitivity in the predictive condition and condition 589differences in the evoked response to standard- and target tones. However, contrary 590to our initial hypothesis, classical time-frequency analyses revealed no differences 591in power or inter-trial phase coherence in slow oscillatory frequencies. Yet, a direct 592analysis of delta phase angles shows that the phase of delta oscillations in response to 593the standard tone and in the pre-target time window is indicative of pitch discrimina- 594tion performance. This is evidence that delta-oscillatory neural phase does encode 595endogenous temporal predictions. 596

Implicit temporal predictability improves pitch discrimination 597
sensitivity 598

Behaviourally, we observed an increase in pitch discrimination sensitivity in the tem- 599porally predictive condition, reflected in a steeper slope of the psychometric function 600(Figure 1). Even though the absolute difference in behaviour is not large, we observed 601a robust set of converging effects of temporal predictability on response times, ac- 602curacy and slopes (49 participants). These suggests that listeners can implicitly learn 603to associate interval-based temporal predictions with sensory stimulus features like 604pitch, underlining the relevance of timing to human cognitive processing. 605

Importantly, participants were not made aware of the predictability manipula- 606tion, and no participant was able to correctly describe it during debriefing. About 25% 607of participants were able to recognize the manipulation after it was described by the 608experimenter, but did not show a larger behavioural effect, suggesting they had not 609actively engaged in timing. 610
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To our knowledge, this is the first study to show that pitch discrimination sensi- 611tivity is improved by implicit but non-rhythmic temporal predictions. In the auditory 612domain, detection speed and performance are facilitated by rhythmic temporal pre- 613dictability [7, 8, 9, 9, 64], but the use of detection tasks might underline the timing 614aspects of the task. One previous study ([24]) showed that shorter presentation times 615(difference of about 6 ms) are needed for to achieve correct pitch discrimination 616performance, when the target tone occurs with a block of constantly short foreperiods. 617Complementing these previous findings, we show that implicit temporal predictability 618improves auditory perceptual processing in absence of an embedding rhythm, or any 619explicit incentive to engage in timing. 620

Temporal predictions affect neural processing of predictive and 621
predicted tones 622

Predictive tones (standards). An important indicator for the successful extraction 623of temporal predictability is the difference in event-related potentials evoked by 624predictive and non-predictive standard tones (Figure 2A). It suggests that participants 625learned to associate the pitch of the standard tone to temporal predictability, and 626flexibly used the standard as a temporal cue on a trial-by-trial basis. 627

Few studies have investigated effects of predictability on the early sensory 628processing of a cue stimulus itself. In spatial cueing, there is evidence for an effect 629of predictions on early positive and negative cue-evoked components [100–200 ms 630post cue; 65, 66, 67]. In the temporal domain, there is, to our knowledge, only one 631study that showed an N1-effect directly at the cue [in 8–12 years old children; 68]. 632Our results are in line with this finding and reveal that the cue-evoked N1 in adults is 633affected even by implicit temporal predictability. 634

Predicted tones (targets). In response to target tones, we found a larger and faster 635N1 in the predictive compared to the non-predictive condition, suggesting a facili- 636tation of sensory processing of temporally predicted targets (Figure 2B). This result 637corroborates a large base of studies reporting mainly amplitude effects of temporal 638predictability in sensory evoked potentials [69, 70, 71, 72, 73, 74, 75, 76, 77]. The direc- 639tion of amplitude effects varies with the paradigm used [for an extensive discussion 640see 78] – for probabilistic foreperiod variations as used here, both, reduced [79, 80] 641and enhanced N1 amplitudes [81] have been reported. 642

The observed latency-shift of the N1 by temporal predictions is in line with one 643previous study using a manipulation of foreperiods [82], and one study on rhythmic 644temporal predictability [10]. Further evidence comes from experiments reporting a 645faster N1 for auditory speech and non-speech events combined with visual events [83, 64684, 85, 86]. Note that in our study, the predictive information conveyed by the cue 647was purely temporal, since the pitch of the target tones was unpredictable. In sum, 648the facilitation of the N1 suggests that temporal predictions alone can enhance early 649auditory processing. 650
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Implementation of temporal prediction through slow neural oscil- 651
lations 652

A central aim of this study was to assess the role of slow neural oscillations for an 653endogenous representation of temporal predictions. Previous studies convincingly 654established a mechanism of facilitation of sensory processing via phase alignment 655of delta oscillations for stimuli that occur during the preferred phase, i.e. in syn- 656chrony with the preceding rhythm [16, 32, 33, 64, 87]. An open question is however, 657whether the alignment of slow neural oscillations towards predicted stimulus onsets 658is contingent on rhythmic entrainment to the exogenous stimulation, or whether 659slow oscillations also implement endogenous temporal predictions, for example via 660single-trial phase-resets. 661

We found no robust condition differences in oscillatory power or phase using 662classical time-frequency analyses (see Figure 3). The absence of condition differences 663in phase coherence during the foreperiod (Figure 3F) replicates our previous results [6] 664and suggests that enhanced phase coherence [5, 35] depends on dedicated or resid- 665ual periodicity in the stimulation [89], and/or overt engagement in timing [11]. As 666a side note, it is important to emphasize the methodological challenge of analysing 667low frequency oscillations in the pre-target window. The probabilistic manipulation 668of foreperiods as applied here results in differential time-locking of target activity 669between conditions, and our conservative approach of removing this activity might 670have weakened existing pre-target differences through back-smearing of the muted 671activity. Here, a nominal increase in delta phase coherence was found in the predic- 672tive condition (Figure S3), but failed to pass the threshold for statistical significance, 673suggesting that a phase coherence effect is not fully absent in non-rhythmic temporal 674predictions, but not strong enough to be measured with the available techniques. Thus, 675the representation of temporal predictions by enhanced phase coherence – or at least 676our ability to measure it in human EEG – is likely contingent on rhythmic stimulation. 677

Crucially, we found that the absolute phase angle of the delta oscillation in 678auditory areas shortly after the temporal cue predicted behavioural sensitivity in 679response to the later-occurring target tone (see Figure 4C). The effect was observed 680for data spatially filtered with a topography relevant for auditory stimulus processing 681(from the N1), suggesting auditory cortex as the most likely generator. Furthermore, 682the effect was specific for the delta band (1–3 Hz) with the highest sensitivity occurring 683at phase angles closest to the trough of the delta oscillation (±π) at the cue and about 6841.4 s post-cue (average period of 0.5 s). Albeit interpreting the absolute phase angle 685from EEG data demands caution, this corroborates the idea that the trough of the 686delta oscillation is a particularly beneficial state for auditory perception [39, 90]. 687

This relationship between delta phase and behavioural sensitivity held across 688all trials, regardless of their experimental condition. However, a follow-up analyses 689per condition found this relationship between delta phase angle in the post-cue time 690window and behavioural sensitivity to occur only in the predictive condition (Figure 4F, 691upper panel). 692

To test whether the relationship between delta phase and behavioural sensitivity 693differed statistically between conditions, we computed the three-way interaction 694between pitch, delta phase angle, and condition (4F, lower panel), which proved 695significant only during the pre-target time window. Presumably, low statistical power 696for this particular analysis prevented us from confirming the condition difference in the 697post-cue time window, which is apparent when analysing both conditions separately 698(4F, upper panel). Tentatively interpreted, this finding suggests that delta phase in 699
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the post-cue time window affects behavioural sensitivity in both conditions, while the 700effect found in the pre-target time window is specific to the predictive condition only. 701

An important question is to what respect the observed phase effect reflects truly 702oscillatory activity, rather than a modulation of the evoked response to the standard or 703target tones. Admittedly, temporal smearing occurs due to the long analysis windows 704needed to capture slow oscillations. Importantly, the contingency between delta phase 705angle and auditory sensitivity re-occurs in the pre-target time window at around 1.4 s 706and does not rise monotonically into the post-target window. Therefore, it is highly 707unlikely the effect resulted from back-smearing of target-evoked activity. 708

The observed phase effect is specific to the frequency range identified by the 709above-cited studies, rather than resulting from broad-band activity – as one would 710have expected from a purely evoked effect. The effect is strongest in the 1–3 Hz 711range, and not at the frequencies that would reflect the stimulation (0.57 Hz for the 712intermediate foreperiod of 1.75 s), which is in line with a study that showed selective 713entrainment at 1.33 Hz despite stimulation at 0.67 Hz [91]. These findings align with 714the assumption that auditory processing fluctuates with the phase of delta oscillations 715in the absence of evoked activity [11, 38, 39]. 716

Not least, additional spectral analyses suggest some oscillatory activity in the 717delta band after subtracting the 1/f spectrum, which is not explained by the ERP (see 718Figure 5 and S5 for comparison of the spectra). We further showed that the N1 ampli- 719tude itself does not show the critical relationship with behavioural sensitivity, although 720the two measures correlate, arguing for a more specific role of delta oscillations in 721temporal prediction. In fact, the ERP might at least partially result from a reset of 722ongoing neural dynamics by the onset of a stimulus [92]. 723

Taken together, these findings speak towards a dedicated mechanism that 724exploits temporal predictability in the auditory domain via a phase shift of auditory- 725cortical delta oscillations. 726

Clearly, this per se is not proof of a causal chain from temporal predictability 727
via optimized phase angle of delta oscillations to increased auditory sensitivity. While 728not state of the art in neuroscience, our analysis did fail to establish hard statistical evi- 729dence for such a mediation effect. Possibly, different steps necessary to accommodate 730the complexity of our data in the model (dealing with the circular measure of phase 731angle and assessing an interaction effect as a measure of behavioural sensitivity), 732and the small proportion of variance explained by the experimental manipulation (a 733common problem in cognitive neuroscience) might have prevented us from observing 734a mediation effect [but see 93, for a successful example]. 735

As an alternative explanation, it is conceivable that the activity we observe 736reflects the extraction of temporal predictions from the temporal cue, but that another 737process is responsible for maintaining this prediction throughout the foreperiod 738interval to alert the system when it it is time to expect the target stimulus. For 739instance, this could be achieved via top-down projections from auditory areas towards 740thalamic and thalamostriatal pathways described as crucial for auditory timing [29, 94], 741converging with an instrumental role of the striatum in explicit timing [95]. 742

In sum, our findings underline the relevance and specificity of delta oscillations 743for an endogenous representation of temporal predictions. The adjustment of phase 744angles at the cue can be seen as the initiation of a timing process, which prepares the 745system to be in a beneficial state at an anticipated time point, resulting in an optimized 746delta phase angle prior to target onset. 747
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Conclusions 748

Human listeners do use strictly implicit temporal contingencies to better perform in 749a sensory task for which timing is not an explicit requirement. Here, we assessed 750how temporal predictions are implemented in neural dynamics by combining psy- 751chophysics and EEG data. We found endogenous temporal predictions for audition 752to be reflected in the phase of delta oscillations, likely via an optimized phase reset 753of delta oscillations in auditory areas evoked by a temporal cue. These results point 754towards an instrumental role of delta oscillations in initiating temporal predictions, 755even in the absence of an entraining rhythm. 756
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Supporting information 757

S1 Fig.: Slope effect at intermediate foreperiods 758

Fig. S 1. Slope effect at intermediate foreperiods. A. Psychometric curves, fittedonly at a small range of intermediate foreperiods. B. Slopes for the predictive andnon-predictive conditions at intermediate foreperiods only. This additional analysiswas performed to rule out the possibility that the slope effect was solely driven by theshortest and longest foreperiods in the non-predictive condition.

S2 Fig.: Target-evoked ERP by foreperiod 759

Fig. S 2. Target-evoked ERP by foreperiod. Target-evoked ERPs for the predictive(green) and non-predictive (dark blue) condition. The trials for the non-predictivecondition were split into five foreperiod bins from the 20% shortest to the 20% longestforeperiods (cyan to pink).
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S3 Fig.: Hypotheses-driven test for condition-differences in delta 760
ITC 761

Fig. S 3. Hypothesis-driven cluster-test for a condition difference in delta ITCWe did not observe any statistically significant differences in delta ITC during theforeperiod, but a hypothesis-driven test restricted to the delta band showed a clusterthat failed to pass the threshold for significance. This shows that there was nominally,albeit not significantly increased delta ITC in the predictive condition, but likely theeffect is too weak either because of signal processing constraints, or its contingencyon an entraining rhythm.

S4 Fig.: Predicting the foreperiod from phase angles in the non- 762
predictive condition 763

Fig. S 4. Predicting the foreperiod from phase angles. We tested whether deltaphase angle time series in the non-predictive condition are affected by the differenttarget onset times (i.e. foreperiods). To this end, we computed a linear mixed effectmodel, prediction foreperiod by phase angles, separately at each time point. Phaseangles were separated into their sine and cosine and the βcombined was tested against apermutation distribution (200 samples) for which the assignment between foreperiodand phase angles was randomized. The result shows a relation between phase anglesand foreperiods in the time window between 0.5–1 s, but not in the time windows inwhich the critical effects depicted in Figure 4F were found.
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S5 Fig.: Power spectral density (PSD) computed using the irregular 764
resampling method 765

Fig. S 5. Power spectral density (PSD) computed using the irregular resampling

method (IRASA; Wen & Liu, 2016). A: PSD of single trial data (red), trial-averagedERP data (blue) and simulated brown noise (green; thick lines: average, fine lines:single participants). PSD were normalized by dividing all values by the maximum valueof the respective total PSD (trial data, ERP, and simulated data). Nine second datasnippets were used, time-locked to the standard tone. PSD was computed in slidingwindows of 3 s in 0.25 s steps, using fast a Fourier transform tapered with a Hanningwindow for a frequency range of 0.33 – 25 Hz, without detrending. The left panelshows the total spectrum, computed as the auto-power spectrum of the respectiveinput data. The middle panel shows the fractal spectrum, computed as the geometricmean of the auto-spectra of the pairwise resampled time-series (using the defaultresampling parameter: 1.1 to 1.9 with a 0.05 increment). The right panel shows theoscillatory activity, obtained by subtracting the resampled PSD from the total PSD. Theinset magnifies the delta frequency range from 1–3 Hz, and the shaded areas show99% confidence intervals computed from a t-distribution. B: Irregular resamplingcomputed in a inter-trial interval (3 s). Left: total (pink) and fractal (grey) spectra; right:oscillatory spectrum with 99% confidence interval.
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