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Abstract

Various feature selection algorithms have been proposed to identify cancer prognostic
biomarkers. In recent years, however, their reproducibility is criticized. The
performance of feature selection algorithms is shown to be affected by the datasets,
underlying networks and evaluation metrics. One of the causes is the curse of
dimensionality, which makes it hard to select the features that generalize well on
independent data. Even the integration of biological networks does not mitigate this
issue because the networks are large and many of their components are not relevant for
the phenotype of interest. With the availability of multi-omics data, integrative
approaches are being developed to build more robust predictive models. In this scenario,
the higher data dimensions create greater challenges.

We proposed a phenotype relevant network-based feature selection (PRNFS)
framework and demonstrated its advantages in lung cancer prognosis prediction. We
constructed cancer prognosis relevant networks based on epithelial mesenchymal
transition (EMT) and integrated them with different types of omics data for feature
selection. With less than 2.5% of the total dimensionality, we obtained EMT prognostic
signatures that achieved remarkable prediction performance (average AUC values >0.8),
very significant sample stratifications, and meaningful biological interpretations. In
addition to finding EMT signatures from different omics data levels, we combined these
single-omics signatures into multi-omics signatures, which improved sample
stratifications significantly. Both single- and multi-omics EMT signatures were tested
on independent multi-omics lung cancer datasets and significant sample stratifications
were obtained.

Introduction 1

Prognosis prediction is necessary for cancer clinical decision making. Traditionally, 2

cancer prognosis prediction is based on clinical variables such as tumor stage, age, and 3

disease history, where the information of a patient is compared against population caner 4

registries [1]. However, these clinical parameters are insufficient to accurately predict 5

the risk of patients [2] as histologically similar tumors can be of completely different 6

diseases at the molecular level [3, 4]. Therefore, molecular signatures are needed to give 7

more accurate prognosis predictions. Nowadays we can obtain tumor molecular profiles 8
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in greater details. As one of the large scale projects, the Cancer Genome Atlas (TCGA) 9

provides access to genomic, transcriptomic, epigenomic, and proteomic data from more 10

than 11,000 cases in 33 cancer types and subtypes [5]. Using these data, researchers 11

aim to build better prognosis prediction models. This has been found as very 12

challenging due to the high dimensionality of omics data, where the number of features 13

far exceeds the number of samples. This is often addressed as the curse of 14

dimensionality. When the data lie in high dimensions, the samples become very sparse. 15

This can cause the lack of statistical significance and over-fitting of machine learning 16

models. Fortunately, not all features are relevant for predicting the phenotype of 17

interest. It is desired to find the molecular signatures that capture the footprint of the 18

phenotype so that the signatures can be employed on unseen samples. 19

Various feature selection methods were proposed to find molecular signatures. Early 20

reviews categorized them into three categories: filter, wrapper, and embedded 21

methods [6, 7]. Although many important algorithms were introduced, network-based 22

feature selection algorithms were not included. After reviewing the literature, we found 23

three main categories of network-based feature selection algorithms. The first category 24

involves network-guided search. An algorithm identifies subnetworks that can best 25

differentiate different phenotype groups. Each subnetwork is aggregated to produce one 26

feature (called metagene) and eventually the metagenes are used as features for training 27

predictive models. Different scoring functions were proposed to rank the subnetworks. 28

For example, [8] used mutual information as the scoring function and the addition 29

operator to aggregate subnetworks. [9, 10] used the p-value of Cox PH model in 30

defining the scoring functions. [11] dichotomized features and defined a scoring 31

function based on information theory. [12] tested the effects of different aggregation 32

operators on the prediction performance. 33

The second category of methods uses network-based regularization. Regularization 34

methods such as Lasso have been widely applied for feature selection. To integrate 35

network information, the penalty term takes into account the network connectivity. 36

Adjacency matrix A and Laplacian matrix L are frequently used to represent a network 37

G to be included in the penalty term. The majority of methods in this category are 38

based on linear classifiers and can be written in the following form: 39

ŵ = min
w

c(wTX, Y ) + αpenalty(w, G) (1)

For example, in graph Lasso penalty(w, G) = λ||w||1 + (1− λ)
∑

i,j Ai,j(wi −wj). 40

This forces adjacent nodes to have similar weights [13,14]. Using similar formulations, 41

[15] proposed a network-constrained regularization and feature selection method on 42

genomic data. [16] added a network regularization term to the log-likelihood function 43

of the Cox proportional hazard model. [17] developed a network-constrained support 44

vector machine algorithm, where the network-based regularization term is added to the 45

objective function of SVM. 46

The third category of methods involves iterative updates of node importance scores. 47

Frequently used algorithms include network propagation and random walk. [18,19] 48

adapted Google’s PageRank algorithm to rank genes in a network. Genes are assigned 49

initial ranks r[0] ∈ RN . Then the rank of each gene is updated iteratively depending on 50

the ranks of genes that are linked to it. For gene j, its rank from r
[n−1]
j to r

[n]
j is 51

updated as: 52

r
[n]
j = 1− d+ d

N∑
i=1

Ai,jr
[n−1]
i

degi
, 1 ≤ j ≤ N (2)

where degi is the degree of the ith gene and d is a fixed parameter. By iterating until 53

convergence a gene will be highly ranked if it is linked to other highly ranked genes. 54
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Table 1. Frequently used molecular/gene interaction networks in
network-based feature selection studies. We listed below the basic information of
the networks as well as exemplary studies that employed the networks. With STRING
database we only considered the edges with confidence scores ≥ 0.9. When a database
has information of many species, only Homo sapiens was considered. In the 4th and 5th
columns, Data means that the network size is dependent on the dimensions of data.
App means that the network size is dependent on the application. GO means that the
network size is dependent on gene ontology terms.

Molecular interactions Database Version Number of edges Number of nodes Studies
protein-protein STRING V10.5 547621 19578 [25–27]
protein-protein HPRD Release 9 41327 30047 [9–11,17]
biological pathways KEGG Release 84.0 App App [15,28]
biological pathways Pathway Commons V7 1912848 14863 [29]
miRNA-gene miRTarBase V7.0 502651 16822 [26]
transcription factor - target TRANSFAC V7.0 public 1648 [19,30]
gene co-expression None None Data Data [16,18]
gene functional linkage Multiple None App App [8,16,31,32]
gene ontology Gene ontology None GO GO [18]

[20] used random walk kernel to smooth gene-wise t-statistics over the network. This is 55

achieved by assigning each node an initial score based on t-test and then multiplying it 56

with the random walk kernel. The p-step random walk kernel is used as a similarity 57

measure to capture the relatedness of two nodes in the network. It is defined as: 58

r
[n]
j = 1− d+ d

N∑
i=1

Ai,jr
[n−1]
i

degi
, 1 ≤ j ≤ N (3)

K = (αI − Lnorm)p = ((α− 1)I +D−1/2AD−1/2)p (4)

where Lnorm is the normalized graph Laplacian matrix, α is a constant, and p is the 59

number of random walk steps. The network-smoothed t-statistic t̃ = tTK is used to 60

measure node importance. Similarly, random walk-based scoring of network components 61

is applied in [21] to prioritize functional networks. 62

Besides algorithmic difference, various biological networks have been employed in 63

network-based feature selection algorithms. A list of these molecular interactions is 64

given in Table 1. In these studies, it was shown that superior features could be selected 65

by the integration of networks. However, recent studies showed that network-based 66

feature selection methods did not significantly improve prediction performance, but 67

mainly contributed to the biological interpretations of the signatures [22–24]. [22] 68

compared 14 feature selection methods, 8 of which integrated network information and 6 69

of which did not, on 6 breast cancer datasets with respect to their prediction accuracy, 70

signature stability and biological interpretations. The results showed that 71

network-based features in most cases could not improve prediction accuracy 72

significantly. [23,24] showed that when a correction of feature set size was performed, 73

the stability of network-based features was not higher than single features. 74

Regardless of whether network information is integrated, finding robust molecular 75

signatures is a challenging task. Due to the high data dimensions, it is easy to find a 76

feature subset that fits the training data very well but hard to have good generalization. 77

Studies showed that there was hardly considerable overlap among biomarkers identified 78

in different studies for the same disease [33–35]. Even taking random feature sets gave 79

comparable prediction performance [36]. The existence of many feature subsets that 80

perform similarly well on the training set makes it difficult to identify the true 81

signatures. Note that the randomness of signatures is also observed when network 82

information is integrated. [23] tested different network-based feature selection 83
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algorithms on six breast cancer datasets in prognosis prediction. They showed that the 84

randomization of network structure, which destroyed biological information, did not 85

deteriorate the prediction performance of the selected features. [24] extended the 86

experiments in [23] by comparing more prognosis signatures. In the end, similar results 87

were observed. 88

We suppose that the main reason for these counter-intuitive results is the curse of 89

dimensionality, where selecting molecular signatures is hard given the limited amount of 90

samples. In principle, molecular signatures should give better predictions than random 91

features, because it is shown in biological research that certain genes are supposed to be 92

more important than the others in cancer progression. If we use this information to 93

constrain the feature space and guide feature selection, we could potentially obtain more 94

robust biomarkers. State-of-the-art studies have not utilized this knowledge but 95

considered the whole feature space and the entire biological network. Because both the 96

data and the network are large, the irrelevant information may overwhelm the signals. 97

Furthermore, biological networks were typically integrated with one type of omics data. 98

It would be very interesting to investigate how the prediction performance differs when 99

the networks are integrated with different omics data types, and additionally what are 100

the relationships among the features selected from different omics data. 101

To address this issue, we proposed a phenotype relevant network-based feature 102

selection (PRNFS) framework. It consists of constructing a phenotype relevant gene 103

regulatory network (GRN) and selecting features from this network. We demonstrated 104

the superiority of this framework with the application of lung adenocarcinoma (LUAD) 105

prognosis prediction. We constructed a GRN for EMT, which has been demonstrated as 106

highly relevant to cancer metastasis and prognosis. On this network 4 types of omics 107

data (mRNA-Seq, miRNA-Seq, DNA methylation, and copy number alteration data) 108

were integrated and 10 feature selection algorithms were employed. We obtained both 109

single- and multi-omics EMT prognostic signatures, evaluated their prediction 110

performance, analyzed the biological interpretations, and performed survival analysis. 111

Furthermore, these signatures were tested on independent multi-omics LUAD data. We 112

showed that EMT prognostic signatures achieved remarkable prediction performance on 113

TCGA data. On independent data, both single- and multi-omics signatures stratified 114

patients into significantly different prognostic groups. Multi-omics signatures were 115

shown to be more robust than single-omics signatures. 116

Materials and methods 117

We will first describe the construction of EMT networks. This is followed by the 118

introduction of 10 feature selection algorithms. Then we explain the details of the 119

experiments. 120

EMT gene regulatory networks 121

As an up-to-date EMT GRN is not readily available, we constructed the network by 122

literature review. The network we constructed has incorporated key transcription 123

factors, miRNAs, their regulations and interactions with EMT hallmark molecules. 124

Multiple levels of gene regulations such as transcriptional, translational, and 125

post-translational regulations were covered. The reference for each component in the 126

network can be found in [37]. Since this network covers mainly driver genes, we named 127

it as the core network. 128

As it is observed, driver genes are often less differentially expressed than the genes 129

they regulate [35]. If one includes only the driver genes for identifying molecular 130

signatures, one may have captured only partial information. We therefore extended this 131
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Table 2. Overview of the 10 feature selection algorithms. We listed below
their main methodologies, whether network information was integrated, the algorithmic
output and reference.

Algorithm Methodology Network Output Reference
t-test t-statistic No feature ranking [28,40]
Lasso regularized regression No coefficients [41]
NetLasso network-based regularization Yes coefficients [15]
AddDA2 subnetwork scoring and searching Yes subnetworks [8, 12]
NetRank feature importance on network Yes feature ranking [19]
stSVM random walk on network Yes feature ranking [20]
Cox Cox PH model No feature ranking [42,43]
RegCox regularized Cox PH model No coefficients [44]
MSS random sampling No feature ranking [45]
Survnet subnetwork scoring and searching Yes subnetworks [9]

network by including the molecules that directly interact with or being regulated by the 132

molecules in the core network. NetworkAnalyst tool [38] was employed to find these 133

interactions, which consist of protein-protein interactions, miRNA-gene interactions, 134

and transcription factor-gene interactions. The resulting network was named extended 135

network. After constructing this network, we noticed that many features have a rather 136

low variance among samples, we thus removed these features and obtained the filtered 137

network. All three networks were employed in our experiments. The three networks 138

contain 74, 123 and 455 nodes respectively. Details of the networks can be found in [37]. 139

Experiments 140

We first obtained RNA-Seq, miRNA-Seq, DNA methylation, and CNA data of LUAD 141

from FIREHOSE Broad Genome Data Analysis Center website. mRNA-Seq and 142

miRNA-Seq data were combined because they both measure the abundance of 143

transcripts. This resulted in 3 data levels: gene expression, DNA methylation, and CNA 144

data. These three data levels will be abbreviated as GE, DM, and CNA in the remaining 145

text. Each data level was normalized feature-wise by subtracting the mean and dividing 146

by the standard deviation. More details of data pre-processing can be found in [37, 39]. 147

Since we have obtained 3 EMT networks and 3 data levels, feature selection can be 148

performed on each combination of network and data level. To evaluate whether 149

EMT-based feature selection can give more robust molecular signatures for prognosis 150

prediction, we employed 10 representative features selection algorithms to identify 151

signatures from EMT genes and EMT networks. Table 2 gives an overview of these 152

algorithms. Five of these algorithms integrate network information and the other five 153

algorithms use only omics data. The underlying methodologies are very different. We 154

suppose that if EMT network is superior for selecting prognostic signatures, the 155

performance of the selected features from the majority of these algorithms should show 156

improvements. As mentioned before, state-of-the-art studies usually use only gene 157

expression data for feature selection. We instead incorporated three different omics data 158

levels. This gives us the possibility to compare and integrate the signatures from 159

different data levels. 160

Note that even the largest EMT network (the extended network) covers only 2.3% of 161

the original data dimensions. To assess the performance of EMT-based feature selection, 162

we compared the prediction performance of EMT signatures with the features selected 163

out of all features from the corresponding data levels. Additionally, random networks of 164

the same size and structure as EMT networks were generated - the nodes in the random 165

networks were randomly chosen from all the features of the corresponding data level. 166
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Table 3. The description of datasets. This table shows the sample sizes for
labeled data (thresholds <700 and >1400 days) and censored data.

labeled data censored data
good prognosis poor prognosis total all stages

Level GE 84 99 183 497
Level DM 74 93 167 447
Level CNA 73 76 149 503

The features selected from these random networks were compared with EMT signatures. 167

In total, we compared the prediction performance of EMT signatures with the following 168

4 groups: 169

1. Random features. These features were selected from random networks using the 170

same feature selection algorithms. 150 random networks were generated for 171

feature selection. 172

2. All EMT features. We included all features in the EMT networks without feature 173

selection. 174

3. All features from the corresponding data levels. This corresponds to 19,290 GE 175

features, 20,074 DM features, or 21,456 CNA features. 176

4. Features selected from all data level features by applying Lasso algorithm. 177

We performed the comparison by selecting features with the training set, using these 178

features to train an SVM classifier, and classifying samples on the cross-validation set. 179

Patients who survived more than 1400 days belong to the good prognosis group and 180

patients who survived less than 700 days belong to the poor prognosis group. The 181

results from 30 times stratified 10-fold cross-validation were averaged. Within each data 182

level the same cross-validation folds were used for all the feature selection algorithms on 183

all the comparative groups. The classification performance was evaluated using three 184

metrics: ROC-AUC, ROC-PR and accuracy. 185

We chose relatively stringent thresholds for feature selection, this is to reveal more 186

difference than similarities between the two patient groups. We argue that it becomes 187

harder to find the signatures if the two groups have more similar samples in terms of 188

the phenotype. For example, if one uses a single threshold of 3 years, we assume that 189

the molecular profiles of patients who survived a bit longer than 3 years may be very 190

similar to patients who survived a bit shorter than 3 years. In this case, it is challenging 191

to find the signatures that can capture the most important difference between the two 192

groups, given the limited amount of samples and their heterogeneity. However, we did 193

not omit the influence of thresholds. We tested the performance of all feature selection 194

algorithms with four different thresholds, in the order of increasing discrepancy: 3 years, 195

<900 or >1200 days, <700 or >1400 days, <500 or >1500 days. 196

Besides evaluating the classification performance, survival analysis was performed 197

using the selected features on censored data. The data have much more samples that 198

could not be included in classification.We think that if the selected features are good 199

signatures, they should be able to stratify the patients into significantly different 200

survival groups. We performed survival analysis on both all-stage and early-stage 201

patients. The sample sizes for classification and for survival analysis (all stage patients) 202

are given in Table 3. 203

Last but not least, we analyzed the biological interpretations of EMT signatures. 204

Instead of performing gene set enrichment analysis, which could give very significant 205

results due to the biological context of the EMT networks, we employed association rule 206

August 30, 2018 6/19

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 6, 2018. ; https://doi.org/10.1101/410472doi: bioRxiv preprint 

https://doi.org/10.1101/410472
http://creativecommons.org/licenses/by/4.0/


mining approach to infer prognostic association rules. The rules have the advantage to 207

directly associate the states of the features to the phenotype of interest. We inferred 208

rules using EMT signatures from individual data levels and also from their different 209

combinations. Our motivation is to understand whether features from different data 210

levels complement each other and jointly contribute to patient prognosis. 211

We were able to show that EMT signatures from different data levels complement 212

each other in prognostic rules. This inspired us to obtain multi-omics EMT signatures 213

by combining the signatures on individual data levels (single-omics signatures). Both 214

single- and multi-omics EMT signatures were evaluated on TCGA data and 215

independent LUAD multi-omics data using survival analysis. All the data and code for 216

analysis are available at https://github.com/BorongShao/EMT prognosis-master. 217

Results 218

EMT signatures outperformed comparative groups 219

First, we show that regardless of the employed feature selection algorithms and 220

evaluation metrics, EMT-based feature selection always outperforms feature selection on 221

random networks. Fig 1 shows the distributions of AUC, AUPR, and accuracy values of 222

EMT signatures and random ones, where DM data and core EMT network were used. 223

S1 Fig shows the same comparative groups using GE data with filtered EMT network. 224

In both cases, the advantages of EMT signatures are very apparent. 225

Fig 1. The AUC, AUPR, and accuracies of EMT features versus random
features using DM data with the core EMT network. Gaussian kernel is used
to estimate the density functions based on results from 30 times 10-fold cross-validation.
For each cross-validation fold, EMT features and random features are tested on the
same training and cross-validation samples. Each row in the figure corresponds to one
feature selection algorithm. The last row corresponds to using all EMT features. The
p-values of paired t-tests are provided in each sub-figure.

Next, we give the average AUC values of EMT signatures on all three data levels in 226

Table 4. The boxplot is given in S2 Fig. These results show that features selected from 227

GE and DM data obtained better prediction performance than features selected from 228

CNA data. Depending on the data levels and network sizes, we find it hard to identify 229

the best-performing feature selection algorithm. In the last two lines of the table we give 230

the results of comparative groups 3 and 4. This shows that EMT signatures in many 231

cases outperformed features selected from all data level features. For example, with 232

Lasso feature selection algorithm, which was applied in both EMT feature space and in 233

the whole feature space, EMT signatures gave better predictions in more than half of 234

the cases. This indicates that selecting prognostic signatures from a much smaller 235

phenotype relevant network is a feasible approach. We also evaluated the performance 236

of the 10 feature selection algorithms with different classification thresholds. Both SVM 237

and random forest classifiers are employed. The results are given in S3 Fig. It shows 238

that regardless of feature selection algorithms, using more discrepant thresholds tends 239

to obtain higher AUC values. Meanwhile, a few algorithms such as addDA2, RegCox, 240

and Survnet are more sensitive to the effect of thresholds than the other algorithms. 241

Frequently selected features further improves predictions 242

Although EMT signatures were shown to be significantly predictive in the experiments 243

above, we observed high variance in the AUC values from individual cross-validation 244
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Table 4. The prediction performance of EMT signatures on three data
levels. The table gives the average AUC values of EMT signatures on three data
levels with each EMT network. The results from comparative groups 2, 3, and 4 are
given in the third row and the last two rows.

Data Level Gene expression DNA Methylation CNA
|V (G)| 74 123 455 74 123 455 70 117 445
EMT 0.662 0.728 0.691 0.698 0.679 0.671 0.616 0.645 0.608
t-test 0.658 0.709 0.677 0.688 0.675 0.669 0.616 0.626 0.621
Lasso 0.616 0.703 0.620 0.697 0.666 0.667 0.615 0.619 0.617
NetLasso 0.659 0.718 0.686 0.700 0.678 0.677 0.619 0.635 0.621
addDA2 0.650 0.675 0.651 0.699 0.661 0.702 0.597 0.626 0.616
Netrank 0.656 0.691 0.668 0.695 0.685 0.693 0.615 0.619 0.610
stSVM 0.651 0.693 0.639 0.669 0.668 0.687 0.608 0.617 0.616
Cox 0.673 0.705 0.712 0.703 0.707 0.696 0.620 0.664 0.675
RegCox 0.648 0.698 0.729 0.696 0.717 0.666 0.645 0.669 0.653
MSS 0.662 0.694 0.659 0.674 0.654 0.640 0.608 0.627 0.625
Survnet 0.646 0.661 0.679 0.702 0.688 0.680 0.626 0.693 0.682
All 0.648 0.652 0.612
All + Lasso 0.643 0.691 0.607

Fig 2. The comparison of prediction performance between FSFs and
individually selected features for different feature selection algorithms. The
boxplot is based on the results from 30 times stratified 10-fold cross-validation.

tests (shown in S2 Fig). Some partitions of data into training and cross-validation sets 245

led to good predictions and some led to poor predictions. Even on the small EMT 246

feature space, this phenomenon is already frequently observed. This suggests that 247

selecting molecular signatures based on single cross-validation test or single sample 248

division into training and testing set is highly unreliable. 249

We think that sample heterogeneity contributed to the high variance in prediction 250

performance. Thus, we addressed this issue by employing the frequently selected 251

features (FSFs) from all 30 times 10-fold cross-validation feature selection. Instead of 252

using 20 features selected from each training set, we used the top 20 FSFs and tested 253

their performance using the same evaluation approach. DM data and the extended 254

EMT network were employed for the test, as this combination was shown in Table 4 255

and Figure 4 to give above-average prediction performance. We compared the 256

prediction performance of FSFs with that of individually selected features. The results 257

are given in Fig 2. The density plots and results of statistical tests are given in S4 Fig. 258

We observed that FSFs significantly outperformed individually selected features, 259

except for Netrank algorithm. The average AUC values of t-test, Lasso, NetLasso, and 260

addDA2 feature selection algorithms were 0.773, 0.825, 0.796, and 0.833, respectively. It 261

shows that using FSFs can mitigate the effect of sample heterogeneity. Recall that we 262

used only <2.5% of the original dimensionality, namely EMT features, for feature 263

selection and prognosis prediction. The remarkable results are consistent with biological 264

knowledge that EMT process is highly relevant to cancer prognosis [46–50]. 265

Biological interpretations 266

After identifying EMT FSFs, we further investigated their biological interpretations, 267

especially the relationships among FSFs from different omics data levels. We employed 268

association rule mining approach [51]. It is originally defined as the following [52]: 269
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Let I = {i1, i2, ..., in} be a set of n binary features called items. Let 270

D = {t1, t2, ..., tm} be a set of transactions called the database. A rule is defined in the 271

form: X ⇒ Y , where X,Y ⊆ I. The itemsets X and Y are called left-hand-side (LHS) 272

and right-hand-side (RHS). In order to select interesting rules from the set of all 273

possible rules, constraints on various measures of significance and interest are applied. 274

Let a rule X ⇒ Y be identified on a set of transactions T . Commonly used constraints 275

are given below: 276

• Support. It indicates how frequently the itemset appears in T . 277

supp(X) =
|{t ∈ T ;X ⊆ t}|

|T |

• Confidence. It indicates how often a rule has been found to be true. 278

conf(X ⇒ Y ) =
supp(X ∪ Y )

supp(X)

• Lift. It indicates the degree to which X and Y depend on each other. 279

lift(X ⇒ Y ) =
supp(X ∪ Y )

supp(X)× supp(Y )

We binarized the EMT features using their means and applied Apriori algorithm 280

[53] to derive rules, with the constraints of confidence ≥ 0.8 and support ≥ 0.1. The 281

algorithm was implemented in the textitarules R package [51]. Since we are trying to 282

find molecular patterns for predicting prognosis, we set the RHS of the rules to be the 283

class labels of prognosis. 284

The resulting rules show sound biological interpretations according to established 285

findings in cancer research. Here we interpret two rules identified from the core EMT 286

network: 287

{LOXL2GE = high, TGFB1GE = high,miR− 34aGE = low} ⇒ {prognosis = poor}, 288

with support = 0.135, confidence = 1, lift = 2.046. This rule applies to all samples 289

that have these 3 gene expression conditions. Biologically, it has been shown that 290

LOXL2 can stabilize SNAI1. TGFB1 can phosphorylate SMAD2 and SMAD3, which 291

interact with SMAD4 to activate HMGA2, which then activates SNAI1. When LOXL2 292

and TGFB1 are highly expressed, it not only induces SNAI1 gene expression but also 293

stabilizes SNAI1 protein. miR-34a has the role of repressing SNAI1. When miR-34a has 294

low gene expression, SNAI1 is less repressed. Taken together, these three conditions 295

point to the direction of the high expression of SNAI1 - a master transcription factor to 296

induce EMT. This contributes to poor prognosis. In contrast, another rule which has an 297

opposite LOXL2 state indicates good prognosis: 298

{LOXL2GE = low,ETS1GE = low, LOXL2DM = high} ⇒ prognosis = good, with 299

support = 0.105, confidence = 1, lift = 1.956. In this scenario, LOXL2 has high DNA 300

methylation level and low gene expression level, and thus not able to stabilize SNAI1. 301

ETS1 gene is known to increase the expression of ZEB1 which induces EMT. In this 302

rule ETS1 has low expression so it does not contribute to inducing EMT. These factors 303

can contribute to good prognosis. S1 Table contains more examples. 304

From single- to multi-omics signatures 305

The FSFs above were obtained alternatively from single data levels. Therefore, we name 306

them as single-omics signatures. To investigate whether molecular signatures 307

incorporating multiple data levels can be superior, we combined single-omics signatures 308
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Table 5. The results of log-rank tests on stratified sample clusters using
single- and multi-omics EMT signatures on all-stage samples. K-means
algorithm was employed for clustering the samples into 3 groups. We highlighted all
p-values that are lower than 10e-3.

GE DM CNA GE+DM GE+CNA DM+CNA
GE+DM
+CNA

t-test 7.87e-06 1.12e-01 3.62e-03 7.55e-06 8.75e-04 1.90e-03 8.25e-06
Lasso 4.58e-06 5.56e-02 5.54e-01 1.66e-04 2.28e-07 8.71e-01 1.18e-04
NetLasso 2.71e-01 6.45e-01 7.58e-02 2.96e-02 1.53e-02 4.83e-01 4.34e-01
addDA2 5.20e-10 5.17e-09 1.24e-04 8.99e-18 3.75e-05 1.11e-09 1.35e-07
Netrank 1.13e-07 1.79e-01 2.19e-02 2.50e-07 6.97e-06 7.31e-02 3.28e-06
stSVM 4.14e-02 3.39e-01 8.91e-01 8.86e-01 6.37e-02 5.85e-01 6.83e-01
Cox 2.55e-09 2.91e-03 5.30e-07 3.12e-04 1.70e-06 1.13e-04 6.11e-06
RegCox 1.78e-07 8.52e-03 2.67e-01 2.36e-09 1.52e-10 1.81e-07 2.52e-07
MSS 1.48e-03 5.95e-01 2.78e-01 6.29e-05 2.28e-04 2.59e-01 1.63e-03
Survnet 7.36e-05 6.25e-03 5.19e-03 2.59e-06 1.54e-03 3.77e-05 2.19e-05
Ensemble 2.32e-09 4.72e-02 6.05e-03 1.20e-04 1.62e-05 1.01e-01 1.18e-04
allemt 1.39e-02 4.30e-01 1.07e-01 7.64e-01 1.45e-02 2.07e-01 5.34e-01

Table 6. The results of log-rank tests on stratified sample clusters using
single- and multi-omics EMT signatures on early-stage samples. K-means
algorithm was employed for clustering the samples into 3 groups. We highlighted all
p-values that are lower than 10e-2.

GE DM CNA GE+DM GE+CNA DM+CNA
GE+DM
+CNA

t-test 6.28e-03 9.38e-02 1.93e-01 4.78e-04 8.40e-03 1.55e-01 2.47e-01
Lasso 1.82e-04 1.20e-03 1.01e-01 2.35e-01 1.67e-06 2.51e-03 4.94e-03
NetLasso 7.95e-03 8.56e-01 2.46e-01 2.29e-01 1.01e-01 9.69e-01 9.31e-01
addDA2 2.53e-04 1.98e-05 1.63e-03 6.88e-08 3.52e-02 1.03e-05 8.51e-04
Netrank 9.31e-06 5.39e-01 4.08e-03 3.52e-03 5.35e-04 7.54e-03 8.57e-04
stSVM 3.17e-02 2.99e-01 2.86e-01 4.00e-01 2.16e-02 1.32e-01 8.57e-01
Cox 4.40e-04 2.15e-01 2.42e-02 1.85e-02 3.30e-02 1.10e-02 6.43e-04
RegCox 8.52e-04 3.36e-01 2.33e-02 8.58e-03 2.18e-05 2.03e-03 3.90e-02
MSS 6.51e-02 6.51e-01 2.43e-01 2.34e-02 3.10e-02 9.91e-01 5.91e-02
Survnet 4.16e-03 3.05e-01 6.24e-02 6.78e-02 8.66e-02 2.27e-02 8.08e-03
Ensemble 4.03e-04 1.54e-01 4.54e-02 5.06e-03 4.01e-04 5.79e-04 7.95e-04
allemt 2.59e-01 9.45e-01 7.04e-03 6.31e-01 1.38e-02 4.16e-01 9.73e-01

into multi-omics signatures and compared their capabilities in stratifying samples into 309

different prognostic groups. Using these signatures, we clustered the samples into 3 310

groups with both k-means and spectral clustering algorithms. Survival analysis was 311

performed on the resulting cluster by estimating Kaplan-Meier survival curves and 312

conducting log-rank tests. The test results based on k-means algorithm are given in 313

Table 5, where the columns show different data level combinations and the rows 314

correspond to feature selection algorithms. The comparative group of using all EMT 315

features without feature selection is included. The test results based on spectral 316

clustering algorithm are given in S2 Table. In both tables we observe that multi-omics 317

signatures improve sample stratifications significantly. An example is visualized in S5 318

Fig, S6 Fig, and S7 Fig. 319

Next, we performed survival analysis on early stage patients. The results are given 320

in Table 6. It shows that EMT-based signatures can still stratify the patients into 321

significantly different prognostic groups. 322

Last but not least, we tested the performance of two integrative clustering 323

algorithms: SNF [54] and iCluster [55] with multi-omics EMT signatures. Briefly, SNF 324

algorithm constructs sample similarity networks using individual data levels and then 325
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Fig 3. EMT single-omics signatures can stratify test samples into
significantly different prognostic groups. The signature is selected by addDA2
algorithm using DM data.

Fig 4. EMT multi-omics signatures can stratify test samples into
significantly different prognostic groups, when the corresponding
single-omics signatures cannot. The signature consists of both GE and DM
single-omics signatures selected by t-test.

fuses these networks into a single similarity network, where spectral clustering is used to 326

decide sample clusters. iCluster employs joint latent variable model to connect different 327

data levels. The latent component is used to determine sample clusters. Based on the 328

clustering results we performed survival analysis. The results of log-rank tests are given 329

in S3 Table for SNF algorithm and in S4 Table for iCluster algorithm. We observed that 330

neither SNF nor iCluster algorithm yielded better sample stratifications than using 331

k-means algorithm (Table 5). 332

Test results on independent data 333

We obtained the test data from [56] including 164 samples with DM data. 121 of these 334

samples have also mRNA expression data (microarray) available. The patient follow up 335

time ranges between 2 and 99 months with the median of 44 months. The outcome 336

(event) is defined as the occurrence of relapse, distant metastasis or death. The time to 337

event is calculated from the date of surgery. Detailed experimental procedures and the 338

processing of raw data are provided in [56]. EMT single- and multi-omics signatures 339

consisting of GE and DM data levels were evaluated on the test data using survival 340

analysis. EMT signatures were extracted from the test data without any additional 341

training or modifications. Hierarchical clustering, instead of k-means was employed in 342

order to compare our results with the original study [56]. 343

We have tested the EMT signatures selected by each feature selection algorithm [37]. 344

It is show that single-omics signatures can already stratify the samples into significantly 345

different prognostic groups. An example is given in Fig 3. Multi-omics signatures often 346

yielded better sample stratifications. Fig 4 shows an example where the multi-omics 347

signature from a feature selection algorithm can significantly stratify the samples while 348

the single-omics signatures cannot. Compared with the survival analysis results in the 349

original study [56], we achieved more significant sample stratifications with EMT 350

signatures. 351

Discussion 352

Various feature selection algorithms have been proposed to identify biomarkers from 353

Omics data for predicting the phenotype of interest. Although more and more 354

information such as biological networks and multiple types of omics data have been 355

integrated in feature selection, recent studies show the low reproducibility of molecular 356

signatures [22,24,35]. Some accredit this to the existence of a large number of genes 357

that are correlated with the target labels [12]. Given the limited amount of samples, it 358

becomes very hard to differentiate the marker genes and irrelevant genes. We addressed 359

this issue by constructing a phenotype relevant gene regulatory network, integrating 360

multiple types of omics data with the network to select molecular signatures. We have 361

shown that with lung cancer prognosis prediction, EMT signatures selected from only 362

2.5% of the original feature space outperformed the classical feature selection on the 363
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whole feature space. To the best of our knowledge, we for the first time constructed a 364

phenotype-relevant GRN for lung cancer prognosis prediction. 365

Previously we employed EMT networks for selecting lung cancer prognostic 366

signatures [39, 57]. However, [57] used mRNA expression and miRNA expression data 367

only. [39] employed three data levels for feature selection but obtained no significant 368

improvement in predictions. In this study, we extended the EMT network to 369

incorporate its interacting molecules. Besides, we reviewed the network used in [39] and 370

removed the edges which denote associations rather than direct gene regulations. What 371

also distinguishes this study from our previous work is the employment of 10 372

representative feature selection algorithms, instead of decomposing the network into 373

network motifs [39,57]. We have selected EMT signatures on three data levels with 374

different network sizes, compared with the features selected from the whole data 375

dimensions, and derived prognostic rules from EMT signatures. Furthermore, we 376

obtained multi-omics signatures and showed their superior prediction performance over 377

single-omics signatures. This shows that signatures from multiple omics data types can 378

complement each other to better distinguish different phenotypes. 379

The potential of EMT molecules in prognosis prediction has also been studied before. 380

[61] and [62] performed survival analysis using individual EMT hallmark molecules 381

such as E-cadherin and vimentin and showed that none of these molecules could 382

separate LUAD or bladder cancer patients into significantly different prognostic groups. 383

Note that these conclusions were drawn from mainly univariate analysis. Since the 384

molecules jointly contribute to the phenotype, it could be more helpful to use a set of 385

features. This can be seen also from the prognostic association rules derived from EMT 386

signatures, where EMT molecules are jointly associated with the phenotype. All in all, 387

we successfully demonstrated that EMT network-based feature selection and data 388

integration can provide advantages in selecting cancer prognostic signatures. 389

Supporting information 390

S1 Fig. The AUC, AUPR, and accuracies of EMT features versus random 391

features using gene expression data with filtered EMT network. Gaussian 392

kernel is used to estimate the density functions based on results from 30 times 10-fold 393

cross-validation. For each cross-validation fold, EMT features and random features are 394

tested on the same training and testing samples. The comparisons on five feature 395

selection algorithms together with the comparative group of using all EMT features are 396

shown. The p-values of paired t-tests are provided. 397

S2 Fig. The AUC values of 10 feature selection algorithms. The three panels 398

correspond to three data levels. Within each panel, the AUC values of the 10 algorithms 399

are plotted. Each algorithm has three boxes of different colors denoting the 3 EMT 400

networks. The blue and red dotted lines within each panel are the median AUC values 401

of two comparative groups: 1) using all data level features and 2) Lasso feature selection 402

on all data level features. 403

S3 Fig. The AUC values of 10 feature selection algorithms using different 404

thresholds for classification. The data level is DNA methylation data. The network 405

is EMT core network. 406

S4 Fig. The comparison of FSFs with individually selected features in 407

terms of AUC, AUPR, and accuracy values. We used DNA methylation data 408

and extended EMT network for feature selection and SVM classifier for classification. 409
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LHS prognosis supp lift
1 CDH3GE = low,miR.34aDM = high,HMGA2DM = low good 0.113 1.956
2 EGLN3GE = low,CDH3GE = low,HMGA2DM = low good 0.113 1.956
3 GFI1BGE = high,CDH3GE = low,HMGA2DM = low good 0.135 1.956
4 GATA6GE = low,E2F1GE = low,HMGA2DM = low good 0.120 1.956
5 GATA6GE = high,CDC20GE = low, FOXA3GE = high poor 0.150 2.046
6 GATA6GE = high,CDH3GE = high, FOXA3GE = high poor 0.135 2.046
7 GATA6GE = high,miR.34aDM = low, FOXA3GE = high poor 0.143 2.046
8 miR.34aGE = low,CCND1GE = high, FOXAGE3 = low good 0.113 1.956
9 GATA6GE = low,miR.34aGE = low,CCND1GE = high good 0.105 1.956
10 BIRC3GE = low,CCND1GE = high, FOXA3GE = low good 0.113 1.956
11 LOXL2GE = high,miR.34aDM = low, FOXA3GE = high poor 0.158 2.046

12
BIRC3GE = low,miR.34aGE = low,CDH3GE = low
HMGA2DM = low

good 0.105 1.956

13
GFI1BGE = high,miR.34aGE = low,HMGA2DM = low
FOXA3GE = low

good 0.105 1.956

14
GFI1BGE = high,BIRC3GE = low,miR.34aGE = low
HMGA2DM = low

good 0.105 1.956

15
ITGA6GE = high,BIRC3GE = high,BIRC5GE = high
GATA6GE = high

poor 0.113 2.046

16
BIRC3GE = high,GATA6GE = high,E2F1GE = low
miR.34aDM = low

poor 0.105 2.046

17
BIRC3GE = high,GATA6GE = high,E2F1GE = low
GATA4GE = low

poor 0.135 2.046

18
BIRC5GE = high,GATA6GE = high,miR.34aGE = high
FOXA3GE = high

poor 0.128 2.046

19
EGLN3GE = high,BIRC5GE = high,GATA6GE = high
FOXA3GE = high

poor 0.113 2.046

20
BIRC5GE = high,GATA6GE = high,miR.192GE = low
FOXA3GE = high

poor 0.120 2.046

Gaussian kernel is used to estimate the density functions based on results from 30 times 410

stratified 10-fold cross-validation. For each cross-validation iteration, individually 411

selected features and FSFs are tested on the same training and testing samples. The 412

comparison between the two feature groups is shown on five feature selection algorithms 413

together with the p-values of paired t-tests. 414

S5 Fig. Patient stratification using GE features from addDA2 algorithm. 415

S6 Fig. Patient stratification using DM features from addDA2 algorithm. 416

S7 Fig. Patient stratification using GE and DM features from addDA2 417

algorithm. 418

S1 Table. Top 20 prognostic association rules derived from the FSFs 419

using filtered EMT network. All the following rules have confidence scores of 1. 420

S2 Table. The p-values of log-rank tests based on the clustering of 421

spectral clustering algorithm for different data level combinations using 422

extended EMT network. We highlighted all p-values that are lower than 10e-5. 423
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GE DM CNA GE+DM GE+CNA DM+CNA
GE+DM
+CNA

t-test 1.19e-5 1.18e-1 6.39e-2 8.16e-1 9.51e-7 3.85e-1 1.86e-5
Lasso 2.34e-4 6.78e-1 7.67e-1 4.92e-1 1.76e-5 1.85e-6 2.69e-6
NetLasso 3.36e-2 8.61e-1 5.25e-1 2.96e-1 2.46e-2 2.61e-1 8.03e-1
addDA2 2.16e-5 4.55e-1 3.00e-4 8.44e-13 3.09e-6 1.61e-7 1.45e-5
Netrank 4.89e-03 1.82e-01 8.85e-01 5.30e-02 2.11e-02 1.62e-02 1.15e-01
stSVM 1.64e-01 5.22e-01 5.77e-01 5.62e-01 2.20e-01 7.45e-01 7.92e-01
Cox 3.49e-03 1.36e-04 1.04e-02 4.45e-05 1.34e-04 1.49e-05 2.10e-01
RegCox 1.41e-04 6.53e-03 1.60e-03 1.20e-01 7.63e-02 2.89e-01 4.07e-01
MSS 1.72e-03 8.71e-01 1.12e-01 4.51e-03 6.32e-04 1.59e-01 1.44e-02
Survnet 3.89e-05 2.48e-02 2.30e-01 9.20e-04 6.13e-04 1.23e-03 2.14e-05
Ensemble 1.40e-03 9.75e-01 8.37e-02 3.95e-03 8.12e-07 2.42e-09 1.68e-08
allemt 5.78e-03 8.37e-01 3.46e-01 9.58e-01 9.36e-03 7.79e-01 4.02e-01

GE DM CNA GE+DM GE+CNA DM+CNA
GE+DM
+CNA

t-test 2.71e-05 6.33e-02 3.32e-01 6.81e-03 5.61e-06 2.22e-03 1.72e-03
Lasso 7.95e-04 9.79e-02 5.05e-01 4.39e-03 8.30e-08 1.87e-03 8.73e-03
NetLasso 7.09e-02 5.91e-01 2.51e-01 2.70e-01 2.38e-02 9.23e-02 7.39e-02
addDA2 7.19e-07 8.27e-10 8.50e-04 9.60e-12 1.36e-03 7.41e-02 5.25e-09
Netrank 2.05e-03 3.45e-01 3.17e-01 1.61e-06 1.09e-03 1.76e-03 2.07e-05
stSVM 9.83e-02 4.11e-01 5.76e-01 5.49e-01 5.58e-01 7.25e-01 6.61e-01
Cox 7.50e-05 9.18e-04 1.50e-01 3.33e-03 3.53e-03 4.47e-03 8.89e-04
RegCox 2.01e-03 6.60e-01 1.76e-01 2.39e-08 4.34e-02 6.70e-06 1.28e-08
MSS 9.45e-04 6.22e-02 3.47e-01 1.04e-02 1.63e-02 2.48e-01 6.00e-04
Survnet 9.44e-05 5.75e-02 3.14e-02 2.71e-03 4.95e-05 6.96e-05 9.74e-05
Ensemble 1.14e-03 4.10e-03 6.14e-02 1.20e-03 1.05e-02 5.73e-04 2.51e-04
allemt 1.94e-02 7.26e-01 2.70e-01 1.91e-01 3.41e-01 7.15e-01 5.92e-01

S3 Table. The p-values of log-rank tests based on SNF clustering using 424

different data level combinations with extended EMT network. We 425

highlighted all p-values that are lower than 10e-5. 426

S4 Table. The p-values of log-rank tests based on iCluster clustering 427

using different data level combinations with extended EMT network. We 428

highlighted all p-values that are lower than 10e-5. 429
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