1 Title

- 2 Transcriptomic characterization of signaling pathways associated with osteoblastic
- 3 differentiation of MC-3T3E1 cells

4 Short Title

5 Pathways analysis of osteoblast differentiation

6 Authors

- 7 Louis M. Luttrell^{1,2,3*}, Moahad S. Dar⁴, Diane Gesty-Palmer⁴, Hesham M. El-Shewy¹,
- 8 Katherine M. Robinson¹, Courtney J. Haycraft⁵, Jeremy L. Barth⁶

9 Affiliations

- 10 ¹ Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
- ² Department of Biochemistry & Molecular Biology, Medical University of South
- 12 Carolina, Charleston, SC, USA
- 13 ³ Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA
- ⁴ Department of Medicine, Duke University Medical Center, Durham, NC, USA
- 15 ⁵ Department of Biology, Mississippi College, Clinton, MS, USA
- 16 ⁶ Department of Regenerative Medicine and Cell Biology, Medical University of South
- 17 Carolina, Charleston, SC, USA

¹⁸ * Corresponding Author

19 E-mail: <u>luttrell@musc.edu</u> (LML)

21 Abstract

22	Bone remodeling involves the coordinated actions of osteoclasts, which resorb the
23	calcified bony matrix, and osteoblasts, which refill erosion pits created by osteoclasts to
24	restore skeletal integrity and adapt to changes in mechanical load. Osteoblasts are
25	derived from pluripotent mesenchymal stem cell precursors, which undergo
26	differentiation under the influence of a host of local and environmental cues. To
27	characterize the autocrine/paracrine signaling networks associated with osteoblast
28	maturation and function, we performed gene network analysis using complementary
29	"agnostic" DNA microarray and "targeted" NanoString TM nCounter datasets derived
30	from murine MC3T3-E1 cells induced to undergo synchronized osteoblastic
31	differentiation in vitro. Pairwise datasets representing changes in gene expression
32	associated with growth arrest (day 2 to 5 in culture), differentiation (day 5 to 10 in
33	culture), and osteoblast maturation (day 10 to 28 in culture) were analyzed using
34	Ingenuity Systems TM Pathways Analysis to generate predictions about signaling pathway
35	activity based on the temporal sequence of changes in target gene expression. Our data
36	indicate that some pathways known to be involved in osteoblast differentiation, e.g.
37	Wnt/ β -catenin signaling, are most active early in the process, while others, e.g.
38	TGF β /BMP, cytokine/JAK-STAT and TNF α /RANKL signaling, increase in activity as
39	differentiation progresses. Collectively, these pathways contribute to the sequential
40	expression of genes involved in the synthesis and mineralization of extracellular matrix.
41	These results provide insight into the temporal coordination and complex interplay
42	between signaling networks controlling gene expression during osteoblast differentiation.
43	A more complete understanding of these processes may aid the discovery of novel

44 methods to promote osteoblast development for the treatment of conditions characterized45 by low bone mineral density.

46 Introduction

47 Bone remodeling is the continuous process through which worn bone is removed 48 and replaced [1, 2]. Bone-resorbing osteoclasts differentiate from hematopoietic stem 49 cell precursors in response to cues originating from osteocytes, bone lining cells, and 50 differentiating osteoblasts. Bone-forming osteoblasts derive from mesenchymal stem cell 51 presursors and undergo a defined maturational sequence from proliferating preosteoblasts 52 to mature synthetically active osteoblasts, before finally undergoing apoptosis or 53 transforming into osteocytes embedded within the bony matrix and quiescent bone lining 54 cells covering the mineralized surface. The bone remodeling cycle involves sequential 55 osteoclastic bone resorption followed by the synthesis and mineralization of new bone matrix by osteoblasts, a process that requires several weeks to complete. Since these 56 57 osteoclast-osteoblast bone forming units that mediate this process are constantly being 58 created and destroyed, any analysis performed on bone tissue, whether by classical 59 histomorphometry or using genomic and proteomic methods, is a 'snapshot' of the 60 metabolic state of bone at that moment in time. While such in vivo studies are extremely 61 useful for understanding the effects of disease, hormone administration/withdrawal or 62 drug treatment on overall bone metabolism, they inevitably capture cross sectional data 63 from multiple cell types in different differentiation states.

In contrast, *in vitro* studies offer the advantage that cellular development can be
synchronized, offering a better opportunity to view differentiation as a linear process. In
bone, the replication of undifferentiated osteogenic precursor cells, their recruitment to

67 remodeling bone matrix, and their subsequent acquisition of differentiated function,
68 results from the complex interplay of signals transmitted by mechanical load, polypeptide
69 growth factors, steroid and thyroid hormones, and locally produced cytokines and
70 prostaglandins [3, 4]. While circulating hormones play an important modulatory role,
71 osteoblastic differentiation can be induced *in vitro*, indicating that, once triggered, the
72 process is autonomous, i.e. independent of ongoing exposure to systemically derived
73 factors.

74 Gene array technology is a potentially powerful tool for understanding complex 75 biological processes. A significant limitation of the approach, however, is that it is 76 difficult to translate lists of significantly regulated genes into changes in biologically 77 relevant signaling networks. Genomic datasets are invariably incomplete and contain 78 some number of false positive 'hits', making candidate based follow up studies 79 unreliable. In addition, important pathway components may not be regulated at the 80 transcriptional level. Circumventing these limitations requires the use of bioinformatic 81 approaches that compare changes in gene expression against databases of known protein-82 protein interactions to establish the probability that a given signaling or metabolic 83 pathway is regulated under varying experimental conditions [5, 6]. These *in silico* 84 analyses, which enable gene expression profile data to be expressed as the statistical 85 probability that a particular pathway is regulated, can "fill in the blanks", leading to a 86 more holistic view of process-related changes in signaling pathway activity.

To better understand the temporal regulation of osteoblast differentiation, we
performed microarray analysis of gene expression followed by signal transduction
pathways analysis on murine MC3T3-E1 cells undergoing osteoblastic differentiation *in*

90	vitro. Taking advantage of their well-defined maturational sequence [7-10], we isolated
91	RNA at four stages: during log growth, early and late osteoblastic differentiation, and
92	mature synthetic function. We then performed pairwise comparisons to identify
93	significant changes in gene expression associated with each of these stages of osteoblast
94	development, and used the resulting genesets to identify the time-dependent changes in
95	signal transduction pathway activity. Our data indicate that the temporally coordinated
96	activation of signaling pathways known to be involved in osteoblast differentiation, e.g.
97	Wnt/ β -catenin, Transforming Growth Factor- β (TGF β) Bone Morphogenic Protein
98	(BMP), cytokine/Janus Kinase (JAK)-Signal Transducer and Activator of Transcription
99	(STAT), and Tumor Necrosis factor- α (TNF α \square /Receptor Activator of Nuclear Factor κ -
100	B (NF κ B) Ligand (RANKL) signaling, correlates with the sequential expression of genes
101	involved in the biosynthesis and mineralization of extracellular matrix as differentiation
102	progresses. These results demonstrate the utility of functional genomic approaches to
103	microarray analysis and offer insight into the temporal sequence of changes in the
104	autocrine/paracrine signaling networks regulating osteoblast differentiation.

105 Materials and methods

106 Culture and differentiation of MC3T3-E1 cells

107 Stock cultures of MC3T3-E1 cells (subclone 4; CRL-2593; ATCC) were

108 maintained in α -minimum essential medium (MEM) supplemented with 10% v/v fetal

- 109 bovine serum, penicillin (100 units/mL) and streptomycin (100 pg/mL) in a humidified
- 110 10% CO₂ atmosphere at 37 °C. Until the time of study cells were maintained in log phase
- 111 growth by passage every 3-5 days using 0.001% pronase (w/v) to detach adherent cells.
- 112 For studies of the temporal sequence of osteoblast differentiation, cells were plated at an

113	initial density	of 20,000	cells/well in	6-well 1	plates or	100,000	cells/dish in	10 cm	dishes,

- and grown for 2 to 28 days in α -MEM supplemented with 10% v/v fetal bovine serum, 5
- 115 mM β -glycerol phosphate and 50 μ g/mL ascorbic acid (7-10).
- 116 Cell replication
- 117 Between days 1 and 5 in culture, cells in 6-well plates were treated with 0.001%
- 118 pronase (w/v) to achieve detachment and directly counted in a hemocytometer.
- 119 Alkaline phosphatase activity

120 Alkaline phosphatase activity was measured by para-nitrophenyl phosphate 121 hydrolysis as previously described (11). Briefly, MC3T3-E1 cells growth in 6-well plates 122 were harvested in distilled water and disrupted by sonication. Appropriately diluted 123 aliquots of cell lysate containing equal cell protein were incubated for 30 min at 37 °C in 124 a final reaction volume of 600 \Box L, containing 1.0 M diethanolamine, pH 10.3 and 15 125 mM para-nitrophenyl phosphate. Reactions were terminated by the addition of 2.4 mL 126 0.1N NaOH, after which generation of para-nitrophenol was measured by determining 127 absorbance at 400 nm. Results were expressed as pmol para-nitrophenol/min/10⁶ cells.

128 Synthesis of type I collagen

Type 1 collagen production was determined by western blotting. Monolayers of
MC3T3-E1 cells were lysed directly in 1X Laemmli sample buffer, dispersed by
sonication, and resolved by sodium dodecyl sulfate – polyacrylamide gel electrophoresis.
Immune complexes on nitrocellulose membranes were detected using mouse monoclonal
anti-type I collagen IgG₁ (COL1A: sc59772; Santa Cruz Biotechnology, Santa Cruz, CA)
with horseradish peroxidase-conjugated donkey anti-mouse IgG (Code: 715-035-150;

135 Jackson ImmunoResearch Laboratories Inc., West Grove, PA) as secondary antibody.

- 136 The cell content of each sample was determined by western blotting in parallel for α -actin
- 137 using mouse monoclonal anti-actin IgG₁ (C-2: sc8432; Santa Cruz Biotechnology, Santa
- 138 Cruz, CA). Immune complexes were visualized on X-ray film by enzyme-linked
- 139 chemiluminescence and quantified using a Fluor-S MultiImager. Data were expressed as
- 140 the ratio of type I collagen to α -actin in each sample.

141 Alizarin red staining

142 Matrix mineralization was quantified by Alizarin red staining as described (12).

143 Monolayers of MC3T3-E1 cells in 6-well plates were fixed for 24 hr in a 10%

144 formalin:methanol:distilled water solution (1:1:1.5), stained for 20 min in 2% Alizarin

145 Red-S in distilled water, washed with distilled water and air dried. Mineralization was

146 quantified by eluting the stain using 10% cetylpyridium chloride and measuring

absorbance at 520 nM.

148 **mRNA isolation**

MC3T3-E1 cells were cultured as described in 10 cm dishes for 2, 5, 10 or 28 days prior to isolation of RNA. Total RNA from three independent cultures was isolated at each time point. Cells were harvested by scraping and RNA was isolated with Trizol Reagent (Invitrogen, Carlsbad, CA) and purified using the RNeasy kit (Qiagen Inc.,

153 Valencia, CA) according to the manufacturer's protocols (13). Total RNA was analyzed

- 154 for concentration $(ng/\Box L)$ and purity (ratios of 260/280 nm and 260/230 nm) using a
- 155 NanoDrop 1000 Spectrophotometer (Thermo Scientific, Wilmington, DE). RNA integrity
- 156 was analyzed using the Experion RNA HighSens Analysis Kit (Bio-Rad Laboratories

157 Inc., Hercules CA).

158 Microarray analysis

159	Samples underwent RNA amplification (Message Amp; Ambion, Austin, TX),
160	labeling with Cy3, and hybridization to Mouse Operon 17,000 gene feature (Operon
161	dataset; version 2.0) spotted oligonucleotide arrays in the microarray facility of the Duke
162	University Institute for Genome Sciences and Policy (<u>www.genome.duke.edu/cores/</u>
163	microarray/). MIAME compliant microarray data files have been deposited with the
164	NCBI GEO database (www.ncbi.nlm.nih. gov/gds) (GEO Series GSE64485). Data pre-
165	processing and normalization were performed on GenePix scan results files (.gpr files)
166	using the Bioconductor LimmaGUI package 1.28.0 run with R 2.13.0 software (14).
167	Background correction was performed using the normexp method with offset of 16, and
168	spot quality weighting was applied as follows: 1 for Good (100) or Unflagged (0); 0.1 for
169	Bad (-100), Not Found (-50) and Absent (-75) flags. Print-tip group loess normalization
170	was applied for normalization within arrays. Review of box plots of normalized M
171	values indicated that normalization between arrays was not warranted. Normalized M
172	values, i.e. log2 test(Cy3)/reference(Cy5) relationship, were imported into dchip for
173	comparative analysis. ANOVA was used to find genes differing as function of time, i.e.
174	significantly different between any two time points. ANOVA filtering at the 0.005 level
175	yielded 1005 genes passing with a reasonable 5-10% false discovery rate (17664
176	compared; expected false positive: 88). Self-organizing maps (SOM) were used to
177	partition the significantly regulated genes into different response patterns. Expression
178	data were imported into MeV software for SOM analysis, z-standardization performed,
179	i.e. mean=0 and SD=1, and SOM clusters for ANOVA p<0.005 were generated by: 16

- 180 clusters, 4x4, 2000 iterations, hexagonal topography, Gaussian neighborhood, alpha 0.05,
- 181 radius 1.0, no HCL linkage, Pearson correlation.

182 NanoStringTM nCounter analysis

183	The NanoString TM nCounter gene expression system (NanoString TM
184	Technologies; Seattle, WA) was used for expression profiling of selected mRNA species
185	isolated from MC3T3-E1 cells at Days 2, 5, 10 and 28 in culture using a custom nCounter
186	CodeSet composed of 243 probes (S1 Table) including 6 housekeeping controls (Eif4a2,
187	GusB, Oaz1, Stk36, Tceb1, and Tubb4a). With NanoString [™] technology fluorescent
188	single strand RNA probes are hybridized to complimentary target strands of mRNA and
189	quantified based on the fluorescence of each target gene within each sample (15,16).
190	Briefly, the NanoString TM reporter probe CodeSet was suspended in $70\mu L$ of
191	hybridization buffer and 8μ L aliquots were combined in sterile microfuge tubes with
192	each RNA sample diluted to a concentration of 250ng RNA in 5µL. Thereafter, 2µL of
193	the capture probe CodeSet was added to each tube, tubes were centrifuged, and then
194	incubated at 65°C in a BioRad T100 Thermal Cycler (BioRad; Hercules, CA) for 13-15
195	hours. After hybridization, samples were analyzed using the NanoString [™] Technologies
196	Prep Station and Digitial Analyzer according to manufacturer's instructions. All 12
197	samples, i.e. RNA from triplicate cultures at each of four time points, were analyzed
198	simultaneously to minimize batch effects. The resulting counts were analyzed using
199	NanoStriDE and GraphPad Prism 7 (GraphPad Software; Carlsbad, CA) software.
200	Statistical significance of change over time was determined by two-way ANOVA with
201	Tukey's multiple comparisons test using GraphPad Prism 7.
202	IPA metabolic pathways analysis.

203	Network analysis of genesets representing changes in mRNA abuundance
204	between specified time points was performed using the Ingenuity Systems TM Pathways
205	Analysis (IPA) tool (Qiagen; Redwood City, CA). IPA compares Genbank Accession
206	number/expression information with a proprietary protein-interaction database to
207	establish the probability that a given signaling or metabolic pathway is activated under
208	varying experimental conditions. For the microarray dataset, expression ratios for all
209	relevant pairwise comparisions, i.e. D2 vs D5, D2 vs D10, D2 vs D28, D5 vs D10, D5 vs
210	D28, and D10 vs D28, were calculated using the ANOVA p<0.005 set of 1005
211	significantly regulated genes. For the NanoString TM dataset, pairwise expression ratios
212	were calculated for each of the 237 measurable genes. Expression ratio data were
213	uploaded into the IPA Pathways Analysis system (https://analysis.ingenuity.com/),
214	yielding 976 analyzable transcripts from the microarray dataset (S2 Table). Each dataset
215	was subjected to IPA Core Analysis, then analyzed using IPA Upstream Regulator,
216	Downstream Effects, and Canonical Pathways analytic tools. To capture pathway
217	changes associated with each phase of differentiation we focused on the D2 vs D5, D5 vs
218	D10, and D10 vs D28 pairwise comparisons. For IPA Upstream Regulator and Canonical
219	Pathways analysis, gene clusters composed of ≥ 2 genes per group with $P < 0.05$
220	enrichment, i.e. $-\log(p-value) \ge 1.3$, compared with a standard murine background
221	database were considered analyzable. The IPA output was exported as Microsoft Excel
222	files to prepare the S3-7 Tables. Graphic representations of the data were prepared using
223	either the IPA Canonical Pathways Molecular Activity Predictor tool or GraphPad Prism
224	7 software, as appropriate. To facilitate visual inspection of the changes in predicted
225	Upstream Regulator and Canonical Pathways activity associated with each interval, heat

226 maps were generated from the activation z-scores using Morpheus software

227 (https://software.broadinstitute.org/morpheus/).

228 **Results**

229 The temporal sequence of MC3T3-E1 cell differentiation

230 MC3T3-E1 cells undergo a well-characterized process of osteoblastic

231 differentiation when placed in culture medium supplemented with β -glycerol phosphate

and ascorbic acid [7-10]. Fig 1 presents this process tracked using traditional markers:

233 cell number, bone alkaline phosphatase, abundance of type I collagen, and alizarin red

staining. After initial seeding, the cells remain in log phase growth for 2-3 days,

undergoing growth arrest upon attaining confluence by days 3-4. Osteoblastic

differentiation begins upon growth arrest and continues through days 5 to 10 in culture,

237 evident first as an increase in the production of bone-specific alkaline phosphatase,

followed by deposition of a collagenous matrix composed in part of type 1 collagen.

239 Matrix mineralization begins as early as day 10 and accelerates with time in culture. By

240 day 28 the MC3T3-E1 derived osteoblasts have produced a mineralized matrix.

241

Fig 1. MC3T3-E1 osteoblast maturation *in vitro*. MC3T3-E1 cells were seeded in 6well tissue culture plates at an initial density of 20,000 cells/well and maintained in
culture for up to 28 days. A. Representative Alizarin Red stained culture dishes from
Days 2, 5, 10 and 28 demonstrating the progression of matrix mineralization. B. Graph
depicting change in cell number (days 1-5), secreted alkaline phosphatase activity (days
4-28), type 1 collagen synthesis (days 3-21), and matrix mineralization (days 4-28)
associated with MC3T3-E1 differentiation. Data shown are the Mean ± SEM of triplicate

determinations. These data were used to select time points representing proliferating
preosteoblasts (day 2), early and late differentiating osteoblasts (days 5 and 10), and
active osteoblasts (day 28), for subsequent mRNA isolation.

252

253 Predictably, osteoblastic differentiation on MC3T3-E1 cells is reflected in 254 changes in the abundance of mRNA encoding bone marker proteins. As shown in Fig 2, 255 osteoblast developmental markers, matrix components, and proteins involved in cell adhesion and matrix remodeling change over time as the cells evolve from proliferating 256 257 pre-osteoblasts to mature osteoblasts. Notably, these changes in mRNA abundance 258 appear at different times during development. mRNA encoding Runx2, the first 259 transcription factor required for determination of the osteoblast lineage [17,18], increases 260 early in development and plateaus between Days 5 and 10, while others, e.g. alkaline 261 phosphatase (Alp1), integrin-binding sialoprotein (Ibsp), a major structural protein of the 262 bone matrix, and parathyroid hormone receptor (Pthr1), increase steadily from Day 2 to 263 Day 28. Still other mRNA species are abundant throughout development, e.g. collagen 264 type 1A (*Collal*), and some increase between Days 10 and 28 after differentiation is well 265 underway e.g. the osteoblast-specific matrix protein periostin (*Postn*). Such differences 266 are consistent with a temporally coordinated process wherein early events trigger the 267 sequential activation of a transcriptional program driven by intracellular signaling 268 networks.

269

270 Fig 2. Temporal changes in the abundance of mRNA encoding bone marker

proteins. Total RNA was isolated from triplicate cultures of MC3T3-E1 cells at Days 2,

0 0	_	10 100 1	1 DITI 1	1	11		<u> </u>	•
272	4	10 and 28 in culture,		un dom oo	an om titiod by		- ml 'ountor	110110
///	•			ппппансет	шашпест п	VINAHONIHU	,	IISTIU.
	<u> </u>	10 and 20 m culture	und mittin u	undunce v	guunningu U	y i unopum	_ incounter	asing

- a bone focused probe set (S1 Table). Developmental markers shown are: alkaline
- 274 phosphatase (*Alp1*); parathyroid hormone receptor (*Pthr1*); the transcription factors
- 275 Runx2, Sox9 and Sp7; and the transcriptional repressor Msx2. Matrix components shown
- are: bone gamma-carboxyglutamate protein (*Bglap*); collagen types 1A1 (*Colla1*), 1A2
- 277 (Colla2), 2A1 (Col2a1) and 10A1 (Coll0a1); decorin (Dcn); dermatopontin (Dpt);
- dentin matrix protein-1 (*Dmp-1*); integrin-binding sialoprotein (*Ibsp*); and periostin
- 279 (Postn). Proteins associated with cell adhesion and matrix remodeling are: tetraspanin
- 280 (Cd9); cathepsin K (Ctsk); osteonectin (Sparc); osteopontin (Spp1); matrix
- 281 metalloproteinases 2 (*Mmp2*), 14 (*Mmp14*), and 16 (*Mmp16*); hyaluronic acid receptor
- 282 (*Cd44*); and neural cell adhesion molecule 1 (*Cd56*). Data shown represent the Mean \pm
- SD of triplicate samples. Error bars not shown are smaller than the symbol. † P < 0.05; *
- 284 P < 0.01; ** P < 0.001 different in abundance between at least two time points by two-
- 285 way ANOVA with Tukey's multiple comparisons test; ns, not significant.
- 286

287 DNA microarray analysis of MC3T3-E1 differentiation

288 DNA microarrays, because they capture information about the abundance of a 289 large number of unselected mRNA species, provide an "agnostic" snapshot of gene 290 expression patterns at a given point in time. Combining microarray data on changes in 291 mRNA abundance over time with bioinformatic tools, such as Ingenuity SystemsTM IPA, 292 provides a means to translate microarray data into a more complete picture of metabolic 293 activity [5, 6]. To identify changes in gene expression occurring at different stages of 294 differentiation, triplicate samples of total mRNA were isolated from subconfluent

295	MC3T3-E1 preosteoblasts (day 2), growth-arrested preosteoblasts (day 5), differentiating
296	osteoblasts (day 10) and maturing synthetically-active osteoblasts (day 28), and
297	hybridized to Operon V2.0 murine cDNA microarrays representing approximately 17,600
298	expressed sequence tags. Raw microarray data (GEO Series GSE64485) were analyzed
299	by ANOVA to identify genes whose mean expression was significantly different between
300	any two time points. Fig 3A shows a heat map of 1005 mRNAs passing the ANOVA
301	filtered at p < 0.005. S2 Table lists the gene symbol, annotation, and observed abundance
302	of the 976 analyzable mRNAs from this dataset. Hierarchical clustering revealed several
303	distinct temporal patterns of expression, with some gene clusters increasing or decreasing
304	in abundance early in differentiation, others changing progressively throughout
305	differentiation, or changing most dramatically during the period of osteoblast maturation.
306	Still others genes exhibited a biphasic pattern, increasing or decreasing with the onset of
307	differentiation and reversing their direction of change between days 10 and 28 in culture.
308	To further partition genes into different response patterns, we generated self-organizing
309	maps (SOM) from the ANOVA p<0.005 dataset. As shown in Fig 3B, distinct temporal
310	patterns of mRNA abundance were evident, reflecting each stage of osteoblast
311	differentiation.

312

313 Fig 3. Temporal patterns of change in the MC3T3-E1 transcriptome during

differentiation. Triplicate DNA microarrays at each time point were used to identify
significantly regulated mRNAs at different phases of osteoblast differentiation by
ANOVA (p<0.005; estimated false discovery rate 8.8%). A. Heat map representing
observed mRNA abundance of 1005 genes identified by ANOVA as demonstrating a

318	significant difference between any two time points. Hierarchical clustering was used to
319	identify coordinated patterns of change. B. Sixteen cluster SOM representing temporal
320	changes in mRNA abundance associated with MC3T3-E1 differentiation. Expression
321	data were subjected to z-standardization and SOM assembled using MeV software. The
322	resulting 16 SOM clusters are shown grouped in relation to the differentiation state of
323	MC3T3-E1 cells. Growth arrest was associated with abrupt changes (increase or
324	decrease) in mRNA levels between days 2 and 5 (240 genes). The onset of differentiation
325	was associated with progressive changes in mRNA levels between days 2 and 10 (212
326	genes). Peak differentiation was associated with prominent changes in mRNA levels
327	between days 5 and 10 (246 genes). Osteoblast maturation was associated with prominent
328	changes in mRNA levels between days 10 and 28 (307 genes).
329	
329 330	To test the hypothesis that the biological processes underlying osteoblastic
	To test the hypothesis that the biological processes underlying osteoblastic differentiation of MC3T3-E1 cells are reflected in the coordinated changes in the
330	
330 331	differentiation of MC3T3-E1 cells are reflected in the coordinated changes in the
330331332	differentiation of MC3T3-E1 cells are reflected in the coordinated changes in the transcriptome over time, the DNA microarray data were analyzed using Ingenuity
330331332333	differentiation of MC3T3-E1 cells are reflected in the coordinated changes in the transcriptome over time, the DNA microarray data were analyzed using Ingenuity Systems TM IPA software. IPA compares empirically derived "omics" datasets, e.g. DNA
 330 331 332 333 334 	differentiation of MC3T3-E1 cells are reflected in the coordinated changes in the transcriptome over time, the DNA microarray data were analyzed using Ingenuity Systems TM IPA software. IPA compares empirically derived "omics" datasets, e.g. DNA microarray data, with a curated database of reported gene-gene and protein-protein
 330 331 332 333 334 335 	differentiation of MC3T3-E1 cells are reflected in the coordinated changes in the transcriptome over time, the DNA microarray data were analyzed using Ingenuity Systems [™] IPA software. IPA compares empirically derived "omics" datasets, e.g. DNA microarray data, with a curated database of reported gene-gene and protein-protein interactions to predict signaling pathway activity based on observed changes in upstream
 330 331 332 333 334 335 336 	differentiation of MC3T3-E1 cells are reflected in the coordinated changes in the transcriptome over time, the DNA microarray data were analyzed using Ingenuity Systems [™] IPA software. IPA compares empirically derived "omics" datasets, e.g. DNA microarray data, with a curated database of reported gene-gene and protein-protein interactions to predict signaling pathway activity based on observed changes in upstream regulators and/or the downstream genes whose expression they control. The IPA output
 330 331 332 333 334 335 336 337 	differentiation of MC3T3-E1 cells are reflected in the coordinated changes in the transcriptome over time, the DNA microarray data were analyzed using Ingenuity Systems [™] IPA software. IPA compares empirically derived "omics" datasets, e.g. DNA microarray data, with a curated database of reported gene-gene and protein-protein interactions to predict signaling pathway activity based on observed changes in upstream regulators and/or the downstream genes whose expression they control. The IPA output includes two statistical measures. The first, which is typically expressed as –log(p-

341 second, termed an activation z-score, is based on the degree to which observed changes in 342 factor levels, e.g. increases or decreases in mRNA abundance between two points in time, 343 correlate with the expected changes associated with pathway activation or inhibition. 344 Thus, an activation z-score > 2 or < -2 predicts pathway activation or inhibition, 345 respectively, with p < 0.05. 346 The biochemical characterization of differentiating MC3T3-E1 cells (Fig 1) 347 demonstrates that the major downstream biological processes, e.g. cell proliferation 348 versus matrix mineralization, change over time. To generate a gestalt view of whether 349 the structure of the DNA microarray dataset reflects this temporal evolution, we 350 calculated expression ratios for each of the 976 analyzable genes identified by ANOVA 351 using three pairwise comparisons, day 2 to day 5 (D2 vs D5), day 5 to day 10 (D5 vs 352 D10), and day 10 to day 28 (D10 vs D28), and performed IPA Downstream Effects 353 Analysis, which predicts increases or decreases in downstream biological activities. S3 354 Table lists the annotation, -log(p-value), and activation z-score for all biological process 355 terms identified from our dataset where the z-score was > 1 or < -1. These results are 356 presented graphically in Fig 4. As shown, each pairwise comparison was associated with 357 a set of unique of terms, here represented graphically as vertical bars. Importantly, terms 358 identified in two overlapping comparisons exhibited a high degree of concordance in the 359 predicted direction of activation/inhibition (20 of 26 terms appearing in both the D2 vs 360 D5 and D5 vs D10 comparison, and 24 of 31 terms appearing in both the D5 vs D10 and 361 the D10 vs D28 comparison). Consistent with the SOM analysis (Fig 3B), where some 362 gene clusters increased in abundance steadily throughout differentiation, several process 363 level terms were identified in all three genesets, and again there was strong concordance

364	in the predicted direction of activation/inhibition (20 of 23 terms appearing in all three
365	comparisons). Of interest, process terms appearing only in the D2 vs D5 and D10 vs D28
366	comparisons showed less concordance (only 9 of 29 terms were concordant). This too
367	may reflect at the process level expression patterns observed in the SOM analysis, where
368	some gene clusters clearly underwent reciprocal regulation, increasing/decreasing
369	between days 2 and 5, remaining relatively constant between days 5 and 10, and returning
370	to their prior levels between days 10 and 28.
371	
372	Fig 4. Temporal changes in mRNA abundance reflect evolving biological processes
373	during MC3T3-E1 differentiation. The mRNA abundance of 976 significantly
374	regulated genes identified by ANOVA as changing during MC3T3-E1 differentiation was
375	used to calculate expression ratios comparing D2 vs D5, D5 vs D10, and D10 vs D28.
376	For each pairwise comparison, the earlier time point was used as the denominator and
377	later time point as the numerator, such that expression ratios reflect increases/decreases in
378	mRNA abundance as differentiation proceeds. IPA Downstream Effects Analysis was
379	performed to identify biological process terms associated with each interval and filtered
380	to include terms only with $-\log(p \text{ value}) > 1.3$, minimum of two genes, and z-score >1 or
381	<-1. The graph depicts z-score values for terms associated with the period of growth
382	arrest and onset of differentiation (gold bars), active differentiation (blue bars), and
383	osteoblast maturation (lavender bars). The descriptive annotations associated with each
384	term are omitted for simplicity but presented in S3 Table.
385	

386 To resolve the temporal changes in signaling networks associated with 387 osteoblastic differentiation of MC3T3-E1 cells we performed IPA Upstream Regulator 388 and Canonical Pathways Analysis using the 976 significantly regulated genes identified 389 by ANOVA. The IPA Upstream Regulator Analysis predicts which transcriptional 390 regulators are activated or inhibited based on observed changes in expression of 391 downstream genes. Predicted upstream regulators with activation Z-scores > 2 or < -2392 during at least one phase of differentiation are shown in S4 Table. Individual upstream 393 regulators were grouped based on the signaling networks with which they are most 394 associated, and the z-scores derived from the D2 vs D5, D5 vs D10, and D10 vs D28 395 comparisons used to generate heat maps that illustrate the predicted change in regulator 396 activity as differentiation progresses. In these maps, rows represent individual upstream 397 regulators and columns represent time intervals. Predicted increases in activity from the 398 beginning to end of each interval, e.g. from day 2 to day 5, are indicated in red and 399 decreases in blue, with color intensity representing the magnitude of the z-score. Thus, an 400 upstream regulator that was predicted to increase in activity from day 2 to day 5, day 5 to 401 day 10, and day 10 to day 28 would be red in all columns, while one that increased from 402 day 2 to day 5 and then remained active at the same level would be red in the D2 vs D5 403 column, then white in the D5 vs D10 and D10 vs D28 columns. As shown in Fig 5A, 404 upstream regulators associated with cell cycle progression were predicted to become less 405 active over time, consistent with the growth arrest of MC3T3-E1 cells that heralds the onset of differentiation. Conversely, upstream regulators of several pathways associated 406 407 osteoblast differentiation, e.g. TGFβ/BMP/SMAD, WNT/β-catenin, and Hedgehog

408 signaling [4] were predicted to become more active as differentiation progressed, as did

409 regulators of TNF α /RANKL/NF κ B and cytokine/JAK-STAT signaling.

410

411 Fig 5. Temporal changes in predicted upstream regulators and canonical signaling

412 pathways associated with MC3T3-E1 cell differentiation. Microarray data on the 976

413 significantly regulated mRNA species were used to calculate change in expression ratio

414 between D2 vs D5, D5 vs D10, and D10 vs D28. Expression ratios were analyzed using

415 IPA Upstream Regulator and Canonical Pathways Analysis software and heat maps

416 reflecting the changes in predicted activity during each interval were generated using

417 Morpheus software. A. Heat maps depicting changes in selected upstream regulators

418 (rows) with activation z-scores > 2 (red) or < -2 (blue) during at least one phase of

419 differentiation (columns). Upstream regulators were arbitrarily grouped based on their

420 involvement is biological processes or signaling pathways related to osteoblast

421 differentiation. **B.** Heat maps depicting changes in z-score for selected canonical

422 signaling pathways (rows) during each phase of differentiation (columns). Z-scores were

423 subjected to Euclidean hierarchical clustering in Morpheus to group pathways based on

424 similarity in temporal change.

425

To gain insight into how predicted changes in the activity of individual upstream regulators were integrated into signaling networks, we next performed IPA Canonical Pathways Analysis, which compares observed changes in mRNA abundance to the expected direction of change associated with pathway activation or inhibition. The list of signaling pathways represented in the dataset along with –log(p-value) and activation z431 score are shown in S5 Table. Fig 5B depicts a heat map of predicted changes in activity 432 in selected canonical signaling pathways. Hierarchical clustering was performed to group 433 pathways based on similarities in the change in activity over time. Considering pathways 434 known to be involved in bone development, Wnt/β -catenin signaling decreased in activity 435 as differentiation progressed, while TGF β signaling increased. The TGF- β /BMP axis is a 436 principal regulator of mesenchymal stem cell differentiation into cartilage and bone [19-437 22], acting through several effectors including SMADs, p38 mitogen-activated protein 438 kinase (MAPK), and phosphatidyl inositol 3-kinase (PI3K)/AKT. TGF-β/BMP engages 439 in extensive cross talk with other receptor-mediated signaling in bone, including WNT/ β -440 catenin, Notch, Hedgehog, fibroblast growth factor (FGF), parathyroid hormone-related 441 peptide (PTHrp), and interleukin (IL)/TNF α /interferon- γ cytokines that collectively 442 signal via the JAK/STAT and NF κ B pathways [4,23]. Notably, several of these pathways, 443 e.g. p38 MAPK, STAT3, NFkB and IL6 signaling also showed a trend toward activation 444 during differentiation.

445

446 NanoStringTM analysis of MC3T3-E1 differentiation

To validate our "agnostic" microarray data on signaling pathway activation, we performed a "focused" analysis of MC3T3-E1 cell gene rexpression using NanoStringTM nCounter. The NanoStringTM nCounter system uses color-coded molecular "barcodes" attached target-specific probes to count up to several hundred unique transcripts in a single hybridization reaction [15,16]. The culture protocol used for the microarray experiment was repeated to provide independent mRNA samples. Triplicate samples of total mRNA isolated from MC3T3-E1 cells at days 2, 5, 10 and 28 in culture were

454	analyzed using a NanoString TM Code Set designed to quantify the abundance of 237
455	transcripts related to bone development and signaling. S1 Table lists the gene name,
456	annotation, and expression data for the NanoString TM probes. Fig 6A shows a heat map of
457	all 237 transcripts assayed. As with the microarray data, hierarchical clustering revealed
458	several distinct temporal patterns of expression, with some groups of transcripts
459	increasing/decreasing in abundance early in differentiation and others changing most
460	dramatically later during osteoblast maturation. Fig 6B-E shows temporal changes in
461	selected transcripts related to pathways identified in the bioinformatics analysis of the
462	microarray data. Significant changes in mRNA abundance were detected in ligands,
463	receptors or modulators of BMP, TGF β and Activin signaling, the three closely-related
464	components of the TGF β network, as well as in the TNF α -NF κ B, interleukin-JAK/STAT,
465	and WNT/β-catenin pathways.
466	

467 Fig. 6. NanoStringTM analysis of bone-related mRNAs during MC3T3-E1 cell

468 differentiation. Total RNA was isolated from triplicate cultures of MC3T3-E1 cells at

469 days 2, 5, 10 and 28, and mRNA abundance quantified by NanoStringTM nCounter using

470 a bone specific Code Set (S1 Table). A. Heat map depicting changes in mRNA

471 abundance for individual mRNA species (rows) over time in culture (columns) for day 2

472 (D2), day 5 (D5), day 10 (D10), and day 28 (D28). Expression data, after log2

473 adjustment, were subjected to Euclidean heirarchical clustering in Morpheus to group

474 genes based on similarity in temporal change. B. mRNA abundance of selected ligands,

475 receptors, modulators, and mediators related to BMP/TGF β /Activin, TNF α /NF κ B,

476 IL/JAK-STAT, and WNT/β-catenin signaling. BMP pathway components shown are:

477	BMP 4 (<i>Bmp4</i>); BMP receptor 1A (<i>Bmpr1a</i>); BMP receptor 2 (<i>Bmpr2</i>); the BMP co-
478	receptors, repulsive guidance molecule (RGM) A (Rgma) and RGM B (Rgmb); the BMP
479	negative regulators, Chordin and Noggin; and the DAN family BMP antagonist, Gremlin.
480	TGFβ□pathway components shown are: TGFβ1 (<i>Tgfb1</i>); TGFβ2 (<i>Tgfb2</i>); TGFβ3
481	(<i>Tgfb3</i>); TGFβ receptor 1 (<i>Tgfbr1</i>); and TGFβ receptor 2 (<i>Tgfbr2</i>). Activin pathway
482	components shown are: inhibin subunit βA (<i>Inhba</i>); activin A receptor type 1 (<i>Acvr1</i>);
483	activin A receptor type 1B (Acvr1b); activin A receptor type 2A (Acvr2a); BMP and
484	activin membrane bound inhibitor (<i>Bambi</i>); and the activin and TGF β receptor ligand,
485	left-right determination factor 1 (Lefty). TNFa pathway components shown are: TNF
486	ligand superfamily member 13-like (April); TNF (Tnf); RANKL (Tnfsf11); TNF-receptor
487	superfamily member 4 (Tnfrsf4); receptor activator of NFkB (Tnfrsf11a); TNF receptor
488	superfamily member 11b (Tnfrsf11b); and NFKB (Nfkb). Interleukin pathway
489	components shown are: IL1B (Il1b); IL4 (Il4); IL7 (Il7); IL12A (Il12a); IL1 receptor-like
490	1 (<i>Il1rl1</i>); IL2 receptor β subunit (<i>Il2rb</i>); IL4 receptor α subunit (<i>Il4ra</i>); IL15 receptor α
491	subunit (1115ra); and STAT1 (Stat1). WNT pathway components shown are: WNT 5A
492	(<i>Wnt5a</i>); Wnt 7A (<i>Wnt7a</i>); the WNT signaling pathway inhibitor, Dickkopf (<i>Dkk1</i>); β -
493	catenin (<i>Ctnnb1</i>); the regulator of β -catenin stability, Axin 2 (<i>Axin2</i>); and the β -catenin
494	regulated transcription factors, nuclear factor of activated T cells 1 (Nfatc1) and
495	transcription factor 7 (Tcf7). In each graph, symbols representing ligands are show in
496	green, receptor subunits in blue, intracellular mediators and modulators in red, and
497	transcription factors in lavender. Data shown represent the Mean \pm SD of triplicate
498	samples. Error bars not shown are smaller than the symbol. † P<0.05; * P<0.01; **

499 P<0.001 different in abundance between at least two time points by two-way ANOVA
500 with Tukey's multiple comparisons test; ns, not significant.

501

502	To determine how the changing levels of pathway components translated into
503	changes in pathway activity during differentiation, we performed IPA Upstream
504	Regulator and Canonical Pathways Analysis using expression ratios derived from
505	comparisons of the NanoString TM data for D2 vs D5, D5 vs D10, and D10 vs D28.
506	Predicted upstream regulators with activation z-scores > 2 or < -2 during at least one
507	phase of differentiation are shown in S6 Table. Selected upstream regulators were
508	grouped based on the signaling networks with which they are most associated, and the z-
509	scores used to generate heat maps. As shown in Fig 7A, upstream regulator activity
510	associated with cell cycle progression, apoptosis, and cell survival tended to decrease
511	between days 2 and 5 and days 5 and 10, then increase between days 10 and 28. Notably,
512	activity of the anti-apoptotic regulators AKT1 and p38 MAPK that function downstream
513	of TGF β /BMP and TNF α /RANKL increased as differentiation progressed. Coincident
514	with this, upstream regulators related to TGF β /BMP/SMAD, WNT/ β -catenin, and
515	Hedgehog signaling showed activation during osteoblastic differentiation, as did
516	regulators involved in TNF α /RANKL/NF κ B, cytokine/JAK-STAT, receptor tyrosine
517	kinase (RTK), and G protein-coupled receptor (GPCR) signaling.
518	
519	Fig 7. Upstream regulators and canonical signaling pathways analysis of a focused

520 NanoStringTM dataset. NanoStringTM nCounter data on the abundance of 237 bone-

521 related mRNA species were used to calculate change in expression ratio between D2 vs

522	D5, D5 vs D10, and D10 vs D28. Expression ratios were analyzed using IPA Upstream
523	Regulator and Canonical Pathways Analysis software and heat maps reflecting the
524	changes in predicted activity during each interval were generated using Morpheus
525	software. A. Heat maps depicting changes in selected upstream regulators (rows) with
526	activation z-scores > 2 (red) or < -2 (blue) during at least one phase of differentiation
527	(columns). Upstream regulators were arbitrarily grouped based on their relationship to
528	biological processes or signaling pathways involved in osteoblast differentiation. B. Heat
529	maps depicting changes in z-score for selected canonical signaling pathways (rows)
530	during each phase of differentiation (columns). Z-scores were subjected to Euclidean
531	hierarchical clustering in Morpheus to group pathways based on similarity in temporal
532	change.
533	
533 534	We next performed IPA Canonical Pathways Analysis using the NanoString TM
	We next performed IPA Canonical Pathways Analysis using the NanoString TM dataset. The list of signaling pathways represented along with –log(p-value) and
534	
534 535	dataset. The list of signaling pathways represented along with -log(p-value) and
534 535 536	dataset. The list of signaling pathways represented along with $-\log(p-value)$ and activation z-score are shown in S7 Table. Fig. 7B depicts a heat map of predicted changes
534 535 536 537	dataset. The list of signaling pathways represented along with –log(p-value) and activation z-score are shown in S7 Table. Fig. 7B depicts a heat map of predicted changes in activity in selected canonical signaling pathways. Hierarchical clustering was
534 535 536 537 538	dataset. The list of signaling pathways represented along with –log(p-value) and activation z-score are shown in S7 Table. Fig. 7B depicts a heat map of predicted changes in activity in selected canonical signaling pathways. Hierarchical clustering was performed to group pathways based on similarities in the change in activity over time.
 534 535 536 537 538 539 	dataset. The list of signaling pathways represented along with –log(p-value) and activation z-score are shown in S7 Table. Fig. 7B depicts a heat map of predicted changes in activity in selected canonical signaling pathways. Hierarchical clustering was performed to group pathways based on similarities in the change in activity over time. Consistent with the canonical pathways analysis of the microarray dataset (Fig 5),
 534 535 536 537 538 539 540 	dataset. The list of signaling pathways represented along with –log(p-value) and activation z-score are shown in S7 Table. Fig. 7B depicts a heat map of predicted changes in activity in selected canonical signaling pathways. Hierarchical clustering was performed to group pathways based on similarities in the change in activity over time. Consistent with the canonical pathways analysis of the microarray dataset (Fig 5), WNT/β-catenin signaling became less active as differentiation progressed, while TGFβ
 534 535 536 537 538 539 540 541 	dataset. The list of signaling pathways represented along with $-\log(p\text{-value})$ and activation z-score are shown in S7 Table. Fig. 7B depicts a heat map of predicted changes in activity in selected canonical signaling pathways. Hierarchical clustering was performed to group pathways based on similarities in the change in activity over time. Consistent with the canonical pathways analysis of the microarray dataset (Fig 5), WNT/ β -catenin signaling became less active as differentiation progressed, while TGF β and BMP signaling increased, although the changes in the NanoString TM dataset were
 534 535 536 537 538 539 540 541 542 	dataset. The list of signaling pathways represented along with $-\log(p\text{-value})$ and activation z-score are shown in S7 Table. Fig. 7B depicts a heat map of predicted changes in activity in selected canonical signaling pathways. Hierarchical clustering was performed to group pathways based on similarities in the change in activity over time. Consistent with the canonical pathways analysis of the microarray dataset (Fig 5), WNT/ β -catenin signaling became less active as differentiation progressed, while TGF β and BMP signaling increased, although the changes in the NanoString TM dataset were more apparent later than in the microarray dataset, between day 10 and day 28.

pathway signaling was likewise predicted to increase in both the NanoStringTM and
microarray datasets.

547

548 Overview of signaling networks during MC3T3-E1

549 differentiation

To test the overall similarity between the NanoStringTM and microarray datasets 550 551 we compared the pathway activity predictions generated from each using the IPA 552 Canonical Pathways molecular activity predictor tool, which graphically depicts the 553 predicted change in pathway activity based on observed changes in upstream and 554 downstream gene expression. S1 Fig shows the WNT/β-catenin pathway comparison 555 using D2 vs D5 expression ratios from each dataset. Since WNT/ β -catenin signaling was 556 predicted to decline as differentiation progressed, it would be most active during this 557 interval. Consistent with this, both datasets indicated β -catenin pathway activation in this 558 time frame, as well as inhibition of the negative regulatory TGFB/TGFB-activated kinase 559 1 (TAK1)/p38 MAPK/nemo like kinase (NLK) input from the TGFβ receptor pathway 560 that was predicted to be less active early in differentiation. S2 Fig compares IPA 561 predicted changes in activity within the TGF β /BMP signaling network occurring between 562 days 10 and 28, an interval during which both datasets indicated pathway activation. While the focused NanostringTM dataset better captured activation of BMP receptor 563 564 signaling during this phase of differentiation, both datasets predicted net activation of the 565 SMAD2/3 and TAK1/p38 MAPK components of TGF β signaling. S3 Fig compares the 566 IPA predicted changes in the canonical TNF α /NF κ B signaling pathway between days 10 567 and 28 in culture. The TNF α network plays a key role during osteoblast maturation,

568	acting as an inhibitor of osteoblast differentiation and, along with RANKL, promoting
569	osteoclast development [24,25]. Both datasets indicated net activation of NFkB-
570	dependent transcription during MC3T3-E1 maturation related to changes in the
571	expression of TNF family and growth factor ligands and receptors. Both datasets also
572	indicated relative inhibition of interleukin receptor-mediated NF κ B activation through
573	TNF receptor-associated factor 6 (TRAF6)/TAK1. S4 Fig illustrates the predicted
574	activation of canonical STAT3 signaling downstream of cytokine and growth factor
575	receptors between days 10 and 28 observed in both the microarray and Nanostring TM
576	nCounter datasets. Collectively, the data indicate substantial concordance between the
577	two independent MC3T3-E1 datasets and highlight the evolving changes in WNT/ β -
578	catenin, TGF β /BMP/SMAD, TNF α /RANKL/NF κ B, and cytokine/JAK-STAT signaling
579	associated with osteoblast differentiation.
580	To illustrate the temporal evolution of signaling network interaction during
581	MC3T3-E1 cell differentiation, we generated pathway activity predictions for the IPA
582	osteoarthritis canonical pathway, which integrates multiple signal inputs controlling
583	expression of bone-related genes. As the first transcription factor required for osteoblastic
584	differentiation, control of Runx2-dependent transcription is central to the process [17,18].
585	Runx2 activity reflects the input of multiple upstream regulators, notably including BMP
586	receptors signaling via SMAD1/5/8 as well as TGF β and activin receptors signaling
587	through SMAD2/3. Given that the NanoString TM Code Set was selected to examine bone-
588	related genes, the osteoarthritis network was the most heavily populated canonical
589	pathway in our IPA analysis with a -log(p-value) of 43.3 (S7 Table). Fig 8 shows the
590	pathway activity analysis based on D2 vs D5 expression ratio changes from the

591	NanoString TM nCounter dataset. During this phase, MC3T3-E1 cells are transitioning
592	from log phase growth to growth arrest and initiating the process of differentiation.
593	Based on observed upregulation of Runx2, Sp7 and Sox9 mRNA, Runx2-dependent
594	transcription is predicted to increase from Day 2 to Day 5, associated with increases in
595	mRNA encoding collagen species and alkaline phosphatase. Observed changes in genes
596	encoding Indian Hedgehog (IHH), Patched (PTCH) and β -catenin, as well as TNF α ,
597	IL1B, TGF β and TGF β receptor 2 (TGFBR2), suggest that the onset of differentiation
598	coincides with upregulation of autocrine ligands and receptors that later come to drive the
599	differentiation process. Notably, TGF β /BMP signaling is not yet predicted to be active
600	due to relative downregulation of BMP2/9 and SMAD2/3.
601	
602	Fig 8. Changes in canonical signaling pathway activity in MC3T3-E1 cells between
602 603	Fig 8. Changes in canonical signaling pathway activity in MC3T3-E1 cells between days 2 and 5. Expression ratios representing the changing abundance of 237 bone-related
603	days 2 and 5. Expression ratios representing the changing abundance of 237 bone-related
603 604	days 2 and 5. Expression ratios representing the changing abundance of 237 bone-related mRNA species in MC3T3-E1 cells between days 2 and 5 in culture were used to populate
603 604 605	days 2 and 5. Expression ratios representing the changing abundance of 237 bone-related mRNA species in MC3T3-E1 cells between days 2 and 5 in culture were used to populate the IPA osteoarthritis pathway network and signaling pathway activation state was
603 604 605 606	days 2 and 5. Expression ratios representing the changing abundance of 237 bone-related mRNA species in MC3T3-E1 cells between days 2 and 5 in culture were used to populate the IPA osteoarthritis pathway network and signaling pathway activation state was assessed using the IPA molecular pathway predictor tool. As indicated in the prediction
603 604 605 606 607	days 2 and 5. Expression ratios representing the changing abundance of 237 bone-related mRNA species in MC3T3-E1 cells between days 2 and 5 in culture were used to populate the IPA osteoarthritis pathway network and signaling pathway activation state was assessed using the IPA molecular pathway predictor tool. As indicated in the prediction legend, observed upregulation and downregulation of mRNAs are shown in red and
603 604 605 606 607 608	days 2 and 5. Expression ratios representing the changing abundance of 237 bone-related mRNA species in MC3T3-E1 cells between days 2 and 5 in culture were used to populate the IPA osteoarthritis pathway network and signaling pathway activation state was assessed using the IPA molecular pathway predictor tool. As indicated in the prediction legend, observed upregulation and downregulation of mRNAs are shown in red and green, respectively, while predicted activation or inhibition of signaling intermediates and
 603 604 605 606 607 608 609 	days 2 and 5. Expression ratios representing the changing abundance of 237 bone-related mRNA species in MC3T3-E1 cells between days 2 and 5 in culture were used to populate the IPA osteoarthritis pathway network and signaling pathway activation state was assessed using the IPA molecular pathway predictor tool. As indicated in the prediction legend, observed upregulation and downregulation of mRNAs are shown in red and green, respectively, while predicted activation or inhibition of signaling intermediates and

613 associated with osteoblastic differentiation and increased expression of secreted growth

614	factors and matrix components, but relatively little matrix mineralization (Figs 1 and 2).
615	The network analysis suggests that increasing expression of Runx2 and Sp7 is now
616	associated with upregulation of the Runx2-regulated matrix components osteopontin
617	(Spp1) and osteocalcin (Bglap2), and further increases in expression of collagen species
618	and alkaline phosphatase, along with the upstream regulators IHH, β -catenin, TNF α ,
619	IL1B, and TGF β . Increasing expression of BMP2 and BMP9 is now evident, although
620	the molecular pathway predictor still suggests that SMAD1/5/8 and SMAD2/3 signaling
621	is attenuated. Fig 10 depicts predicted changes in signaling pathway activity based on the
622	D10 vs D28 expression ratio changes. This phase is associated with osteoblast
623	maturation, further increases in expression of secreted growth factors and matrix
624	components, and the onset of matrix mineralization. The most notable changes during
625	this interval are the activation of SMAD1/5/8 signaling downstream of BMP receptors
626	and SMAD2/3 signaling from TGF β receptors. Observed upregulation of the BMP
627	receptors Bmpr1a (ALK3) and Bmpr2 (BMPR2) and the activin-like receptor Acvrl1
628	(ALK1), and SMAD2/3 likely contributes to the prediction of increased pathway activity.
629	Upregulation of PTHrp/PTH1R and FGF2/FGF8 also suggests that GPCR and RTK
630	signaling increase during this interval. Hence the data suggest that during osteoblastic
631	differentiation of MC3T3-E1 cells, activation of β -catenin- and NF κ B-mediated
632	pathways occurs prior to the onset of TGF β /BMP/SMAD-mediated signaling and a
633	general activation of bone developmental signaling pathways.
634	
635	Fig 9. Changes in canonical signaling pathway activity in MC3T3-E1 cells between

636 days 5 and 10. Expression ratios representing the changing abundance of 237 bone-

637	related mRNA species in MC3T3-E1 cells between days 5 and 10 in culture were used to
638	populate the IPA osteoarthritis pathway network and signaling pathway activation state
639	was assessed using the IPA molecular pathway predictor tool. Observed upregulation
640	and downregulation of mRNAs are shown in red and green, respectively, while predicted
641	activation or inhibition of signaling intermediates and pathways are shown in orange and
642	blue.
643	
644	Fig 10. Changes in canonical signaling pathway activity in MC3T3-E1 cells between
645	days 10 and 28. Expression ratios representing the changing abundance of 237 bone-
646	related mRNA species in MC3T3-E1 cells between days 10 and 28 in culture were used
646 647	related mRNA species in MC3T3-E1 cells between days 10 and 28 in culture were used to populate the IPA osteoarthritis pathway network and signaling pathway activation state
647	to populate the IPA osteoarthritis pathway network and signaling pathway activation state
647 648	to populate the IPA osteoarthritis pathway network and signaling pathway activation state was assessed using the IPA molecular pathway predictor tool. Observed upregulation

652

653 **Discussion**

654 Complex biological processes like osteoblast development involve the 655 coordinated regulation of multiple intracellular signaling pathways controlling gene 656 expression. Thus, studies focusing on the contribution of any individual growth factor or 657 pathway are invariably incomplete. Developing a more complete picture requires the use 658 of "omics" approaches that capture as much information as possible about changes in 659 intracellular signaling networks in as unbiased a manner as possible. Further 660 complicating matters, bone remodeling *in vivo* is a continuous process wherein 661 osteoblasts at all stages of development, from mesenchymal stem cell precursors to 662 osteocytes are present, along with cells of the osteoclast lineage and other cell types [1,2]. 663 As a result, studies performed on bone only provide a "snapshot" of the tissue average 664 transcriptome that represents multiple cell types present in different proportions and 665 differentiations states. In this study, we combined transcriptomics with bioinformatic 666 geneset enrichment analysis to examine the temporal sequence of autocrine and paracrine 667 signaling that regulates the differentiation of MC3T3-E1 cells, a well-characterized 668 model of osteoblast development [7-10]. We employed two independently generated 669 datasets, an "agnostic" DNA microarray dataset intended to provide a global overview of 670 the evolving transcriptome and a "targeted" NanoStringTM nCounter dataset focusing on 671 genes involved in specific bone-related pathways. Our data complement other in vitro 672 microarray studies of osteoblastic differentiation performed using different cell types, e.g. 673 mesodermal progenitor cells, calvarial osteoblasts, osteocytes, periodontal ligament cells, 674 and embryonic stem cells [21,26-30], or describing the effects of exogenous factors on 675 osteoblast gene expression [31-34].

Although osteoblast differentiation *in vivo* is subject to regulation by numerous circulating factors [3], our results underscore the importance of cell autonomous autocrine/paracrine signaling. Key to the process is regulation of Runx2, the most upstream transcription factor in osteoblast differentiation [17,18], which regulates the expression of another critical transcription factor in bone, Sp7 [35]. Runx2 expression in osteoblasts is stimulated by an enhanceosome composed of Dlx5/6, Mef2, Tcf7, βcatenin, Sox5/6, Smad1, and Sp7, and in turn stimulates expression of bone matrix

683	proteins including Spp1, Ibsp, and Bglap2, and autocrine factors including Ihh and Rankl
684	[35,36]. Our data suggest that early MC3T3-E1 differentiation, between Days 2 and 5, is
685	characterized by increasing expression of Runx2, Sp7, and β -catenin and upregulation of
686	IHH, TNF α , and IL1 β at a time where TGF β /BMP/SMAD signaling is still relatively
687	suppressed despite increasing expression of TGF β and TGF β receptors. WNT signaling,
688	which cooperates with $TGF\beta$ in a positive regulatory loop by inducing Runx2-dependent
689	transcription of TGF _{β1} receptor [37,38], appeared most active early and to wane as
690	TGF β /BMP pathway activity increased, consistent with a role for WNT signaling in the
691	induction of TGF β signaling. The central role of the TGF β /BMP axis in regulating
692	mesenchymal stem cell differentiation into cartilage and bone is well established, as both
693	canonical SMAD-dependent and non-canonical p38MAPK signaling downstream of
694	these receptors converge on Runx2 to promote differentiation [19-22]. Moreover, in bone
695	TGF β /BMP in extensive cross talk with other signaling pathways [4,23]. Of these, the
696	activity of several, including Hedgehog, FGF2, interleukins, $TNF\alpha/RANKL$ and
697	interferon- γ , appeared to increase in parallel with TGF β /BMP during MC3T3-E1 cell
698	differentiation. Hedgehog signaling, acting through Gli family transcription factors,
699	promotes the expression of BMP2, and IHH has been shown to be required for
700	osteogenesis in vitro [39,40]. FGF2 regulates expression of PC1, the primary enzymatic
701	generator of pyrophosphate in mineralizing cells, by direct regulation of Runx2,
702	suggesting that TGF β /BMP and FGF2 signaling cooperate to promote matrix
703	mineralization later in differentiation [41]. TNFa plays many roles in bone, inhibiting
704	osteoblast differentiation and collagen synthesis (42,43), promoting osteoblast apoptosis
705	(44), while directly stimulating osteoclast formation independent of RANKL signaling

706 through an IL1-dependent mechanism (45,46). Conversely, interferon- γ opposes IL1 and 707 TNFα mediated bone resorption, but produces additive inhibition of bone collagen 708 synthesis (47). Thus our network analysis, demonstrating simultaneous changes in the 709 TGF β /BMP pathways that favoring osteoblast differentiation and survival, the TNF α 710 pathway that inhibits differentiation and favors apoptosis, and the interferon- γ pathway 711 that inhibits ongoing collagen synthesis, illustrates the complexity of osteoblast 712 development and maturation that occur in the setting of opposing autocrine signaling 713 loops.

714 While gene array technology is a powerful tool for determining the transcriptional 715 basis of changing developmental or pharmacological processes, the resulting datasets are 716 both too complex and too error prone to reliably base conclusions on casual inspection 717 [5,6]. Metabolic pathways analysis overcomes several of these limitations. By basing 718 conclusions on the number and magnitude of expression changes across gene clusters, 719 rather than individual genes, it decreases the probability of false discovery, while 720 simultaneously providing a quantitative measure of the probability of change in a given 721 signaling network. Our analyses illustrate several of the advantages and disadvantages of 722 this approach. The murine Operon V2.0 cDNA arrays employed in this study did not 723 provide genome-wide coverage of changes in mRNA abundance. The NanoStringTM 724 nCounter system provides information only about rationally chosen transcripts. Hence, 725 some information is missing. Moreover, transcriptomic datasets in general are limited in 726 their ability to discriminate changes in cellular metabolism simply because important 727 pathway components may not be regulated at the transcriptional level, rendering them 728 "invisible" in gene array experiments. Bioinformatic tools, such as IPA, that "infer"

729 changes in upstream pathway activity based on observed changes in network 730 components, provide a means to translate incomplete transcriptomic datasets into a more 731 complete picture of metabolic activity. In our study, we took two independently 732 generated sets of mRNA samples from differentiating MC3T3-E1 cells and employed 733 two different approaches to pathways analysis. Close inspection of the data (S1 and S2 734 Tables) shows that the relatively stringent statistical filter applied to the microarray 735 dataset to define significant change failed to capture factors that were seen in the 736 NanoStringTM assay, and conversely, that the targeted NanoStringTM Code Set missed 737 significant changes in factors that were detected with the broader coverage provided by 738 the microarrays. It is also noteworthy that some of the interval expression ratios of 739 individual factors were seen to change in opposite directions in the two datasets, such that 740 focusing on the abundance of individual factors might lead to different conclusions. Yet 741 the remarkable degree of similarity in the pathways analysis, which weighs changes 742 across entire networks to predict pathway activation, suggests the approach is both 743 reliable and robust enough to tolerate a substantial amount of "noise" in the raw data. 744 Thus, starting from incomplete datasets, we were able to extract temporal changes in the 745 autocrine/paracrine signaling networks that influence osteoblast differentiation *in vitro*, 746 and find evidence of pathway cross talk at the transcriptional level.

747

748 Acknowledgements

Supported by NIH/NIGMS (R01 GM095497 and R35 GM126955) and the United
States Department of Veterans Affairs (I01 BX003188). Some bioinformatic analyses
were conducted through the Medical University of South Carolina (MUSC)

- 752 Proteogenomics Facility that was supported by NIH/NIGMS (P30 GM103342 and P20
- GM103499) and MUSC's Office of the Vice President for Research. The contents of this
- article do not represent the views of the Department of Veterans Affairs or the United
- 755 States Government.
- 756

757 Author Contributions

- 758 Conceptualization: DGP, LML. Formal Analysis: LML, JLB. Funding
- 759 Acquisition: LML. Investigation: MSD, HME-S, DGP, CJH, KMR. Writing: JLB,
- 760 HME-S, DGP, CJH, LML.

761

762 **References**

- 1. Raisz LG. Physiology and pathophysiology of bone remodeling. Clin Chem.
- 764 1999;45:1353-8.
- Hadjidakis DJ, Androulakis II. Bone remodeling. Ann N Y Acad Sci. 2006;1092:385 96.
- 767 3. Raisz LG. Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin
- 768 Invest. 2005;115:3318-25.
- 769 4. Wu M, Chen G, Li YP. TGF- β and BMP signaling in osteoblast, skeletal
- development, and bone formation, homeostasis and disease. Bone Res. 2016;4:16009.
- 5. Allison DB, Cui X, Page GP, Sabripour M. Microarray data analysis: from disarray to
- consolidation and consensus. Nat Rev Genet. 2006;7:55-65.
- 6. Maudsley S, Chadwick W, Wang L, Zhou Y, Martin B, Park SS. (2011)

- Bioinformatic approaches to metabolic pathways analysis. Methods Mol Biol.
- 775 2011;756:99-130.
- 776 7. Quarles LD, Wenstrup RJ, Castillo SA, Drezner MK. Aluminum-induced mitogenesis
- in MC3T3-E1 osteoblasts: potential mechanism underlying neoosteogenesis.
- 778 Endocrinology. 1991;128:3144-51.
- 8. Quarles LD, Yohay DA, Lever LW, Caton R, Wenstrup RJ. Distinct proliferative and
- differentiated stages of murine MC3T3-E1 cells in culture: an in vitro model of
- 781 osteoblast development. J Bone Miner Res. 1992;7:683-92.
- 782 9. Franceschi RT, Iyer BS. Relationship between collagen synthesis and expression of
- the osteoblast phenotype in MC3T3-E1 cells. J Bone Miner Res 1992;7:235-46.
- 10. Franceschi RT, Iyer BS, Cui Y. Effects of ascorbic acid on collagen matrix formation
- and osteoblast differentiation in murine MC3T3-E1 cells. J Bone Miner Res.
- 786 1994;9:843-54.
- 11. Wang D, Christensen K, Chawla K, Xiao G, Krebsbach PH, Franceschi RT. Isolation
- and characterization of MC3T3-E1 preosteoblast subclones with distinct in vitro and
- in vivo differentiation/mineralization potential. J Bone Miner Res. 1999;14:893-903.
- 12. Jones SJ, Gray C, Boyde A, Burnstock G. Purinergic transmitters inhibit bone
- formation by cultured osteoblasts. Bone. 1997;21:393-9.
- 13. Wang L, Liu S, Quarles LD, Spurney RF. Targeted overexpression of G protein-
- coupled receptor kinase-2 in osteoblasts promotes bone loss. Am J Physiol
- 794 Endocrinol Metab. 2005;288:E826-34.
- 795 14. Smyth GK, Speed T. Normalization of cDNA microarray data. Methods. 2003;31:
 796 265-73.

- 15. Geiss GK, Bumgarner RE, Birditt B, Dahl T, Dowidar N, Dunaway DL, et al. Direct
- multiplexed measurement of gene expression with color-coded probe pairs. *Nature*
- 799 *Biotechnol.* 2008;26:317–25.
- 800 16. Kulkarni MM. Digital Multiplexed Gene Expression Analysis Using the NanoString
- 801 nCounter System. *Curr Protocol Mol Biol*. 2011;25B.10.1–17
- 802 17. Komori T. Regulation of osteoblast differentiation by Runx2. Adv Exp Med Biol.
- 803 2010;658:43-9.
- 18. Komori T. Roles of Runx2 in Skeletal Development. Adv Exp Med Biol.
- 805 2017;962:83-93.
- 806 19. Noda M, Rodan GA. Type beta transforming growth factor regulates expression of
- genes encoding bone matrix proteins. Connect Tissue Res. 1989;21:71-5.
- 808 20. Mundy GR, Bonewald LF. Role of TGF beta in bone remodeling. Ann N Y Acad Sci.
 809 1990;593:91-7.
- 810 21. Qi H, Aguiar DJ, Williams SM, La Pean A, Pan W, Verfaillie CM. Identification of
- 811 genes responsible for osteoblast differentiation from human mesodermal progenitor
- 812 cells. Proc Natl Acad Sci U S A. 2003;100:3305-10.
- 813 22. Augello A, De Bari C. The regulation of differentiation in mesenchymal stem cells.
- 814 Hum Gene Ther. 2010;21:1226-38.
- 815 23. Guo X, Wang XF. Signaling cross-talk between TGF-beta/BMP and other pathways.
- 816 Cell Res. 2009;19:71-88.
- 817 24. Novack DV. Role of NF-κB in the skeleton. Cell Res. 2011;21:169-82.
- 818 25. Kearns AE, Khosla S, Kostenuik PJ. Receptor activator of nuclear factor kappaB
- 819 ligand and osteoprotegerin regulation of bone remodeling in health and disease.

820 Endocr Rev. 2008;29:155-92.

- 821 26. Granchi D, Ochoa G, Leonardi E, Devescovi V, Baglio SR, Osaba L, et al. Gene
- 822 expression patterns related to osteogenic differentiation of bone marrow-derived
- 823 mesenchymal stem cells during ex vivo expansion. Tissue Eng Part C Methods.
- 824 2010;16:511-24.
- 27. Kalajzic I, Staal A, Yang WP, Wu Y, Johnson SE, Feyen JH, et al. Expression profile
- of osteoblast lineage at defined stages of differentiation. J Biol Chem.
- 827 2005;280:24618-26.
- 828 28. Dean AK, Harris SE, Kalajzic I, Ruan J. A systems biology approach to the
- identification and analysis of transcriptional regulatory networks in osteocytes. BMC
 Bioinformatics. 2009;17;10 Suppl 9:S5.
- 831 29. Choi HD, Noh WC, Park JW, Lee JM, Suh JY. Analysis of gene expression during
- 832 mineralization of cultured human periodontal ligament cells. J Periodontal Implant
 833 Sci. 2011;41:30-43.
- 834 30. Bourne S, Polak JM, Hughes SP, Buttery LD. Osteogenic differentiation of mouse
- 835 embryonic stem cells: differential gene expression analysis by cDNA microarray and
- purification of osteoblasts by cadherin-11 magnetically activated cell sorting. Tissue
- Eng. 2004;10:796-806.
- 838 31. Qin L, Qiu P, Wang L, Li X, Swarthout JT, Soteropoulos P, et al. Gene expression
- profiles and transcription factors involved in parathyroid hormone signaling in
- osteoblasts revealed by microarray and bioinformatics. J Biol Chem 2003;278:19723-
- 841 31.

842	32. Piek E, Sleumer LS, van Someren EP, Heuver L, de Haan JR, de Grijs I, et al. Osteo-
843	transcriptomics of human mesenchymal stem cells: accelerated gene expression and
844	osteoblast differentiation induced by vitamin D reveals c-MYC as an enhancer of
845	BMP2-induced osteogenesis. Bone. 2010;46:613-27.
846	33. Balint E, Lapointe D, Drissi H, van der Meijden C, Young DW, van Wijnen AJ, et al.
847	Phenotype discovery by gene expression profiling: mapping of biological processes
848	linked to BMP-2-mediated osteoblast differentiation. J Cell Biochem. 2003;89:401-
849	26.
850	34. Bernardini C, Saulnier N, Parrilla C, Pola E, Gambotto A, Michetti F, et al. Early
851	transcriptional events during osteogenic differentiation of human bone marrow
852	stromal cells induced by Lim mineralization protein 3. Gene Expr. 2010;15:27-42.
853	35. Komori T. Regulation of osteoblast differentiation by transcription factors. J Cell
854	Biochem. 2006;99:1233-9.
855	36. Kawane T, Komori H, Liu W, Moriishi T, Miyazaki T, Mori M, et al. Dlx5 and Mef2
856	regulate a novel Runx2 enhancer for osteoblast-specific expression. J Bone Min Res.
857	2014;29:1960–9.
858	37. van den Bosch MH, Blom AB, van Lent PL, van Beuningen HM, Blaney Davidson
859	EN, van der Kraan PM, et al. Canonical Wnt signaling skews TGF- β signaling in
860	chondrocytes towards signaling via ALK1 and Smad 1/5/8. Cell Signal. 2014;26:951-
861	8.
862	38. van den Bosch MH, Gleissl TA, Blom AB, van den Berg WB, van Lent PL, van der
863	Kraan PM. Wnts talking with the TGF- β superfamily: WISPers about modulation of
864	osteoarthritis. Rheumatology (Oxford). 2016;55:1536-47.

865	39. Long F.	Chung UI.	Ohba S	, McMahon J	Kronenberg	HM	McMahon	AP. I	[hh
000	<i>v i i i i i i i i i i</i>		0110000	,	,	,	,		

- signaling is directly required for the osteoblast lineage in the endochondral skeleton.
- 867 Development. 2004;131:1309-18.
- 40. Zhao M, Qiao M, Harris SE, Chen D, Oyajobi BO, Mundy GR. The zinc finger
- transcription factor Gli2 mediates bone morphogenetic protein 2 expression in
- osteoblasts in response to hedgehog signaling. Mol Cell Biol. 2006;26:6197-208.
- 41. Hatch NE, Li Y, Franceschi RT. FGF2 stimulation of the pyrophosphate-generating
- enzyme, PC-1, in pre-osteoblast cells is mediated by Runx2. J Bone Miner Res.
- 873 2009;24:652-62.
- 42. Gilbert L, He X, Farmer P, Boden S, Kozlowski M, Rubin J, et al. Inhibition of
- 875 osteoblast differentiation by tumor necrosis factor-alpha. Endocrinology.
- 876 2000;141:3956-64.
- 43. Centrella M, McCarthy TL, Canalis E. Tumor necrosis factor-alpha inhibits collagen
- 878 synthesis and alkaline phosphatase activity independently of its effect on
- 879 deoxyribonucleic acid synthesis in osteoblast-enriched bone cell cultures.
- 880 Endocrinology.1988;123:1442-8.
- 44. Jilka RL, Weinstein RS, Bellido T, Parfitt AM, Manolagas SC. Osteoblast
- 882 programmed cell death (apoptosis): modulation by growth factors and cytokines. J
- Bone Miner Res. 1998;13:793-802.
- 45. Kobayashi K, Takahashi N, Jimi E, Udagawa N, Takami M, Kotaki S, et al. Tumor
- 885 necrosis factor alpha stimulates osteoclast differentiation by a mechanism
- independent of the ODF/RANKL-RANK interaction. J Exp Med. 2000;191:275-86.
- 46. Wei S, Kitaura H, Zhou P, Ross FP, Teitelbaum SL. IL-1 mediates TNF-induced

bioRxiv preprint doi: https://doi.org/10.1101/410597; this version posted September 6, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

osteoclastogenesis. J Clin Invest. 2005;115:282-90.

- 47. Smith DD, Gowen M, Mundy GR. Effects of interferon-gamma and other cytokines
- on collagen synthesis in fetal rat bone cultures. Endocrinology. 1987;120:2494-9.
- 891

892 Supporting Information Captions

893

894 S1 Fig. Comparison of WNT/β-catenin network activity between Days 2 and 5 of

895 MC3T3-E1 cell differentiation predicted from the microarray and NanoStringTM

896 datasets. Observed Day 2 to Day 5 changes in expression ratios were used to predict

897 WNT/β-catenin pathway activity using the IPA molecular activity predictor tool. A.

898 Pathway activity prediction based on the microarray dataset. B. Pathway activity based

899 on the NanoStringTM dataset. Observed increases (*red*) and decreases (*green*) in mRNA

900 abundance are indicated, as are predicted activation (*orange*) and inhibition (*blue*) of

901 downstream targets.

902

903 S2 Fig. Comparison of TGFβ/BMP network activity between Days 10 and 28 of

904 MC3T3-E1 cell differentiation predicted from the microarray and NanoStringTM

905 datasets. Observed Day 10 to Day 28 changes in expression ratios were used to predict

906 TGF β /BMP pathway activity using the IPA molecular activity predictor tool. A.

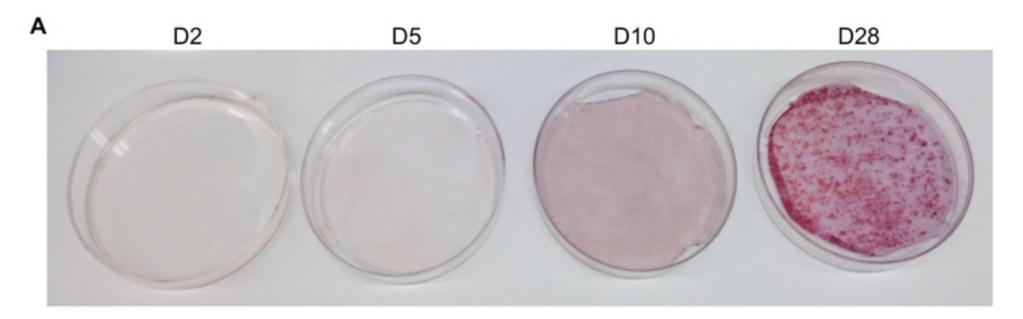
907 Pathway activity prediction based on the microarray dataset. B. Pathway activity based

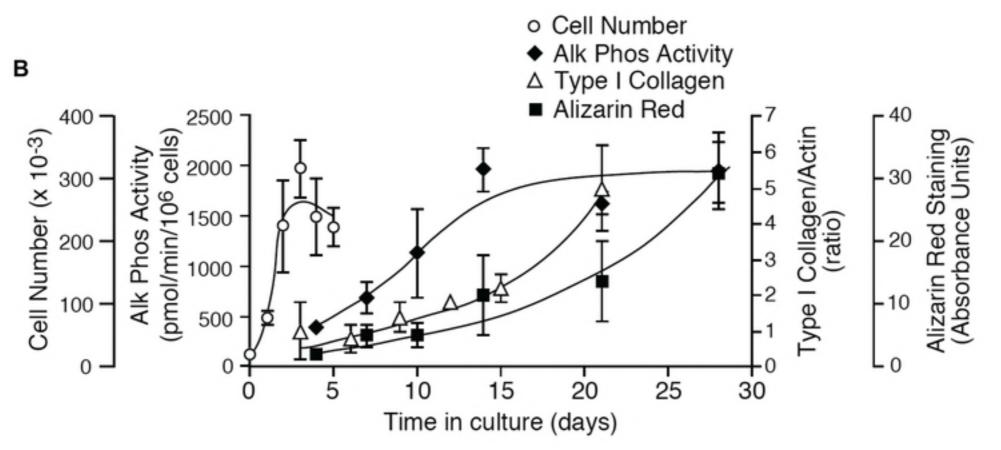
908 on the NanoStringTM dataset. Observed increases (*red*) and decreases (*green*) in mRNA

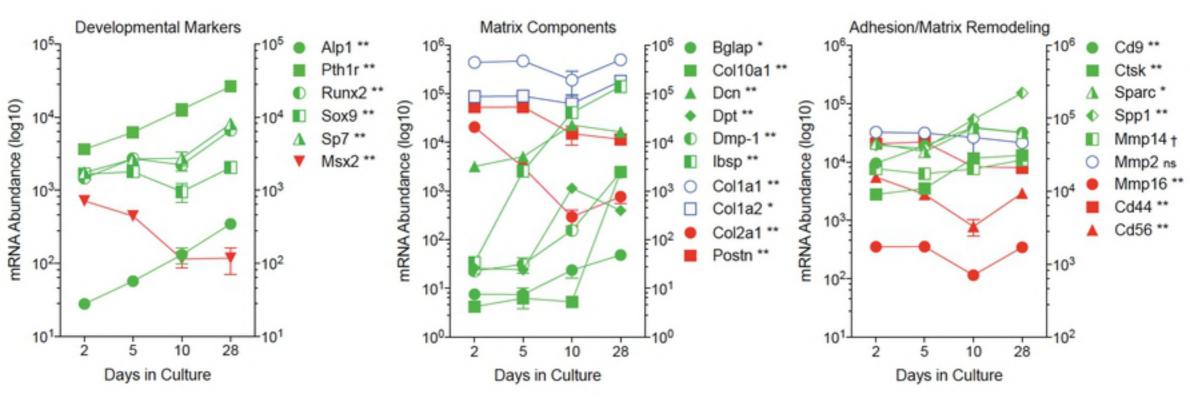
909 abundance are indicated, as are predicted activation (*orange*) and inhibition (*blue*) of

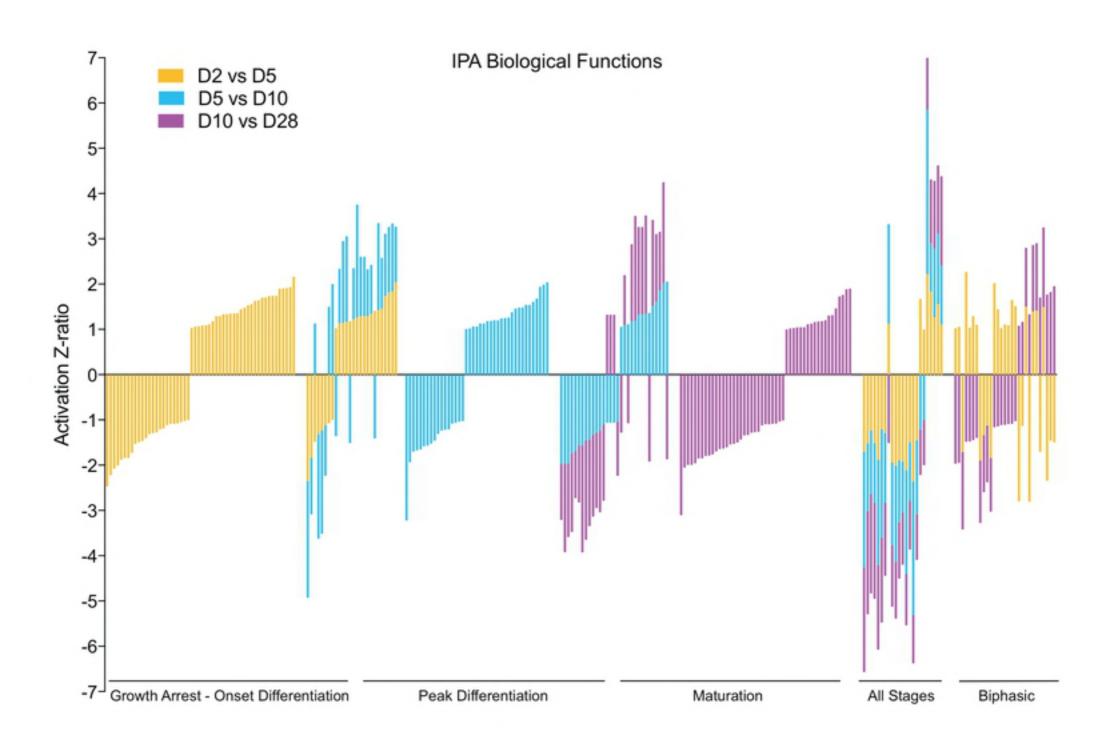
910 downstream targets.

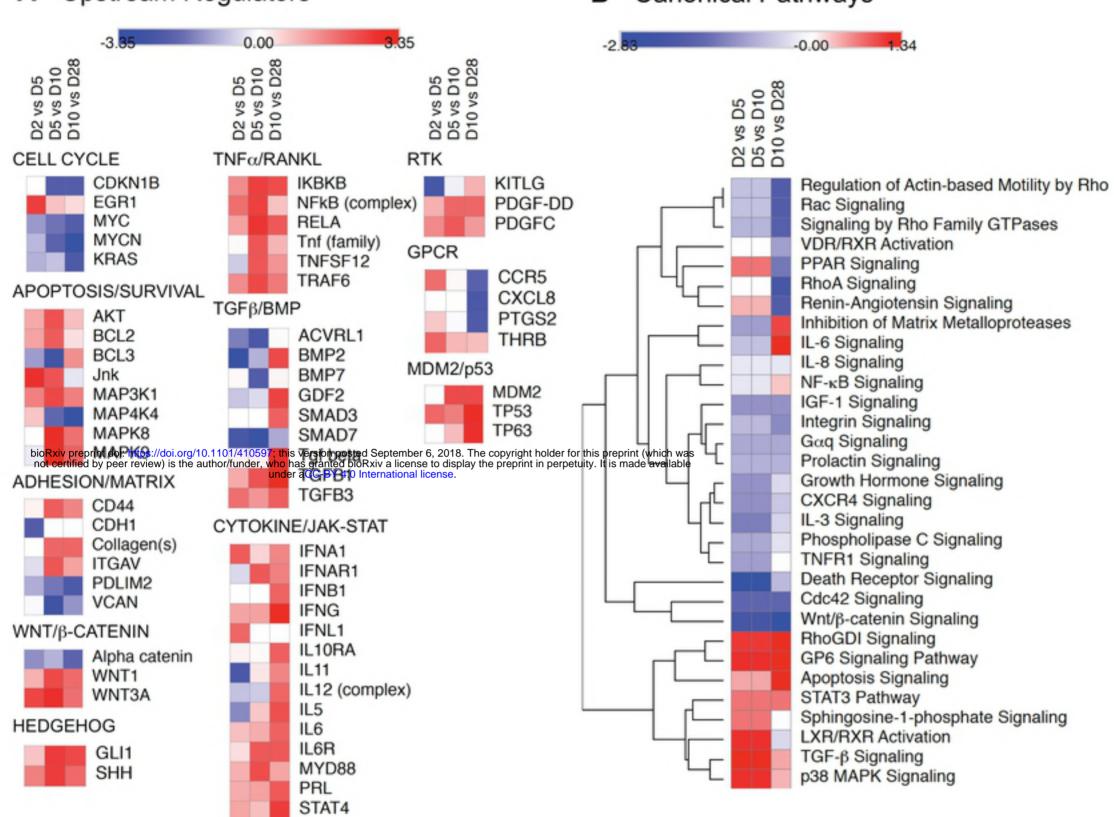
bioRxiv preprint doi: https://doi.org/10.1101/410597; this version posted September 6, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

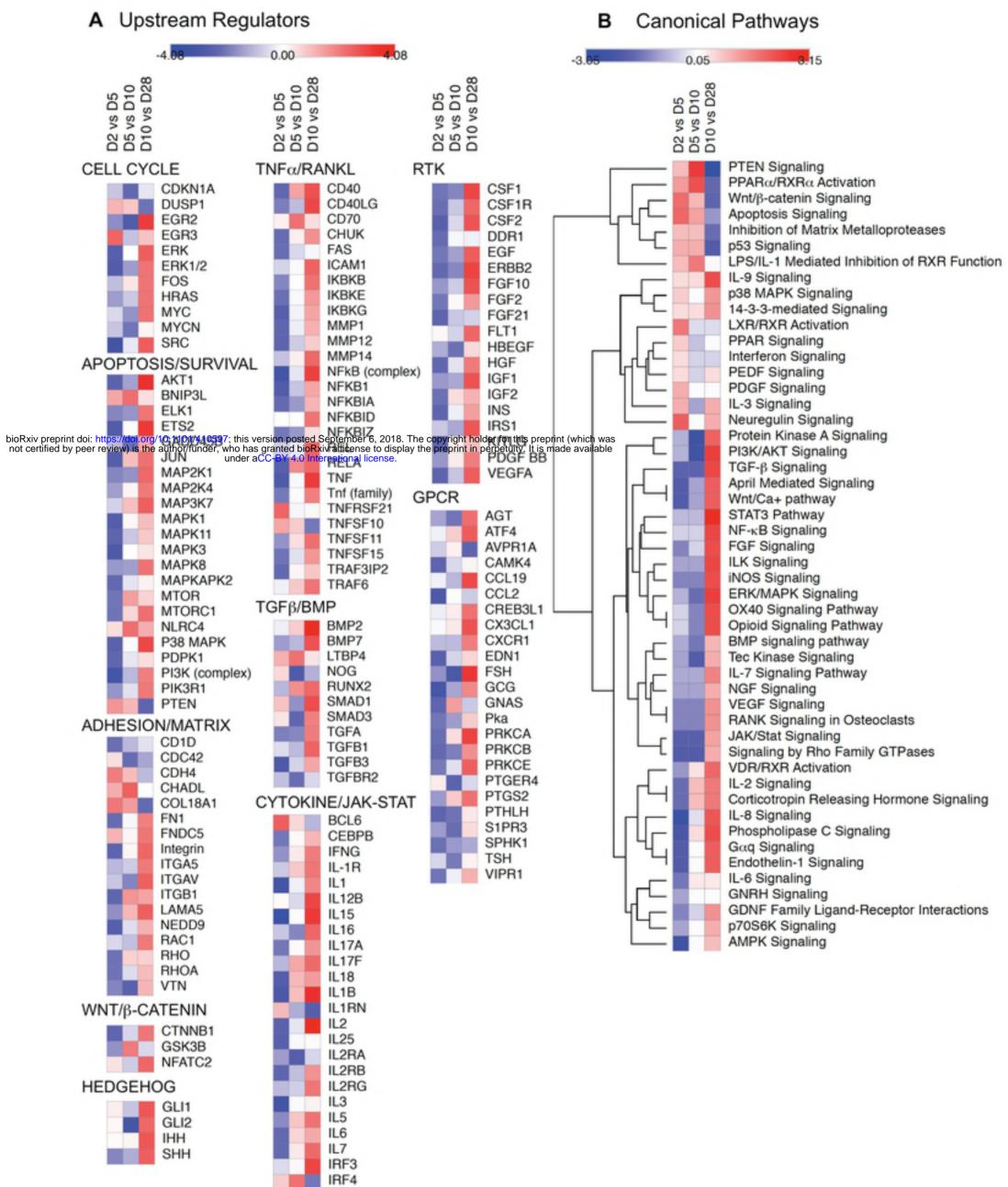

911

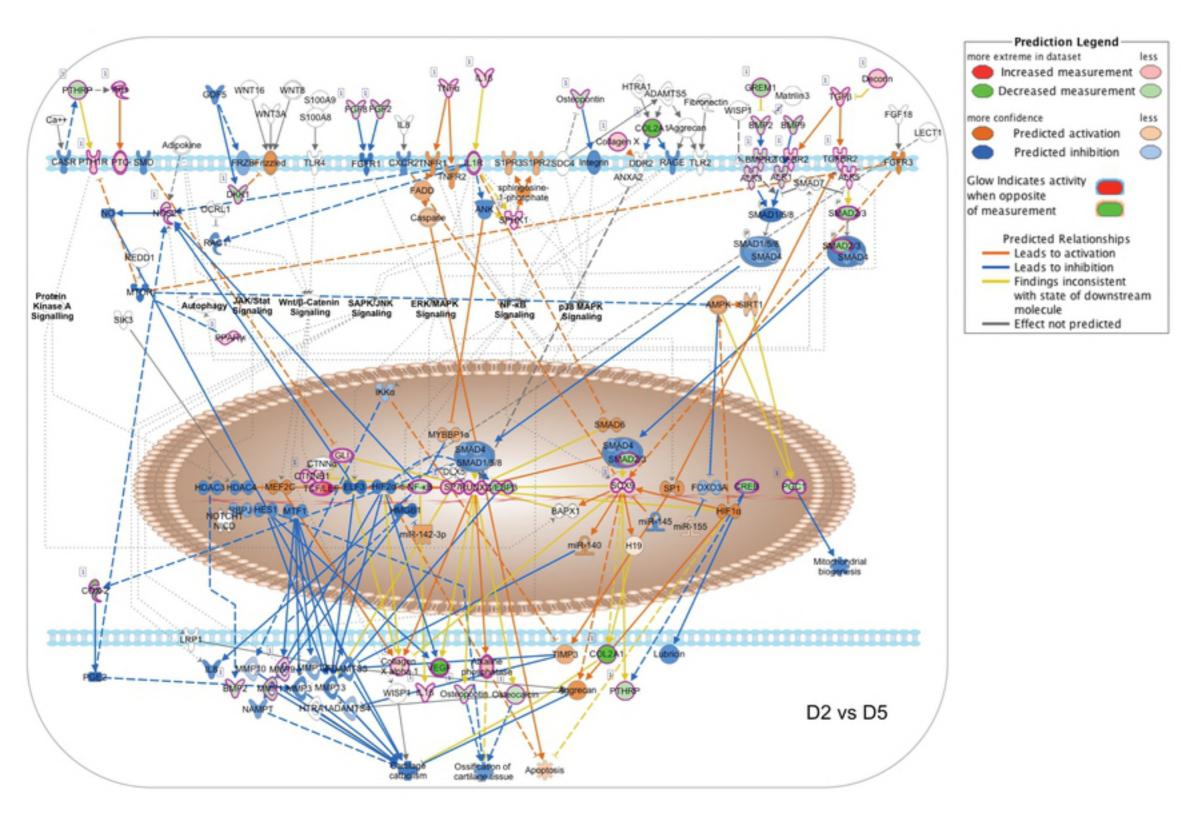

912	S3 Fig. Comparison of NFKB network activity between Days 10 and 28 of MC3T3-
913	E1 cell differentiation predicted from the microarray and NanoString TM datasets.
914	Observed Day 10 to Day 28 changes in expression ratios were used to predict NF κ B
915	pathway activity using the IPA molecular activity predictor tool. A. Pathway activity
916	prediction based on the microarray dataset. B. Pathway activity based on the
917	NanoString TM dataset. Observed increases (<i>red</i>) and decreases (<i>green</i>) in mRNA
918	abundance are indicated, as are predicted activation (orange) and inhibition (blue) of
919	downstream targets.
920	
921	S4 Fig. Comparison of STAT3 network activity between Days 10 and 28 of MC3T3-
922	E1 cell differentiation predicted from the microarray and NanoString TM datasets.
923	Observed Day 10 to Day 28 changes in expression ratios were used to predict STAT3
924	pathway activity using the IPA molecular activity predictor tool. A. Pathway activity
925	prediction based on the microarray dataset. B. Pathway activity based on the
926	NanoString TM dataset. Observed increases (<i>red</i>) and decreases (<i>green</i>) in mRNA
927	abundance are indicated, as are predicted activation (orange) and inhibition (blue) of
928	downstream targets.
929	
930	S1 Table. NanoString TM nCounter expression data for 237 bone-related transcripts.
931	Gene symbol, accession number, annotation, NanoString TM probe ID, and mRNA
932	abundance data are shown for triplicate determinations at each of four time points.
933	

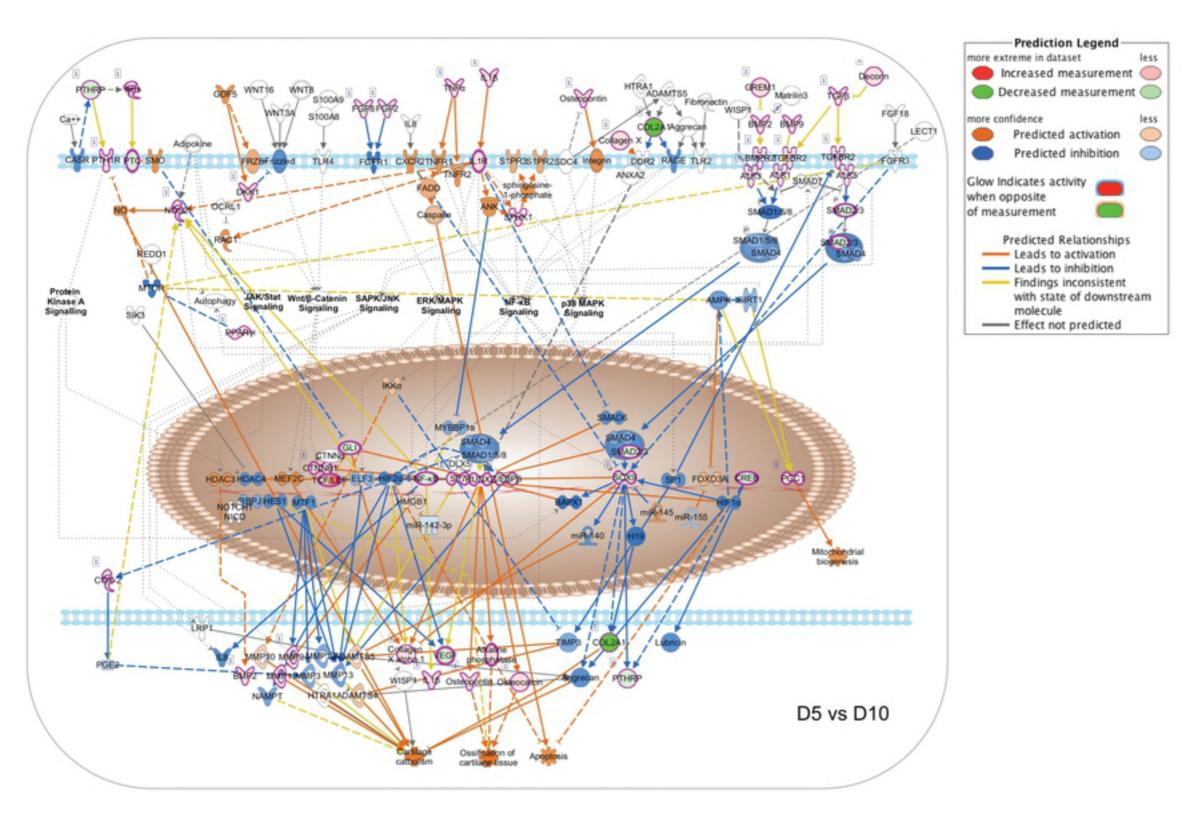

bioRxiv preprint doi: https://doi.org/10.1101/410597; this version posted September 6, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

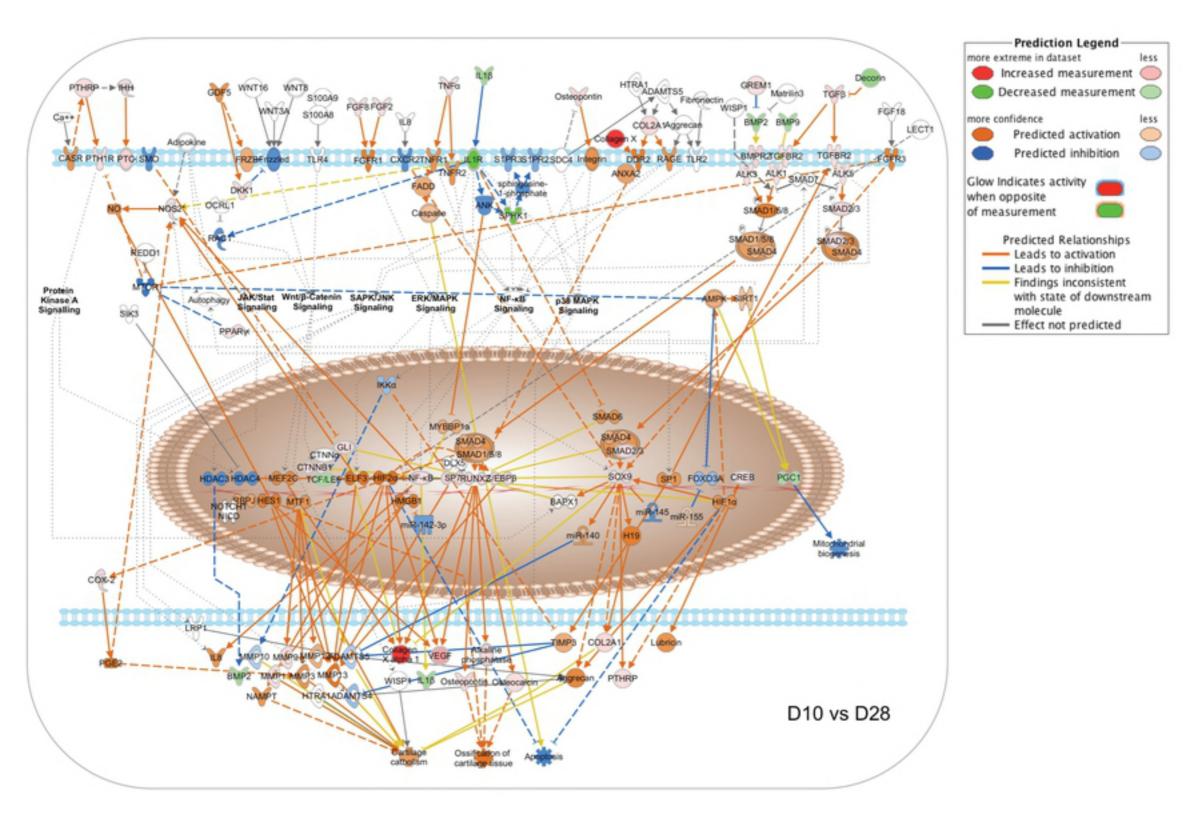

934	S2 Table. Operon V2.0 microarray expression data for 1005 significantly-regulated
935	transcripts. Gene symbol, accession number, gene name, mRNA abundance data, and z-
936	standardized expression values are shown for triplicate determinations at each of four
937	time points.
938	
939	S3 Table. IPA Disease or Function analysis of significantly-regulated transcripts
940	identified by microarray. Disease or function annotation, -log(p value), activation z-
941	score, number and name of pathway molecules are shown for all functions with activation
942	z-score >1 or <-1 in the D2 vs D5, D5 vs D10, and D10 vs D28 pairwise comparisons.
943	
944	S4 Table. IPA Upstream Regulator analysis of significantly-regulated transcripts
945	identified by microarray. Gene symbol and activation z-score are shown for all
946	upstream regulators with activation z-score \geq 2 or \leq -2 in the D2 vs D5, D5 vs D10, and
947	D10 vs D28 pairwise comparisons.
948	
949	S5 Table. IPA Canonical Pathways analysis of significantly-regulated transcripts
950	identified by microarray. Canonical Pathway name, -log(pvalue), activation z-score,
951	and observed pathway molecules are shown for predicted regulated pathways in the D2
952	vs D5, D5 vs D10, and D10 vs D28 pairwise comparisons.
953	
954	S6 Table. IPA Upstream Regulator analysis of the NanoString dataset of bone-
955	related genes. Gene symbol and activation z-score are shown for all upstream regulators

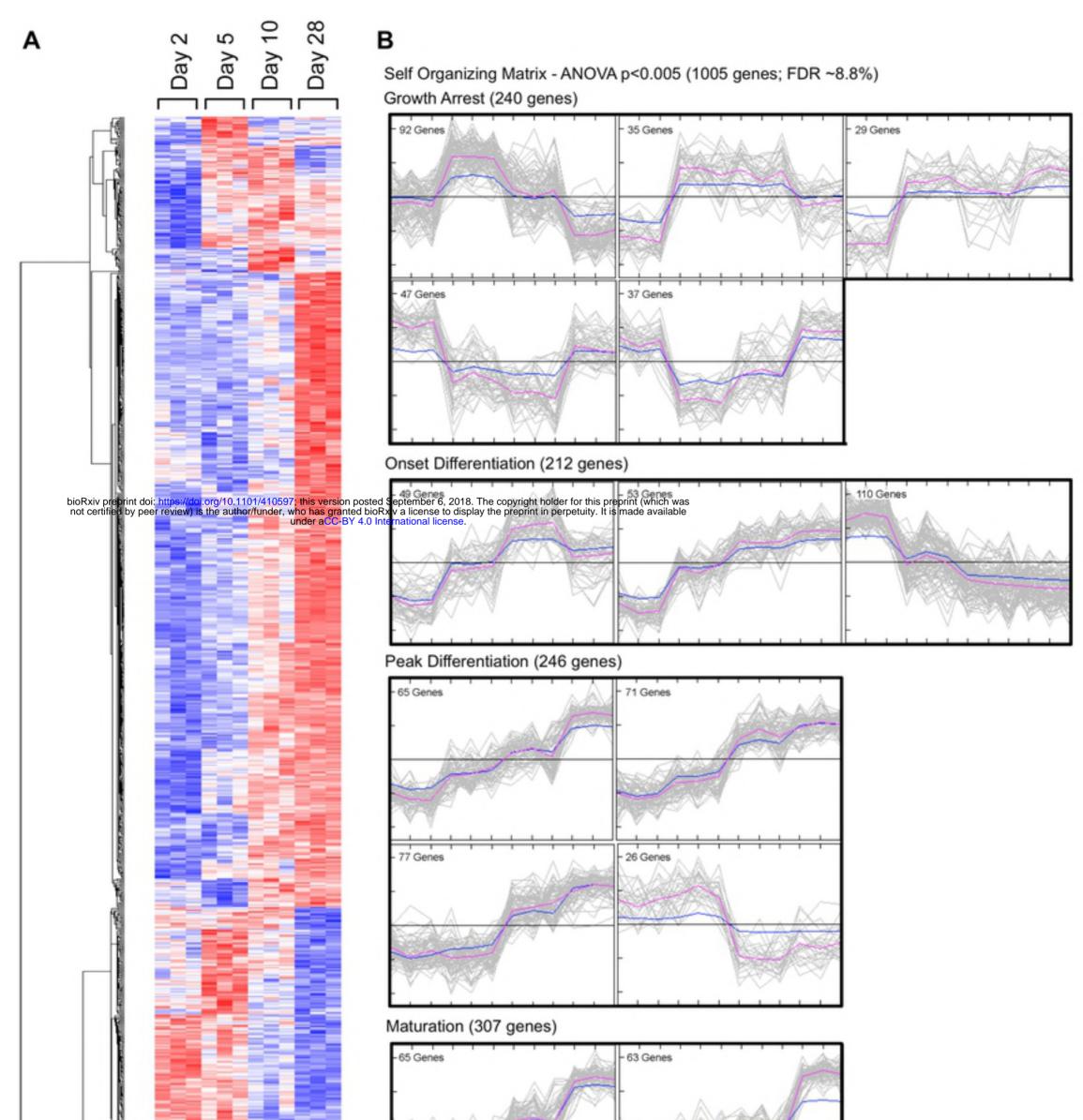

- 956 with activation z-score >2 or <-2 in the D2 vs D5, D5 vs D10, and D10 vs D28 pairwise
- 957 comparisons.
- 958
- 959 S7 Table. IPA Canonical Pathways analysis of the NanoString dataset of bone-
- 960 related genes. Canonical Pathway name, -log(pvalue), activation z-score, and observed
- pathway molecules are shown for predicted regulated pathways in the D2 vs D5, D5 vs
- 962 D10, and D10 vs D28 pairwise comparisons.

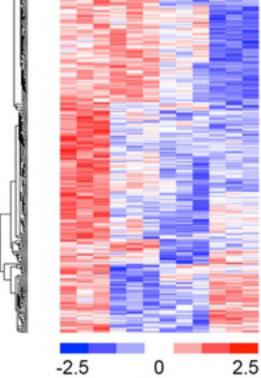





A Upstream Regulators


B Canonical Pathways




IL25
IL2RA
IL2RB
IL2RG
IL3
IL5
IL6
IL7
IRF3
IRF4
ITK
LIF
MYD88
STAT4
STAT5A
STAT5B
STAT6

