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21 Abstract

22 Bone remodeling involves the coordinated actions of osteoclasts, which resorb the 

23 calcified bony matrix, and osteoblasts, which refill erosion pits created by osteoclasts to 

24 restore skeletal integrity and adapt to changes in mechanical load.  Osteoblasts are 

25 derived from pluripotent mesenchymal stem cell precursors, which undergo 

26 differentiation under the influence of a host of local and environmental cues. To 

27 characterize the autocrine/paracrine signaling networks associated with osteoblast 

28 maturation and function, we performed gene network analysis using complementary 

29 “agnostic” DNA microarray and “targeted” NanoStringTM nCounter datasets derived 

30 from murine MC3T3-E1 cells induced to undergo synchronized osteoblastic 

31 differentiation in vitro.  Pairwise datasets representing changes in gene expression 

32 associated with growth arrest (day 2 to 5 in culture), differentiation (day 5 to 10 in 

33 culture), and osteoblast maturation (day 10 to 28 in culture) were analyzed using 

34 Ingenuity SystemsTM Pathways Analysis to generate predictions about signaling pathway 

35 activity based on the temporal sequence of changes in target gene expression.  Our data 

36 indicate that some pathways known to be involved in osteoblast differentiation, e.g. 

37 Wnt/β-catenin signaling, are most active early in the process, while others, e.g. 

38 TGFβ/BMP, cytokine/JAK-STAT and TNFα/RANKL signaling, increase in activity as 

39 differentiation progresses.  Collectively, these pathways contribute to the sequential 

40 expression of genes involved in the synthesis and mineralization of extracellular matrix.  

41 These results provide insight into the temporal coordination and complex interplay 

42 between signaling networks controlling gene expression during osteoblast differentiation.  

43 A more complete understanding of these processes may aid the discovery of novel 
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44 methods to promote osteoblast development for the treatment of conditions characterized 

45 by low bone mineral density.

46 Introduction

47 Bone remodeling is the continuous process through which worn bone is removed 

48 and replaced [1, 2].  Bone-resorbing osteoclasts differentiate from hematopoietic stem 

49 cell precursors in response to cues originating from osteocytes, bone lining cells, and 

50 differentiating osteoblasts. Bone-forming osteoblasts derive from mesenchymal stem cell 

51 presursors and undergo a defined maturational sequence from proliferating preosteoblasts 

52 to mature synthetically active osteoblasts, before finally undergoing apoptosis or 

53 transforming into osteocytes embedded within the bony matrix and quiescent bone lining 

54 cells covering the mineralized surface.  The bone remodeling cycle involves sequential 

55 osteoclastic bone resorption followed by the synthesis and mineralization of new bone 

56 matrix by osteoblasts, a process that requires several weeks to complete. Since these 

57 osteoclast-osteoblast bone forming units that mediate this process are constantly being 

58 created and destroyed, any analysis performed on bone tissue, whether by classical 

59 histomorphometry or using genomic and proteomic methods, is a ‘snapshot’ of the 

60 metabolic state of bone at that moment in time. While such in vivo studies are extremely 

61 useful for understanding the effects of disease, hormone administration/withdrawal or 

62 drug treatment on overall bone metabolism, they inevitably capture cross sectional data 

63 from multiple cell types in different differentiation states.  

64 In contrast, in vitro studies offer the advantage that cellular development can be 

65 synchronized, offering a better opportunity to view differentiation as a linear process.  In 

66 bone, the replication of undifferentiated osteogenic precursor cells, their recruitment to 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 6, 2018. ; https://doi.org/10.1101/410597doi: bioRxiv preprint 

https://doi.org/10.1101/410597
http://creativecommons.org/licenses/by/4.0/


67 remodeling bone matrix, and their subsequent acquisition of differentiated function, 

68 results from the complex interplay of signals transmitted by mechanical load, polypeptide 

69 growth factors, steroid and thyroid hormones, and locally produced cytokines and 

70 prostaglandins [3, 4].  While circulating hormones play an important modulatory role, 

71 osteoblastic differentiation can be induced in vitro, indicating that, once triggered, the 

72 process is autonomous, i.e. independent of ongoing exposure to systemically derived 

73 factors. 

74 Gene array technology is a potentially powerful tool for understanding complex 

75 biological processes.  A significant limitation of the approach, however, is that it is 

76 difficult to translate lists of significantly regulated genes into changes in biologically 

77 relevant signaling networks.  Genomic datasets are invariably incomplete and contain 

78 some number of false positive ‘hits’, making candidate based follow up studies 

79 unreliable.  In addition, important pathway components may not be regulated at the 

80 transcriptional level.  Circumventing these limitations requires the use of bioinformatic 

81 approaches that compare changes in gene expression against databases of known protein-

82 protein interactions to establish the probability that a given signaling or metabolic 

83 pathway is regulated under varying experimental conditions [5, 6].  These in silico 

84 analyses, which enable gene expression profile data to be expressed as the statistical 

85 probability that a particular pathway is regulated, can “fill in the blanks”, leading to a 

86 more holistic view of process-related changes in signaling pathway activity.

87 To better understand the temporal regulation of osteoblast differentiation, we 

88 performed microarray analysis of gene expression followed by signal transduction 

89 pathways analysis on murine MC3T3-E1 cells undergoing osteoblastic differentiation in 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 6, 2018. ; https://doi.org/10.1101/410597doi: bioRxiv preprint 

https://doi.org/10.1101/410597
http://creativecommons.org/licenses/by/4.0/


90 vitro.  Taking advantage of their well-defined maturational sequence [7-10], we isolated 

91 RNA at four stages: during log growth, early and late osteoblastic differentiation, and 

92 mature synthetic function.  We then performed pairwise comparisons to identify 

93 significant changes in gene expression associated with each of these stages of osteoblast 

94 development, and used the resulting genesets to identify the time-dependent changes in 

95 signal transduction pathway activity.  Our data indicate that the temporally coordinated 

96 activation of signaling pathways known to be involved in osteoblast differentiation, e.g. 

97 Wnt/β-catenin, Transforming Growth Factor-β (TGFβ) Bone Morphogenic Protein 

98 (BMP), cytokine/Janus Kinase (JAK)-Signal Transducer and Activator of Transcription 

99 (STAT), and Tumor Necrosis factor-α (TNFα/Receptor Activator of Nuclear Factor κ-

100 B (NFκB) Ligand (RANKL) signaling, correlates with the sequential expression of genes 

101 involved in the biosynthesis and mineralization of extracellular matrix as differentiation 

102 progresses.  These results demonstrate the utility of functional genomic approaches to 

103 microarray analysis and offer insight into the temporal sequence of changes in the 

104 autocrine/paracrine signaling networks regulating osteoblast differentiation.

105 Materials and methods

106 Culture and differentiation of MC3T3-E1 cells  

107 Stock cultures of MC3T3-E1 cells (subclone 4; CRL-2593; ATCC) were 

108 maintained in α-minimum essential medium (MEM) supplemented with 10% v/v fetal 

109 bovine serum, penicillin (100 units/mL) and streptomycin (100 pg/mL) in a humidified 

110 10% CO2 atmosphere at 37 ˚C.  Until the time of study cells were maintained in log phase 

111 growth by passage every 3-5 days using 0.001% pronase (w/v) to detach adherent cells.  

112 For studies of the temporal sequence of osteoblast differentiation, cells were plated at an 
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113 initial density of 20,000 cells/well in 6-well plates or 100,000 cells/dish in 10 cm dishes, 

114 and grown for 2 to 28 days in α-MEM supplemented with 10% v/v fetal bovine serum, 5 

115 mM β-glycerol phosphate and 50 μg/mL ascorbic acid (7-10).

116 Cell replication  

117 Between days 1 and 5 in culture, cells in 6-well plates were treated with 0.001% 

118 pronase (w/v) to achieve detachment and directly counted in a hemocytometer.

119 Alkaline phosphatase activity  

120 Alkaline phosphatase activity was measured by para-nitrophenyl phosphate 

121 hydrolysis as previously described (11).  Briefly, MC3T3-E1 cells growth in 6-well plates 

122 were harvested in distilled water and disrupted by sonication. Appropriately diluted 

123 aliquots of cell lysate containing equal cell protein were incubated for 30 min at 37 ˚C in 

124 a final reaction volume of 600 L, containing 1.0 M diethanolamine, pH 10.3 and 15 

125 mM para-nitrophenyl phosphate.  Reactions were terminated by the addition of 2.4 mL 

126 0.1N NaOH, after which generation of para-nitrophenol was measured by determining 

127 absorbance at 400 nm.  Results were expressed as pmol para-nitrophenol/min/106 cells.

128 Synthesis of type I collagen  

129 Type 1 collagen production was determined by western blotting.  Monolayers of 

130 MC3T3-E1 cells were lysed directly in 1X Laemmli sample buffer, dispersed by 

131 sonication, and resolved by sodium dodecyl sulfate – polyacrylamide gel electrophoresis.  

132 Immune complexes on nitrocellulose membranes were detected using mouse monoclonal 

133 anti-type I collagen IgG1 (COL1A: sc59772; Santa Cruz Biotechnology, Santa Cruz, CA) 

134 with horseradish peroxidase-conjugated donkey anti-mouse IgG (Code: 715-035-150; 
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135 Jackson ImmunoResearch Laboratories Inc., West Grove, PA) as secondary antibody.  

136 The cell content of each sample was determined by western blotting in parallel for α-actin 

137 using mouse monoclonal anti-actin IgG1 (C-2: sc8432; Santa Cruz Biotechnology, Santa 

138 Cruz, CA).  Immune complexes were visualized on X-ray film by enzyme-linked 

139 chemiluminescence and quantified using a Fluor-S MultiImager.  Data were expressed as 

140 the ratio of type I collagen to α-actin in each sample.

141 Alizarin red staining  

142 Matrix mineralization was quantified by Alizarin red staining as described (12).  

143 Monolayers of MC3T3-E1 cells in 6-well plates were fixed for 24 hr in a 10% 

144 formalin:methanol:distilled water solution (1:1:1.5), stained for 20 min in 2% Alizarin 

145 Red-S in distilled water, washed with distilled water and air dried.  Mineralization was 

146 quantified by eluting the stain using 10% cetylpyridium chloride and measuring 

147 absorbance at 520 nM. 

148 mRNA isolation

149 MC3T3-E1 cells were cultured as described in 10 cm dishes for 2, 5, 10 or 28 

150 days prior to isolation of RNA.  Total RNA from three independent cultures was isolated 

151 at each time point.  Cells were harvested by scraping and RNA was isolated with Trizol 

152 Reagent (Invitrogen, Carlsbad, CA) and purified using the RNeasy kit (Qiagen Inc., 

153 Valencia, CA) according to the manufacturer’s protocols (13).  Total RNA was analyzed 

154 for concentration (ng/L) and purity (ratios of 260/280 nm and 260/230 nm) using a 

155 NanoDrop 1000 Spectrophotometer (Thermo Scientific, Wilmington, DE). RNA integrity 

156 was analyzed using the Experion RNA HighSens Analysis Kit (Bio-Rad Laboratories 

157 Inc., Hercules CA). 
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158 Microarray analysis

159 Samples underwent RNA amplification (Message Amp; Ambion, Austin, TX), 

160 labeling with Cy3, and hybridization to Mouse Operon 17,000 gene feature (Operon 

161 dataset; version 2.0) spotted oligonucleotide arrays in the microarray facility of the Duke 

162 University Institute for Genome Sciences and Policy (www.genome.duke.edu/cores/ 

163 microarray/).  MIAME compliant microarray data files have been deposited with the 

164 NCBI GEO database (www.ncbi.nlm.nih. gov/gds) (GEO Series GSE64485). Data pre-

165 processing and normalization were performed on GenePix scan results files (.gpr files) 

166 using the Bioconductor LimmaGUI package 1.28.0 run with R 2.13.0 software (14). 

167 Background correction was performed using the normexp method with offset of 16, and 

168 spot quality weighting was applied as follows: 1 for Good (100) or Unflagged (0); 0.1 for 

169 Bad (-100), Not Found (-50) and Absent (-75) flags. Print-tip group loess normalization 

170 was applied for normalization within arrays.  Review of box plots of normalized M 

171 values indicated that normalization between arrays was not warranted. Normalized M 

172 values, i.e. log2 test(Cy3)/reference(Cy5) relationship, were imported into dchip for 

173 comparative analysis. ANOVA was used to find genes differing as function of time, i.e. 

174 significantly different between any two time points. ANOVA filtering at the 0.005 level 

175 yielded 1005 genes passing with a reasonable 5-10% false discovery rate (17664 

176 compared; expected false positive: 88). Self-organizing maps (SOM) were used to 

177 partition the significantly regulated genes into different response patterns.  Expression 

178 data were imported into MeV software for SOM analysis, z-standardization performed, 

179 i.e. mean=0 and SD=1, and SOM clusters for ANOVA p<0.005 were generated by: 16 
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180 clusters, 4x4, 2000 iterations, hexagonal topography, Gaussian neighborhood, alpha 0.05, 

181 radius 1.0, no HCL linkage, Pearson correlation.

182 NanoStringTM nCounter analysis

183 The NanoStringTM nCounter gene expression system (NanoStringTM 

184 Technologies; Seattle, WA) was used for expression profiling of selected mRNA species 

185 isolated from MC3T3-E1 cells at Days 2, 5, 10 and 28 in culture using a custom nCounter 

186 CodeSet composed of 243 probes (S1 Table) including 6 housekeeping controls (Eif4a2, 

187 GusB, Oaz1, Stk36, Tceb1, and Tubb4a). With NanoString™ technology fluorescent 

188 single strand RNA probes are hybridized to complimentary target strands of mRNA and 

189 quantified based on the fluorescence of each target gene within each sample (15,16). 

190 Briefly, the NanoStringTM reporter probe CodeSet was suspended in 70µL of 

191 hybridization buffer and 8µL aliquots were combined in sterile microfuge tubes with 

192 each RNA sample diluted to a concentration of 250ng RNA in 5µL. Thereafter, 2µL of 

193 the capture probe CodeSet was added to each tube, tubes were centrifuged, and then 

194 incubated at 65°C in a BioRad T100 Thermal Cycler (BioRad; Hercules, CA) for 13-15 

195 hours. After hybridization, samples were analyzed using the NanoString™ Technologies 

196 Prep Station and Digitial Analyzer according to manufacturer’s instructions.  All 12 

197 samples, i.e. RNA from triplicate cultures at each of four time points, were analyzed 

198 simultaneously to minimize batch effects.  The resulting counts were analyzed using 

199 NanoStriDE and GraphPad Prism 7 (GraphPad Software; Carlsbad, CA) software.  

200 Statistical significance of change over time was determined by two-way ANOVA with 

201 Tukey’s multiple comparisons test using GraphPad Prism 7.

202 IPA metabolic pathways analysis. 
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203 Network analysis of genesets representing changes in mRNA abuundance 

204 between specified time points was performed using the Ingenuity SystemsTM Pathways 

205 Analysis (IPA) tool (Qiagen; Redwood City, CA).  IPA compares Genbank Accession 

206 number/expression information with a proprietary protein-interaction database to 

207 establish the probability that a given signaling or metabolic pathway is activated under 

208 varying experimental conditions. For the microarray dataset, expression ratios for all 

209 relevant pairwise comparisions, i.e. D2 vs D5, D2 vs D10, D2 vs D28, D5 vs D10, D5 vs 

210 D28, and D10 vs D28, were calculated using the ANOVA p<0.005 set of 1005 

211 significantly regulated genes. For the NanoStringTM dataset, pairwise expression ratios 

212 were calculated for each of the 237 measurable genes.  Expression ratio data were 

213 uploaded into the IPA Pathways Analysis system (https://analysis.ingenuity.com/), 

214 yielding 976 analyzable transcripts from the microarray dataset (S2 Table). Each dataset 

215 was subjected to IPA Core Analysis, then analyzed using IPA Upstream Regulator, 

216 Downstream Effects, and Canonical Pathways analytic tools. To capture pathway 

217 changes associated with each phase of differentiation we focused on the D2 vs D5, D5 vs 

218 D10, and D10 vs D28 pairwise comparisons. For IPA Upstream Regulator and Canonical 

219 Pathways analysis, gene clusters composed of  ≥ 2 genes per group with P < 0.05 

220 enrichment, i.e. –log(p-value) ≥ 1.3, compared with a standard murine background 

221 database were considered analyzable. The IPA output was exported as Microsoft Excel 

222 files to prepare the S3-7 Tables. Graphic representations of the data were prepared using 

223 either the IPA Canonical Pathways Molecular Activity Predictor tool or GraphPad Prism 

224 7 software, as appropriate. To facilitate visual inspection of the changes in predicted 

225 Upstream Regulator and Canonical Pathways activity associated with each interval, heat 
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226 maps were generated from the activation z-scores using Morpheus software 

227 (https://software.broadinstitute.org/morpheus/). 

228 Results

229 The temporal sequence of MC3T3-E1 cell differentiation 

230 MC3T3-E1 cells undergo a well-characterized process of osteoblastic 

231 differentiation when placed in culture medium supplemented with β-glycerol phosphate 

232 and ascorbic acid [7-10]. Fig 1 presents this process tracked using traditional markers: 

233 cell number, bone alkaline phosphatase, abundance of type I collagen, and alizarin red 

234 staining. After initial seeding, the cells remain in log phase growth for 2-3 days, 

235 undergoing growth arrest upon attaining confluence by days 3-4. Osteoblastic 

236 differentiation begins upon growth arrest and continues through days 5 to 10 in culture, 

237 evident first as an increase in the production of bone-specific alkaline phosphatase, 

238 followed by deposition of a collagenous matrix composed in part of type 1 collagen.  

239 Matrix mineralization begins as early as day 10 and accelerates with time in culture. By 

240 day 28 the MC3T3-E1 derived osteoblasts have produced a mineralized matrix.

241

242 Fig 1. MC3T3-E1 osteoblast maturation in vitro.  MC3T3-E1 cells were seeded in 6-

243 well tissue culture plates at an initial density of 20,000 cells/well and maintained in 

244 culture for up to 28 days.  A. Representative Alizarin Red stained culture dishes from 

245 Days 2, 5, 10 and 28 demonstrating the progression of matrix mineralization.  B. Graph 

246 depicting change in cell number (days 1-5), secreted alkaline phosphatase activity (days 

247 4-28), type 1 collagen synthesis (days 3-21), and matrix mineralization (days 4-28) 

248 associated with MC3T3-E1 differentiation.  Data shown are the Mean ± SEM of triplicate 
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249 determinations.  These data were used to select time points representing proliferating 

250 preosteoblasts (day 2), early and late differentiating osteoblasts (days 5 and 10), and 

251 active osteoblasts (day 28), for subsequent mRNA isolation.

252

253 Predictably, osteoblastic differentiation on MC3T3-E1 cells is reflected in 

254 changes in the abundance of mRNA encoding bone marker proteins. As shown in Fig 2, 

255 osteoblast developmental markers, matrix components, and proteins involved in cell 

256 adhesion and matrix remodeling change over time as the cells evolve from proliferating 

257 pre-osteoblasts to mature osteoblasts. Notably, these changes in mRNA abundance 

258 appear at different times during development.  mRNA encoding Runx2, the first 

259 transcription factor required for determination of the osteoblast lineage [17,18], increases 

260 early in development and plateaus between Days 5 and 10, while others, e.g. alkaline 

261 phosphatase (Alp1), integrin-binding sialoprotein (Ibsp), a major structural protein of the 

262 bone matrix, and parathyroid hormone receptor (Pthr1), increase steadily from Day 2 to 

263 Day 28. Still other mRNA species are abundant throughout development, e.g. collagen 

264 type 1A (Col1a1), and some increase between Days 10 and 28 after differentiation is well 

265 underway e.g. the osteoblast-specific matrix protein periostin (Postn). Such differences 

266 are consistent with a temporally coordinated process wherein early events trigger the 

267 sequential activation of a transcriptional program driven by intracellular signaling 

268 networks.

269

270 Fig 2.  Temporal changes in the abundance of mRNA encoding bone marker 

271 proteins.  Total RNA was isolated from triplicate cultures of MC3T3-E1 cells at Days 2, 
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272 5, 10 and 28 in culture, and mRNA abundance quantified by NanoString nCounter using 

273 a bone focused probe set (S1 Table).  Developmental markers shown are: alkaline 

274 phosphatase (Alp1); parathyroid hormone receptor (Pthr1); the transcription factors 

275 Runx2, Sox9 and Sp7; and the transcriptional repressor Msx2.  Matrix components shown 

276 are: bone gamma-carboxyglutamate protein (Bglap); collagen types 1A1 (Col1a1), 1A2 

277 (Col1a2), 2A1 (Col2a1) and 10A1 (Col10a1); decorin (Dcn); dermatopontin (Dpt); 

278 dentin matrix protein-1 (Dmp-1); integrin-binding sialoprotein (Ibsp); and periostin 

279 (Postn).  Proteins associated with cell adhesion and matrix remodeling are:  tetraspanin 

280 (Cd9); cathepsin K (Ctsk); osteonectin (Sparc); osteopontin (Spp1); matrix 

281 metalloproteinases 2 (Mmp2), 14 (Mmp14), and 16 (Mmp16); hyaluronic acid receptor 

282 (Cd44); and neural cell adhesion molecule 1 (Cd56).  Data shown represent the Mean ± 

283 SD of triplicate samples. Error bars not shown are smaller than the symbol. † P < 0.05; * 

284 P < 0.01; ** P < 0.001 different in abundance between at least two time points by two-

285 way ANOVA with Tukey’s multiple comparisons test; ns, not significant.

286

287 DNA microarray analysis of MC3T3-E1 differentiation

288 DNA microarrays, because they capture information about the abundance of a 

289 large number of unselected mRNA species, provide an “agnostic” snapshot of gene 

290 expression patterns at a given point in time. Combining microarray data on changes in 

291 mRNA abundance over time with bioinformatic tools, such as Ingenuity SystemsTM IPA, 

292 provides a means to translate microarray data into a more complete picture of metabolic 

293 activity [5, 6]. To identify changes in gene expression occurring at different stages of 

294 differentiation, triplicate samples of total mRNA were isolated from subconfluent 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 6, 2018. ; https://doi.org/10.1101/410597doi: bioRxiv preprint 

https://doi.org/10.1101/410597
http://creativecommons.org/licenses/by/4.0/


295 MC3T3-E1 preosteoblasts (day 2), growth-arrested preosteoblasts (day 5), differentiating 

296 osteoblasts (day 10) and maturing synthetically-active osteoblasts (day 28), and 

297 hybridized to Operon V2.0 murine cDNA microarrays representing approximately 17,600 

298 expressed sequence tags. Raw microarray data (GEO Series GSE64485) were analyzed 

299 by ANOVA to identify genes whose mean expression was significantly different between 

300 any two time points. Fig 3A shows a heat map of 1005 mRNAs passing the ANOVA 

301 filtered at p < 0.005. S2 Table lists the gene symbol, annotation, and observed abundance 

302 of the 976 analyzable mRNAs from this dataset. Hierarchical clustering revealed several 

303 distinct temporal patterns of expression, with some gene clusters increasing or decreasing 

304 in abundance early in differentiation, others changing progressively throughout 

305 differentiation, or changing most dramatically during the period of osteoblast maturation. 

306 Still others genes exhibited a biphasic pattern, increasing or decreasing with the onset of 

307 differentiation and reversing their direction of change between days 10 and 28 in culture. 

308 To further partition genes into different response patterns, we generated self-organizing 

309 maps (SOM) from the ANOVA p<0.005 dataset. As shown in Fig 3B, distinct temporal 

310 patterns of mRNA abundance were evident, reflecting each stage of osteoblast 

311 differentiation.

312

313 Fig 3.  Temporal patterns of change in the MC3T3-E1 transcriptome during 

314 differentiation. Triplicate DNA microarrays at each time point were used to identify 

315 significantly regulated mRNAs at different phases of osteoblast differentiation by 

316 ANOVA (p<0.005; estimated false discovery rate 8.8%). A. Heat map representing 

317 observed mRNA abundance of 1005 genes identified by ANOVA as demonstrating a 
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318 significant difference between any two time points. Hierarchical clustering was used to 

319 identify coordinated patterns of change. B. Sixteen cluster SOM representing temporal 

320 changes in mRNA abundance associated with MC3T3-E1 differentiation.  Expression 

321 data were subjected to z-standardization and SOM assembled using MeV software. The 

322 resulting 16 SOM clusters are shown grouped in relation to the differentiation state of 

323 MC3T3-E1 cells. Growth arrest was associated with abrupt changes (increase or 

324 decrease) in mRNA levels between days 2 and 5 (240 genes). The onset of differentiation 

325 was associated with progressive changes in mRNA levels between days 2 and 10 (212 

326 genes). Peak differentiation was associated with prominent changes in mRNA levels 

327 between days 5 and 10 (246 genes). Osteoblast maturation was associated with prominent 

328 changes in mRNA levels between days 10 and 28 (307 genes).

329

330 To test the hypothesis that the biological processes underlying osteoblastic 

331 differentiation of MC3T3-E1 cells are reflected in the coordinated changes in the 

332 transcriptome over time, the DNA microarray data were analyzed using Ingenuity 

333 SystemsTM IPA software.  IPA compares empirically derived “omics” datasets, e.g. DNA 

334 microarray data, with a curated database of reported gene-gene and protein-protein 

335 interactions to predict signaling pathway activity based on observed changes in upstream 

336 regulators and/or the downstream genes whose expression they control.  The IPA output 

337 includes two statistical measures.  The first, which is typically expressed as –log(p-

338 value), represents the probability that the correlation between an input set of observed 

339 factors and co-regulated genesets in the IPA database did not occur by chance.  Hence, a 

340 –log(p-value) greater than 1.3 represents p < 0.05 of a significant association.  The 
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341 second, termed an activation z-score, is based on the degree to which observed changes in 

342 factor levels, e.g. increases or decreases in mRNA abundance between two points in time, 

343 correlate with the expected changes associated with pathway activation or inhibition.  

344 Thus, an activation z-score > 2 or < -2 predicts pathway activation or inhibition, 

345 respectively, with p < 0.05. 

346 The biochemical characterization of differentiating MC3T3-E1 cells (Fig 1) 

347 demonstrates that the major downstream biological processes, e.g. cell proliferation 

348 versus matrix mineralization, change over time.  To generate a gestalt view of whether 

349 the structure of the DNA microarray dataset reflects this temporal evolution, we 

350 calculated expression ratios for each of the 976 analyzable genes identified by ANOVA 

351 using three pairwise comparisons, day 2 to day 5 (D2 vs D5), day 5 to day 10 (D5 vs 

352 D10), and day 10 to day 28 (D10 vs D28), and performed IPA Downstream Effects 

353 Analysis, which predicts increases or decreases in downstream biological activities. S3 

354 Table lists the annotation, -log(p-value), and activation z-score for all biological process 

355 terms identified from our dataset where the z-score was > 1 or < -1.  These results are 

356 presented graphically in Fig 4.  As shown, each pairwise comparison was associated with 

357 a set of unique of terms, here represented graphically as vertical bars.  Importantly, terms 

358 identified in two overlapping comparisons exhibited a high degree of concordance in the 

359 predicted direction of activation/inhibition (20 of 26 terms appearing in both the D2 vs 

360 D5 and D5 vs D10 comparison, and 24 of 31 terms appearing in both the D5 vs D10 and 

361 the D10 vs D28 comparison).  Consistent with the SOM analysis (Fig 3B), where some 

362 gene clusters increased in abundance steadily throughout differentiation, several process 

363 level terms were identified in all three genesets, and again there was strong concordance 
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364 in the predicted direction of activation/inhibition (20 of 23 terms appearing in all three 

365 comparisons).  Of interest, process terms appearing only in the D2 vs D5 and D10 vs D28 

366 comparisons showed less concordance (only 9 of 29 terms were concordant).  This too 

367 may reflect at the process level expression patterns observed in the SOM analysis, where 

368 some gene clusters clearly underwent reciprocal regulation, increasing/decreasing 

369 between days 2 and 5, remaining relatively constant between days 5 and 10, and returning 

370 to their prior levels between days 10 and 28.

371

372 Fig 4. Temporal changes in mRNA abundance reflect evolving biological processes 

373 during MC3T3-E1 differentiation.  The mRNA abundance of 976 significantly 

374 regulated genes identified by ANOVA as changing during MC3T3-E1 differentiation was 

375 used to calculate expression ratios comparing D2 vs D5, D5 vs D10, and D10 vs D28.  

376 For each pairwise comparison, the earlier time point was used as the denominator and 

377 later time point as the numerator, such that expression ratios reflect increases/decreases in 

378 mRNA abundance as differentiation proceeds. IPA Downstream Effects Analysis was 

379 performed to identify biological process terms associated with each interval and filtered 

380 to include terms only with –log(p value) >1.3, minimum of two genes, and z-score >1 or 

381 <-1.  The graph depicts z-score values for terms associated with the period of growth 

382 arrest and onset of differentiation (gold bars), active differentiation (blue bars), and 

383 osteoblast maturation (lavender bars).  The descriptive annotations associated with each 

384 term are omitted for simplicity but presented in S3 Table.

385
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386 To resolve the temporal changes in signaling networks associated with 

387 osteoblastic differentiation of MC3T3-E1 cells we performed IPA Upstream Regulator 

388 and Canonical Pathways Analysis using the 976 significantly regulated genes identified 

389 by ANOVA. The IPA Upstream Regulator Analysis predicts which transcriptional 

390 regulators are activated or inhibited based on observed changes in expression of 

391 downstream genes. Predicted upstream regulators with activation Z-scores > 2 or < -2 

392 during at least one phase of differentiation are shown in S4 Table. Individual upstream 

393 regulators were grouped based on the signaling networks with which they are most 

394 associated, and the z-scores derived from the D2 vs D5, D5 vs D10, and D10 vs D28 

395 comparisons used to generate heat maps that illustrate the predicted change in regulator 

396 activity as differentiation progresses. In these maps, rows represent individual upstream 

397 regulators and columns represent time intervals. Predicted increases in activity from the 

398 beginning to end of each interval, e.g. from day 2 to day 5, are indicated in red and 

399 decreases in blue, with color intensity representing the magnitude of the z-score. Thus, an 

400 upstream regulator that was predicted to increase in activity from day 2 to day 5, day 5 to 

401 day 10, and day 10 to day 28 would be red in all columns, while one that increased from 

402 day 2 to day 5 and then remained active at the same level would be red in the D2 vs D5 

403 column, then white in the D5 vs D10 and D10 vs D28 columns. As shown in Fig 5A, 

404 upstream regulators associated with cell cycle progression were predicted to become less 

405 active over time, consistent with the growth arrest of MC3T3-E1 cells that heralds the 

406 onset of differentiation. Conversely, upstream regulators of several pathways associated 

407 osteoblast differentiation, e.g. TGFβ/BMP/SMAD, WNT/β-catenin, and Hedgehog 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 6, 2018. ; https://doi.org/10.1101/410597doi: bioRxiv preprint 

https://doi.org/10.1101/410597
http://creativecommons.org/licenses/by/4.0/


408 signaling [4] were predicted to become more active as differentiation progressed, as did 

409 regulators of TNFα/RANKL/NFκB and cytokine/JAK-STAT signaling.

410

411 Fig 5. Temporal changes in predicted upstream regulators and canonical signaling 

412 pathways associated with MC3T3-E1 cell differentiation.  Microarray data on the 976 

413 significantly regulated mRNA species were used to calculate change in expression ratio 

414 between D2 vs D5, D5 vs D10, and D10 vs D28. Expression ratios were analyzed using 

415 IPA Upstream Regulator and Canonical Pathways Analysis software and heat maps 

416 reflecting the changes in predicted activity during each interval were generated using 

417 Morpheus software. A. Heat maps depicting changes in selected upstream regulators 

418 (rows) with activation z-scores > 2 (red) or < -2 (blue) during at least one phase of 

419 differentiation (columns).  Upstream regulators were arbitrarily grouped based on their 

420 involvement is biological processes or signaling pathways related to osteoblast 

421 differentiation. B. Heat maps depicting changes in z-score for selected canonical 

422 signaling pathways (rows) during each phase of differentiation (columns).  Z-scores were 

423 subjected to Euclidean hierarchical clustering in Morpheus to group pathways based on 

424 similarity in temporal change.  

425

426 To gain insight into how predicted changes in the activity of individual upstream 

427 regulators were integrated into signaling networks, we next performed IPA Canonical 

428 Pathways Analysis, which compares observed changes in mRNA abundance to the 

429 expected direction of change associated with pathway activation or inhibition. The list of 

430 signaling pathways represented in the dataset along with –log(p-value) and activation z-

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 6, 2018. ; https://doi.org/10.1101/410597doi: bioRxiv preprint 

https://doi.org/10.1101/410597
http://creativecommons.org/licenses/by/4.0/


431 score are shown in S5 Table.  Fig 5B depicts a heat map of predicted changes in activity 

432 in selected canonical signaling pathways. Hierarchical clustering was performed to group 

433 pathways based on similarities in the change in activity over time.  Considering pathways 

434 known to be involved in bone development, Wnt/β-catenin signaling decreased in activity 

435 as differentiation progressed, while TGFβ signaling increased. The TGF-β/BMP axis is a 

436 principal regulator of mesenchymal stem cell differentiation into cartilage and bone [19-

437 22], acting through several effectors including SMADs, p38 mitogen-activated protein 

438 kinase (MAPK), and phosphatidyl inositol 3-kinase (PI3K)/AKT. TGF-β/BMP engages 

439 in extensive cross talk with other receptor-mediated signaling in bone, including WNT/β-

440 catenin, Notch, Hedgehog, fibroblast growth factor (FGF), parathyroid hormone-related 

441 peptide (PTHrp), and interleukin (IL)/TNFα/interferon-γ cytokines that collectively 

442 signal via the JAK/STAT and NFκB pathways [4,23]. Notably, several of these pathways, 

443 e.g. p38 MAPK, STAT3, NFκB and IL6 signaling also showed a trend toward activation 

444 during differentiation.

445

446 NanoStringTM analysis of MC3T3-E1 differentiation

447 To validate our “agnostic” microarray data on signaling pathway activation, we 

448 performed a “focused” analysis of MC3T3-E1 cell gene rexpression using NanoStringTM 

449 nCounter. The NanoStringTM nCounter system uses color-coded molecular “barcodes” 

450 attached target-specific probes to count up to several hundred unique transcripts in a 

451 single hybridization reaction [15,16]. The culture protocol used for the microarray 

452 experiment was repeated to provide independent mRNA samples. Triplicate samples of 

453 total mRNA isolated from MC3T3-E1 cells at days 2, 5, 10 and 28 in culture were 
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454 analyzed using a NanoStringTM Code Set designed to quantify the abundance of 237 

455 transcripts related to bone development and signaling.  S1 Table lists the gene name, 

456 annotation, and expression data for the NanoStringTM probes. Fig 6A shows a heat map of 

457 all 237 transcripts assayed. As with the microarray data, hierarchical clustering revealed 

458 several distinct temporal patterns of expression, with some groups of transcripts 

459 increasing/decreasing in abundance early in differentiation and others changing most 

460 dramatically later during osteoblast maturation. Fig 6B-E shows temporal changes in 

461 selected transcripts related to pathways identified in the bioinformatics analysis of the 

462 microarray data. Significant changes in mRNA abundance were detected in ligands, 

463 receptors or modulators of BMP, TGFβ and Activin signaling, the three closely-related 

464 components of the TGFβ network, as well as in the TNFα-NFκB, interleukin-JAK/STAT, 

465 and WNT/β-catenin pathways.  

466

467 Fig. 6. NanoStringTM analysis of bone-related mRNAs during MC3T3-E1 cell 

468 differentiation.  Total RNA was isolated from triplicate cultures of MC3T3-E1 cells at 

469 days 2, 5, 10 and 28, and mRNA abundance quantified by NanoStringTM nCounter using 

470 a bone specific Code Set (S1 Table). A. Heat map depicting changes in mRNA 

471 abundance for individual mRNA species (rows) over time in culture (columns) for day 2 

472 (D2), day 5 (D5), day 10 (D10), and day 28 (D28). Expression data, after log2 

473 adjustment, were subjected to Euclidean heirarchical clustering in Morpheus to group 

474 genes based on similarity in temporal change. B. mRNA abundance of selected ligands, 

475 receptors, modulators, and mediators related to BMP/TGFβ/Activin, TNFα/NFκB, 

476 IL/JAK-STAT, and WNT/β-catenin signaling. BMP pathway components shown are: 
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477 BMP 4 (Bmp4); BMP receptor 1A (Bmpr1a); BMP receptor 2 (Bmpr2); the BMP co-

478 receptors, repulsive guidance molecule (RGM) A (Rgma) and RGM B (Rgmb); the BMP 

479 negative regulators, Chordin and Noggin; and the DAN family BMP antagonist, Gremlin. 

480 TGFβpathway components shown are: TGFβ1 (Tgfb1); TGFβ2 (Tgfb2); TGFβ3 

481 (Tgfb3); TGFβ receptor 1 (Tgfbr1); and TGFβ receptor 2 (Tgfbr2). Activin pathway 

482 components shown are: inhibin subunit βA (Inhba); activin A receptor type 1 (Acvr1); 

483 activin A receptor type 1B (Acvr1b); activin A receptor type 2A (Acvr2a); BMP and 

484 activin membrane bound inhibitor (Bambi); and the activin and TGFβ receptor ligand, 

485 left-right determination factor 1 (Lefty). TNFα pathway components shown are: TNF 

486 ligand superfamily member 13-like (April); TNF (Tnf); RANKL (Tnfsf11); TNF-receptor 

487 superfamily member 4 (Tnfrsf4); receptor activator of NFκB (Tnfrsf11a); TNF receptor 

488 superfamily member 11b (Tnfrsf11b); and NFκB (Nfkb).  Interleukin pathway 

489 components shown are: IL1B (Il1b); IL4 (Il4); IL7 (Il7); IL12A (Il12a); IL1 receptor-like 

490 1 (Il1rl1); IL2 receptor β subunit (Il2rb); IL4 receptor α subunit (Il4ra); IL15 receptor α 

491 subunit (Il15ra); and STAT1 (Stat1). WNT pathway components shown are: WNT 5A 

492 (Wnt5a); Wnt 7A (Wnt7a); the WNT signaling pathway inhibitor, Dickkopf (Dkk1); β-

493 catenin (Ctnnb1); the regulator of β-catenin stability, Axin 2 (Axin2); and the β-catenin 

494 regulated transcription factors, nuclear factor of activated T cells 1 (Nfatc1) and 

495 transcription factor 7 (Tcf7).  In each graph, symbols representing ligands are show in 

496 green, receptor subunits in blue, intracellular mediators and modulators in red, and 

497 transcription factors in lavender. Data shown represent the Mean ± SD of triplicate 

498 samples. Error bars not shown are smaller than the symbol. † P<0.05; * P<0.01; ** 
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499 P<0.001 different in abundance between at least two time points by two-way ANOVA 

500 with Tukey’s multiple comparisons test; ns, not significant.  

501

502 To determine how the changing levels of pathway components translated into 

503 changes in pathway activity during differentiation, we performed IPA Upstream 

504 Regulator and Canonical Pathways Analysis using expression ratios derived from 

505 comparisons of the NanoStringTM data for D2 vs D5, D5 vs D10, and D10 vs D28. 

506 Predicted upstream regulators with activation z-scores > 2 or < -2 during at least one 

507 phase of differentiation are shown in S6 Table.  Selected upstream regulators were 

508 grouped based on the signaling networks with which they are most associated, and the z-

509 scores used to generate heat maps. As shown in Fig 7A, upstream regulator activity 

510 associated with cell cycle progression, apoptosis, and cell survival tended to decrease 

511 between days 2 and 5 and days 5 and 10, then increase between days 10 and 28.  Notably, 

512 activity of the anti-apoptotic regulators AKT1 and p38 MAPK that function downstream 

513 of TGFβ/BMP and TNFα/RANKL increased as differentiation progressed.  Coincident 

514 with this, upstream regulators related to TGFβ/BMP/SMAD, WNT/β-catenin, and 

515 Hedgehog signaling showed activation during osteoblastic differentiation, as did 

516 regulators involved in TNFα/RANKL/NFκB, cytokine/JAK-STAT, receptor tyrosine 

517 kinase (RTK), and G protein-coupled receptor (GPCR) signaling.

518

519 Fig 7. Upstream regulators and canonical signaling pathways analysis of a focused 

520 NanoStringTM dataset.  NanoStringTM nCounter data on the abundance of 237 bone-

521 related mRNA species were used to calculate change in expression ratio between D2 vs 
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522 D5, D5 vs D10, and D10 vs D28. Expression ratios were analyzed using IPA Upstream 

523 Regulator and Canonical Pathways Analysis software and heat maps reflecting the 

524 changes in predicted activity during each interval were generated using Morpheus 

525 software. A. Heat maps depicting changes in selected upstream regulators (rows) with 

526 activation z-scores > 2 (red) or < -2 (blue) during at least one phase of differentiation 

527 (columns).  Upstream regulators were arbitrarily grouped based on their relationship to 

528 biological processes or signaling pathways involved in osteoblast differentiation. B. Heat 

529 maps depicting changes in z-score for selected canonical signaling pathways (rows) 

530 during each phase of differentiation (columns). Z-scores were subjected to Euclidean 

531 hierarchical clustering in Morpheus to group pathways based on similarity in temporal 

532 change.  

533

534 We next performed IPA Canonical Pathways Analysis using the NanoStringTM 

535 dataset. The list of signaling pathways represented along with –log(p-value) and 

536 activation z-score are shown in S7 Table. Fig. 7B depicts a heat map of predicted changes 

537 in activity in selected canonical signaling pathways. Hierarchical clustering was 

538 performed to group pathways based on similarities in the change in activity over time. 

539 Consistent with the canonical pathways analysis of the microarray dataset (Fig 5), 

540 WNT/β-catenin signaling became less active as differentiation progressed, while TGFβ 

541 and BMP signaling increased, although the changes in the NanoStringTM dataset were 

542 more apparent later than in the microarray dataset, between day 10 and day 28.  

543 Interleukin signaling was predicted to increase progressively between days 5 and 28, with 

544 JAK-STAT signaling showing the activation between days 10 and 28.  TNFα/NFκB 
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545 pathway signaling was likewise predicted to increase in both the NanoStringTM and 

546 microarray datasets.  

547

548 Overview of signaling networks during MC3T3-E1 

549 differentiation

550 To test the overall similarity between the NanoStringTM and microarray datasets 

551 we compared the pathway activity predictions generated from each using the IPA 

552 Canonical Pathways molecular activity predictor tool, which graphically depicts the 

553 predicted change in pathway activity based on observed changes in upstream and 

554 downstream gene expression. S1 Fig shows the WNT/β-catenin pathway comparison 

555 using D2 vs D5 expression ratios from each dataset.  Since WNT/β-catenin signaling was 

556 predicted to decline as differentiation progressed, it would be most active during this 

557 interval. Consistent with this, both datasets indicated β-catenin pathway activation in this 

558 time frame, as well as inhibition of the negative regulatory TGFβ/TGFβ-activated kinase 

559 1 (TAK1)/p38 MAPK/nemo like kinase (NLK) input from the TGFβ receptor pathway 

560 that was predicted to be less active early in differentiation. S2 Fig compares IPA 

561 predicted changes in activity within the TGFβ/BMP signaling network occurring between 

562 days 10 and 28, an interval during which both datasets indicated pathway activation.  

563 While the focused NanostringTM dataset better captured activation of BMP receptor 

564 signaling during this phase of differentiation, both datasets predicted net activation of the 

565 SMAD2/3 and TAK1/p38 MAPK components of TGFβ signaling. S3 Fig compares the 

566 IPA predicted changes in the canonical TNFα/NFκB signaling pathway between days 10 

567 and 28 in culture. The TNFα network plays a key role during osteoblast maturation, 
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568 acting as an inhibitor of osteoblast differentiation and, along with RANKL, promoting 

569 osteoclast development [24,25]. Both datasets indicated net activation of NFκB-

570 dependent transcription during MC3T3-E1 maturation related to changes in the 

571 expression of TNF family and growth factor ligands and receptors.  Both datasets also 

572 indicated relative inhibition of interleukin receptor-mediated NFκB activation through 

573 TNF receptor-associated factor 6 (TRAF6)/TAK1. S4 Fig illustrates the predicted 

574 activation of canonical STAT3 signaling downstream of cytokine and growth factor 

575 receptors between days 10 and 28 observed in both the microarray and NanostringTM 

576 nCounter datasets. Collectively, the data indicate substantial concordance between the 

577 two independent MC3T3-E1 datasets and highlight the evolving changes in WNT/β-

578 catenin, TGFβ/BMP/SMAD, TNFα/RANKL/NFκB, and cytokine/JAK-STAT signaling 

579 associated with osteoblast differentiation.

580 To illustrate the temporal evolution of signaling network interaction during 

581 MC3T3-E1 cell differentiation, we generated pathway activity predictions for the IPA 

582 osteoarthritis canonical pathway, which integrates multiple signal inputs controlling 

583 expression of bone-related genes. As the first transcription factor required for osteoblastic 

584 differentiation, control of Runx2-dependent transcription is central to the process [17,18].  

585 Runx2 activity reflects the input of multiple upstream regulators, notably including BMP 

586 receptors signaling via SMAD1/5/8 as well as TGFβ and activin receptors signaling 

587 through SMAD2/3. Given that the NanoStringTM Code Set was selected to examine bone-

588 related genes, the osteoarthritis network was the most heavily populated canonical 

589 pathway in our IPA analysis with a -log(p-value) of 43.3 (S7 Table). Fig 8 shows the 

590 pathway activity analysis based on D2 vs D5 expression ratio changes from the 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 6, 2018. ; https://doi.org/10.1101/410597doi: bioRxiv preprint 

https://doi.org/10.1101/410597
http://creativecommons.org/licenses/by/4.0/


591 NanoStringTM nCounter dataset. During this phase, MC3T3-E1 cells are transitioning 

592 from log phase growth to growth arrest and initiating the process of differentiation.  

593 Based on observed upregulation of Runx2, Sp7 and Sox9 mRNA, Runx2-dependent 

594 transcription is predicted to increase from Day 2 to Day 5, associated with increases in 

595 mRNA encoding collagen species and alkaline phosphatase. Observed changes in genes 

596 encoding Indian Hedgehog (IHH), Patched (PTCH) and β-catenin, as well as TNFα, 

597 IL1B, TGFβ and TGFβ receptor 2 (TGFBR2), suggest that the onset of differentiation 

598 coincides with upregulation of autocrine ligands and receptors that later come to drive the 

599 differentiation process. Notably, TGFβ/BMP signaling is not yet predicted to be active 

600 due to relative downregulation of BMP2/9 and SMAD2/3.

601

602 Fig 8. Changes in canonical signaling pathway activity in MC3T3-E1 cells between 

603 days 2 and 5. Expression ratios representing the changing abundance of 237 bone-related 

604 mRNA species in MC3T3-E1 cells between days 2 and 5 in culture were used to populate 

605 the IPA osteoarthritis pathway network and signaling pathway activation state was 

606 assessed using the IPA molecular pathway predictor tool.  As indicated in the prediction 

607 legend, observed upregulation and downregulation of mRNAs are shown in red and 

608 green, respectively, while predicted activation or inhibition of signaling intermediates and 

609 pathways are shown in orange and blue.  

610

611 Fig 9 depicts the results of an identical analysis performed using the D5 vs D10 

612 expression ratio changes from the NanostringTM nCounter dataset.  This phase is 

613 associated with osteoblastic differentiation and increased expression of secreted growth 
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614 factors and matrix components, but relatively little matrix mineralization (Figs 1 and 2).  

615 The network analysis suggests that increasing expression of Runx2 and Sp7 is now 

616 associated with upregulation of the Runx2-regulated matrix components osteopontin 

617 (Spp1) and osteocalcin (Bglap2), and further increases in expression of collagen species 

618 and alkaline phosphatase, along with the upstream regulators IHH, β-catenin, TNFα, 

619 IL1B, and TGFβ.  Increasing expression of BMP2 and BMP9 is now evident, although 

620 the molecular pathway predictor still suggests that SMAD1/5/8 and SMAD2/3 signaling 

621 is attenuated. Fig 10 depicts predicted changes in signaling pathway activity based on the 

622 D10 vs D28 expression ratio changes. This phase is associated with osteoblast 

623 maturation, further increases in expression of secreted growth factors and matrix 

624 components, and the onset of matrix mineralization. The most notable changes during 

625 this interval are the activation of SMAD1/5/8 signaling downstream of BMP receptors 

626 and SMAD2/3 signaling from TGFβ receptors. Observed upregulation of the BMP 

627 receptors Bmpr1a (ALK3) and Bmpr2 (BMPR2) and the activin-like receptor Acvrl1 

628 (ALK1), and SMAD2/3 likely contributes to the prediction of increased pathway activity.  

629 Upregulation of PTHrp/PTH1R and FGF2/FGF8 also suggests that GPCR and RTK 

630 signaling increase during this interval. Hence the data suggest that during osteoblastic 

631 differentiation of MC3T3-E1 cells, activation of β-catenin- and NFκB-mediated 

632 pathways occurs prior to the onset of TGFβ/BMP/SMAD-mediated signaling and a 

633 general activation of bone developmental signaling pathways.

634

635 Fig 9. Changes in canonical signaling pathway activity in MC3T3-E1 cells between 

636 days 5 and 10. Expression ratios representing the changing abundance of 237 bone-
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637 related mRNA species in MC3T3-E1 cells between days 5 and 10 in culture were used to 

638 populate the IPA osteoarthritis pathway network and signaling pathway activation state 

639 was assessed using the IPA molecular pathway predictor tool.  Observed upregulation 

640 and downregulation of mRNAs are shown in red and green, respectively, while predicted 

641 activation or inhibition of signaling intermediates and pathways are shown in orange and 

642 blue.  

643

644 Fig 10. Changes in canonical signaling pathway activity in MC3T3-E1 cells between 

645 days 10 and 28. Expression ratios representing the changing abundance of 237 bone-

646 related mRNA species in MC3T3-E1 cells between days 10 and 28 in culture were used 

647 to populate the IPA osteoarthritis pathway network and signaling pathway activation state 

648 was assessed using the IPA molecular pathway predictor tool.  Observed upregulation 

649 and downregulation of mRNAs are shown in red and green, respectively, while predicted 

650 activation or inhibition of signaling intermediates and pathways are shown in orange and 

651 blue.  

652

653 Discussion

654 Complex biological processes like osteoblast development involve the 

655 coordinated regulation of multiple intracellular signaling pathways controlling gene 

656 expression.  Thus, studies focusing on the contribution of any individual growth factor or 

657 pathway are invariably incomplete. Developing a more complete picture requires the use 

658 of “omics” approaches that capture as much information as possible about changes in 

659 intracellular signaling networks in as unbiased a manner as possible. Further 
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660 complicating matters, bone remodeling in vivo is a continuous process wherein 

661 osteoblasts at all stages of development, from mesenchymal stem cell precursors to 

662 osteocytes are present, along with cells of the osteoclast lineage and other cell types [1,2]. 

663 As a result, studies performed on bone only provide a “snapshot” of the tissue average 

664 transcriptome that represents multiple cell types present in different proportions and 

665 differentiations states. In this study, we combined transcriptomics with bioinformatic 

666 geneset enrichment analysis to examine the temporal sequence of autocrine and paracrine 

667 signaling that regulates the differentiation of MC3T3-E1 cells, a well-characterized 

668 model of osteoblast development [7-10]. We employed two independently generated 

669 datasets, an “agnostic” DNA microarray dataset intended to provide a global overview of 

670 the evolving transcriptome and a “targeted” NanoStringTM nCounter dataset focusing on 

671 genes involved in specific bone-related pathways. Our data complement other in vitro 

672 microarray studies of osteoblastic differentiation performed using different cell types, e.g. 

673 mesodermal progenitor cells, calvarial osteoblasts, osteocytes, periodontal ligament cells, 

674 and embryonic stem cells [21,26-30], or describing the effects of exogenous factors on 

675 osteoblast gene expression [31-34].  

676 Although osteoblast differentiation in vivo is subject to regulation by numerous 

677 circulating factors [3], our results underscore the importance of cell autonomous 

678 autocrine/paracrine signaling.  Key to the process is regulation of Runx2, the most 

679 upstream transcription factor in osteoblast differentiation [17,18], which regulates the 

680 expression of another critical transcription factor in bone, Sp7 [35]. Runx2 expression in 

681 osteoblasts is stimulated by an enhanceosome composed of Dlx5/6, Mef2, Tcf7, β-

682 catenin, Sox5/6, Smad1, and Sp7, and in turn stimulates expression of bone matrix 
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683 proteins including Spp1, Ibsp, and Bglap2, and autocrine factors including Ihh and Rankl 

684 [35,36]. Our data suggest that early MC3T3-E1 differentiation, between Days 2 and 5, is 

685 characterized by increasing expression of Runx2, Sp7, and β-catenin and upregulation of 

686 IHH, TNFα, and IL1β at a time where TGFβ/BMP/SMAD signaling is still relatively 

687 suppressed despite increasing expression of TGFβ and TGFβ receptors. WNT signaling, 

688 which cooperates with TGFβ in a positive regulatory loop by inducing Runx2-dependent 

689 transcription of TGFβ1 receptor [37,38], appeared most active early and to wane as 

690 TGFβ/BMP pathway activity increased, consistent with a role for WNT signaling in the 

691 induction of TGFβ signaling. The central role of the TGFβ/BMP axis in regulating 

692 mesenchymal stem cell differentiation into cartilage and bone is well established, as both 

693 canonical SMAD-dependent and non-canonical p38MAPK signaling downstream of 

694 these receptors converge on Runx2 to promote differentiation [19-22]. Moreover, in bone 

695 TGFβ/BMP in extensive cross talk with other signaling pathways [4,23].  Of these, the 

696 activity of several, including Hedgehog, FGF2, interleukins, TNFα/RANKL and 

697 interferon-γ, appeared to increase in parallel with TGFβ/BMP during MC3T3-E1 cell 

698 differentiation. Hedgehog signaling, acting through Gli family transcription factors, 

699 promotes the expression of BMP2, and IHH has been shown to be required for 

700 osteogenesis in vitro [39,40]. FGF2 regulates expression of PC1, the primary enzymatic 

701 generator of pyrophosphate in mineralizing cells, by direct regulation of Runx2, 

702 suggesting that TGFβ/BMP and FGF2 signaling cooperate to promote matrix 

703 mineralization later in differentiation [41]. TNFα plays many roles in bone, inhibiting 

704 osteoblast differentiation and collagen synthesis (42,43), promoting osteoblast apoptosis 

705 (44), while directly stimulating osteoclast formation independent of RANKL signaling 
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706 through an IL1-dependent mechanism (45,46). Conversely, interferon-γ opposes IL1 and 

707 TNFα mediated bone resorption, but produces additive inhibition of bone collagen 

708 synthesis (47).  Thus our network analysis, demonstrating simultaneous changes in the 

709 TGFβ/BMP pathways that favoring osteoblast differentiation and survival, the TNFα 

710 pathway that inhibits differentiation and favors apoptosis, and the interferon-γ pathway 

711 that inhibits ongoing collagen synthesis, illustrates the complexity of osteoblast 

712 development and maturation that occur in the setting of opposing autocrine signaling 

713 loops.

714 While gene array technology is a powerful tool for determining the transcriptional 

715 basis of changing developmental or pharmacological processes, the resulting datasets are 

716 both too complex and too error prone to reliably base conclusions on casual inspection 

717 [5,6]. Metabolic pathways analysis overcomes several of these limitations.  By basing 

718 conclusions on the number and magnitude of expression changes across gene clusters, 

719 rather than individual genes, it decreases the probability of false discovery, while 

720 simultaneously providing a quantitative measure of the probability of change in a given 

721 signaling network. Our analyses illustrate several of the advantages and disadvantages of 

722 this approach. The murine Operon V2.0 cDNA arrays employed in this study did not 

723 provide genome-wide coverage of changes in mRNA abundance. The NanoStringTM 

724 nCounter system provides information only about rationally chosen transcripts. Hence, 

725 some information is missing. Moreover, transcriptomic datasets in general are limited in 

726 their ability to discriminate changes in cellular metabolism simply because important 

727 pathway components may not be regulated at the transcriptional level, rendering them 

728 “invisible” in gene array experiments. Bioinformatic tools, such as IPA, that “infer” 
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729 changes in upstream pathway activity based on observed changes in network 

730 components, provide a means to translate incomplete transcriptomic datasets into a more 

731 complete picture of metabolic activity. In our study, we took two independently 

732 generated sets of mRNA samples from differentiating MC3T3-E1 cells and employed 

733 two different approaches to pathways analysis. Close inspection of the data (S1 and S2 

734 Tables) shows that the relatively stringent statistical filter applied to the microarray 

735 dataset to define significant change failed to capture factors that were seen in the 

736 NanoStringTM assay, and conversely, that the targeted NanoStringTM Code Set missed 

737 significant changes in factors that were detected with the broader coverage provided by 

738 the microarrays. It is also noteworthy that some of the interval expression ratios of 

739 individual factors were seen to change in opposite directions in the two datasets, such that 

740 focusing on the abundance of individual factors might lead to different conclusions. Yet 

741 the remarkable degree of similarity in the pathways analysis, which weighs changes 

742 across entire networks to predict pathway activation, suggests the approach is both 

743 reliable and robust enough to tolerate a substantial amount of “noise” in the raw data. 

744 Thus, starting from incomplete datasets, we were able to extract temporal changes in the 

745 autocrine/paracrine signaling networks that influence osteoblast differentiation in vitro, 

746 and find evidence of pathway cross talk at the transcriptional level.
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892 Supporting Information Captions

893

894 S1 Fig. Comparison of WNT/β-catenin network activity between Days 2 and 5 of 

895 MC3T3-E1 cell differentiation predicted from the microarray and NanoStringTM 

896 datasets. Observed Day 2 to Day 5 changes in expression ratios were used to predict 

897 WNT/β-catenin pathway activity using the IPA molecular activity predictor tool.  A. 

898 Pathway activity prediction based on the microarray dataset. B. Pathway activity based 

899 on the NanoStringTM dataset. Observed increases (red) and decreases (green) in mRNA 

900 abundance are indicated, as are predicted activation (orange) and inhibition (blue) of 

901 downstream targets.  

902

903 S2 Fig. Comparison of TGFβ/BMP network activity between Days 10 and 28 of 

904 MC3T3-E1 cell differentiation predicted from the microarray and NanoStringTM 

905 datasets. Observed Day 10 to Day 28 changes in expression ratios were used to predict 

906 TGFβ/BMP pathway activity using the IPA molecular activity predictor tool.  A. 

907 Pathway activity prediction based on the microarray dataset. B. Pathway activity based 

908 on the NanoStringTM dataset. Observed increases (red) and decreases (green) in mRNA 

909 abundance are indicated, as are predicted activation (orange) and inhibition (blue) of 

910 downstream targets.  
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911

912 S3 Fig. Comparison of NFκB network activity between Days 10 and 28 of MC3T3-

913 E1 cell differentiation predicted from the microarray and NanoStringTM datasets. 

914 Observed Day 10 to Day 28 changes in expression ratios were used to predict NFκB 

915 pathway activity using the IPA molecular activity predictor tool.  A. Pathway activity 

916 prediction based on the microarray dataset. B. Pathway activity based on the 

917 NanoStringTM dataset. Observed increases (red) and decreases (green) in mRNA 

918 abundance are indicated, as are predicted activation (orange) and inhibition (blue) of 

919 downstream targets.  

920

921 S4 Fig. Comparison of STAT3 network activity between Days 10 and 28 of MC3T3-

922 E1 cell differentiation predicted from the microarray and NanoStringTM datasets. 

923 Observed Day 10 to Day 28 changes in expression ratios were used to predict STAT3 

924 pathway activity using the IPA molecular activity predictor tool.  A. Pathway activity 

925 prediction based on the microarray dataset. B. Pathway activity based on the 

926 NanoStringTM dataset. Observed increases (red) and decreases (green) in mRNA 

927 abundance are indicated, as are predicted activation (orange) and inhibition (blue) of 

928 downstream targets.  

929

930 S1 Table. NanoStringTM nCounter expression data for 237 bone-related transcripts. 

931 Gene symbol, accession number, annotation, NanoStringTM probe ID, and mRNA 

932 abundance data are shown for triplicate determinations at each of four time points.

933
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934 S2 Table. Operon V2.0 microarray expression data for 1005 significantly-regulated 

935 transcripts. Gene symbol, accession number, gene name, mRNA abundance data, and z-

936 standardized expression values are shown for triplicate determinations at each of four 

937 time points.

938

939 S3 Table. IPA Disease or Function analysis of significantly-regulated transcripts 

940 identified by microarray. Disease or function annotation, -log(p value), activation z-

941 score, number and name of pathway molecules are shown for all functions with activation 

942 z-score >1 or <-1 in the D2 vs D5, D5 vs D10, and D10 vs D28 pairwise comparisons.

943

944 S4 Table. IPA Upstream Regulator analysis of significantly-regulated transcripts 

945 identified by microarray. Gene symbol and activation z-score are shown for all 

946 upstream regulators with activation z-score >2 or <-2 in the D2 vs D5, D5 vs D10, and 

947 D10 vs D28 pairwise comparisons.

948

949 S5 Table. IPA Canonical Pathways analysis of significantly-regulated transcripts 

950 identified by microarray. Canonical Pathway name, -log(pvalue), activation z-score, 

951 and observed pathway molecules are shown for predicted regulated pathways in the D2 

952 vs D5, D5 vs D10, and D10 vs D28 pairwise comparisons.

953

954 S6 Table. IPA Upstream Regulator analysis of the NanoString dataset of bone-

955 related genes. Gene symbol and activation z-score are shown for all upstream regulators 
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956 with activation z-score >2 or <-2 in the D2 vs D5, D5 vs D10, and D10 vs D28 pairwise 

957 comparisons.

958

959 S7 Table. IPA Canonical Pathways analysis of the NanoString dataset of bone-

960 related genes. Canonical Pathway name, -log(pvalue), activation z-score, and observed 

961 pathway molecules are shown for predicted regulated pathways in the D2 vs D5, D5 vs 

962 D10, and D10 vs D28 pairwise comparisons.
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