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Abstract

We present a nonlinear programming (NLP) framework for the scalable solution of
parameter estimation problems that arise in dynamic modeling of biological systems.
Such problems are computationally challenging because they often involve highly
nonlinear and stiff differential equations as well as many experimental data sets and
parameters. The proposed framework uses cutting-edge modeling and solution tools
which are computationally efficient, robust, and easy-to-use. Specifically, our framework
uses a time discretization approach that: i) avoids repetitive simulations of the dynamic
model, ii) enables fully algebraic model implementations and computation of derivatives,
and iii) enables the use of computationally efficient nonlinear interior point solvers that
exploit sparse and structured linear algebra techniques. We demonstrate these
capabilities by solving estimation problems for synthetic human gut microbiome
community models. We show that an instance with 156 parameters, 144 differential
equations, and 1,704 experimental data points can be solved in less than 3 minutes
using our proposed framework (while an off-the-shelf simulation-based solution
framework requires over 7 hours). We also create large instances to show that the
proposed framework is scalable and can solve problems with up to 2,352 parameters,
2,304 differential equations, and 20,352 data points in less than 15 minutes. Competing
methods reported in the computational biology literature cannot address problems of
this level of complexity. The proposed framework is flexible, can be broadly applied to
dynamic models of biological systems, and enables the implementation of sophisticated
estimation techniques to quantify parameter uncertainty, to diagnose
observability/uniqueness issues, to perform model selection, and to handle outliers.

Author summary

Constructing and validating dynamic models of biological systems spanning
biomolecular networks to ecological systems is a challenging problem. Here we present a
scalable computational framework to rapidly infer parameters in complex dynamic
models of biological systems from large-scale experimental data. The framework was
applied to infer parameters of a synthetic microbial community model from large-scale
time series data. We also demonstrate that this framework can be used to analyze
parameter uncertainty, to diagnose whether the experimental data are sufficient to
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uniquely determine the parameters, to determine the model that best describes the
data, and to infer parameters in the face of data outliers.
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Fig 1. Illustration of the proposed estimation framework. Mathematical
models for biological systems are often expressed as systems of differential equations
with parameters that need be estimated from experimental data. We formulate the
estimation problem using a maximum a posteriori (MAP) formulation. This yields
optimization problems constrained by differential equations that are transformed into
fully algebraic nonlinear programs by using discretization schemes. The resulting NLPs
can be easily implemented in algebraic modeling languages such as JuMP and Plasmo.jl

that compute derivatives automatically and that are interfaced to powerful
interior-point optimization solvers that exploit sparsity and structure to achieve high
computational efficiency. The proposed framework is scalable, robust, easy-to-use, and
flexible. These capabilities facilitate high-level tasks such as identification of parameter
observability/uniqueness issues, model selection, and uncertainty quantification.

Dynamic modeling is essential for understanding the behavior of biological systems.
Systems of interest in this domain include microbial communities and microbiome, gene
regulatory networks, and metabolic pathways [1–3]. An important task that arises in
modeling studies is validation against experimental data by using parameter estimation
techniques. This task is computationally challenging because of the need to solve
optimization problems constrained by differential equations. Challenges arise from the
dimensionality, nonlinearity, and stiffness of the dynamic model, from the incomplete
observation of the system states, from the need to estimate many parameters, and from
the need to handle a large number of experimental data sets.

Extensive research on solution methods for estimation problems with differential
equations has been reported in the computational biology literature (see [4, 5] for
comprehensive reviews). These methods target maximum likelihood estimation
formulations (which are derived from Bayesian principles). In these formulations, one
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aims to find parameters that maximize the likelihood function. The most used strategy
to handle such formulations is the so-called simulation-based approach. Here, the idea is
to perform repetitive simulations of the dynamic model at different trial parameter
values to identify a set of parameters that maximizes the likelihood. The trial parameter
values are updated using derivative-based or derivative-free search schemes [6–8]. While
the simulation-based approach is intuitive, repetitive solutions of large dynamic models
is computationally expensive and differential equation solvers can fail at trial parameter
values that are non-physical or that trigger unstable responses. In addition, techniques
to compute first and second order derivatives for derivative-based schemes (e.g., finite
differences, forward and adjoint sensitivities) involve intrusive procedures and are often
limited to first-order derivatives [7]. The need for derivatives can be bypassed by using
derivative-free search schemes [9,10], which are widely popular in computational biology.
Such methods include simulated annealing [11], genetic algorithms [12,13], particle
swarms [14], approximate Bayesian computation [15,16], and various other
methods [17, 18]. Derivative-free schemes do not scale well in the number of parameters
(a larger number of trial parameter values often need to be explored compared to
derivative-based schemes). Moreover, second order derivative information is needed to
determine if the parameter estimates are unique/observable given available experimental
data [19,20]. The uniqueness/observability test of the parameter estimates is based on
curvature information of the likelihood function at the solution.

Simulation-based estimation frameworks previously reported in the computational
biology literature have focused on problems that usually contain less than 100
parameters [10,15,21]. To the best of our knowledge, the largest estimation problem
solved using a simulation-based framework contains 3,780 data points and 1,801
parameters [7]. Such a problem was solved (to partial optimality) using a
derivative-based search scheme that uses first-order derivative information (using an
adjoint method) and required over 5 hours of computing time. The scalability
limitations of simulation-based approaches present an important obstacle in considering
models of higher fidelity, in exploiting high-throughput experimental data, in analyzing
parameter uncertainties, and in implementing sophisticated techniques such as ensemble
modeling.

In this work, we propose a nonlinear programming (NLP) framework for solving
estimation problems with embedded dynamic models [22,23]. The framework is based
on a direct transcription approach wherein the dynamic model is converted into a large
set of algebraic equations by applying time-discretization techniques. The algebraic
equations are then embedded directly as constraints in the optimization problem (a
nonlinear program-NLP). The NLPs arising from time discretization are of high
dimension (easily reaching hundreds of thousands to millions of variables and
constraints) but are also sparse and structured. Moreover, by transforming the dynamic
model into algebraic equations, it becomes possible to use automatic differentiation
techniques available in modern modeling languages to compute first and second
derivatives. Exploitation of sparsity and structure, together with the availability of
derivative information, enable the solution of estimation problems with complex
dynamic models and efficient handling of many parameters and experimental data sets.

Discretization-based estimation approaches have been widely studied in diverse fields
such as chemical engineering [24–26] and aerospace engineering [27–29] (see [30] for a
comprehensive review) but less so in computational biology. A major factor that has
hindered wider adoption is the lack of easy-to-use computational frameworks that
facilitate access to non-expert users. In this work, we demonstrate that modern
modeling and solution tools can be combined to create scalable, robust, easy-to-use, and
flexible frameworks. We demonstrate the benefits by solving challenging estimation
problems arising in nonlinear microbial community models.
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The proposed framework enables the implementation of higher level tasks such as
observability analysis and uncertainty quantification. Uncertainty quantification (UQ)
seeks to characterize parameter posterior distribution, which is necessary to obtain
confidence levels/regions and parameter correlation information. Conventionally, UQ is
performed by using second order derivative (Hessian) information of the likelihood
function to construct an approximate parameter posterior covariance matrix [23,31] or
by using a Markov-Chain-Monte-Carlo (MCMC) techniques [32, 33]. The Hessian-based
approach is scalable but it requires intrusive computation (cannot be automatically
computed by the solver) and does not capture well the effect of nonlinearities and
physical constraints [31]. In MCMC, one samples parameters from the prior parameter
density and compares the associated model outputs with experimental data to decide
whether to accept that sample or not. By repeating these accept/reject steps one can
construct an approximate parameter posterior. MCMC is rather easy to implement (it
is not intrusive) but, being simulation-based, also suffers from potential failures of the
differential equation solver at non-physical parameter samples, it does not scale well
with the number of parameters, and convergence issues might be encountered.

In this work, we propose to overcome some of these challenges by using a
randomized maximum a posteriori (rMAP) framework [34–37]. This method computes
approximate samples from the parameter posterior distribution by performing random
perturbations on the experimental data and by re-solving the estimation problem. This
allows exploration of the parameter space more efficiently compared to the MCMC
scheme because each sample can be computed in parallel (MCMC is sequential).
Moreover, the rMAP approach is non-intrusive, can capture nonlinear and physical
constraints effects, and avoids potential failures of differential equation solvers. The
proposed estimation framework is flexible and can easily accommodate advanced
estimation formulations. To demonstrate this, we implement formulations that use
different prior regularization schemes and k-max norms (the mean of a specified fraction
of largest values) to mitigate large outliers [38,39].

The paper is organized as follows. The methods section provides a general form for
the estimation problem under study and discusses how this can be cast as a sparse NLP
by using time-discretization techniques. Furthermore, we introduce basic concepts
behind NLP solvers that exploit sparsity and structures at the linear algebra level. In
addition, we discuss rMAP and outlier mitigation schemes. In the results section, we
demonstrate that the proposed framework can handle challenging estimation problems
arising in microbial community models.

Methods

Estimation for Dynamic Models

We consider estimation problems of the following form:

min
θ

ϕ(θ) +
∑

k∈K
ϕk(η̄k, ηk) (1a)

s.t. ẋk(t) = fk(xk(t), θ), k ∈ K, t ∈ [0, Tk] (1b)

xk(0) = x0
k, k ∈ K (1c)

η̄k(t) = φk(xk(t), θ), k ∈ K, t ∈ Tk (1d)

0 ≤ hk(xk(t), θ), k ∈ K, t ∈ Tk. (1e)

Here, K := {0, 1 . . .K} is the set of experiments and Tk := {t1, t2, · · · , tnk} is the set of
measurement (sampling) times in experiment k ∈ K. Time is denoted as t ∈ [0, Tk],
where Tk ∈ R+ is the duration for experiment k ∈ K. The variable vector
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xk : R→ Rnxk are the differential state time trajectories, θ ∈ Rnθ are the model
parameters, η̄k(t) ∈ Rnηk are the model predicted outputs with corresponding
experimental observations ηk(t) ∈ Rnηk at time t ∈ Tk and experiment k ∈ K, and
x0
k ∈ Rnk are initial conditions for experiment k ∈ K. For convenience in the notation,

we define the output vectors η̄k = (η̄k(t1), · · · , η̄k(tnk)) and the experimental output
vectors ηk = (ηk(t1), · · · , ηk(tnk)) for experiment k ∈ K as well as the total output
vector η̄ = (η̄1, · · · , η̄K) and the total experimental output vector η = (η1, · · · , ηK). The
vector function fk(·) denotes the dynamic model mapping, ϕ(·) and ϕk(·) are objective
function mappings, φk(·) is the state-to-output mapping, and hk(·) is the constraint
mapping. All the mappings are assumed to be at least twice continuously differentiable
with respect to all the arguments. The estimation formulation (1a) captures all the
features that we need to demonstrate the capabilities of our proposed framework. Our
framework, however, can also accommodate more general features; for instance, the
initial conditions (1c) can be also considered as unknown variables that need to be
estimated and we can define non-additive objective functions that penalize large errors.

Problem (1) can be derived from Bayesian principles. To see this and introduce some
useful notation, we start from Bayes theorem:

p(θ | η) =
p(η|θ)p(θ)
p(η)

. (2)

Here, p(θ | η) is the parameter posterior density (i.e., the parameter density given
knowledge on the outputs), p(η | θ) is the output posterior density (i.e., the outputs
given knowledge on the parameters), p(θ) is the prior density (i.e., parameter density
before knowledge of the output), and p(η) is the output marginal density. In a maximum
a posteriori (MAP) formulation, the goal is to find the parameters that maximize
p(θ | η). Because p(η) does not depend on θ, this can also be achieved by maximizing
p(η|θ)p(θ). Maximizing p(η|θ)p(θ) is equivalent to maximizing the log-likelihood
function L(θ) = log(p(θ)) + log p(η|θ). If the outputs from the experiments k ∈ K are
independent (which is usually the case), we have that p(η|θ) =

∏
k∈K p(ηk | θ) and thus:

L(θ) = log p(θ) +
∑

k∈K
log p(ηk|θ). (3)

The observed outputs are random variables that are usually considered to be Gaussian
and thus ηk|θ ∼ N (η̄k,Σk), where Σk is the covariance matrix. The prior density p(θ) is
also often assumed to be Gaussian and thus θ ∼ N (θ̄,Σθ), where θ̄ is the mean of the
prior distribution and Σθ is its covariance. With this, we obtain:

− log p(θ) =
nθ
2

log 2π +
1

2
log det Σθ +

1

2
(θ − θ̄)TΣ−1

θ (θ − θ̄) (4a)

− log p(ηk|θ) =
nηk
2

log 2π +
1

2
log det Σk +

1

2
(ηk − η̄k)TΣ−1

k (ηk − η̄k). (4b)

By comparing (3) with (1a) we can see that minimizing ϕ(θ) +
∑
k∈K ϕk(ηk, η̄k) is

equivalent to minimizing −L(θ). Here, the dynamic model together with the
state-to-output mapping defines a parameter-to-output mapping of the form
η̄k := mk(θ). In a simulation-based estimation approach, the mapping mk(θ) is
computed by simulating the dynamic model (1b)-(1c) at a trial value θ using a
differential equation solver and by evaluating the outputs at the sampling times t ∈ Tk
using (1d). In a discretization-based approach, the mapping mk(θ) is not computed
explicitly (but we use it here as a mathematical representation that is used to explain
some relevant concepts). Constraints (1e) restrict the parameter space to be explored.
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After dropping all constant terms in the likelihood function we obtain:

ϕ(θ) =
1

2
(θ − θ̄)TΣ−1

θ (θ − θ̄) (5a)

ϕk(η̄k, ηk) =
1

2
(ηk − η̄k)TΣ−1

k (ηk − η̄k). (5b)

The function ϕ(θ) is usually known as the prior term and provides a regularization
effect that stabilizes the solution of the estimation problem when the parameters cannot
be uniquely infered from the available data [40–43]. This regularization term arises from
the prior density p(θ) and provides a mechanism to encode knowledge on the
parameters. Assuming that the prior density is Gaussian gives rise to a prior term that
is defined by a weighted L2 norm. Recently, the machine learning community has also
proposed the use of regularization terms that use L1 norms (e.g., ϕ(θ) = ‖θ − θ̄‖1). The
L1 norm induces sparsity in the parameters and corresponds to assuming that the prior
density is Laplacian. One can also show that an L1 norm acts as an exact penalty
function and implicitly induces constraints on the parameters. Similarly, one can also
use the inequality constraints hk(·) to directly embed physical knowledge in the MAP
formulation (e.g., concentrations can only be positive).

From (5) we see that ϕk(·) are squared error terms and thus the MAP problem
minimizes the sum of the squared errors across all experiments k ∈ K. This approach
offers limited control on large errors that might result from data outliers. Here, we
propose to use a k-max norm to mitigate these issues. Our proposal is based on the
observation that a k-max norm is equivalent to a conditional-value-at-risk (CVaR)
norm [38,39,44]. The CVaRβ norm of a vector e = (e1, · · · , eK) with components
ek = ϕk(η̄k, ηk) is defined as the average of the β-fraction of largest elements of the
vector (where β ∈ [0, 1] is a parameter that defines the size of the fraction) [44]. One
can show that, when β → 1, the CVaR norm is the largest fitting error and, when
β → 0, the CVaR norm is the sum of fitting errors (as in the standard MAP
formulation). A key computational property of the CVaR norm is that it can be
formulated as an standard optimization problem. In particular, the MAP problem with
a CVaR error norm can be expressed as:

min
θ,γ

ϕ(θ) +K

(
γ +

1

(1− β)

K∑

k=1

[ek − γ]+

)
(6a)

s.t. (1b)− (1e) (6b)

where [·]+ = max(0, ·) is the max function and γ is an auxiliary variable [39].

Nonlinear Programming Formulation

To solve the MAP problem (1) we approximate the differential equations by using a
discretization scheme. This enables the use of computationally efficient NLP solvers and
facilitates high-level UQ and observability monitoring tasks.

Time Discretization

Discretization schemes such as Euler, Runge-Kutta, and orthogonal collocation are
commonly used to transform differential equations into algebraic ones. Orthogonal
collocation is often preferred because accurate approximations can be obtained with few
discretization points [22]. To simplify the presentation we use an implicit Euler scheme,
which can be shown to be a special type of an orthogonal collocation scheme (i.e., it is a
one-point Radau collocation scheme). We discretize the time domain [0, Tk] into a set of
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intervals with fixed discrete-time points {t0, t1, · · · , tNk} for each experiment k ∈ K
(where t0 = 0 and tNk = Tk). The associated index set is represented by
Nk := {1, · · · , Nk}. By applying an implicit Euler scheme, the dynamic model (1b) is
converted into a set of nonlinear algebraic equations of the form:

xk(tj+1) = xk(tj) + (tj+1 − tj)fk(xk(tj+1), θ), k ∈ K, j ∈ Nk (7a)

xk(0) = x0
k, k ∈ K. (7b)

With this, we can approximate the MAP problem (1) using the NLP:

min
θ,x,η̄

ϕ(θ) +
∑

k∈K
ϕk(η̄k, ηk) (8a)

s.t. xj+1
k = xjk + (tj+1 − tj) fk(xj+1

k , θ), k ∈ K, j ∈ Nk (8b)

xk(0) = x0
k, k ∈ K (8c)

η̄k(t) = φk(xk(t), θ), k ∈ K, t ∈ Tk (8d)

0 ≤ hk(xjk, θ), k ∈ K, j ∈ Nk. (8e)

Here, we use xjk = xk(tj) as short-hand notation to represent states at time tj and
experiment k. For convenience, we express the NLP in the following abstract form:

min
w

Φ(w) (9a)

s.t. Π(w) = 0 (9b)

w ≥ 0. (9c)

where w ∈ Rn is a large-dimensional vector containing all the discrete-time states xjk,
parameters θ, and additional auxiliary variables. The mapping Φ : Rn → R is the
objective function and Π : Rn → Rm are equality constraints that contain algebraic
equations obtained fro discretization of the dynamic model and other auxiliary
equations. General inequality constraints can be transformed into equality constraints
and simple non-negativity bounds by using auxiliary slack variables (i.e., 0 ≤ hk(xjk, θ)

can be written as sk = hk(xjk, θ) with sk ≥ 0).
A useful representation of the NLP results from noticing that the parameters θ are

the only complicating (coupling) variables across experiments k ∈ K. Consequently, we
can express the NLP in the structured from [45]:

min
θ,w0...wK

Φ(θ) +
∑

k∈K
Φk(wk, θ) (10a)

s.t. Πk(wk, θ) = 0, k ∈ K (10b)

wk ≥ 0, k ∈ K. (10c)

Here, the variable vector wk contains all the discrete-time states and auxiliary variables
of experiment k ∈ K, Φ(·) is the prior term, Φk(·) is the contribution of experiment
k ∈ K to the likelihood function, and Πk(·) contains the discretized dynamic model
equations and auxiliary equations for experiment k ∈ K. As we discuss next, this
representation can be used to derive parallel solution approaches.

Interior-Point Solvers

The NLPs that result from time discretization exhibit a high degree of algebraic sparsity
(only a few variables appear in each constraint) and are highly structured. Sparsity and
structure permeates down to linear algebra operations performed inside the
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optimization solver. This is sharp contrast to the simulation-based approach, which
induces dense linear algebra operations in the space of the parameters θ. Most modern
large-scale NLP solvers such as Ipopt and Knitro seek to exploit sparsity and structure
at the linear algebra level to achieve high computational efficiency [46,47]. Interior
point solvers, in particular, provide a flexible framework to do this. These solvers
replace the variable bounds by using a logarithmic barrier function. In the context of
NLP (9), this results in a logarithmic barrier subproblem of the form:

min
w

Φ(w)− µ
n∑

i=1

logw(i) (11a)

s.t. Π(w) = 0 (11b)

where µ ∈ R+ is the so-called barrier parameter. The logarithmic term becomes large as
w(i) approaches the boundary of the feasible region. This ensures that variables remain
in the interior of the feasible region (hence the origin of the term barrier). A key
observation is that one can recover a solution of the original NLP (9) by solving a
sequence of barrier problems for decreasing values of µ [48]. An important property of
interior-point methods is that the original NLP with bounds is converted into a
sequence of NLPs with equality constraints. This removes the combinatorial complexity
of identifying the set of bounds that are active or inactive at the solution (a bottleneck
in active-set solvers).

Sparse Linear Algebra

Interior-point methods enable efficient linear algebra implementations. To explain how
this is done, we note that the optimality conditions of the barrier problem are given by
the following set of nonlinear equations:

∇wΦ(w) +∇wΠ(w)Tλ− ν = 0 (12a)

Π(w) = 0 (12b)

V W1 = µ, (12c)

where, λ ∈ Rm are the Lagrange multipliers of the equality constraints, ν are the
Lagrange multipliers of the bound constraints, V = diag(ν) and W = diag(w) are
diagonal matrices, and 1 is a vector of all ones.

By applying Newton’s method to (12), we obtain the following linear algebra system:

[
H(w`, λ`) + κwI ∇wΠ(w`)
∇wΠ(w`)

]

︸ ︷︷ ︸
M`(κw)

[
∆w`

∆λ`

]
= −

[
∇wL(w`, λ`)

Π(w`)

]
. (13)

Here, ` is the Newton iteration index, ∆w` is the search direction for the primal
variables, ∆λ` is the search direction for the dual variables, and

H(w`, λ`) = ∇wwL(w`, λ`) + (W `)
−1
V ` is the Hessian of the Lagrange function

L(w`, λ`) := Φ(w`)− µ∑n
i=1 logw`(i) + Π(w`)Tλ`. The matrix M `(κw) is known as the

augmented matrix. The Newton step computation in a simulation-based approach
operates only in the space of the parameters θ (the states are implicitly eliminated by
simulation). In the time discretization approach, the Newton search is in the space of
both the discretized states and parameters (contained in the high-dimensional variable
vector w). Interestingly, however, the augmented matrix found in typical applications is
highly sparse (with less than 1% of its entries are non-zero) [23].

The constant κw ∈ R+ is a Hessian regularization parameter which plays a key role
in the context of parameter estimation. In particular, one can prove that the augmented
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matrix M `(κw) is non-singular (and thus the linear algebra system has a unique
solution) if and only if the reduced Hessian matrix ZTH(w`, λ`)Z is positive definite
and the Jacobian matrix ∇wΠ(w`) has full row rank. Here, the matrix Z ∈ Rnθ×nθ is
such that its columns span the null-space of the Jacobian (i.e., ∇wΠ(w`)Z = 0).
Moreover, the matrix Z is of the same dimension as the number of degrees of freedom
(in our context this is precisely the number of parameters). When the reduced Hessian
is positive definite (i.e., all its eigenvalues are positive) and the Jacobian has full row
rank, one can prove that the Newton step of the primal variables ∆w` obtained from
the solution of (12) is a descent direction for the objective function (i.e.,
(∆w`)T∇wΦ(w`) < 0) when the constraints are close to being satisfied (i.e., Π(w`) ≈ 0).
This is key because it indicates that the Newton step improves the objective function
(in our context, the negative likelihood function). This property cannot be guaranteed
when the reduced Hessian is not positive definite. When such a situation is encountered,
one can increase the regularization parameter κw until the reduced Hessian is positive
definite and a descent direction is obtained. This approach is closely connected to the
Levenberg-Marquardt method used in simulation-based estimation approaches (in which
one regularizes the Hessian of the negative likelihood function as −∇θθL(θ`) + κθI) [49].
Another key observation is that, when the reduced Hessian is positive definite at the
solution w∗, the estimated parameters are unique. This provides an indication that the
experimental data is sufficiently informative to identify the parameters uniquely (i.e.,
the parameters are observable). We note that using a prior term ϕ(θ) in the MAP
formulation has the effect of adding the positive definite matrix Σ−1

θ to the reduced
Hessian. This artificially regularizes the problem (as is done in the
Levenberg-Marquardt scheme by adding the term κwI). Consequently, when testing for
observability/uniqueness, it is necessary to drop the prior term from the MAP
formulation. Testing for observability also requires exact second order derivative
information because the Hessian is needed. In the time-discretization approach, such
information can be obtained directly from algebraic modeling languages.
Simulation-based solution approaches often cannot check observability of the parameters
(computing second derivatives using adjoint and sensitivity schemes is complicated).

Computing the eigenvalues of the reduced Hessian to check for positive definiteness
is expensive. Interestingly, one can also determine if the reduced Hessian is positive
definite by using inertia information of the augmented matrix M `(κw). The inertia of a
matrix M is denoted as Inertia(M) = {n+, n−, n0} where n+, n−, and n0 are the
number of positive, negative, and zero eigenvalues of matrix M, respectively. One can
prove that the reduced Hessian matrix is positive definite if
Inertia(M `(κw)) = {n,m, 0}, where we recall that n is the dimension of the variable
vector w and m is the number of constraints. Notably, one can obtain the inertia of
M `(κw) without computing the eigenvalues of the matrix. This is done by using
modern sparse symmetric factorization routines such as MA57 or Pardiso [48]. Such
routines factorize the matrix M `(κw) as LBLT where L is a lower triangular matrix
and B is a matrix with 1× 1 and 2× 2 blocks in the diagonal. One can show that the
number of positive and negative eigenvalues of M `(κw) are the number of positive and
negative eigenvalues of B (which are easy to determine).

Modern interior-point solvers are equipped with highly sophisticated safeguarding
techniques that enable the solution of highly nonlinear problems. A powerful approach
is called a filter line-search method, in which one seeks to find a step-size κ such that
the trial Newton iteration w`+1 = w` + κ∆w` either decreases the objective function or
the constraint violation ‖Π(w`)‖. If the step is accepted, the current values for the
objective and constraint violation (Φ(w`),Π(w`)) are stored in a filter (a history of
previous successful iterations). At the next iterate, one requires that the Newton step is
not in the filter and that it improves either the objective or the constraint violation.
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This rather simple strategy is extremely effective in practice.
We highlight the fact that the proposed discretization approach bypasses the need to

repetitively simulate the dynamic model (the discretized dynamic model contained in
Φ(w) is solved progressively by Newton’s method). This brings substantial
computational savings. Moreover, since the discrete-time model is solved at the solution
w∗ of the NLP (9), we have that the discrete-time states {xjk}∗ approximate the state
trajectories x(t), t ∈ Tk, k ∈ K. In the absence of inequality constraints, one can also
show that the reduced Hessian ZTH(w∗, λ∗)Z approximates the Hessian of the negative
log-likelihood function ∇θθL(θ∗) in a neighborhood of w∗ (which contains θ∗). We thus
have that the reduced Hessian approximates the inverse parameter covariance matrix
V −1
θ . When inequality constraints are present, some of the parameters or state variables

might hit their physical bounds and this deteriorates the approximation. When the
parameters are not unique (the reduced Hessian has zero eigenvalues), the parameter
covariance matrix is singular.

Structured Linear Algebra

A key advantage of using interior-point solvers is that they enable modular linear
algebra implementations. For instance, the multi-experiment structure of problem (10)
permeates down to the linear algebra system, to give a system of the form:




Kθ BT1 BT2 . . . BTk
B1 K1

B2 K2

...
. . .

Bk Kk







∆θ
∆w1

∆w2

...
∆wK




= −




rθ
r1

r2

...
rK



, (14)

where ∆θ is the Newton step for the parameters and ∆wk = (∆xk,∆λk) is the Newton
step for variables in experiment k. The above system is said to have a block-bordered
diagonal (BBD) structure. Here, we have that:

Kθ = Hθ, Kk =

[
Hk JTk
Jk

]
, BTk =

[
QTk T

T
k

]
, (15)

where Jk = ∇wkΠk, Tk = ∇θΠk, Hθ = ∇θθL+ κwI, Hk = ∇wkwkL+W−1
k Vk + κwI,

Qk = ∇θxkL, rθ = ∇θL, and rk = ∇wkL.
The BBD matrix is a permutation of the augmented matrix M `(κw) (obtained by

ordering variables by experiment). The BBD matrix can thus be expressed as
PTM `(κw)P where P is a permutation matrix. The permutation does not affect the
eigenvalues of the matrix. The BBD system (14) can be solved in parallel by using a
Schur complement decomposition approach [45,50]. This requires the solution of the
linear algebra systems:

(
Kθ −

∑

k∈K
BkK

−1
k BTk

)
∆wθ = −rθ +

∑

k∈K
K−1
k Bkrk (16a)

Kk∆wk = −rk −BTk ∆θ, k ∈ K. (16b)

Here, S=Kθ−
∑
k∈KBkK

−1
k BTk is the Schur complement matrix which has the same

dimension as the number of degrees of freedom (in our case the number of parameters).
The key observation is that the experiment matrices Kk can be factorized by using an
LBLT factorization (by using MA57 or PARDISO) in parallel. As a result, Schur
decomposition can achieve high computational efficiency in estimation problems with
many experimental data sets.
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When using a Schur decomposition, one can estimate the inertia of the BBD matrix
by using Haynsworth’s formula:

Inertia(M `(κw)) =
∑

k∈K
Inertia(Kk) + Inertia

(
Kθ −

∑

k∈K
BkK

−1
k BTk

)
. (17)

We recall that n = nθ +
∑
k nk and m =

∑
kmk. Consequently, if we have that

Inertia(Kk)={nk,mk, 0} for all k ∈ K then Inertia(M `(κw)) = {n,m, 0} if and only if
Inertia(S) = {nθ, 0, 0} (i.e., the Schur complement is positive definite). One can obtain
the inertia of the blocks Kk and S using LBLT factorization. This allows us to test
observability of the parameters.

Uncertainty Quantification

The estimation problem under the MAP framework gives the values of the parameters
θ∗ that maximize the parameter posterior density. However, a characterization of the
entire posterior is necessary to assess parameter uncertainty. The posterior covariance
may be approximated from the reduced Hessian at the solution of the problem w∗ and
the covariance matrix can be used to determine ellipsoidal level sets of the posterior
(confidence regions). This approach, however, might fail to capture nonlinear and
constraint effects [23]. In this work, we circumvent these issues by using a randomized
maximum a posteriori (rMAP) approach. Under this method, the posterior distribution
is explored by using random perturbations on the experimental data (which can be
easily parallelized). The rMAP framework can also deliver approximate samples from
the parameter posterior distribution and implicitly captures nonlinear and constraint
effects. To show this, we use the implicit mapping representation η̄k = mk(θ). Under
this representation, the posterior density (2) can be expressed as:

p(θ | η) =
1

p(η)
exp

(
(θ − θ̄)TΣ−1

θ (θ − θ̄) +
∑

k∈K
(mk(θ)− ηk)TΣ−1

k (mk(θ)− ηk)

)

(18a)

=
1

p(η)
exp

(
−1

2
(m(θ)− η̂)TΣ−1(m(θ)− η̂)

)
(18b)

where m(θ) := (θ,m1(θ), · · · ,mK(θ)), Σ := diag(Σθ,Σ1,Σ2, · · · ,ΣK), and η̂ = (θ̄, η).
Here, we redefine η ← η̂ to enable compact notation. Since θ∗ is a solution of the MAP
problem, we have that:

θ∗ = argmin
θ

(m(θ)− η)TΣ−1(m(θ)− η). (19)

If the mapping mk(·) is continuously differentiable, we have that:

m(θ) = m(θ∗) +∇m(θ∗)(θ − θ∗) +O(‖θ − θ∗‖22). (20)

To enable compact notation we define η∗ = m(θ∗) and ∇m∗ = ∇m(θ∗). We have that
θ∗ satisfies the stationary condition of (19):

(∇m∗)TΣ−1(η∗ − η) = 0. (21)
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We use (20) to obtain a second-order Taylor approximation of the posterior as:

p(θ | η) ≈ 1

p(η)
exp

(
−1

2
(η∗ − η +∇m∗(θ − θ∗))TΣ−1(η∗ − η +∇m∗(θ − θ∗))

)

=
exp

(
(η∗ − η)TΣ−1(η∗ − η)

)

p(η)
exp

(
−1

2
(θ − θ∗)T∇m∗TΣ−1∇m∗(θ − θ∗))

)

∝ exp

(
−1

2
(θ − θ∗)T∇m∗TΣ−1∇m∗(θ − θ∗)

)
(22)

This implies that the posterior is approximately represented as:

θ | η ∼ N
(
θ∗,
(
∇m∗TΣ−1∇m∗

)−1
)
. (23)

We recall that the output error is Gaussian and we can thus write η = m(θ) + ε with
ε ∼ N (0,Σ). We now consider the MAP problem with randomly perturbed data:

θ̃ = argmin
θ

(m(θ)− (η + ε))TΣ−1(m(θ)− (η + ε)) (24)

and note that

(m(θ)− (η + ε))TΣ−1(m(θ)− (η + ε))

= (η∗ − η +∇m∗(θ − θ∗)− ε)TΣ−1(η∗ − η +∇m∗(θ − θ∗)− ε) +O(‖θ − θ∗‖22)

= (θ − θ∗)T∇m∗TΣ−1∇m∗(θ − θ∗) + 2(θ − θ∗)T∇m∗TΣ−1ε+O(‖θ − θ∗‖22) + C,
(25)

where C is a constant. Consequently, for sufficiently small ε, we can linearize the
mapping m(·) to obtain an approximate solution of (24) of the form:

θ̃ ≈ θ∗ +
(
∇m∗TΣ−1∇m∗

)−1

∇m∗TΣ−1ε. (26)

Here, we observe that the right-hand side of (26) is Gaussian with mean θ∗ and
covariance:

((
∇m∗TΣ−1∇m∗

)−1

∇m∗TΣ−1

)
Σ

((
∇m∗TΣ−1∇m∗

)−1

∇m∗TΣ−1

)T

=
(
∇m∗TΣ−1∇m∗

)−1 (
∇m∗TΣ−1∇m∗

)(
∇m∗TΣ−1∇m∗

)−1

=
(
∇m∗TΣ−1∇m∗

)−1

. (27)

We thus have that:

θ̃ ∼ N
(
θ∗,
(
∇m∗TΣ−1∇m∗

)−1
)
, (28)

Consequently, solving (24) provides an approximate sample from the posterior
distribution p(θ | η). The sampling procedure (24) is accurate up to second order. To
obtain an exact sampling from the posterior, one needs to implement a rigorous MCMC
scheme. The MCMC scheme removes the bias that appears in the rMAP sample density,
which results from the second order approximation [34,36]. Several works in the
literature, however, report that accurate posterior densities can be obtained using an
rMAP scheme [35,51,52]. We also note that the rMAP scheme implicitly captures
nonlinearities and physical constraints when computing samples from the posterior. In
particular, solving the perturbed problem (24) corresponds to solving the MAP problem
(1) with randomly perturbed data and the MAP problem enforces constraints and
handles the full nonlinear model.
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Algebraic Modeling Platforms

Having an algebraic representation of the estimation problem has many practical and
computational advantages. In particular, one can implement the estimation problem in
easy-to-use and open-source modeling languages such as JuMP [53], Plasmo.jl [54], and
Pyomo [55, 56]. These modeling languages are equipped with automatic differentiation
techniques that compute exact first and second derivatives. Derivative information is
communicated to optimization solvers without any user intervention. Modern algebraic
modeling languages such as Plasmo.jl and Pyomo also allow users to convey structural
information to the solvers. This is beneficial in the case of parameter estimation, where
the structure can be exploited to enable parallelism and the use of high-performance
computing clusters. In our framework, we use the modeling language Plasmo.jl to
express multi-experiment estimation problems as graphs. Our implementation using
Plasmo.jl is illustrated in Fig 2. The full Julia script is available at
https://github.com/zavalab/JuliaBox/tree/master/MicrobialPLOS. We
highlight that the same script can be used to solve the estimation problem using a
general NLP solver such as Ipopt on a single-processor computer or with a
structure-exploiting parallel NLP solver such as PIPS-NLP on multiple parallel
computing processors (this might be a multi-core computing server or a large-scale
computing cluster). This allows users with limited knowledge on scientific computing to
gain access to advanced high-performance computing capabilities.

1 # Call Libraries
2 using JuMP, Plasmo, Ipopt
3

4 data=GetData() # Load data
5

6 # Create a graph for estimation model
7 graph=Plasmo.PlasmoGraph()
8 m_parent=Parent_Model() # Create parent model
9 node_parent=add_node!(graph,m_parent) # Connect parent to graph model
10

11 # Define array of children models
12 m_children=Array{JuMP.Model,1}(nExp)
13 node_children=Array{NodeOrEdge,1}(nExp)
14

15 # For each experiment,
16 for i in 1:nExp
17

18 m_children[i]=Exp_Model(data) # Create children model
19 node_children=add_node!(graph,m)) # Connect children to graph model
20

21 # Linking constraints (parameters common across experiments)
22 @linkconstraint(graph,[j in data[i].species,
23 k in [0 ; data[i].species]],
24 m_parent[:a][j,k]==m[:a][j,k])
25 end
26

27 # Solve problem with Ipopt
28 status=Plasmo.solve(graph)
29

30 # Solve problem with PIPS-NLP
31 status= Plasmo.pipsnlp_solve(graph)

Fig 2. Snippet of parameter estimation implementation in Plasmo.jl

PLOS 13/28

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 7, 2018. ; https://doi.org/10.1101/410688doi: bioRxiv preprint 

https://github.com/zavalab/JuliaBox/tree/master/MicrobialPLOS
https://doi.org/10.1101/410688


Results

Human gut microbial communities and microbiomes are highly dynamic networks
coupled by positive or negative interactions and numerous feedback loops that display
complex behaviors [57–60]. The generalized Lotka-Volterra (gLV) model provides a
useful approach to capture such behavior [61–65]. Specifically, gLV captures single
species growth rates and intra-species and inter-species positive and negative
interactions. We apply the proposed NLP framework to estimate the growth and
interaction parameters of the gLV model from experimental data collected in [60]. The
microbial species involved in the experiments are shown in Table 1. Experiments were
designed to study the synthetic ecology encompassing 12 prevalent human-associated
intestinal species.

Table 1. List of microbial species used in case study.

Label Full name Abbreviation

1 Blautia hydrogenotrophica BH
2 Collinsella aerofaciens CA
3 Bacteroides uniformis BU
4 Prevotella copri PC
5 Bacteroides ovatus BO
6 Bacteroides vulgatus BV
7 Bacteroides thetaiotaomicron BT
8 Eggerthella lenta EL
9 Faecalibacterium prausnitzii FP
10 Clostridium hiranonis CH
11 Desulfovibrio piger DP
12 Eubacterium rectale ER

The gLV model is given by:

dxs
dt

=

(
µs +

∑

s′∈S
αss′xs′

)
xs, s ∈ S (Model 1)

where S = {1, 2, · · · , S} is the set of microbial species, xs : R→ R is the trajectory of
the abundance of species s ∈ S, µs is the growth rate of species s, and αss′ is the
interaction parameter that captures the effect of the abundance of species s′ on the
growth rate of species s. Species s and species s′ are referred to as recipient species and
donor species, resepectively.

The parameters (growth rates and interaction) cannot be calculated directly from
first-principles and must be estimated from experimental data. The means of the prior
densities of the parameters are assumed to be µ̄s = ᾱss′ = 0 and their standard
deviations are assumed to be σµ = σα = 1/

√
50. Such values are empirically determined

by selecting the standard deviation values that give biologically feasible parameter
estimates (the range of biologically feasible parameter values are 0.09 < µs < 2.1,
−10 < αij < 10, and −10 < αii < 0). The variances for the output measurements are
assumed to be σk,s(t) = 0.05 max(0.1, ηk,s(t)). There are a total of 156 parameters
including 12 monospecies growth rate and 144 interaction parameters (12 x 12). The set
of experiments K includes 12 monospecies experiments and 66 pairwise community
experiments (total of K = 78 experiments). The estimation problem contains a total of
144 differential equations (i.e. the model is a system of ordinary differential equations
on R144). The computational characteristics of the estimation problem are summarized
in Table 2 (labeled as P1).
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Table 2. Characteristic of estimation problems used in scalability studies.

Original Original+Synthetic Synthetic
Label P1 P2 S1 S2 S3 S4

Number of Species 12 12 12 24 36 48
Number of Diff. Equations 144 1,584 144 576 1,296 2,304
Number of Parameters 156 156 156 600 1,332 2,352
Number of Experiments 78 858 78 300 666 1,176
Number of Data Points 1,704 18,744 1,632 5,568 11,808 20,352
Number of NLP Variables 91,644 1,006,524 83,004 340,824 773,460 1,380,912
Number of NLP Constraints 91,488 1,006,368 82,848 340,224 772,128 1,378,560

Problem P1 includes the original experimental data [60] for a 12-species microbial community (consisting of 12 mono-species
and 66 pairwise community experiments). The sampling frequency and the experiment duration of the mono-species
experiments are 30 minutes and 24 hours, respectively. The sampling frequency in the pairwise community experiments is 12
hours and the experiment duration range from 60 to 72 hours. In the pairwise experiments, the media are diluted by 1/20
once every 24 hours. The dynamic model is discretized using an implicit Euler scheme with 5 equally-spaced discretization
points (monospecies experiments) and 120 equally-spaced discretization points (pairwise experiments). The data used in P2
includes the original data of P1 and 10 additional synthetic data sets obtained with random data perturbations. Data for
problems S1-S4 is synthetic and is obtained by running a simulation of the community model with fixed parameters and by
adding 5% noise to the outputs. The data sampling characteristics (e.g., frequency, duration, dilution patterns) are the same
as those of P1. The parameter values used for simulations are randomly generated from µs ∼ N (0.3, 0.12), αss ∼ N (−1, 0.12),
and αss′ ∼ N (0, 0.12).

Observability and Regularization

Parameter observability was checked by solving the MAP formulation for P1 (which
uses the available experimental data) and by checking the inertia of the augmented
system at the solution (reported by Ipopt). Here, we omitted the prior regularization
term ϕ(·). We found that parameters obtained from P1 are not unique (not observable
from the available data). Moreover, we found that the estimated parameter values
without regularization have unrealistic (non-physical) values, see Fig 3 (a). This
observation justifies the need to use prior information. The results obtained by adding
L1 and L2 priors to the MAP formulation are presented in Fig 3 (b,c). Unique
parameter estimates were found when L1 or L2 priors were used. We also found that
the L1 prior induces sparser solutions (many parameters are zero). For the remainder of
the results, we use the formulation with an L2 prior.

Model Fitting

Model validation was performed by assessing the goodness of fit to the experimental
data (Fig 4). We can see that the model is capable of fitting most of the data points,
but there are a number of experiments where the model prediction deviates significantly
from the experimental data (such experiments are highlighted with red boxes).
Furthermore, we can observe outliers at single data points (highlighted with red circles).
Poor fitting can be caused by either bad local minima (the optimization solver finds a
local optimal solution rather than the global optimal solution) or by a structural model
error (the model structure is incapable of capturing the actual behavior of the system).
To avoid bad local minima, we solved the MAP problem with multiple starting points.
Such an approach increases the probability to find the global optimum, but obtaining a
rigorous certificate of a global minimum is computationally challenging (rigorous global
optimization techniques are currently not scalable to large problems). We found that
the use of multiple starting points does not improve the model fit. Consequently, we
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Fig 3. Parameter estimates with MAP formulations (Model 1). (a)
Estimates using MAP formulation with no prior information. (b) Estimates using L1
prior. (c) Estimates using L2 prior. (a-c) The first row shows values for the growth rate
parameters µs and the rest of the rows show values for the interaction parameters αss′ .
The species name corresponding to s and s′ are presented on the x and y axes.
Recipient and donor species are on the x and y-axis, respectively.

attribute fitting errors to the model structure itself. In particular, the gLV model
neglects various physical and biological phenomena such as lag phase or interaction
coefficients that change as a function of time [60]. To investigate structural errors, we
solved the MAP problem with a variant of the gLV model. In particular, we
investigated the saturable gLV model [66,67] (Model 2):

dxs
dt

=

(
µs +

∑

s′∈S

αss′xs′

Kss′ + xs′

)
xs, (Model 2)

where Kss′ > 0 are additional interaction parameters. The saturable model exhibits a
higher degree of nonlinearity than the gLV model and includes S2 more parameters (the
number of degrees of freedom increases from S2 + S to 2S2 + S). As a result, the
saturable gLV model provides more flexibility to improve model fitting. The model
fitting obtained with the saturable gLV form is illustrated in Fig 5. As can be seen,
significant improvements; in particular, the overall fitting error

∑

k∈K

∑

s∈Sk

∑

t∈Tk

1

2

(
ηk,s(t)− η̄k,s(t)

σk,s(t)

)2

, (29)

was reduced by 30%. Increasing the number of degrees of freedom can cause overfitting,
however, and this can make the model less predictive. Consequently, there is a trade-off
between fit and predictability.
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Fig 4. Fitting of experimental data (Model 1). Subplots show the measured and
predicted species abundance in the microbial community. The subplots on the diagonal
show fitting for mono-species experiments. Subplots on the i-th row and j-th column
shows fitting for the corresponding pairwise culture (the abundance of species i in the
presence of species j). Recipient and donor species are listed in rows and columns,
respectively. For each subplot, the y-axis represents the absolute abundance in the
community based on relative abundance multiplied by total biomass (OD600) and the
x-axis represents the experiment time in hours. Data points are denoted by grey dots
and dynamic model trajectories are denoted by solid lines. The data points highlighted
with red circles are data points corresponding to the ten largest errors
(1/2) (ηk,s(t)− η̄k,s(t))2

/σk,s(t)
2. The subplots highlighted with red boxes are subplots

for the experiments with the ten largest total prediction errors∑
t∈Tk(1/2) (ηk,s(t)− η̄k,s(t))2

/σk,s(t)
2

.

Bayesian information criteria (BIC) is an approach for model selection [68–70]. BIC
can be used as a score that represents the likelihood of the model that considers not
only model fitting but also the number of parameters. In particular, the model with the
smallest BIC can be considered as the most likely model. In BIC, one aims to compare
the posterior probability of the models given the experimental observation. The
posterior probabilities can be indirectly compared by comparing the marginal
probability p(η) =

∫
p(η|θ)p(θ)dθ of the experimental observation for each model. By

applying a Laplace approximation, one can derive a reasonable approximation of
−2 log p(η) as follows.

−2 log p(η) ≈ BIC := −2 log p(η|θ∗) + nθ log nη (30)

Recall that nη is the dimension of the output vector η (the number of experimental
observations) and θ∗ is the optimal parameter estimate. The log-likelihood term
−2 log p(η|θ∗) corresponds to the prediction error (the squared errors across organisms
and data sets) value of the MAP problem and is obtained while solving the problem. As
can be seen from (30), the number of parameters are penalized in the score. Thus, the
effect of overfitting that comes from increasing the number of parameters can be
prevented. Our results indicate that the BIC of the gLV model is 44, 798 and the BIC of
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the saturable model is 31, 572. This implies that the saturable model is the more likely
model based on the available experimental data. We highlight, however, that the
Laplace approximation assumes independent and identically distributed sampling and a
sufficient number of samples (which does not strictly hold for our case). Model selection
based on BIC with specialized experimental data is an interesting direction of future
work.
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Fig 5. Improvement of model fitting with saturable gLV model (Model 2).
Model fitting for 4 experiments selected among the experiments with 10 largest total
prediction errors. The gLV model fits (dotted line) are compared with those of the
saturable model (solid line). (a) Model fits to monospecies experiment with CH. (b)
Model fits to monospecies experiment with CA. (c) Model fits to pairwise community
experiment with PC in the presence of EL. (d) Model fits for pairwise community
experiment with CA in the presence of ER.

To mitigate outliers, we solved the MAP problem with a CVaR norm and β = 0.9 (to
penalize the 10% largest errors). The model fitting obtained with the CVaR formulation
is shown in the supporting information and relevant results are summarized in Fig 6. It
can be observed that the fitting errors for the outliers obtained with the standard MAP
formulation are reduced. The effect of the CVaR formulation is also evident when
analyzing the prediction error histogram (see Fig 7). In particular, we observe that the
tail of high prediction errors becomes less pronounced under the CVaR formulation. In
particular, the mean of the 10% largest errors decreases by 18% (from 167.81 to 137.04).
On the other hand, it can also be observed that the mean error increases under CVaR
and that the tail of small errors shrinks. This illustrates the fundamental trade-off that
usually arises in robust statistics. The behavior induced with CVaR aids estimator
performance because it prevents overfitting experimental data sets.

Inference (Posterior) Analysis

We used rMAP to assess the uncertainty of the 156 parameters estimated from P1 using
the available experimental data. To do so, we draw data perturbations as
ηk,s(t)← ηk,s(t) + εk,s(t) with εk,s(t) ∼ N (0, σk,s(t)

2). We solved 500 MAP problems
to obtain parameter samples and use this to approximate the covariance matrix for the
posterior. The marginals for the posterior are shown in Fig 10 and the standard
deviations are shown in Fig 8 (a). A large standard deviation indicates that the
estimated parameter value is not reliable. We note that about half of the parameters
can be estimated reliably while the other half exhibit significant uncertainty. This
indicates that more experimental data should be obtained. From the sample covariance,
we generated 95% ellipsoidal confidence regions for each pair of parameters. The
correlation plots of µs against αss′ for s, s′ ∈ S are shown in Fig 11 and the Pearson
correlation coefficients are shown in Fig 8 (b). In an ideal case, the parameters should
be uncorrelated because data should be sufficient to estimate each parameter reliably.
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Fig 6. Improvement of model fitting by using CVaR (k-max) MAP
formulation (Model 1). Model fits for 4 experiments selected among the

experiments with 10 largest prediction errors (1/2) (ηk,s(t)− η̄k,s(t))2
/σk,s(t)

2. The
model fits from standard MAP formulation (dotted line) are compared with the model
fits from CVaR formulation with β = 0.9 (solid line). (a) gLV model fits to pairwise
community experiment of PC in the presence of EL. (b) gLV model fits to pairwise
community experiment of CA in the presence of ER. (c) gLV model fits to pairwise
community experiment with CH in the presence of PC. (d) gLV model fits to pairwise
community experiment with CH in the presence of BO.
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Fig 7. Histograms of fitting errors (Model 1). (a) Error histogram for the
standard MAP formulation. (b) Tail region of (a). (c) Error histogram for CVaR
formulation. (d) Tail region of (c). (a-d) The x-axis represents the value of prediction
error evaluated at the solution and the y-axis represents the frequency. The red and
blue line represent quantiles: the overall mean of prediction errors (red) and the mean
of largest 10% errors (blue).

Using our data set, however, we can observe strong correlations between the parameters
µs and αss in Fig 11, and strong positive and negative correlations can also be found in
Fig 8 (b).

Furthermore, since the whole approximate distribution is obtained in the inference
analysis based on rMAP framework, we can perform more sophisticated analysis on the
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characteristics of the distribution. In particular, one can investigate third and fourth
moments (Fig 9) to examine the skewness and the kurtosis of the distribution. Such
information can be used to investigate the deviation of the posterior distribution from
the normal distribution. If the posteriors are stritly normally distributed, the third and
fourth moments should be zero and 3σ4, respectively. However, we can observe that
many posterior distributions deviate from such expectations. Thus, we can see that
some of the distributions are not close to the normal distribution.
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Fig 8. Parameter uncertainty and correlations (Model 1). (a) Heat map
presents the standard deviation for the parameter posterior density. The first row shows
the standard deviations of the growth rate parameters µs and the rest of the rows show
the standard deviations of the interaction coefficients αss′ . Recipient and donor species
are on the x and y-axis, respectively. The data points highlighted with green circles are
data points corresponding to the ten largest standard deviations. (b) The heat map
represents the Pearson correlation coefficients of the poterior distributions. The x-axis
and the y-axis represents the index of parameters where the parameter vector is
constructed as θ = (µ1, α11 · · ·α1S , · · · , µS , αS1, · · ·αSS). The block on the i-th row
and j-th column is the Pearson correlation between the i-th and j-th component of
parameter vector θ.

BH CA BU PC BO BV BT EL FP CH DP ER

-

BH

CA

BU

PC

BO

BV

BT

EL

FP

CH

DP

ER

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

BH CA BU PC BO BV BT EL FP CH DP ER

-

BH

CA

BU

PC

BO

BV

BT

EL

FP

CH

DP

ER 1.5

2

2.5

3

3.5

4

4.5

(a) (b)
µ µ

Recipient species

D
on

or
 s

pe
ci

es

Recipient species

D
on

or
 s

pe
ci

es

Th
ird

m
om

en
t

Fo
ur

th
 m

om
en

t

Fig 9. Third and fourth momentum of posterior (Model 1). (a) Heat map
presents the third momentum of the parameter posterior density (normalized by σ3).(b)
The heat map represents the fourth momentum of the poterior density (normalized by
σ4). (a-b) The first row shows the standard deviations of the growth rate parameters µs
and the rest of the rows show the standard deviations of the interaction coefficients αss′ .
Recipient and donor species are on the x and y-axis, respectively.
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Fig 10. Posterior (marginal) densities for estimated parameters (Model 1).
Each subplot shows the histogram of the samples from the approximate parameter
posterior. The x-axis represents the values of the estimated parameters and the y-axis
represents the frequencies. The subplots on the first column show the distribution of the
growth rates µs and the rest of the subplots show distributions of the interaction
parameters αss′ . Recipient and donor species are listed in rows and columns,
respectively. The x-axis is scaled to show µ± 3σ where the µ is the mean and the σ is
the standard deviation of the posterior distribution.

Computational Scalability

We assessed the computational scalability of the estimation framework by analyzing
problems with different sizes and characteristics. Problem P1 was implemented in the
algebraic modeling platform JuMP and solved with the NLP solver Ipopt configured
with the sparse linear solver MA57. Problem P1 with gLV model and L2 prior was solved
in 134 seconds and 78 NLP iterations on a standard computing server with an Intel(R)
Xeon(R) CPU E5-2698 v3 processor running at 2.30GHz. Problem P1 with gLV model
and L1 prior was solved in 219 seconds and 68 NLP iterations with the same hardware.
A comparable problem requires over 7 hours to solve using a simulation-based approach
implemented in Matlab and that uses finite differences to obtain first derivatives [60].
Despite the significant gains in computational performance obtained with Ipopt, its
solution time scales nearly quadratically with the number of data sets. To overcome this
scalability issue, we compared the performance of the serial solver Ipopt against that of
the parallel solver PIPS-NLP (which uses a Schur complement decomposition to perform
linear algebra operations). To test the scalability of PIPS-NLP, we generated a larger
version of the estimation problem (labeled as P2). This problem is created by adding
synthetic data sets. The NLP corresponding to P2 has over one million variables and
constraints (but the number of parameters is the same as that of P1). This problem was
implemented in Plasmo.jl. The benefit of using a parallel approach is clearly seen in
Fig 12. Here, we highlight that PIPS-NLP solved P2 in less than 10 minutes and 94 NLP
iterations using 16 cores while Ipopt requires around 30 minutes and 67 iterations.
Furthermore, IPOPT found a different local solution and the solution from PIPS-NLP

had a better objective value. Fig 12(b) also shows that PIPS-NLP achieves nearly
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Fig 11. Correlations between parameter pairs (Model 1). Each subplot shows
the 95% confidence regions (solid ellipses) of the approximate parameter posterior
distributions and the sample points (dots). The subplots on the s-th row and s′-th
column show the correlation of µs and αss′ . Recipient and donor species are listed in
rows and columns, respectively. Only a representative subset of parameter pairs is
presented (there are a total 12,090 pairs).

perfect strong scaling (speedup increases linearly with the number of cores).
In rMAP-based uncertainty quantification, the main computational challenge was

the repetitive solution of the optimization problems. However, such challenge can be
overcome by using the existing solution information. The required number of iterations
in NLP solver can be greatly reduced when a good starting point (initial guess of the
solution) is available (often referred to as warm start). Since only small modifications
are made to the original problem to formulate the rMAP problem, the NLP solution of
rMAP problem is very similar to that of the original problem. Thus, by warm-starting
the NLP with the original NLP solution, the computational efforts to solve rMAP
problem can be significantly reduced. In particular, most rMAP sampling problem was
solved in less than 10 NLP iterations while the original problem required NLP 78
iterations.

We also assessed computational capability in estimation problems with the larger
number of species in the microbial community (which increases the number of
differential equations and parameters). Here, we generated synthetic data using
simulations for larger communities. The generated data are summarized in Table 2. The
number of the parameters and of data points scales nearly quadratically with respect to
the size of the community. The computation times are shown in Fig 13. The results
indicate that, by using PIPS-NLP, one can solve estimation problems with up to 48
species in less than 15 minutes and 40 NLP iterations (using 12 parallel computing
cores). We highlight that, to the best of our knowledge, problem S4 is the largest
estimation problem reported in computational biology literature. This problem contains
2,304 differential equations, 2,352 parameters, and 20,352 data points. The
corresponding NLP contains 1.3 million variables and constraints.
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Fig 12. Performance comparison of general solver Ipopt and the
structure-exploiting solver PIPS-NLP (Model 1). (a) Solution time for P2 using
Ipopt and PIPS-NLP. The y-axis shows the solution time and the x-axis shows the
number of cores used. For Ipopt the single core solution time is given by the horizontal
blue line. (b) The y-axis represents the speed-up (the single-core solution time divided
by the multi-core solution time). The blue line is the single-core solution time of
PIPS-NLP divided by the single-core solution time of Ipopt. The grey dashed line
represents the strong scaling line.
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Fig 13. Computational scalability with larger communities (Model 1). (a)
Number of variables against community size (total number of species). (b) The
computation times for problems S1-S4 (see Table 2). The problems were solved with
PIPS-NLP on 12 parallel cores (Intel(R) Xeon(R) CPU E5-2698 v3 processor running at
2.30GHz).

Concluding Remarks

The high computational efficiency achieved with the proposed framework can enable
kinetic modeling of complex biological systems ranging from biomolecular networks to
high-dimensional microbial communities [71]. Indeed, the proposed framework can be
used to construct and analyze high-fidelity models of whole-cells or microbiomes [72, 73].
In particular, these methods can be applied to develop predictive dynamic models of
multi-gene synthetic circuits interacting with host-cell processes for accurately
predicting cell growth and synthetic circuit activity [74] or kinetic models of metabolite
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transformations driving community dynamics. These methods will advance our
capability of integrating mechanistic modeling frameworks with large-scale experimental
data. Furthermore, uncertainty quantification and observability analysis can provide
valuable information to guide and accelerate experimental data collection. These
capabilities are also essential in diagnosing structural model errors. The proposed
framework uses state-of-the-art and easy-to-use modeling and solution tools that can be
broadly applied to diverse biological systems and accessible to a wide range of users.
Together, these advances will ultimately transform biology into a predictive and
model-guided discipline.
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