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Abstract: 
A study pertinent to the numerical modeling of cortical neurostimulation is conducted in an 

effort to compare the performance of the finite element method (FEM) and an original 

formulation of the boundary element fast multipole method (BEM-FMM) at matched 

computational performance metrics. We consider two problems: (i) a canonic multi-sphere 

geometry and an external magnetic-dipole excitation where the analytical solution is available 

and; (ii) a problem with realistic head models excited by a realistic coil geometry. In the first 

case, the FEM algorithm tested is a fast open-source getDP solver running within the SimNIBS 

2.1.1 environment. In the second case, a high-end commercial FEM software package ANSYS 

Maxwell 3D is used. The BEM-FMM method runs in the MATLAB 2018a environment.  

In the first case, we observe that the BEM-FMM algorithm gives a smaller solution error for all 

mesh resolutions and runs significantly faster for high-resolution meshes when the number of 

triangular facets exceeds approximately 0.25 M. We present other relevant simulation results 

such as volumetric mesh generation times for the FEM, time necessary to compute the potential 

integrals for the BEM-FMM, and solution performance metrics for different hardware/operating 

system combinations. In the second case, we observe an excellent agreement for electric field 

distribution across different cranium compartments and, at the same time, a speed improvement 

of three orders of magnitude when the BEM-FMM algorithm used. 

This study may provide a justification for anticipated use of the BEM-FMM algorithm for 

high-resolution realistic transcranial magnetic stimulation scenarios. 
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1. Introduction 
For all three chief neurostimulation modalities  –  transcranial magnetic stimulation (TMS), 

transcranial electric stimulation (TES), and intracortical microstimulation (ICMS)  –  numerical 

computation of the electric fields within a patient-specific head model is the major and often 

only way to foster spatial targeting and obtain a quantitative measure of the required stimulation 

dose (Bikson et al., 2018). At present, a large portion of the macroscopic electromagnetic 

simulations of the brain are done using the finite element method (FEM). The FEM is widely 

used across engineering, physics, and geosciences. There are many general-purpose, open-source 

environments for FEM modeling, from high-level environments such as getDP (Dular et al., 

1988), Deal.II (Bangerth et al., 2007), and FEniCS (Logg et al., 2012), to lower-level 

environments such as PETSc (Balay et al., 2018). Those solvers provide a practical and well-

tested choice for creating problem-specific software solutions. Examples include: 

- The well-known, open-source transcranial brain stimulation modeling software SimNIBS 

(Thielscher et al., 2015; Opitz et al., 2015; Nielsen et al., 2018), whose most recent version, 

v2.1, currently uses the open-source FEM software getDP (see Reference Manual 2017), 

which originates from the previous century (Dular et al., 1988); 

- ROAST, a recently introduced TES modeling pipeline (Huang et al., 2018), which again uses 

the open-source FEM software getDP; 

- COMETS: A MATLAB custom toolbox for simulating transcranial direct current stimulation 

(tDCS) (Jung et al., 2013; Lee et al., 2017), which is based on a stable and well-documented 

first-order FEM (Jin 2002).  

On the other hand, there are proven and accurate commercial FEM solvers such as COMSOL 

Multiphysics and ANSYS Maxwell 3D, which are also able to accomplish the relevant 

simulation tasks. 

In application to low-frequency bio-electromagnetic problems, the boundary element method 

(BEM) is also widely used, primarily for EGG/MEG modeling (Geselowitz 1967; Meijs et al., 

1989; Hämäläinen et al., 1993; Ferguson et al., 1994; Mosher et al., 1999; Gramfort et al., 2014; 

Tadel et al., 2011; Gramfort et al., 2010; Stenroos et al., 2007; Stenroos and Sarvas 2012; 

Stenroos and Nummenmaa 2016; Nummenmaa et al 2013, Opitz et al., 2018; Rahmouni et al., 

2018).  

In application to high-frequency (or full-wave) electromagnetic problems solved via the 

surface/volume integral equation method, various accelerators have been proposed and 

employed, including the fast multipole method (FMM) (Song and Chew 1995; Song et al., 1997; 

Chew at al., 2001; Ergül and Gürel 2008), the fast Fourier transform (FFT) (Catedra 1995; Chen 

et al., 1996; Jin et al., 1996; Chen et al., 2004; Massey 2015), and the adaptive integral method 

(AIM) (Bleszynski et al., 1996; Wei and Yılmaz 2014; Massey et al., 2018). 

However, FMM acceleration for low-frequency BEM brain modeling and in particular for 

TMS modeling, is much less common. The authors are aware of only one dedicated attempt to 

implement the FMM method, which was made over a decade ago (Kybic et al., 2005-2). In a 

recent study (Gomez et al., 2018), such a possibility was mentioned in the introduction but not 

immediately implemented. This in contrast to, for example, a low-frequency finite difference 

modeling technique, where a conceptually similar multi-grid formulation continues to 

demonstrate an impressive performance (Laakso and Hirata 2012; Laakso et al., 2018). 

In a recent study (Makarov et al., 2018), the  BEM-FMM approach was shown to be quite 

promising for TMS modeling and other relevant tasks. We have used the adjoint double-layer 

integral equation in terms of surface charge density (Rahmouni et al., 2018), pulse bases 

(piecewise-constant basis functions) with accurate integration of neighbor terms, simple Jacobi 
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iterations, and an efficient and proven version of the FMM (Gimbutas and Greengard, 2015) 

originating from its inventors. The entire software package runs in the MATLAB environment. 

In the present study, we further employ a generalized minimum residual (GMRES) iterative 

solution. We also convert a slower MATLAB loop, which corrects the FMM accuracy for 

neighboring facets via accurate integration, to a FORTRAN-based DLL. This increases the 

overall speed of the method more than a factor of two. 

We next provide a detailed comparison of our method with the major “competitors” which are 

the above mentioned FEM-based TMS modeling tools. First, we compare the performance of the 

popular fast open-source FEM solver getDP within the SimNIBS 2.1.1 environment using a 

canonic multi-sphere problem where the analytical solution is available. Both the FEM software 

and the BEM-FMM software use matched performance metrics: the same multilayer sphere 

model, for which the analytical solution is available, the same server (Intel Xeon E5-26900 CPU 

2.90 GHz), and the same operating system (Red Hat Enterprise Linux 7.5). Note that SimNIBS 

2.1 and the BEM-FMM software support Linux and Windows operating systems. No effort to 

parallelize either of the methods (getDP FEM or BEM-FMM) has been made. 

Second, we consider ten realistic CAD head models from the Population Head Model 

Repository (Lee et al., 2016; Lee et al., 2018; IT'IS Foundation 2016) augmented with a 

commercial TMS coil model and use a high-end commercial FEM software ANSYS Maxwell 

18.2 2017 with adaptive mesh refinement and an arguably superior field accuracy. This study is a 

revision and extension of the comparison study started in (Makarov et al., 2018). Both the FEM 

and the BEM-FMM software use matched performance metrics: the same surface head model, 

the same coil model, the same server (Intel Xeon E5-2698 v4 CPU 2.2 GHz), and the same 

operating system (Windows Server 2016). Additionally, the high performance parallel 

computing (HPC) option within ANSYS with eight cores was used. No effort to parallelize 

BEM-FMM has been made. We compare field errors across all brain compartments and for 

every head model and establish the necessary computation times.  

The study is organized as follows. Section 2 describes our BEM-FMM formulation in the 

general framework of the boundary element method for the Laplace equation. It also specifies 

integration of the fast multipole method and a correction approach for neighboring facets. 

Further, we describe two FEM solvers used for comparison and the corresponding comparison 

testbeds. Section 3 provides comparison results for the fast open-source FEM solver getDP in 

SimNIBS 2.1.1 environment, including both speed and relative accuracy versus the analytical 

solution. Section 4 provides method-to-method comparison results for realistic simulation 

scenarios, including use of the commercial FEM solver with adaptive mesh refinement, and 

establishes the level of agreement for volumetric field distribution. Section 5 discusses relevant 

aspects of both approaches (FEM versus BEM-FMM) and concludes the paper. 
 

2. Materials and Methods 
2.1. Boundary Element Method. Potential-based approach vs. charge-based approach 

There exist two major types of the boundary integral equation for quasistatic modeling: the 

first is framed in terms of the electric potential, 𝜑(𝒓), while the second is written in terms of the 

electric charge density, 𝜌(𝒓), at the boundaries (Barnard et al., 1967). The first is referred to as 

the double-layer formulation while the second one is known as the adjoint double-layer 

formulation (Rahmouni et al., 2018). Another or “symmetric” formulation also exists (Kybic et 

al., 2005-1, Rahmouni et al., 2018). The choice of the appropriate formulation depends on the 

problem under study. For TMS-related studies, we choose the adjoint double-layer formulation; 

this choice requires a more detailed explanation given below. 
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Consider two (or more) conducting compartments separated by some interface, 𝑆. The outer 

compartment has an electrical conductivity of 𝜎𝑜𝑢𝑡 and the inner compartment has electrical 

conductivity 𝜎𝑖𝑛 as shown in Fig. 1. The vector 𝒏(𝒓) in Fig. 1 is the outward unit normal vector 

for the inner compartment. When a given excitation electric field 𝑬𝑖𝑛𝑐(𝒓, 𝑡) is applied, surface 

electric charges with density 𝜌(𝒓, 𝑡) will reside at 𝑆 while the electric potential 𝜑(𝒓, 𝑡) and the 

normal component of the electric current density remain continuous across the interface. In the 

quasi-static or low-frequency approximation, the time dependence is purely parametric; it is 

therefore omitted after separation of variables. 
 

 
 

Fig. 1. Boundary between two conducting compartments with different conductivities and surface charge density 

𝜌(𝒓) residing at the boundary. 
 

2.2. Potential-based approach or double-layer formulation for EEG-MEG studies 

The most widely used potential-based approach results in the integral equation (Barnard et al., 

1967, Geselowitz 1967; Sarvas 1987, Meijs et al., 1989; Hämäläinen et al., 1993; Ferguson et al., 

1994; Mosher et al., 1999; Stenroos et al., 2007) 
 

𝜑(𝒓)

2
+

𝜎𝑖𝑛 − 𝜎𝑜𝑢𝑡

𝜎𝑖𝑛 + 𝜎𝑜𝑢𝑡
∫ 𝒏(𝒓′) ∙

1

4𝜋

𝒓 − 𝒓′

|𝒓 − 𝒓′|3
𝜑(𝒓′)𝑑𝒓′

𝑆

=
𝜎0

𝜎𝑖𝑛 + 𝜎𝑜𝑢𝑡
𝜑0(𝒓) (1) 

 

where 𝜎0 = 1 S/m is the unit conductivity and 𝜑0(𝒓) is a given and conservative excitation. For 

EEG/MEG applications, it is an electric potential of a current dipole in an unbounded conducting 

medium with the unit conductivity 𝜎0 = 1 S/m. Equation (1) is well suited for EEG studies since 

it gives the solution directly in the form of the electric potential (or voltage) on the scalp surface 

and on other interfaces. It is also well suited for MEG studies since the magnetic field is then 

straightforwardly found using Geselowitz’ formula (see, for example, Sarvas 1987). 

At the same time, Eq. (1) has a few limitations. First, it is derived using Green’s second 

identity (Hämäläinen et al., 1993) and is therefore only valid for closed surfaces with one value 

of external conductivity, in particular for surfaces enclosed into each other in the form of an 

onion structure. Inclusion of surface junctions (e.g. an opening in the skull sketched in Fig. 1b) 

requires a special treatment (Stenroos, 2016). Next, the excitation in Eq. (1) must be a 

conservative field: the solenoidal-field excitation of a TMS coil is not allowed. In addition, the 

FMM would require computing the potential of a double layer as opposed to a single-layer 

gradient. 
 

2.3. Modification of the potential-based approach for TMS studies 

In order to overcome the limitation of the conservative excitation and use Eq. (1) for TMS 

studies, a reciprocity principle has been employed (Heller and van Hulsteyn, 1992, Nummenmaa 

et al., 2013). This principle allows us to reuse the standard MEG computational methods based 

on Eq. (1). Assume that the TMS coil is approximated by a number of equivalent time-varying 

magnetic dipoles, 𝒎. Then, a total electric field 𝑬𝑡 induced by one such dipole 𝒎 at a certain 
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location 𝒓1 within the brain compartments is computed via an external magnetic field generated 

by a reciprocal oscillating current dipole located at 𝒓1.The last task is solved with Eq. (1) and 

Geselowitz’ formula. However, in order to find the vector electric field at a single location due to 

a single magnetic dipole, we have to solve Eq. (1) three times, which is less convenient. 
 

2.4. Charge-based approach or adjoint double-layer formulation used in this study 

The surface-charge formulation might have several advantages for the present and potentially 

other tasks. First, the excitation field does not have to be conservative. The corresponding 

integral equation is simply obtained by writing the total electric field 𝑬𝑡 in a form that takes into 

account the non-conservative external field 𝑬𝑖𝑛𝑐 of the TMS coil(s) and a conservative 

contribution of the secondary induced surface charge density (time dependence is not shown) 
 

𝑬𝑡(𝒓) = 𝑬𝑖𝑛𝑐(𝒓) + 𝑬𝑠(𝒓) = 𝑬𝑖𝑛𝑐(𝒓) + ∫
𝜌(𝒓′)

4𝜋𝜀0

𝒓 − 𝒓′

|𝒓 − 𝒓′|3
𝑑𝒓′

𝑆

 (2) 

 

where 𝜀0 is the electric permittivity of vacuum. Taking the limit of Eq. (2) as 𝒓 approaches the 

surface 𝑆 from both sides and using the continuity condition for the normal current component, 

𝜎𝑬𝑡(𝒓), one obtains the adjoint double-layer equation (Barnard et al., 1967, Makarov et al., 2016, 

Rahmouni et al., 2018, Makarov et al., 2018 (Supplement)) for the surface charge density in the 

following form: 
 

𝜌(𝒓)

2
−

𝜎𝑖𝑛 − 𝜎𝑜𝑢𝑡

𝜎𝑖𝑛 + 𝜎𝑜𝑢𝑡
𝒏(𝒓) ∙ ∫

1

4𝜋

𝒓 − 𝒓′

|𝒓 − 𝒓′|3
𝜌(𝒓′)𝑑𝒓′

𝑆

=
𝜎𝑖𝑛 − 𝜎𝑜𝑢𝑡

𝜎𝑖𝑛 + 𝜎𝑜𝑢𝑡
𝒏(𝒓) ∙ 𝜀0𝑬𝑖𝑛𝑐(𝒓) (3) 

 

Note that the scaling constant 𝜀0 is indeed redundant. Equation (3) is directly applicable to any 

excitation field, without using the reciprocity principle. Additionally, the surface junction case 

from Fig. 1b is permitted. In contrast to Eq. (1), the normal-vector multiplication becomes 

external in the adjoint operator. This leads to computing the gradient of a single layer, which, 

from the viewpoint of the FMM, might be more beneficial than computing the potential of a 

double layer for Eq. (1). Finally, the electric field distribution just inside/outside cortical 

surfaces, which is most important for TMS, is almost trivially computed from the already known 

charge solution:  
 

𝑬𝑗𝑢𝑠𝑡 𝑖𝑛𝑠𝑖𝑑𝑒/𝑜𝑢𝑡𝑠𝑖𝑑𝑒
𝑡 = 𝑬𝑖𝑛𝑐 + ∫

1

4𝜋𝜀0

𝒓 − 𝒓′

|𝒓 − 𝒓′|3
𝜌(𝒓′)𝑑𝒓′ ∓ 𝒏

𝜌(𝒓)

2𝜀0𝑆

 (4) 

 

2.5. Fast Multipole Method (FMM) 

The fast multipole method introduced by Rokhlin and Greengard (Rokhlin, 1985; Greengard 

and Rokhlin, 1987) speeds up computation of a matrix-vector product by many orders of 

magnitude. Such a matrix-vector product naturally appears when a an electric field from many 

point sources 𝜌(𝒓′) in space has to be computed at many observation or target points 𝒓. In other 

words, it is the discretization of the surface integral in Eq. (2) or in Eq. (3). Assuming piecewise 

constant expansion basis functions (pulse bases), one has 
 

𝑬𝑠(𝒄𝑖) = ∑
𝐴𝑗𝜌𝑗

4𝜋𝜀0

𝐜𝑖 − 𝐜𝑗

|𝐜𝑖 − 𝐜𝑗|
3

𝑁

𝑗=1

 (5) 
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where 𝐴𝑖 , 𝒄𝑖 , 𝑖 = 1, … , 𝑁 are, respectively, areas and centers of the triangular surface facets 𝑡𝑖 

while 𝜌𝑖 are surface charge densities at the patch centers. Approximation (5) is computed via the 

FMM. We adopt, integrate, and use an efficient and proven version of the FMM (Gimbutas and 

Greengard, 2015) originating from its inventors. In this version, there is no a priori limit on the 

number of levels of the FMM tree, although after about thirty levels, there may be floating point 

issues (L. Greengard, private communication). The required number of levels is determined by a 

maximum permissible least-squares error or method tolerance, which is specified by the user. 

The FMM is a FORTAN 90/95 program compiled for MATLAB. The tolerance level iprec of 

the FMM algorithm is set at 0 (the relative least-squares error is guaranteed not to exceed 0.5%). 

This FMM version allows for a straightforward inclusion of a controlled number of analytical 

neighbor integrals to be precisely evaluated as specified below. 
 

2.6. Correction of neighboring terms. Iterative solution 

Approximation (5) is inaccurate for the neighbor facets. In the framework of Petrov-Galerkin 

method with the same pulse bases as testing functions, it is corrected as follows 
 

𝑬𝑠(𝒄𝑖) → 𝑬𝑠(𝒄𝑖) − ∑
𝐴𝑗𝜌𝑗

4𝜋𝜀0

𝐜𝑖 − 𝐜𝑗

|𝐜𝑖 − 𝐜𝑗|
3

𝑗∈𝑉(𝑖)

+
1

𝐴𝑖
∑ 𝜌𝑗 ∬

(𝒓 − 𝒓′)

4𝜋𝜀0|𝒓 − 𝒓′|3
𝑑𝒓′𝑑𝒓

𝑡𝑖𝑡𝑗𝑗∈𝑉(𝑖)

 (6) 

 

where 𝑉(𝑖) is a neighborhood of observation triangle 𝑡𝑖. Inner integrals in Eq. (6) are computed 

analytically (Wilton et al., 1984, Wang et al., 2003; Makarov et al., 2016); the outer integrals use 

a Gaussian quadrature of 10th degree of accuracy (Cools, 2003). We have implemented two 

methods: a ball neighborhood with a radius 𝑅 such that |𝐜𝑖 − 𝐜𝑗| ≤ 𝑅 and a neighborhood of 𝐾 ≪

𝑁 nearest triangular facets. Both methods provide similar results. However, the second method 

leads to fixed-size arrays of precalculated double surface integrals and to a faster speed. 

Therefore, it has been preferred. Inclusion of a small number of precomputed neighbor integrals 

(three to twelve) drastically improves the convergence of the iterative solution; inclusion of a 

larger number has little, if any effect. The present BEM-FMM approach performs precise 

analytical integration over the 12 closest neighbor facets. For postprocessing computations of the 

volumetric E-field from the known charge distribution, analytical integration is desired very 

close to the boundaries.  

Equation (3) is solved iteratively using the native MATLAB GMRES (generalized minimum 

residual method) of Drs. P. Quillen and Z. Hoffnung of MathWorks, Inc. Although this method 

may be somewhat slower than a simplified in-house version of the GMRES, its overall 

performance and convergence are excellent, especially for complicated head geometries. The 

relative residual of the BEM-FMM iterative method is set as 1e-4; the number of iterations does 

not exceed 30. 
 

2.7. Finite Element Method: getDP solver used in SimNIBS 2.1.1 

SimNIBS 2.1.1 employs the default FEM solver: the open source fast FEM software package 

called getDP (see Reference Manual, 2017). In SimNIBS, getDP is configured to use the 

PETSc conjugate gradient (CG) solver with a relative residual of 1e-9 and the incomplete 

Cholesky (ICC) preconditioner with 2 factor levels. After the FEM solution is completed, field 

interpolation for arbitrary points in space is accomplished using the “super-convergent approach” 

(or SCA) recently implemented in SimNIBS 2.1.1. In this approach, the original tessellation is 

preserved, and the electric field at the nodes is interpolated from the electric field values at the 

tetrahedra centers. Following this, further linear interpolation for arbitrary observation points is 
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performed using the original tessellation (Zienkiewicz and Zhu, 1992). To avoid problems due to 

discontinuities of the electric field across tissue boundaries, the field recovery is performed for 

each brain compartment separately. 
 

2.8. Hardware 

All comparison results reported in the following section and related to the multi-sphere 

solution are obtained using the same server and operating system: an Intel Xeon E5-2690 CPU at 

2.90 GHz with 192 Gbytes of RAM running Red Hat Enterprise Linux 7.5. We run MATLAB 

version 2018a in Linux. 

No effort to parallelize either of the methods (getDP FEM or BEM-FMM) has been made. 

However, both used software packages – getDP and core MATLAB – by default perform 

multithreading pertinent to linear algebra operations available in LAPACK (Linear Algebra 

PACKage) and some level-3 BLAS (Basic Linear Algebra Subprograms) matrix operations, 

allowing them to execute faster on multicore-enabled machines.  
 

2.9 Comparison testbed for multi-sphere solution 

The comparisons are carried out in models consisting of four-layered spheres, as adopted from 

Engwer et al., 2017 and Piastra et al., 2018. Although both of these references are concerned 

with MEG and EEG dipoles, the corresponding models are equally applicable to the present 

problem, which is also closely related to the MEG problem (Sarvas, 1987). 

Figure 2a shows the problem geometry. The conductivity values are consistent with Engwer et 

al., 2017 and Piastra et al., 2018. To assure the test-grade surface triangulation, we first create six 

individual high-quality triangular base sphere meshes with the number of triangular facets 

ranging from approximately 0.011 M to 0.411 M (from lower to higher mesh density), using a 

high-quality surface mesh generator (Persson 2005; Persson and Strang, 2004), and implemented 

in MATLAB. The minimum triangle mesh quality (twice the ratio of inscribed to circumscribed 

circle radii for a triangular facet) is no less than 0.7, so that all the triangular facets are nearly 

equilateral. All triangles have nearly the same size. 

Following this, we create six respective multi-sphere models by cloning and scaling every 

individual sphere mesh four times, as required by Fig. 2a. These “onion” models will be labeled 

#1 through #6. Additionally, every triangulated subsurface is also slightly scaled outwards so 

that its total area is exactly the sphere area with the prescribed radius. Table 1 lists the 

corresponding surface mesh resolution (or model resolution) and the mesh density (number of 

nodes per unit area) in the set of models. The mesh resolution is defined as the average edge 

length. The mesh density is given in nodes/mm2, which is a common measure in SimNIBS. 
 

Table. 1. Model resolution and mesh density in every four-layer sphere model with a dummy sphere (see below). 
 

Model # Facets total 
Mesh 

resolution, mm 

Mesh density, 

nodes/mm2 

1 0.06 M 4.2 0.07 

2 0.12 M 2.9 0.14 

3 0.24 M 2.0 0.28 

4 0.47 M 1.4 0.55 

5 1.03 M 0.98 1.21 

6 2.06 M 0.69 2.41 
 

The field error specified by Eq. (11) below is measured on two observation sphere surfaces. 

One of them is located 0.5 mm below the brain surface in Fig. 2a and has the radius of 77.5 mm. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 21, 2018. ; https://doi.org/10.1101/411082doi: bioRxiv preprint 

https://doi.org/10.1101/411082


8 
 

Another is located 1.5 mm below the brain surface in Fig. 2a and has the radius of 76.5 mm. 

Note that the FEM may have an insufficient resolution in regions where volumetric mesh density 

is low. In order to provide a fair comparison and assure the proper and sufficient FEM 

volumetric meshing in this observation domain, we introduce a fifth sphere with the radius of 75 

mm into the model as shown in Fig. 2a. This sphere is a dummy object: its conductivity is equal 

to the brain conductivity of 0.33 S/m, so that the corresponding conductivity contrast is equal to 

zero. However, this dummy sphere is explicitly present in the FEM discretization. The mesh size 

of the combined model (four nontrivial brain compartments plus one dummy sphere) ranges 

from 0.06 M to 2.06 M facets in Table 1. 
 

 
 

Fig. 2. a) – Model geometry; b) – surface mesh topology for sphere #2 with the mesh resolution of 2.9 mm and the 

mesh density of 0.14 nodes/mm2. 
 

The excitation is given by a point magnetic dipole (a small loop of current), schematically 

shown in Fig. 2a, and located 10 mm above the skin surface. A magnetic dipole with the moment 

𝒎(𝑡) located at point 𝒓2 generates the magnetic vector potential given by, 
 

𝑨𝑖𝑛𝑐(𝒓1, 𝑡) =
𝜇0𝒎(𝑡) × (𝒓1 − 𝒓2)

4𝜋|𝒓1 − 𝒓2|3
 (7) 

 

where 𝒓1 is an arbitrary observation point and 𝜇0 is the magnetic permeability of vacuum. From 

Eq. (7), the solenoidal electric field of the dipole in free space becomes 
 

𝑬𝑖𝑛𝑐(𝒓1, 𝑡) = −
𝜕𝑨𝑖𝑛𝑐

𝜕𝑡
= −

𝜇0𝜕𝒎/𝜕𝑡 × (𝒓1 − 𝒓2)

4𝜋|𝒓1 − 𝒓2|3
 (8) 

 

Further, we assume harmonic excitation of the form 𝒎(𝑡) = 𝒎0exp (+𝑗𝜔𝑡), convert to phasors, 

and eliminate the redundant constant phase factor of j using multiplication by j. This gives us the 

“static” real-valued excitation field 
 

𝑬𝑖𝑛𝑐(𝒓1) =
𝜇0𝜔𝒎0 × (𝒓1 − 𝒓2)

4𝜋|𝒓1 − 𝒓2|3
 (9) 

 

which could indeed be treated as a result of the separation of the time dependence and the spatial 

dependence, respectively.  
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For a dipole outside a spherical model with a spherically-symmetric conductivity distribution, 

the corresponding analytical solution neither depends on the individual sphere radii nor on the 

specific conductivity values (Sarvas 1987). The same manipulations that lead to Eq. (9) allow us 

to obtain from Ref. Sarvas 1987 an expression for the total field 𝑬 in the form: 
 

𝑬(𝒓1) =
𝜔𝜇0

4𝜋𝐹2
[𝐹(𝒓1 × 𝒎0) − (𝒎0 ∙ ∇2𝐹)(𝒓1 × 𝒓2)] 

𝐹 = |𝒂|(|𝒓2||𝒂| + 𝒓2 ∙ 𝒂), 𝒂 = 𝒓2 − 𝒓2 

∇2𝐹 = (
|𝒂|2

|𝒓2|
+ 2|𝒂| + 𝟐|𝒓2| +

𝒓2 ∙ 𝒂

|𝒂|
) 𝒓2 − (|𝒂| + 𝟐|𝒓2| +

𝒓2 ∙ 𝒂

|𝒂|
) 𝒓1 

(10) 

 

where 𝒓1 is now an arbitrary observation point within the sphere model.  

Once the analytical and numerical solutions is available, we compute the relative vector 

electric-field error using a matrix norm, that is 
 

𝐸(𝑬𝑛𝑢𝑚, 𝑬𝑎𝑛𝑎𝑙𝑦𝑡) =  
‖𝑬𝑛𝑢𝑚 − 𝑬𝑎𝑛𝑎𝑙𝑦𝑡‖

‖𝑬𝑎𝑛𝑎𝑙𝑦𝑡‖
 (11) 

 

where ‖𝑨‖ = √∑ ∑ 𝑎𝑖,𝑗
2

𝑗𝑖  is the Frobenius or the 𝐿2,2 norm and 𝑬𝑛𝑢𝑚 𝑬𝑎𝑛𝑎𝑙𝑦𝑡 are 𝑀 × 3 electric 

field vector arrays at 𝑀 observation points obtained with the numerical and analytical solutions, 

respectively. In all 6 models, we observed the vector electric field at 𝑀= 47,500 triangle centers 

of an observation sphere, with the radius of either 77.5 mm (0.5 mm below the “brain surface”) 

or 76.5 mm (further apart or 1.5 mm below the “brain surface”), respectively. This observation 

sphere has the mesh resolution of 2 mm and the mesh density of 0.3 nodes/mm2; it was generated 

as explained above. Since all the facets of the observation sphere have approximately the same 

area, the correction of Eq. (11) by a point-by-point area multiplication is insignificant. 
 

2.10 Comparison testbed for realistic head models 

Along with the standard multi-sphere solution described above, a population-based study has 

been performed to establish BEM-FMM accuracy for a more realistic TMS scenario. Ten high-

resolution head models from the Population Head Model Repository (Lee et al, 2016; Lee et al., 

2018; IT'IS Foundation, 2016) based on Connectome Project data (Van Essen et al, 2012) have 

been considered and augmented with the following material conductivities: scalp – 0.333 S/m, 

skull – 0.0203 S/m, CSF – 2.0 S/m, GM – 0.106 S/m, cerebellum – 0.126 S/m, WM – 0.065 S/m, 

ventricles – 2.0 S/m. Each head model has approximately 0.7 M facets in total. The mesh density 

in nodes/mm2 for each cavity is 0.8 (skin), 1.4 (skull), 4.9 (CSF), 3.7 (GM), 3.8 (WM), and 9.5 

(ventricles). 

For each head model, simulations with our method and simulations with the high-end 

commercial FEM software Maxwell 3D of ANSYS® Electronics Desktop 2017 2.0, Release 

18.2.0 have been performed; the FEM software used adaptively refined tetrahedral meshes. This 

study is a revision and extension of the corresponding comparison study started in (Makarov et 

al., 2018). The FEM software employs a T-Ω formulation with Ω being the nodal-based 

magnetic scalar potential, defined in the entire solution domain, and T being the edge-based 

electrical vector potential, defined only in the conducting eddy-current region. A Maxwell 3D 

project with Neumann boundary conditions, 4-5 adaptive mesh refinement passes, 30% mesh 

refinement rate per pass resulting in a final FEM mesh with 4-8 M tetrahedra, and a global 

energy error below 0.1% was employed. 
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Both the FEM software and the BEM-FMM software now use matched performance metrics 

and geometries: the same surface head and coil models, the same server (Intel Xeon E5-2698 v4 

CPU 2.2 GHz with 256 Gbytes of RAM), and the same operating system (Windows Server 

2016). Additionally, the high performance parallel computing (HPC) option in ANSYS was used 

with eight cores. 

Three components of the electric field within the head along an observation line have been 

found using the two methods and were compared to each other. This observation line coincides 

with the centerline of the coil (figure-of-eight coil MRi-B91, MagVenture), which is located 9 

mm above the approximate vertex location for each head. The coil is modeled in the form of 

solid conductors in the ANSYS Maxwell FEM software and in the form of a large number of 

elementary current sources (straight wire segments) in BEM-FMM, as shown in Fig. 3. The 

number of segments in our coil model is about 0.1 M; the BEM-FMM performance is not 

significantly affected due to the high speed of the FMM. Coil current is 5 kA and the excitation 

frequency is 3 kHz. 
 

 
 

Fig. 3. a) –  Solid-conductor coil model in ANSYS FEM software and; b) – wire-conductor coil model in BEM-

FMM software. 
 

3. Results for the multi-sphere solution. Comparison with getDP solver 

3.1 Performance of getDP solver within the SimNIBS 2.1.1 environment 

Table 2 presents run times for the FEM solution and the corresponding relative error Eq. (11) 

in the electric field computations, respectively. We consider two distinct observation spheres 

located 0.5 mm and 1.5 mm beneath the brain surface in Fig. 2a. The getDP FEM software was 

unable to process the largest problem with 2.06 M triangles on the server used in this study. 
 

Table. 2. Speed and accuracy of the getDP solver within the SimNIBS 2.1.1 environment. The observation sphere 

is located 0.5 mm and 1.5 mm below the brain surface in Fig. 2a and has the radius of either 77.5 mm or 76.5 mm. 
 

 

Model # Facets total 
FEM solution 

time, sec 

FEM E-field error 

(using SCA) 0.5 

mm below the 

brain surface, % 

FEM E-field error 

(using SCA) 1.5 

mm below the 

brain surface, % 

1 0.06 M 8 6.5 2.9 

2 0.12 M 34 6.1 2.5 

3 0.24 M 95 5.8 2.0 

4 0.47 M 458 3.0 0.6 

5 1.03 M 1766 2.0 0.4 

6 2.06 M NA NA NA 
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3.2 Performance of BEM-FMM solver within the MATLAB 2018a Linux environment 

Table 3 presents run times for the BEM-FMM solution and the corresponding relative error Eq. 

(11) in the electric field computations, respectively. We again consider two distinct observation 

spheres located 0.5 mm and 1.5 mm beneath the brain surface in Fig. 2a. The tolerance level 

iprec of the FMM algorithm is set at 0 (the relative least-squares error is guaranteed not to 

exceed 0.5%). The relative residual of the BEM-FMM iterative method is set as 1e-4. 
 

Table. 3. Speed and accuracy of the BEM-FMM solver within MATLAB 2018a Linux environment. The 

observation sphere is located 0.5 mm and 1.5 mm below the brain surface in Fig. 2a. 
 

Model # Facets total 

BEM-FMM 

solution time, 

sec 

BEM-FMM E-

field error 0.5 

mm below the 

brain surface, % 

BEM-FMM E-

field error 1.5 

mm below the 

brain surface, % 

1 0.06 M 9 2.3 2.4 

2 0.12 M 19 1.5 1.5 

3 0.24 M 34 0.6 0.7 

4 0.47 M 73 0.6 0.3 

5 1.03 M 151 0.2 0.2 

6 2.06 M 259 0.2 0.2 
 

3.3 Comparison of pre-processing effort 

The FEM approach requires volumetric tetrahedral mesh generation based on the CAD surface 

model. This operation has to be completed only once for each model, but it may require a 

significant amount of time. Table 4 reports volumetric mesh generation times in SimNIBS 2.1.1 

for the six multi-sphere models. The mesh generation process is not parallelized. In SimNIBS 

2.1.1, the volume meshing is performed using Gmsh (Geuzaine et al., 2009) using the frontal 

algorithm implemented in Tetgen (Si, 2015). 
 

Table. 4. Volumetric (tetrahedral) mesh generation in SimNIBS 2.1.1. 
 

 

While the FEM requires volumetric mesh generation, the BEM-FMM requires precomputing 

and storing potential integrals for the neighbor triangles. The number of neighbors is typically 3-

12. This operation must be completed only once for each model. It is based on a for-loop over 

all triangular facets and is trivially parallelizable in MATLAB using the parfor syntax. Table 

5 reports execution times for potential-integral computations and writing data to file, given 12 

triangular neighbor facets and using the parfor-loop with 16 cores (parpool(16)) in 

MATLAB.  
 

  

Model # Facets total Tetrahedra total Meshing time, sec 

1 0.06 M 0.26M 7 

2 0.12 M 0.72M 21 

3 0.24 M 1.8M 66 

4 0.47 M 5.05M 219 

5 1.03 M 16.43M 988 

6 2.06 M 44.64M 2678 
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Table. 5. Times necessary for precomputing and storing potential integrals for the BEM-FMM algorithm given 12 

neighbors and using the the parfor-loop with 16 cores (parpool(16)) in MATLAB. 
 

 

3.4 Comparison of post-processing effort – restoration of electric field at a surface 

Here, we compare the speed of the super-convergent approach (SCA) recently implemented in 

SimNIBS 2.1.1 and the BEM-FMM field restoration algorithm for the observation sphere located 

at 1.5 mm below the brain surface in Fig. 2a. Table 6 presents the corresponding run-times. Since 

the potential integrals are not computed at this stage, the BEM-FEM is reduced to the plain 

FMM and is therefore very fast. If the potential field integrals were included, the post-processing 

time would increase by about 1 min without a significant effect on the solution accuracy. We 

also emphasize that the SCA algorithm is not yet optimized, and that it is possible to construct an 

interpolant, and store it to very significantly speed up future computations. 
 

Table. 6. Post-processing run times of the SCA and the BEM-FEM engine when the observation sphere is located at 

1.5 mm below the brain surface in Fig. 2a. 
 

 

3.5. Operating system and hardware performance for the BEM-FMM engine 

We have also compared the BEM-FMM solution times using Linux- and Windows-based 

machines:  

A. Intel Xeon E5-2690 CPU at 2.9 GHz, Red Hat Enterprise Linux 7.5; MATLAB 2018a Linux; 

B. Intel Xeon E5-2698 v4 CPU at 2.2 GHz, Windows Server 2016 ; MATLAB 2018a Windows. 

Surprisingly, Server B significantly outperforms Server A, most likely due to the increased L1 

cache size and multithreading capabilities of the E5-2698 vs. the E5-2690. 
 

3.6. Summary of major comparison results for the multi-layered sphere 

Figure 4 below summarizes results from Tables 2 and 3 for both methods and for the matched 

computational performance metrics. For the FEM solution, the superconvergent interpolation is 

used. For the BEM-FMM solution, the prescribed value of the relative residual is equal to 1e-4.  

Model # Facets total 
Computation time 

for integrals, sec 
Saving *.mat file, 

sec 

1 0.06 M 35 1 

2 0.12 M 42 2 

3 0.24 M 55 3 

4 0.47 M 82 6 

5 1.03 M 143 11 

6 2.06 M 253 19 

Model # Facets total FEM SCA speed, sec 
BEM-FMM field 

restoration speed, sec 

1 0.06 M 3.9 1.4 

2 0.12 M 8.4 1.4 

3 0.24 M 12 1.6 

4 0.47 M 40 2.2 

5 1.03 M 165 4.2 

6 2.06 M NA 4.5 
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Fig. 4. a) – Solution time; b) – solution error of the FEM and BEM-FMM algorithms, respectively, both as functions 

of the number of facets in the model (model resolution and/or mesh density) at 1.5 mm beneath the “brain” surface; 

c) – the same result at 0.5 mm beneath the “brain” surface. 
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Figure 4a shows the corresponding simulation times of the main algorithm. The BEM-FMM 

algorithm begins to outperform the FEM algorithm when the number of surface facets exceeds 

approximately 100,000. We observe that the BEM-FMM method runs much faster for high-

resolution models. Figure 4b shows the relative error in the electric field Eq. (11) for the 

observation surface located 1.5 mm under the “brain” surface in Fig. 2a. We observe that the 

BEM-FMM method gives a smaller solution error for all mesh resolutions. The result does not 

change significantly when the observation surface is moved farther away from the brain 

interface. Figure 4c shows the relative error in the electric field Eq. (11) for the observation 

surface located 0.5 mm under the “brain” surface in Fig. 2a. We observe that the BEM-FMM 

method gives a much smaller solution error for all mesh resolutions.  

The speed advantage of the BEM-FMM algorithm also holds for the pre- and post-processing 

steps as evidenced by Tables 5 and 6. The speed of the BEM-FMM algorithm can further be 

improved by switching from default complex arithmetic to real arithmetic (resulting in an 

increase by a factor of two).  
 

4. Results for ten realistic head models. Comparison with commercial FEM solver 

ANSYS Maxwell 3D for intracranial fields  
Figure 5 shows the computation geometry including the observation line and the representative 

comparison results for head #101309 (the first head model). This figure also illustrates the field 

distribution along the coil axis: the largest primary component 𝐸𝑦 (Fig. 5a), the secondary yet 

somewhat significant component 𝐸𝑧 (Fig. 5b), and the vanishingly small secondary component 

𝐸𝑥 (Fig. 5b as well). In Fig. 5, coil current is 5 kA and the excitation frequency is 3 kHz. All 

contour plot values are in V/m. 

The Maxwell 3D project with Neumann boundary conditions, 4 adaptive mesh refinement 

passes, 30% mesh refinement rate per pass resulting in the final FEM mesh with approximately 5 

M tetrahedra, and a global energy error below 0.1% was employed. The BEM-FMM solution 

uses 20 iterations (relative residual is below 0.1% and execution time is about 100 sec on the 2.2 

GHz server), the analytical integration with twelve nearest neighbors in the integral equation (3), 

and the analytical integration within the observation sphere with the dimensionless radius 𝑅 = 2 

for the line field. 

In Fig. 5b, the BEM-FMM solution for every field component is shown by solid curves; the 

ANSYS Maxwell 3D FEM solution for the same field components is shown by dotted curves. 

We do not show the solution in air since ANSYS Maxwell becomes inaccurate in this case. 

Table 7 summarizes values of the least squares difference between the solutions obtained via 

BEM-FMM and FEM, respectively, for all three electric-field components within the head, and 

for all ten head models. The relative difference percentage was computed along the line shown in 

Fig. 5. Results of Fig. 5 are marked grey. Note that the BEM-FMM solution runs approximately 

1,000 times faster than ANSYS Maxwell 3D (including meshing time) on the same server. This 

is also faster than reported recently (Makarov et al, 2018); a further speed improvement has been 

achieved by using GMRES and converting native MATLAB loops in Eq. (6) to executable 

FORTAN DLLs running within the MATLAB shell.  

The excellent numerical agreement established in Table 7 for the dominant field component 

strongly supports the high accuracy of our method. To the authors’ knowledge, the present 

comparison scenario is by itself the first comprehensive example of this kind.  
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Fig.5. a, b) – Computation geometry, position of the observation line, and surface field distributions for head 

#101309 given 5 kA of coil current at 3 kHz; c) – electric field comparison along the line. BEM-FMM solution is 

shown by solid curves; the ANSYS Maxwell 3D FEM solution is given by dotted curves. 
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Table 7. Least squares difference percentage between the BEM-FMM and the finite element method solutions for 

the three field components within the head, and for ten head models of the Population Head Model Repository. The 

relative difference percentage was computed along the line shown in Fig. 5. Results of Fig. 5 are marked grey. 
 

 

Head 

model # 

Difference for 𝐸𝑦 (largest 

field component, %) 

Difference for 𝐸𝑧 

(secondary field 

component, %) 

Difference for 𝐸𝑥 

(vanishingly small field 

component, %) 

101309 3.5 13.1 28.0 

103111 1.4 10.5 17.0 

105014 3.2 9.2 55.5 

105115 1.8 9.2 31.7 

106016 1.8 6.8 34.8 

110411 2.5 13.0 22.5 

111716 1.6 10.6 27.8 

113619 1.6 6.3 32.2 

117122 3.1 18.7 27.9 

118932 1.6 12.6 15.5 
 

 

5. Discussion and Conclusion 
Despite significant potential advantages quantified above, the BEM-FMM algorithm is not 

without its limitations. The FMM portion of the BEM-FMM algorithm is quite nontrivial in 

implementation. The BEM piece, on the other hand, at present relies upon tuning several 

parameters (number of neighbor integrals, terminating relative residual) in order to obtain a good 

convergence.  

In contrast to this, the FEM algorithm has been extensively studied and applied across various 

engineering disciplines for decades; there are many highly reliable solvers available. Also, an 

application-specific implementation of FEM, coupled with novel solvers such as algebraic 

multigrid (AMG) preconditioners (Henson et al., 2002), can significantly speed up calculations 

when compared with the general FEM environment and a classic multipurpose solver, with no 

loss of accuracy or stability.  

Another issue is that of accessibility. The present implementation of the BEM-FMM relies 

upon proprietary software (MATLAB) while the transcranial brain stimulation modeling 

software SimNIBS is entirely open-source.  

When evaluating the error of field calculations on real subjects, we must also take into account 

other key model parameters such as quality of the segmentation (Nielsen et al., 2018) and 

uncertainties in tissue conductivity values (Weise et al., 2015). These factors may cause 

simulation errors orders of magnitude larger than the numerical errors observed in the sphere 

models. 

Finally yet importantly, it has been discussed in many sources (see Opitz et al., 2018) that the 

main limitation of the BEM formulation at present resides in its inability to model tissue 

anisotropies in a straightforward way.  
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