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Summary 
Group size distributions are instrumental in understanding group behaviour in animal populations. We 
analysed group size data of the blackbuck, ​Antilope cervicapra,​ from six different field sites to estimate 
the group size distribution of this antelope. We show that an exponentially truncated power law (called 
the polylog distribution in this paper) is the best fitting distribution, against the simple power law and 
lognormal distributions as other contenders, and the exponential distribution as a control. To show this, 
we use two likelihood based methods (AICs and likelihood ratios). Finally, we show that polylog 
distribution parameters can be used to better understand group dynamics, by using them to explore how 
habitat openness affects group behaviour. 
 
Introduction 
Animals show a spectacular variety of social grouping patterns (Krause & Ruxton, 2002). Group sizes 
vary widely among species. Within species, group sizes may vary across populations and even at small 
spatial and temporal scales within a population. For example, many species display fission-fusion groups, 
that is, groups that form by the splitting of larger groups or the merging of smaller groups. Groups in such 
populations are dynamic and vary in size through the day. Most studies on group size variation and group 
dynamics focus on the trade-offs underlying grouping patterns and measure the costs and benefits to 
individuals from being a part of a group of a particular size (Alexander, 1974; Pulliam & Caraco, 1984). 
Studies of mechanisms underlying the behaviour of social groups examine how individuals of a group 
move in space (Ballerini et al, 2008). Larger-scale studies have examined how ecological conditions may 
affect trade-offs and thereby grouping patterns in a population (Isvaran, 2007). Such studies represent 
grouping patterns in a population using measures, such as mean and Typical Group Size (Jarman 1974). 
Thus studies of adaptiveness of grouping and mechanisms associated with grouping, have typically 
focussed either on individuals in groups of particular sizes or on mean/typical group sizes in a population. 
Rarely do studies of grouping patterns attempt to understand the overall distribution of group sizes in a 
population (Bonabeau and Dagorn, 1995; Griesser et al, 2011). 
 
Understanding group size distributions in wild populations on the field can help us in testing models of 
group dynamics. This can be done by answering the question: “Does the model we propose predict the 
group size distribution observed in nature?”. It is difficult to obtain substantial data involving group 
dynamics in the field. For example, for fission-fusion groups, the exact rules involved in the merging and 
splitting of groups is unknown, and many possible rules have been reviewed in Pays et al, (2007). Group 
decisions on merging and splitting are very complex functions of numerous variables, such as group size, 
spatial location of members, duration of time the group has been in existence, etc. Measuring these 
variables is difficult, and it is relatively easier to collect data on group sizes and find their distribution. If 
this distribution does not match the one predicted by a model, it would indicate that the model needs 
improvement. 
 
A way to fully understand group size distributions is to find the Probability Mass Function (PMF) of the 
group size, f(​s​) , where: 
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f(​s​) = Pr (Randomly chosen group being of size ​s​) 
 
Group sizes can take integer values ≥ 1. Therefore, we are looking for a PMF f : N → [0, 1] where N is 
the set of Natural numbers. Several such distributions have been proposed. Okubo (1986) proposed that 
group sizes are exponentially distributed, based on maximising the entropy of the group size distribution. 
However, an unstated assumption in his model is that the group size distribution has a finite expectation. 
This is not necessarily true. Bonabeau et al (1999), working with a mechanistic model where two groups 
merge whenever they meet, derive that group sizes are power-law distributed (Table 1: zeta distribution), 
with an exponent of 1.5. Such a distribution has an infinite expectation. Intuitively, there must be a 
truncation to this heavy tailed power-law, because there are a finite number of organisms in a population, 
and because groups also split at some rate. This leads to the truncated power law. (Table 1: polylog 
distribution) 
 
A power-law or truncated power-law distribution allows the frequent occurrence of very large numbers 
(in this case, group sizes), and is often seen in the literature (Klaus et al, 2011; Clauset et al, 2007; Clauset 
et al, 2009; Griesser et al, 2011). Both these ‘heavy-tailed’ distributions often carry large variances 
(sometimes infinite variance with the simple power-law). As the terms 'power-law' and `truncated 
power-law' are ambiguous, we propose to use more formal names for the distributions involved. In this 
paper, we refer to the power-law as the zeta distribution, and the exponentially truncated power-law as the 
polylog distribution (These names are based on the normalising coefficients of these distributions). The 
polylog distribution is the zeta distribution with an exponential cutoff. Its PMF is given in Table 1, where 
Li​b​ is the logarithmic integral of order ​b​, also called the polylog function.  
 
We examine group size distributions in the model antelope ​Antilope cervicapra​, the Blackbuck. 
Blackbuck occur in open grasslands, and form groups containing members of all ages and sexes. 
Blackbuck groups follow fission-fusion dynamics, with their group sizes changing in the span of a single 
day (Mungall, 1978). Groups sizes are distributed with a high variance (Ranjitsinh, 1989).  
 
In this paper, we have contrasted all the PMFs listed in Table 1 against actual data collected from six wild 
populations of blackbuck in different years between 1998 and 2001, and different geographical locations 
across the range of blackbuck in India (Table 2). We use simple likelihood-based data analysis tools to 
compare the different models. To demonstrate the usefulness of analysing group size distributions, we test 
the effect of habitat openness on grouping. For this, we investigate how group size distribution parameters 
vary with habitat openness, and make interpretations accordingly. 
 
 

Distribution  PMF 

Exponential  (1-e​-λ​)e ​-λ(​s​-1)  

Zeta  s​-b​ / 𝜻( ​b ​) 

Lognormal  exp( -(ln​s ​- μ)​2​/2σ​2​ ) / ​s ​σ(2π)​0.5 

Polylog  (​s ​-​b​ ​e​-λ​s​)/Li​b​(e ​
-λ​) 

 
Table 1: Group Size Distributions and their PMFs​. ​s ​can take ​natural number values, except in the 

case of the lognormal distribution, where ​s ​can take all positive real values. We can calculate the 
expectation (distribution-mean), distribution-variance, etc., using these PMFs 
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Methods 
Data collection 
The blackbuck antelope, native to the Indian subcontinent, is found in a wide range of habitats, from dry 
grasslands to open woodlands (Jhala and Isvaran, 2016). They are group-living grazers. Group sizes vary 
widely both between and within populations. Grouping, in this species, appears to reflect a balance 
between the benefits of avoiding predation and the costs of increased competition for food. Average 
group sizes appear to increase with ecological conditions associated with predation-related benefits and 
decrease with those associated with food-competition (Isvaran, 2007). 
 
The data we use here were collected from six different blackbuck populations (Table 2). At 5 of the 6 
populations, regular censuses were conducted on foot during which the study area was systematically 
covered. For every group sighted, the number of animals and the sex and stage (fawn, juvenile, adult) 
were recorded. In one population, 1000 x 100 m strip transects were used to record group sizes, since the 
habitat was too dense for census methods (details of total counts and transects in Isvaran (2007)). Apart 
from social groups, male blackbuck defend mating territories from where they display to females and 
attempt to mate with receptive females that visit their territories (Mungall, 1978; Ranjitsinh, 1989; Jhala 
and Isvaran, 2016). Territorial males could be identified through their behaviour and were excluded from 
the analyses of social group size distribution (Isvaran, 2007). 
 

Geographical 
location 
 

Number of groups  Duration of  
sampling 

Location  Major habitat type 

Velavadar  701  Jan 2000 - May 2000  21​o ​56’ N, 
72​o​10’ E 

Grassland, shrubland, 
mudflats 

Rollapadu  109  August 1998  15​o​52’ N, 
78​o​18’ E 

Grassland 

Point calimere  103  October 1998  10​o​18’ N, 
79​o​51’ E 

Forest with  
grassy openings 

Rehekuri  86  October 1999  19​o​42’ N, 
75​o​44’ E 

Forest,  
grassland 

Nannaj  80  October - November 1999  17​o​41’ N, 
75​o​56’ E 

Grassland 

Tal Chhapar  52  October 1998  27​o​88’ N, 
74​o​58’ E 

Grassland, shrubland 

 
 

Table 2: Information about the six datasets​ used in this study. Data were collected as described in the 
Data collection subsection. Location and major habitat type have been reproduced from Isvaran (2005) 

 
Analysis 
For each population, we fitted all the distributions to the data, where the best possible fit was found using 
Maximum Likelihood (ML) Estimation. We used Akaike Information Criteria (AICs) and 
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Log-of-Likelihood-Ratios to evaluate the relative fits. We extensively used the python library 
powerlaw ​ written by Alsott et al (2014)  throughout the analysis. 3

 
ML estimates were arrived at as described in (Clauset et al, 2009) and were computed using the code by 
(Alsott et al, 2014). 
 
AICs were calculated for each dataset for each distribution. The AIC is a statistic that is used to quantify 
model optimality, by factoring in how well the model explains the data, as well as the complexity of the 
model. It penalises overfitting, and also enables us to compare various models. It is computed using the 
formula 
 

AIC​i​ = ​2(​k​i​ - ​ln​L​i​) 
 

where ​k​i​ ​is the number of parameters and ​L​i​ ​is the likelihood of the data under the ​i​th​ model. The AIC 
always assumes a positive value. The model with the lowest AIC is assumed to be the best model. 
 
We see in the results (Table 3) that the AICs follow the same trend across all six populations. The AIC 
values, with a few minor deviations, suggest that the following order of distributions (from better to worse 
fit) always holds: 
 

Polylog > Lognormal > Zeta > Exponential 
 

To further verify this result, we use another likelihood based method, the log-of-likelihood-ratio (LLR) 
method. This method provides a way to directly compare distributions pairwise. The LLR is defined as 
 

R​ij​ = ln ( ​L​i​ / L​j​ ​) 
 

where ​L​i​ ​and ​L​j​ are the likelihoods of the data assuming model ​i​ and ​j ​respectively. 
 
Due to the trend observed above, we compared only the following 3 pairs: (a) Exponential and Zeta; (b) 
Zeta and Lognormal; and (c) Lognormal and Polylog. As described in (Vuong, 1989) and (Clauset et al, 
2009), we have reported the normalised LLR (which we have denoted by R instead of R​norm​ for the sake of 
convenience), and the corresponding p-value. 
 
Additionally, to explore the meaning of ​b ​and λ, we examined the relation between the estimated 
parameters and habitat openness. Habitat openness was measured at the same time as the group size,s and 
the values used are from Isvaran (2005) 
 
Finally, to find the performance of frequently reported statistics, we investigated the performance of the 
mean, typical group size, and also the MLE parameters of ​b​ and λ through the simulations described in 
Appendix II. 
 
 
Results 
The MLE estimated parameter values for all distributions from Table 1, for all the datasets, are reported in 
Appendix I. 

3 ​Code required to perform our analysis is freely available at ​github.com/pminasandra/distribution-analyse 
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Across all six datasets, AICs for the polylog distribution were always the lowest, except in the Point 
Calimere data set, where the lognormal distribution has a negligibly lower AIC than the polylog (Table 
3).  Therefore, the polylog distribution described blackbuck group data sets very well. The results of the 
LLR test  (Table 4) closely agree with those shown by computing the AIC values. This confirms that the 
Polylog distribution best describes Blackbuck group data (Figure 1). Finally, we found an increasing trend 
in ​b​ and 1/λ with habitat openness (Figure 2). (Spearman rank correlation test, and the obtained ρ 
values are ​b​ vs habitat openness : ρ = 0.927, ​p ​= 0.007; and λ vs habitat openness : ρ = -0.927, ​p ​= 
0.007) 
 

  Population 

Distribution  Velavadar  Rollapadu  Point Calimere  Rehekuri  Nannaj  Tal Chhapar 

Exponential  5566.31 
(1111.01) 

711.52 
(88.21) 

588.71 
(39.58) 

480.30 
(7.31) 

639.48 
(62.51) 

475.75 
(100.9) 

Zeta  4525.83 
(70.53) 

637.35 
(14.04) 

569.44 
(20.31) 

502.28 
(29.21) 

598.14 
(21.27) 

378.96 
(4.11) 

Lognormal  4468.80 
(13.5) 

628.55 
(5.24) 

549.13 
(0) 

476.42 
(3.43) 

582.76 
(5.79) 

378.36 
(3.51) 

Polylog  4455.30 
(0) 

623.31 
(0) 

549.22 
(0.09) 

472.99 
(0) 

576.97 
(0) 

374.85 
(0) 

 
Table 3: AICs and (δAICs)​ for all datasets for all the distributions under consideration. The smallest 
AIC is in bold. Notice that, AICs almost always decrease as we go down the rows. This tells us that the 

polylog distribution is the best fit to the data. 
 

Distributions compared  Velavadar  Rollapadu  Point 
Calimere 

Rehekuri  Nannaj  Tal Chhapar 

Zeta  
vs Exponential 

R  8.91  3.26  0.76  -1.55  1.79  4.37 

p  4.91 x 10​-19  0.0011  0.4469  0.1207  0.0719  1.22 x 10 ​-5 

Lognormal  
vs Zeta 

R  6.56  3.28  3.25  3.69  2.94  2.71 

p  5.15 x 10​-11  0.0010  0.0011  0.0002  0.0032  0.0067 

Polylog  
vs Lognormal 

R  3.15  3.37  -0.03  1.16  2.81  1.98 

p  0.0016  0.0007  0.9699  0.2463  0.0049  0.0047 

 
Table 4​: ​LLR values​ with their associated ​p​-values for the distributions. The results here perfectly match 

those shown by the AIC values in Table 3.   
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Figure 1​: ​Complementary Cumulative distribution functions​ of the fits of the distributions in Table 1 

to the datasets. (except exponential, whose performance was extremely poor (Table 3 and Table 4)) and of 
the data. (A) Rollapadu, (B) Tal Chhapar, (C) Velavadar, (D) Nannaj, (E) Rehekuri, and (F) Point 

Calimere. The polylog distribution has the best fit in all cases. 
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Figure 2​:​ Polylog parameters ​b​ and 1/λ vs habitat opennes​s. Clearly, both these parameters increase 
with increasing habitat openness.​ ​1/λ is plotted because it is more intuitive, it can be interpreted as the 
group size where the power-law → exponential transition occurs. Correlations of ​b ​and λ with H.O are 

significant, as reported in Results. 
 
 
 
 
Discussion 
We compared the fit of four plausible distributions to group size data collected from six wild blackbuck 
populations. Our results indicate that group size distributions in blackbuck typically follow the polylog 
distribution and its parameters can provide insights into group dynamics and responses to ecological 
conditions. 
 
The polylog distribution was the best fit for the observed group sizes in all datasets. The only place where 
the order of fits was not clear was in the Point Calimere dataset, and in this case the lognormal performed 
almost as well as the polylog distribution. The polylog distribution was followed by the lognormal, the 
zeta, and the exponential.  
 
These datasets have been collected from populations separated by hundreds of kilometres and several 
years (Table 2). This suggests that the results will apply across all populations of blackbuck. As 
blackbuck groups show typical fission-fusion behaviour, the same results will possibly apply across 
species that follow fission-fusion dynamics. 
 
The polylog parameters, ​b ​and λ have biologically relevant meanings, and can be used to derive insights 
about group dynamics. Lower values of ​b​ and λ imply an increased probability of large groups 
occurring. In Bonabeau et al (1999) ​b ​and λ​ ​are interpreted as follows: ​b ​captures the dimensionality of 
the environment, where it increases with increasing freedom of motion, reaching a maximum value of 1.5 
when there is no constraint on movement (i.e, increasing freedom of movement decreases the 
probabilities of groups meeting, and so results in smaller groups in general). λ​ ​reflects the probability of 
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splitting of a group. Higher the λ, the more the groups tend to split. Moreover, the finiteness of the 
population size also constrains the value of λ. The values we find for ​b ​and λ​ ​(Appendix I) also agree 
well with those predicted in Bonabeau et al (1999). Further, in case of the polylog fit, the values of ​b 
estimated from our datasets tend to be close to 1, which is essentially the ‘logarithmic distribution’ used 
in Griesser et al (2011).   
 
We also show that the estimated polylog parameters ​b​ and λ can be used to make ecological inferences. 
Examining variation in habitat openness with ​b​ and λ across populations, we found that ​b ​increases with 
habitat openness. This can be explained using the interpretation of the parameters in Bonabeau et al 
(1999). The more open the habitat becomes, the less often groups meet each other due to there being 
fewer constraints on movement. 1/λ also increased (i.e λ decreased) with increasing habitat openness. 
This leads us to make the prediction that groups split less often in more open habitats. One explanation 
for this is that, in open habitats, individuals in any group can see all other members with more ease than in 
a less open habitat (Gerard et al, 2002). Due to this, cohesiveness of groups is likely to increase in more 
open habitats. 

   
Our results also have implications for testing models of group dynamics. Given our results, any model of 
group dynamics that predicts a polylog or zeta stationary group size distribution might be the appropriate 
model for group dynamics for blackbuck and other species with similar fission-fusion behaviour. Both 
predictions are correct because the polylog distribution is simply the zeta distribution truncated due to the 
splitting of groups (polylog distribution → zeta distribution as λ → 0). 
 
Mean and Typical Group Size in any heavy-tailed distribution are expected to carry large variances. 
Further, different pairs of ​b​ and λ can have the same value for these statistics. Our simulations 
(Appendix II; Fig A.2, A.3) confirm that sample means carry a large variance in the polylog distribution. 
Hence, they become difficult to use in ecological considerations. Therefore, reporting ML estimated ​b ​and 
λ​ ​as statistics of group sizes in animals following fission-fusion dynamics, alongside conventionally 
reported statistics can be informative. We find that ​b ​and λ are estimated with a bias (Appendix II; Fig 
A.4). However, the advantage in reporting these parameters is that, these values remove ambiguity in the 
data, as ​b​ and λ comprehensively capture the group size distribution. As estimates ​b​ and λ are biased 
with a consistent sign (Appendix II), reporting them is still potentially useful. 
 
To conclude, our data supports an exponentially truncated power law group size distribution in wild 
populations. This is in concordance with the predictions of the model by Bonabeau et al (1995, 1999), and 
also with other field-based observations, e.g. Griesser et al (2011). The extensiveness of our data, coupled 
with the agreement of results across six geographically distant populations, points towards the probable 
generality of this distribution of group sizes across all species that display similar behaviours in grouping.  
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Appendix I:  
Maximum likelihood estimated values of parameters 
 
 

Velavadar 
 

Exponential λ = 0.051 
Zeta b​ = 1.454 
Lognormal μ = -0.591 and σ = 2.640 
Polylog b​ = 1.314 and λ = 0.004 

 
Rollapadu 
 

Exponential λ = 0.105 
Zeta b​ = 1.501 
Lognormal μ = -0.377 and σ = 2.272 
Polylog b​ = 1.246 and λ = 0.014 
 

Point Calimere 
 

Exponential λ = 0.158 
Zeta b​ = 1.528 
Lognormal μ = 0.685 and σ = 1.494 
Polylog b​ = 1.085 and λ = 0.039 
 

Rehekuri 
 

Exponential λ = 0.169 
Zeta b​ = 1.502 
Lognormal μ = 1.011 and σ = 1.328 
Polylog b​ = 1.000 and λ = 0.050 

 
Nannaj 
 

Exponential λ = 0.051 
Zeta b​ = 1.393 
Lognormal μ = 1.077 and σ = 2.107 
Polylog b​ = 1.031 and λ = 0.0099 
 

Tal Chhapar 
 
Exponential λ = 0.029 
Zeta b​ = 1.404 
Lognormal μ = -3.512 and σ = 4.065 
Polylog b​ = 1.266 and λ = 0.002   
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Appendix II 
Performance of distribution parameters, mean, and typical group size 
 
We investigated the behaviour of two statistics, sample mean and typical group size, which are often 
reported in the literature. We assume that group sizes follow a polylog distribution. We also evaluated the 
performance of the ML estimators of the parameters of the polylog distribution. 
 
For this, we generated 500 datasets, each containing 100 data points, for each pair of ​b​ and λ shown in 
Fig A.1. The sample size of 100 was used keeping in mind ecological data. For every dataset, we 
calculated sample mean, Typical Group Size (TGS), and the ML estimated values of ​b​ and λ. Further, 
for every ​b​-λ pair, we found the expected values of the mean and the typical group size according to 
Equations A1 and A2. 
 

Expectation = Li​b​-1​(e​
-λ​) /  Li​b​(e​

-λ​)   … (A1) 
Expected Typical Group Size  = Li​b​-2​(e​

-λ​) /  Li​b​-1​(e​
-λ​)   … (A2) 

 
Fig A.2 and A.3 represent the performance of the mean and TGS. The values of these estimated from the 
data are associated with a large variance. This property needs to be kept in mind when reporting these 
statistics for ecological data.  
 

 
Figure A.1:​ Each dot represents a pair of ​b​ and λ on which the analyses mentioned in Appendix II were 

performed. 
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Figure A.2 : ​Performance of the sample mean (N = 100 numbers per dataset); a) over a large interval, and 
b) over a biologically relevant interval, as seen from our datasets. The line in both figures is the ​y​ = ​x ​line. 

Each point in these graphs corresponds to a dataset containing 100 data points. 

 
Figure A.3 : ​Performance of the Typical Group Size (N = 100 numbers per dataset);  a) over a large 

interval, and b) over a biologically relevant interval, as seen from our datasets. The line in both figures is 
the ​y​ = ​x ​line. Each point in these graphs corresponds to a dataset containing 100 data points. 
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Further, we found a negative bias in the estimator for ​b​ and a positive bias in the estimator for λ. To 
quantify bias, we use a law of large numbers approach: Bias is defined as the expectation of the deviation 
of the estimate from the true value. We approximate the expectation with the sample mean of deviations 
across 500 datasets per parameter pair.  
 
The biases so calculated increased in magnitude with increasing ​b​ and λ. Fig A.3 shows the effects of 
bias over ​b​-λ space. Table A.T1 provides the values of bias at the points analysed. 
 

 
Figure A.3​ ​: ​Biases in the parameters of the polylog distribution; a) Bias in estimating ​b​, and b) Bias in 
estimating λ. The bias values are provided in Table A.T1, and these have been interpolated using the R 

package by Akima et al (2013) to make this graph. Bias in ​b​ is negative, whereas in λ it is positive. Both 
biases increase in magnitude with increasing ​b​ and λ. In a) Blue → Black is increasingly negative bias, 

whereas in b), Red → White is increasingly positive bias. 
 

       

b  λ  Bias in 
estimator for ​b 

Bias in  
estimator for λ 

1.1  0.0001  -0.0517240657  4.18272173660626E-05 

1.1  0.001  -0.0627605676  0.000255925 

1.1  0.01  -0.0753831328  0.0019232062 

1.1  0.1  -0.0668611078  -0.0044691957 

1.15  0.0005  -0.0800802731  0.0002415001 
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1.15  0.005  -0.0971468657  0.0012575294 

1.15  0.05  -0.1109772273  0.0032359902 

1.2  0.0001  -0.0702560694  7.98750961683572E-05 

1.2  0.001  -0.0988914727  0.0005694297 

1.2  0.01  -0.1317045298  0.0062935732 

1.2  0.1  -0.1455510317  0.0078269929 

1.25  0.0005  -0.0950898546  0.0003928655 

1.25  0.005  -0.1409856238  0.0034141731 

1.25  0.05  -0.1694377605  0.0071560807 

1.3  0.0001  -0.0886319206  0.000150656 

1.3  0.001  -0.1184297104  0.000790059 

1.3  0.01  -0.172071277  0.0073755699 

1.3  0.1  -0.2203191987  0.0284525388 

1.35  0.0005  -0.1145302201  0.0006079532 

1.35  0.005  -0.1711898352  0.0042294469 

1.35  0.05  -0.2312093655  0.0148760248 

1.4  0.0001  -0.1080333293  0.0003388937 

1.4  0.001  -0.134159906  0.0010754725 

1.4  0.01  -0.2090150198  0.0073978483 

1.4  0.1  -0.2927827061  0.0502483753 

1.45  0.0005  -0.140940454  0.0011916183 

1.45  0.005  -0.1895888931  0.0050122603 

1.45  0.05  -0.2712471829  0.0217840382 

1.5  0.0001  -0.1339852179  0.0005981453 

1.5  0.001  -0.1644524123  0.0018955551 
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1.5  0.01  -0.23399581  0.0088747834 

1.5  0.1  -0.3471007147  0.0757085169 

 
Table A.T1​ : Biases in the estimators for ​b​ and λ as functions of ​b​ and λ. Each ‘bias’ in the third and 
fourth column represents the deviation of the estimate from the true value, averaged across 500 datasets.  

 
Mean and TGS are estimated with a large variance, deviating considerably from their true values. MLE 
parameters ​b​ and λ are estimated with biases. However, the biases are consistent in sign over the entire 
biologically valid range of values. Due to this, ​b​ and λ can still be used in statistical analyses. 
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