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Abstract 

In this paper, we present the results of a large-scale analysis of event-related responses based on 

raw EEG data from 17 studies performed at six experimental sites associated with four different 

institutions. The analysis corpus represents 1,155 recordings containing approximately 7.8 million 

event instances acquired under several different experimental paradigms. Such large-scale analysis 

is predicated on consistent data organization and event annotation as well as an effective automated 

pre-processing pipeline to transform raw EEG into a form suitable for comparative analysis. A key 

component of this analysis is the annotation of study-specific event codes using a common 

vocabulary to describe relevant event features. We demonstrate that Hierarchical Event 

Descriptors (HED tags) capture statistically significant cognitive aspects of EEG events common 

across multiple recordings, subjects, studies, paradigms, headset configurations, and experimental 

sites. We use representational similarity analysis (RSA) to show that EEG responses annotated with 

the same cognitive aspect are significantly more similar than those that do not share that cognitive 

aspect. These RSA similarity results are supported by visualizations that exploit the non-linear 

similarities of these associations. We apply temporal overlap regression to reduce confounds 

caused by adjacent events instances and extract time and time-frequency EEG features (regressed 

ERPs and ERSPs) that are comparable across studies and replicate findings from prior, individual 

studies. Likewise, we use second-level linear regression to separate effects of different cognitive 

aspects on these features, across all studies. This work demonstrates that EEG mega-analysis 

(pooling of raw data across studies) can enable investigations of brain dynamics in a more 

generalized fashion than single studies afford. A companion paper complements this event-based 

analysis by addressing commonality of the time and frequency statistical properties of EEG across 

studies at the channel and dipole level. 
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1 Introduction 

The main goal of this work is to establish the feasibility of large-scale EEG 

(electroencephalography) mega-analysis (pooling of raw data across studies) by jointly analyzing 

multiple EEG studies representing different paradigms, headsets, subjects, and experimental sites. 

This work is motivated by the success of data-pooling efforts for other neuroimaging modalities 

such as fMRI (functional magnetic resonance imaging) (Costafreda, 2009) and the need to 

establish reproducible, generalizable observations in EEG (Jas et al., 2018). 

EEG as a neuroimaging modality provides some unique capabilities such as the ability to record 

behavior in natural settings. However, registration of EEG measurements is complicated by the 

significant variability introduced by subject motion, muscle activity, eye activity, headset 

placement, signal transmission media (hair, scalp, and skull), as well as recording issues such as 

loose or damaged sensors. Intrinsic differences in the recording systems, themselves, as 

demonstrated by Melnik et al. (Melnik et al., 2017) also introduce significant variability. 

Compared to fMRI, there is less agreement on recording standards for preprocessing of EEG data 

or on methods of reporting results, making it difficult to perform meta-analyses except at very 

qualitative levels.  

The lack of agreed-upon standards for EEG suggests that pooling of raw EEG data across studies 

may be more promising than meta-analysis (pooling of analysis results) because it eliminates the 

significant variability introduced by differing choices in preprocessing steps (e.g., referencing, 

filtering, artifact removal). This paper adopts a particular data organization and an automated 

preprocessing suite to facilitate computation (Bigdely-Shamlo et al., 2015) (Bigdely-Shamlo et al., 

2016a) (Bigdely-Shamlo et al., 2016b) (Kleifges et al., 2017). However, the main results of this 

paper are not strictly tied to the preprocessing methodology. Rather, the important element is the 

uniformity of data processing in a “reasonable” but automated (i.e., identical) manner. Based on 

the assumption that “clean” EEG can be produced in some standardized fashion, we consider three 

important questions regarding mega-analysis: 

1) How can the common properties of events be isolated and compared across experiments 

that differ in many details? 

2) How can the effects of adjacent events be isolated in the face of overlapping responses and 

potential confounds within individual experiments? 

3) How can variability introduced by subject, headset, and other factors be properly identified 

and partitioned to understand the fundamental nature of the underlying neural responses.  

We investigate the first question by introducing the notion of a “cognitive aspect”, which is 

specified by annotating experiment-specific event codes using a common ontology called 

Hierarchical Event Descriptors (HED tags). We then analyze these cognitive aspects across studies 

to isolate particular effects based on concepts rather than event codes. To address the second 

question, we use an implementation of temporal overlap regression similar to that proposed by 

Kristensen et al. (Kristensen et al., 2017) with some enhancements to support large-scale 

automated analysis. We address the third issue by augmenting this regression with a hierarchical 
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organizational model. The model allows separation of subject, headset, paradigm, and cognitive 

aspects in a manner that is scalable and generalizable across diverse collections of EEG datasets. 

The paper provides several demonstrations of the efficacy of this approach in comparison with 

traditional analyses. The paper also uses representational similarity analysis (RSA) (Kriegeskorte 

et al., 2008) to assess the statistical significance of the relationship between cognitive aspects and 

EEG signal patterns, as well as t-distributed stochastic neighbor embedding (t-SNE) (Van Der 

Maaten and Hinton, 2008) to visualize these relationships. 

 

The paper is organized as follows. The Methods section describes the experimental data and 

introduces the notion of cognitive aspects as realized by HED tags. After briefly describing the 

automated pipeline that facilitates processing, the paper describes the implementation of temporal 

overlap regression and second-level hierarchical modeling. The paper also defines the EEG signal 

pattern and HED tag presence dissimilarity measures needed to apply RSA. The Results section 

follows a similar organization with a presentation of results on the information content and 

statistical properties of cognitive aspects across heterogeneous studies. We then provide a 

comparison of traditional averaging versus overlap regression in the context of multiple studies 

and use a second-level linear model to extract patterns associated with HED tags that are common 

across studies. Finally, we use RSA to show which HED tags are associated with EEG signal 

patterns that are repeated consistently across studies. The Discussion section offers a perspective 

on how these results compare to previous reports from individual studies as well as directions for 

future research. 
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2 Methods  

Table 1 summarizes the 17 studies used in this analysis. The appendix of a companion paper  

(Bigdely-Shamlo et al., 2018) provides additional details about these studies. All studies were 

conducted with voluntary, fully-informed subject consent and were approved by the Institutional 

Review Boards of the respective institutions. Each EEG dataset was converted to an EEGLAB 

EEG structure (Delorme and Makeig, 2004) (Delorme et al., 2011).  

 

Table 1. Summary of datasets used. Subjects may overlap across studies at the same site. The Set 

column (B = BioSemi, N = Neuroscan) specifies headset type and number of channels. 

Dataset Site Set Rec Subjects Events Codes Minutes 
Unique 

HED strings 

Cue ARLT B-64 33 17 297142 33 1525 38 

GuardA ARLS B-256 29 27 211378 37 1461 35 

GuardB ARLS B-256 22 21 169845 31 1173 31 

LKBase 

ARLH B-64 21 21 

1061315 35 7919 38 ARLS B-256 81 59 

ARLT B-64 28 28 

 ARLH B-64 21 21 

518199 27 3921 36 LKCal ARLS B-256 127 59 

 ARLT B-64 97 75 

Speed ARLT B-64 61 32 442085 26 2697 36 

Traffic ARLT B-64 30 29 177937 44 1389 55 

Mind ARLT B-64 59 20 291979 50 1813 57 

RSVPB ARLS B-256 31 27 683108 38 1970 36 

RSVPC ARLH B-64 51 17 82366 64 392 47 

RSVPE ARLS B-256 59 10 1292141 38 3652 36 

RSVPI ARLH B-64 72 18 218098 45 1080 36 

DAS NCTU N-62 201 103 1219933 67 5551 52 

DD NCTU N-30 60 15 203240 26 1006 25 

LKwAF NCTU N-30 11 10 95363 14 880 20 

ACC TNO B-64 47 15 322528 57 1269 55 

RSVPU UCSD B-256 14 8 484194 16 980 37 

Total   1155 632 7770851 648 38680 192 

 

The event types in each study were identified by study-specific event codes provided by the 

original experimenters. The data from the studies was otherwise unprocessed, with one exception. 

The data acquired from Neuroscan headsets (N-30 and N-62) was automatically referenced to 

mastoids as part of the acquisition process.  
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2.1 Data organization and preprocessing 

As mentioned in the Introduction, standardization of EEG for data sharing is less mature than for 

fMRI, and standards for preprocessed EEG have not yet been universally adopted. However, the 

two essential elements required for mega-analysis of the type proposed in this paper are the 

availability of data that has been effectively cleaned using the same automated pipeline and events 

that have been annotated using a common event annotation system. This subsection describes the 

particular automated pipeline we used to organize and preprocess the data, which is the starting 

point of the analysis. We describe the event annotation process in a subsequent subsection.  

 

We used several open-source tools that we have developed to do the automated preprocessing. To 

facilitate preprocessing we organized each study by placing it in a containerized format using the 

EEG Study Schema (ESS) as described in Bigdely-Shamlo et al. (Bigdely-Shamlo et al., 2016b). 

ESS, which is part of the BigEEG technology stack (BigEEG Workflow, 2018), allows 

specification, in machine-readable format, of channel labels and locations as well as meta-data 

such as subject and task information about each recording. 

 

We then applied the PREP pipeline to all studies (Bigdely-Shamlo et al., 2015). After removing 

line noise from each data recording, PREP interpolates noisy channels and then calculates and 

removes the robust average reference from each recording. Next, our pipeline removes non-EEG 

channels from each recording, assigns 10-20 labels to channels that do not have standard labels 

(e.g., 256-channel BioSemi caps) based on channel distances to standard 10-20 locations (Jurcak 

et al., 2007), and selects a maximum of 64 channels based on the 64-channel standard 10-20 

configuration. We down-sampled to 128 Hz and applied a 1690-point high-pass filter at 1 Hz using 

the pop_eegfiltnew() function of EEGLAB to remove low-frequency drifts. 

 

The next stage of preprocessing deals with eye events and eye artifacts. First, we apply BLINKER 

(Kleifges et al., 2017) to channel data to identify latencies associated with different phases of 

blinks and insert corresponding event markers into EEG.event. BLINKER also extracts a 

continuous “blink” signal that follows the blink-induced EEG. We used the inserted blink events 

and the continuous “blink” signal in later processing. 

 

We used a combination of independent component analysis (ICA) and regression to remove eye 

movement activity. After performing Infomax ICA (Bell and Sejnowski, 1995) on data not 

containing outlier amplitudes as described in Mullen et al. (Mullen et al., 2015), we applied 

EyeCatch (Bigdely-Shamlo et al., 2013) to identify and remove independent components (ICs) 

associated with eye movements. We also regressed out both the effects of blink events and the 

continuous blink signal returned from BLINKER. This regression used the same temporal overlap 

procedure as described in the next section. However, blinks are assumed to be fixed patterns within 

an interval of [−1, 1] seconds time-locked to the peak amplitude of the blink, while the other event-

related analyses presented in this paper used intervals of [−2, 2] seconds time-locked to the event 

onset. Except where otherwise noted, the analyses described in this paper used the following subset 

of 26 channels common across all of the recordings: Fp1, Fp2, F3, Fz, F4, F7, F8, FC3, FCz, FC4, 

FT7, FT8, C3, Cz, C4, TP7, TP8, CP3, CPz, CP4, P3, Pz, P4, O1, Oz, and O2.  
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2.2 Extraction of event-related features at the recording level 

We extracted four types of event-related features from continuous EEG data as shown by the 

pipeline of Figure 1. Time domain features include traditional event related potentials computed 

by averaging (ERPs) and by temporal overlap regression (rERPs). Time-frequency domain 

features include event-related spectral perturbations computed by averaging (ERSPs) and by 

temporal overlap regression (rERSPs). We gathered these features for all the recordings into a 

single database (LARG) for efficient analysis and hierarchical modeling. 
 

Figure 1. Overview of the pipeline for computing event-related features. 
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We computed event-related features based on intervals of [−2, 2] seconds time-locked to the 

specified events, either by averaging (for traditional ERPs and ERSPs) or by incorporation into a 

design matrix (for regression-based rERPs and rERSPs). 

 

To compute ERPs, we first low-pass filtered the data at 20 Hz using the pop_eegfiltnew() function 

from EEGLAB and then extracted trials time-locked to each event code in each recording. We 

randomly selected a maximum of 1000 instances of each event code in each recording, with no 

two selected event instances corresponding to the same code allowed to be closer than 0.5 seconds. 

This sub-selection is crucial for processing data from Rapid Serial Visual Presentations (RSVP) 

experiments, which often include thousands of non-target events in close proximity to each other.   

 

To detect outlier epochs, we concatenated all selected trials of a recording together to form a single 

channels × time array and robust z-scored each channel (subtracting the channel median and 

dividing by 1.4826 × the median absolute deviation for that channel). We then formed an epoch 

rejection mask by marking those epochs whose mean (over channels × time) absolute z-score was 

greater than 3 as outlier trials. We calculated ERPs by averaging unnormalized non-outlier trials 

for each event type in each recording. The z-score normalization was only used for outlier 

determination. 

 

To generate time-frequency data, we applied the discretized continuous wavelet transform (using 

the MATLAB cwt function) to the continuous EEG time course associated with each channel to 

obtain a time-varying amplitude spectrogram (square root of power of 50 frequencies 

logarithmically sampled between 2 and 40 Hz). We scaled the resulting amplitudes by subtracting 

the median and then dividing by 1.4826 × the median, with median computed separately at each 

frequency over all time points for each recording. 

 

We concatenated the time courses of the selected trials in a recording for each (channel, frequency) 

pair separately, performed a robust z-scoring across time separately for each (channel, frequency) 

pair, and marked trials with mean absolute robust z-score (over time × frequency × channel) greater 

than 3 as outlier trials. As with ERPs, z-score normalization is only used for outlier determination. 

We calculated ERSPs by averaging the unnormalized non-outlier trials for each event type and 

each channel in each recording. Because outlier detection requires all of the trials to be kept in 

memory simultaneously, we down-sampled the trials to 40 Hz for the ERSP calculations due to 

performance considerations. 

 

We computed regression-based features (rERPs and rERSPs) on continuous data separately for 

each recording, excluding event types in a recording with fewer than 10 instances or events types 

whose instances frequently coincide with other events. For the analysis of this paper, we 

implemented a “BigEEG friendly” version of the regularized temporal overlap regression 

algorithm described in (Kristensen et al., 2017) for regularized temporal regression-based feature 

extraction. We refer to this algorithm as Temporal Hierarchical Overlap Regression (THOR). 

THOR includes an iterative method for finding and ignoring time points having outlier values. On 

each iteration, THOR fits a general linear model trained on non-outlier values identified in the 

previous iteration and computes regression residuals. It then marks a time point as an outlier (by 
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removing it from the regression) when either (a) the robust z-score of the residual (Euclidean) 

amplitude is higher than 30, or (b) the smoothed (with a 120-point forward and backward box 

smoothing) residual amplitude has a robust z-score higher than 5. The iterations continue until 

either less than 0.001 of the time points change their outlier designation in an iteration or 50 

iterations complete. While our pipeline takes continuous EEG with eye artifacts removed, muscle 

and other artifacts remain, and this iterative procedure allows THOR to reduce model errors due 

to artifacts. 

 

THOR uses the Generalized Cross Validation (GCV) (Golub et al., 1979) (Chung and Español, 

2017) method to select the regularization (or ridge) parameter, λ, for the ridge regression model. 

GCV can be viewed as a rotation-invariant version of the ordinary cross validation method (also 

known as leave-one-out cross-validation) that seeks to find the value of λ that, given a sample of 

n measurements, minimizes the mean square error of the prediction of each measurement from a 

model fit to the remaining n − 1 measurements. The optimization of the GCV curve yields a λ that 

minimizes the tradeoff between the prediction error and the complexity of the model, thereby 

guarding against overfitting. The GCV is a model selection criteria that has been extensively used 

in the brain imaging literature (Subramaniyam et al., 2010) (Hu et al., 2018). 

 

We gather the resulting event-related patterns or features (ERPs, ERSPs, rERPs, rERSPs) into a 

database to facilitate analysis. Each feature is associated with a study-specific event code and a 

recording ID. These features also have as associated metadata, subject information and the HED 

tags associated with the event code. The HED tags describe the essential elements of events in a 

study-independent way as described in the next section. 

 

2.3 Capturing cognitive aspects of events using HED tags 

EEG studies typically use study-specific codes to annotate events. Processing a heterogeneous 

collection of datasets requires manual translation of codes into a common language. This process 

is more complex than just translating all potential “target” events to have an event code “target.” 

In one study, the target could be a red square in one block of trials and a blue triangle in another.  

Another study could use faces rather than shapes as targets, or auditory tones rather than visual 

stimuli. Are these differences important?   

 

The HED (Hierarchical Event Descriptor) system (Bigdely-Shamlo et al., 2016a) proposes a semi-

structured, standardized vocabulary for annotating events using comma-separated strings of HED 

tags (paths from the HED schema hierarchy) (HED-schema, 2018). A red triangle target event 

might have tags: 

 

Participant/Effect/Cognitive/Target  

Item/2D shape/Triangle  

Attribute/Visual/Color/Red 

The HED event tagging system enables complex queries to look for patterns across studies – one 

could focus on all targets, or just on red targets, or on triangles. Paradigm-specific details can be 

annotated explicitly and then processed or ignored during analysis. Some analyses require the 
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unrolling of HED tags into their component path prefixes. For example Attribute/Visual/Color/Red 

is unrolled into the following path prefixes: Attribute/Visual/Color/Red, Attribute/Visual/Color, 

Attribute/Visual, and Attribute. Each path prefix is itself a valid HED tag, encompassing a broader 

spectrum of event types. 

The underlying assumption for HED tagging is that each event is associated with zero, one, or 

more cognitive phenomena, and these phenomena are relatively separable. We refer to these 

cognitive phenomena as cognitive aspects. Figure  illustrates how cognitive aspects, as captured 

by HED tags, disassociate event properties from study-specific codes to facilitate the identification 

of cognitive effects across studies. The Oddball aspect captured by HED Tag 1 only documents 

event code A1 of study A, while the Error feedback aspect captured by HED Tag 2 documents 

event code An of Study A and event code Z1 of Study Z, but not event codes A1 or Zm of those 

respective studies.  The Visual effect aspect captured by HED Tag q, on the other hand, documents 

event A1 of Study A and both event codes Z1 and Zm of Study Z.  Thus, the HED tagging mechanism 

enables the use of automated methods to isolate cognitive aspects such as Error feedback across 

different events within and across studies. This disassociation is essential for studying complex 

effects on a large scale.  

 

 
Figure 2. Illustration of how HED tags disassociate the properties of events from their study-specific codes to encode 

common cognitive aspects across studies. 

 

We use Shannon entropy to characterize the diversity of event instances associated with each tag, 

i.e. how many different event codes these encompass and in which proportions. The more diverse 

the events associated with a tag are, the less likely it is that confounds will emerge (due to 

idiosyncrasies of patterns associated with each event code). Let 𝑆𝑡
𝑘 be the number of occurrences 

of HED tag k for a particular study-specific event code, t. Then 𝑝𝑡
𝑘 = 𝑆𝑡

𝑘 ∑ 𝑆𝑡
𝑘

𝑡⁄  is the probability 
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that an event instance matching the tag k is from an event with event code t. The Shannon entropy 

(in nats) is:  

                                                                   − ∑ 𝑝𝑡
𝑘 𝑙𝑜𝑔 𝑝𝑡

𝑘
𝑡                                                                    (1) 

 

Here we have assumed that events with different codes are truly different. We also unroll each 

HED tag into its component path prefixes for the analysis, since the depth of a given HED tag is 

determined (somewhat arbitrarily) by the level of detail provided by the annotator. 

 

The experimenters or their support staff initially annotated the study-specific event codes using 

the HED tag system. Since the quality of multi-study analysis depends on the consistency of the 

assignment of HED tags to study-specific event codes by annotators, two people who did not 

perform the initial annotation reviewed the annotations across all of the studies for consistency 

and made several corrections after discussion with the experimenters and annotators. In some cases 

the HED hierarchy itself  (HED-schema, 2018) was modified to accommodate the needed 

vocabulary. Once a consensus mapping of study-specific event codes to HED tags was created, we 

included the annotations for the individual events in the EEG.event.usertags field of the 

EEGLAB EEG structure for each recording. 

 

2.4 Common cognitive aspects of event-related features across studies 

Each extracted event-related pattern (ERP, ERSP, rERP, rERSP) is a model of brain dynamics for 

a single study-specific event code and a particular recording. Likewise, each event code is 

associated with a set of HED tags as illustrated in Figure 2. A straightforward way to understand 

commonality and variability of these patterns and their relationship to underlying cognitive aspects 

across studies is to average patterns labeled with a particular HED tag. We call this analysis method 

aspect averaging (AA). Each tag is unrolled into its path prefixes to select the patterns to average. 

 

To obtain a more detailed systematic understanding of the underlying relationships, we also 

implemented a second-level linear regression model (General Regression of Aspects and Details 

or GRAND) as illustrated in Figure 3. GRAND uses three types of factors in its design matrix: 

recording identifiers, study-specific event codes, and cognitive aspects (HED tags). Each event-

related pattern has a unique study-specific event code and recording identifier, but can be 

associated with many cognitive aspects. These cognitive aspects (e.g., Sensory 

presentation/Visual, or Participant/Effect/Cognitive/Target or Action/Button press) are captured 

by the HED tags assigned to the event code. The event code factors capture variability due to 

paradigm differences across studies, while the recording factors capture subject/session/headset 

variability. HED tag factors capture commonalities across events from different studies.  
 

First level regression or averaging over recording events of a given event type produces a pattern 

(i.e., rERP, rERSP, ERP, or ERSP), Pn, for each of the 𝑁 unique (event code, recording) pairs in 

the data collection. Second level regression (GRAND) employs 𝑀 =  𝑇 +  𝑅 +  𝐻 factors, where 

T is the total number of distinct study-specific event codes in the collection, R is the total number 

of recordings, and 𝐻 is the total number of selected cognitive aspect factors, conveyed by HED 

tags. GRAND calculates the patterns, Qm, associated with the M factors based on the linear model:  
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𝑃𝑁×𝐷 = 𝐹𝑁×𝑀𝑄𝑀×𝐷 + 𝜖𝑁×𝐷                                                        
 

D is the size of the event-related pattern, and F is the design matrix for the regression. The 

optimization problem for GRAND is: 

 

 �̂�𝑀×𝐷 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑄(‖𝑃𝑁×𝐷 − 𝐹𝑁×𝑀𝑄𝑀×𝐷‖2 + 𝜆‖𝑄𝑀×𝐷‖2) 

 

where λ is a regularization parameter estimated using the generalized cross validation method 

described previously. 

 
Figure 3.  GRAND models each (Event-code, Recording) EEG pattern as a sum of a recording-specific pattern, a 

study-specific pattern associated with each unique event code in the study, and a pattern for each HED tag present in 

the annotation of the events of that recording. The patterns are added to the LARG database for analysis. 

 

Outlier (Event-code, Recording) pairs are detected and excluded from regression by an iterative 

method similar to that used by the first-level THOR models. On each iteration, GRAND computes 

a linear model based on non-outlier data and applies the model to all of the data to obtain residuals. 

Outliers for the iteration are defined as (Event-code, Recording) pairs with residuals exceeding a 

robust z-score of 5. A maximum of 100 iterations are performed, with an early termination criterion 

of no change in outlier designations after one iteration.  
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2.5 Statistical and visual analysis of event-related patterns across studies  

In addition to the traditional visualizations of ERP and ERSP patterns, we used both visual and 

statistical analysis to explore the relationships between patterns and cognitive aspects across 

studies. For visualization, we applied t-SNE (t-distributed stochastic neighbor embedding) to 

project high-dimensional feature vectors onto a two-dimensional (2D) space. The idea is that given 

a normalization and distance metric, high-dimensional vectors that are similar to each other (e.g., 

relatively “near” each other in the high-dimensional space) will project to nearby points in the low-

dimensional 2D subspace. A cluster in the 2D subspace thereby indicates a group of feature vectors 

that are more similar to each other, relative to other features. 

 

For example, to analyze rERSPs, we calculated an rERSP for each study-specific event code and 

each of 26 common channels in each recording. We formed a vector by concatenating the rERSPs 

of these channels for a recording and normalized using z-scoring. The t-SNE visualizations project 

each normalized vector to a point in a 2D space. We color-code each point based on its metadata 

to identify clusters. The t-SNE visualizations of this paper use the algorithm and source code of 

van der Maaten and Hinton (Van Der Maaten and Hinton, 2008) (Van Der Maaten, 2014). For 

ERSP patterns we used logarithmically sampled frequencies and a time interval of [−1, 1] seconds 

relative to event onset. 

 

We used representational similarity analysis (RSA) (Kriegeskorte et al., 2008) to quantify the 

relationship between event-related signal patterns and the HED tags associated with these event 

codes (e.g., are ERPs associated with two event codes that both contain the HED tag “Target” 

more likely to be similar than would be expected from a random association). We constructed two 

types of similarity matrices: one for EEG signal patterns and one for the presence of HED tags as 

illustrated in Figure 4.    

 
Figure 4. Schematic of representational similarity analysis (RSA) strategy used to ascertain the statistical similarity 

between EEG event-related signal features and their associated HED tags. Here Zi is a z-scored pattern (ERP, rERP, 

ERSP or rERSP) associated with a study-specific event code Ei. The entries of 𝑓 are the correlations between the 

patterns associated with the respective event codes. The entries of the matrix hk on the right measure the overlap in 

HED tags associated with the respective event codes, Ei and Ej. 
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Let Zi be a z-scored feature associated with a study-specific event code, Ei. To obtain Zi for an 

rERP pattern, for example, we first performed a normalization using a z-score transform on the 

vectorized pattern associated with each (event type, recording) pair. We concatenated data from 

all channels and times before this transformation. We then averaged these z-score transformed 

rERPs for each Ei across all recordings in the study to obtain Zi (see Figure 4, left). We computed 

the pattern similarity matrix 𝑓(𝑍𝑖 , 𝑍𝑗) as the Pearson correlations of (Zi,, Zj) pairs. We computed 

rERSP patterns similarly by concatenating data for all channels, times, and frequencies prior to z-

score normalization. While the similarity computation can use either trial average features (ERPs 

or ERSPs) or temporally regressed features (rERPs or rERSPs), regression reduces confounds due 

to event overlap. 

 

The second similarity matrix represents concurrence of the presence or absence of the association 

of a HED tag k for event codes Ei and Ej (see Figure 4, right). Let H(Ei) be the set of HED tags 

associated with the study-specific event code Ei. The aspect similarity matrix, hk(Ei, Ej) is defined 

as: 

 

ℎ𝑘(𝐸𝑖 , 𝐸𝑗) = 𝑋𝑁𝑂𝑅(𝑡𝑎𝑔𝑘 ∈  𝐻(𝐸𝑖), 𝑡𝑎𝑔𝑘 ∈  𝐻(𝐸𝑗) ) 

 

We computed RSA separately for each HED tag or HED tag prefix, tagk. Since we examined 

several such tags, there are a number of secondary RSA similarity matrices, each associated with a 

different tag. We first selected a set of HED tags based on information content and on the number 

of occurrences of the tag in the corpus. We then computed the secondary similarity matrix value 

hk(Ei, Ej) for the kth eligible tag as 1 if the kth tag appears in both Ei and Ej or 0 if the kth tag does 

not appear in both Ei and Ej. 

 

We converted each similarity matrix (based on patterns or tags) to a dissimilarity matrix by 

performing an elementwise 1 − x operation. Following the RSA steps prescribed in (Kriegeskorte 

et al., 2008), we determined whether there is a statistically significant relationship between 

dissimilarities in EEG patterns and differences in event type tag memberships. We generated 

10,000 random permutations of each EEG pattern dissimilarity matrix and used Spearman 

correlation with each tag membership dissimilarity matrix (upper triangular part only) for the RSA 

computation. This resulted in a single significance value for each tagk for each type of EEG pattern 

(e.g., rERP, rERSP, or the average of their two associated dissimilarity matrices).  
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3 Results  

3.1 Temporal overlap regression reduces confounds of overlapping events 

Temporal overlap regression provides an important analysis tool for reducing confounds among 

overlapping events in order to discover generalizable, statistically significant patterns associated 

with events and with cognitive aspects. Figure 5 illustrates the confound issue for a single subject 

in the RSVPU study for data before eye activity removal. The left column shows patterns obtained 

by averaging epochs associated with distinct study-specific event codes (Target, Non-Target, and 

Eye blink/Max), while the right column shows regressed ERPs associated with the same event 

codes. In these graphs and in all subsequent pattern-related graphs, gray areas indicate lack of 

statistical significance (p > 0.01, FDR corrected). 

 

Figure 5. Comparison of averaging and temporal overlap regression for subject 1 in UCSD-RSVPU before removal 

of eye activity. The left column shows ERPs obtained by epoch averaging for events codes Target, Non-target, and 

Eye blink/Max, respectively. The right column shows the rERPs obtained with temporal overlap regression using the 

same event codes. Black dashed boxes highlight confounds. 

 

RSVP studies are particularly prone to confounds due to the rapid presentation of interspersed 

target and non-target images. The 12 Hz presentation rate clearly induces an SSVEP (steady state 

visually evoked potential) or entrainment pattern throughout the four-second epoch, shown in the 

top and middle graphs of the left column of Figure 5. The SSVEP confound of rapid presentation 

has been mostly eliminated in the regressed ERPs displayed in the right column. The Non-target 

ERP pattern appears to be a summation of image presentation ERPs and time-shifted Eye 

blink/Max ERP patterns. The roles of blink alignment and visual system entrainment during RSVP 

have been widely studied (Kranczioch, 2017), and these effects clearly represent an important 
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factor in many visually related tasks. Since our eye-removal techniques explicitly remove blinks 

from the time signal using regression, these confounds are less apparent in the ERPs calculated 

from the signal after our eye-artifact removal process. 

 

Temporal overlap regression also removes other types of confounds and reduces spurious 

experimental effects as illustrated by Figure 6. These ERSPs come from channel Fz of a single 

recording in the DAS experiment after eye activity removal. The DAS distracted driving 

experiment involved the presentation of animal words on the left or right side of the dashboard 

requiring an immediate response (button press) for animals (targets). Because of the protocol 

design, a right-side presentation was likely to be surrounded by left-side presentations and vice 

versa. All word presentations were exactly 1500 ms apart. Hence simple averaging conflates the 

effects of adjacent left-side and right-side presentation (left-side and right-side presentations had 

similar ERSP patterns). Regression removes this confound and provides a much cleaner estimate 

of the underlying pattern. 

 
Figure 6. An example of a recording’s ERSP and rERSP for channel Fz time-locked to right-side presentations of 

visual words in the DAS experiment for the first recording in the collection. The left column shows an ERSP obtained 

by averaging, while the right column shows the corresponding rERSP obtained by temporal overlap regression. The 

features are time-locked to NCTU-DAS event code number 22. 
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3.2 Regressed cognitive aspects show similar neighborhood structure across studies 

The previous section illustrated how temporal overlap regression exposes and reduces 

experimental confounds in both ERP and ERSP analysis for single recordings. To understand how 

cognitive aspects isolate similar EEG patterns across recordings and studies, we used combined 

temporal overlap regression and t-SNE visualization (Figure 7) to project ERSP features from the 

entire collection onto a two-dimensional subspace and examined whether patterns labeled with the 

same cognitive aspects projected to similar locations.  

 

 
Figure 7. 2D t-SNE visualization of rERSPs across all 17 studies for the 26 common channels. Each point represents 

a vector formed by the rERSPs concatenated over all channels and frequencies for the interval [−1, 1] seconds 

corresponding to a study-specific event code for one recording. Points are color-coded by the most prominent HED 

tag associated with the event code. The median coordinates of points associated with a particular HED tag are marked 

with a star. Inset plots of the average of the rERSPs of all points associated each HED tag are shown for channel FCz. 

 

The t-SNE projection of Figure 7 represents a dramatic dimensionality reduction from the original 

26×50×40×2 = 104,000 dimensional space down to 2 dimensions. However, the strong clustering 
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associations of these projections with HED tags suggest significant pattern similarity for the 

corresponding rERSPs. Points of the same color that are tightly clustered and whose median 

positions fall close to the visual centers of the respective clusters have few outliers, suggesting that 

the corresponding rERSP features have very similar behavior across subjects and studies. Points 

of the same color that are more widely spread and whose medians do not fall within one of the 

prominent sub-clusters, likely reflect the diverse nature of the experimental paradigms that share 

the associated cognitive aspect. 

 

The most prominent overall cluster, the green Blink cluster, includes points associated with every 

study. Blink event codes were inserted automatically into all studies by BLINKER and labeled with 

the HED tag Action/Eye blink/Max. Even though our pipeline aggressively removes eye-activity 

in the time-domain using EyeCatch and BLINKER, frequency-domain features still contain 

prominent and consistent blink-locked patterns. These patterns may originate not only from the 

eye, but also from the cortex in anticipation of or in response to the blink, as reported in the fMRI 

literature (Berman et al., 2012; Hupé et al., 2012; Peter et al., 2010). The existence of these robust 

rERSP patterns after time-domain eye-activity suppression highlights the need for temporal 

regression in conjunction with blink detection when computing ERSPs. Otherwise, the non-

uniform distribution of blinks (i.e., more or less likely after particular event types), could lead to 

significant cofounds and misleading ERSP patterns. Task induced eye movements such as 

saccades were not regressed out in this analysis and may also lead to confounds. However, as many 

of the events in this data-collection come from fixation-constrained studies, blinks may be a more 

systematic confound. 

 

The pink cluster, labeled Correct Feedback in Figure 7, corresponds to the HED tag 

Participant/Effect/Cognitive/Feedback/Correct. The points in this cluster are primarily from 

NCTU-DAS and NCTU-DD studies. Interestingly, this pink cluster and the dark green cluster 

labeled Driving Correction (HED tag Action/Control vehicle/Drive/Correct) are relatively close 

in this visualization, as is the magenta cluster Button Press (HED tags Action/Button press or 

Action/Button hold).  

 

The distribution of Participant/Effect/Cognitive/Target and Participant/Effect/Cognitive/Non-

target HED tags (labeled Target and Non-target, respectively) is also interesting. Most of the 17 

studies have these tags in at least one event code, and their pervasiveness is reflected in the cyan 

and dark blue points spread throughout Figure 7. Interestingly, the averaged rERSPs corresponding 

to these HED tags each show distinct discontinuities at 500 ms. 

 

Figure 8 examines the source of this discontinuity in more detail. The left column of Figure 8 

shows the results of averaging the ERSPs computed over the recordings in four different studies. 

The right column shows the results of performing the same averages for regressed ERSPs. The 

rERSP average for NCTU-DAS shows a marked discontinuity at 500 ms, while the other three 

studies do not. The experimental protocol for NCTU-DAS was such that non-targets were always 

presented exactly 1500 ms before and after a target. The interaction of this confound with the −2 

to 2 second regression intervals is the cause of this discontinuity (other regression intervals will 

cause similar of discontinuities).  
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Figure 8. Representative study averages of ordinary ERSPs (left group) and rERSPs (right group) for channel FCz 

for the Participant/Effect/Cognitive/Target cognitive aspect. The studies in each group are NCTU-DAS, UCSD-

RSVPU, ARL_RSVPB, and ARL-RSVPC (clockwise starting from the upper left corner). 

 

Interestingly, the averaged ERSP for NCTU-DAS does not show the discontinuity. However, the 

ERSP appears to have a more complex and extended structure (with nearly every pixel being 

significant), indicating potential confounds.  
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3.3 Regression of rERPs and rERSPs extracts common cognitive aspects across studies 

This section compares the effectiveness of aspect averaging and temporal overlap regression for 

extracting common features of cognitive aspects across studies. We apply a two-level approach: 

modeling patterns at the recording level and then combining patterns across all recordings in all 

studies.  

 

The ERSP patterns at the first level (corresponding to study-specific event codes and individual 

recording) may be computed by either averaging or temporal regression. ERSP patterns associated 

with cognitive aspects at the second-level (combination of patterns across studies) may be 

computed either by averaging or regression. Aspect averaging collects and averages patterns 

whose study-specific event code is annotated by a particular HED tag. Second level regression 

uses the GRAND model, described in the Methods section, to account for experimental protocol, 

recording details, and cognitive aspects in the design matrix. These results do not include NCTU-

DAS because of the discontinuity issue described above. 

 

Figure 9 shows a cross-study comparison for the Participant/Effect/Cognitive/Target cognitive 

aspect on channel Fz. Focusing on the results of second-level modeling of rERSPs (lower graphs), 

we observe a response with a region of increased spectral power for 2 to 6 Hz over the 200 to 500 

ms time range. This is similar to a dramatic increase in frontal delta (2 to 4 Hz) over the 100 to 

500 ms time range for the active oddball task reported by Cahn et al. (Cahn et al., 2013).  

 

 
Figure 9. Comparison of four methods for combining recording-level ERSPs across studies. All graphs are based on 

the Participant/Effect/Cognitive/Target cognitive aspect for channel Fz across all studies except NCTU-DAS. The top 

row uses recording-level ERSPs obtained by aspect averaging, while the bottom row uses recording-level rERSPs. In 

each case the left column averages all ERSPs or rERSPs, while the right column regresses ERSPs or rERSPs. 
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Cahn et al. also report a strong suppression of late low-alpha (8 to 10 Hz, 500 to 900 ms) similar 

to observed in Figure 9. The beta suppression (15 to 30 Hz, 300 to 1000 ms) was observed by 

Güntekin et al. in healthy patients, but not in those with mild cognitive impairment (Güntekin et 

al., 2013). Touryan et al. observed a similar pattern of frontal beta suppression in their calculations 

of FRPs (fixation related potentials) in a guided detection task (Touryan et al., 2017).  

 

Significantly increased frontal delta post-stimulus power related to target detection have been 

observed in healthy subjects for both visual and auditory targets (Caravaglios et al., 2008) 

(Güntekin and Başar, 2016). A difficulty in making a direct comparison with those studies and the 

present work is that many of them treat the pre-stimulus signal as the baseline and remove the 

average from the signal. We treat the pre-stimulus and post-stimulus periods symmetrically since 

our method uses a baseline amplitude computed over the whole recording. Notice that the same 

basic features occur regardless of whether aspect averaging or GRAND regression is used at the 

second level for rERSP features (bottom row). However, it appears from Figure 9 that confounds 

introduced at the first level by simple averaging at the recording level (top row of Figure 9) wash 

out relevant cross-study comparisons when these features are combined. 

 

Figure 10 compares various second-level modeling approaches for cognitive aspect Action/Control 

vehicle/Drive/Correct on channel Fz. This HED tag annotates the point at which a driver begins 

to correct for a lane deviation perturbation in a driving simulation. 

 

 
Figure 10. Comparison of four methods for combining recording-level ERSPs for the Action/Control 

vehicle/Drive/Correct cognitive aspect on channel Fz across all studies except NCTU-DAS. Top row uses recording-

level ERSPs obtained by aspect averaging, while the bottom row uses recording-level rERSPs. In each case, the left 

column averages ERSPs or rERSPs, while the right column regresses ERSPs or rERSPs.  

 

Lin et al. observed an increase in frontal power for 0 to 15 Hz in the 0.5 seconds prior to starting 

the correction (Lin et al., 2011). This observation is consistent with the results of Figure 10 
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obtained using rERSP features (bottom row of Figure 10). The cross-study responses also show 

strong beta frontal suppression time-locked to the correction as well as a sustained frontal high-

alpha suppression during the actual accomplishment of the correction. Lin et al. also observed 

frontal suppression of frequencies in the range 8 to 30 Hz from 1000 ms to 2000 ms after the driver 

starts the correction. This period is outside the range investigated in Figure 10. These features 

appear in both aspect averaging and second-level regression of rERSPs, but are more clearly 

defined using second-level regression. Cross-study combination of ERSP features in both Figures 

9 and 10 exhibit echoes of the rERSP cross-study phenomena sitting on top of a baseline response 

level.  

 

Figure 11 compares the results for cognitive aspect Action/Button press or Action/Button hold for 

channel C3. These results are consistent with results reported by Makeig et al. (Makeig et al., 2004) 

and Delorme et al. (Delorme et al., 2007) showing a large delta/theta power increase preceding the 

button press. 

Figure 11. Comparison of four methods for combining recording-level ERSPs across studies. All graphs are based on 

the Action/Button press cognitive aspect for channel C3 across all studies except NCTU-DAS. The top row uses 

recording-level ERSPs obtained by aspect averaging, while the bottom row uses recording-level rERSPs. In each case 

the left column averages all ERSPs or rERSPs, while the right column regresses ERSPs or rERSPs using GRAND. 

 

Makeig et al. also report that the overall power spectrum of the channel grand average shows 

suppression in the range 15 to 30 Hz at the button press and suppression in the 8 to 15 Hz range 

slightly after the button press. The cross-study spectra derived from rERSPs (lower row of Figure 

11) also show this general behavior, although here it appears before the button press. The timing 

and the spread of these spectral phenomena may be due to variations in the reporting times of when 

the button is considered pushed in the various studies. Another spectral feature, corresponding to 

increased spectral power for 8 to 29 Hz in the range 400 ms to 1000 ms after the button press 

appears in all of the approaches of Figure 11, as well is in the grand channel averages reported by 

Makeig et al.  
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3.4 RSA shows statistically significant relationships between cognitive aspects and EEG 

patterns across studies 

As summarized in Table 1, the 17 studies analyzed in this paper contained 1,155 recordings with 

7,770,851 event instances. The collection contained 664 distinct study-specific event codes 

annotated by 192 unique HED tags, excluding the required or recommended HED informational 

annotations (Event/Description, Event/Label, and Event/Long name). Before exploring or 

quantifying the event-related features of each cognitive aspect, we used RSA to provide a global 

assessment and validation of the ontology. RSA provides a statistical method of assessing the 

correspondence between EEG patterns and cognitive aspects without making assumptions about 

the specific features (Table 2). Significant correspondences tend to be concentrated in the Action, 

Participant/Effect, and Visual categories. 

 

Table 2. RSA significance of relationship between selected HED tags and EEG patterns across 17 

studies. Tags appear in decreasing order of information content as measured by Shannon entropy. 

Tag 
Total 

number 
Codes Studies Entropy 

rERP + 
rERSP 

rERP rERSP 

Item 1246K 296 17 4.76 0.0001* 0.0001* 0.0001* 

Event/Category/Experimental stimulus 775K 218 17 4.28 0.0001* 0.0001* 0.0001* 

Item/Object/Vehicle/Car 629K 131 10 4.22 0.0064* 0.0001* 0.0777 

Participant/Effect 792K 210 14 4.18 0.0037* 0.0001* 0.0328 

Action 1220K 183 17 4.14 0.0001* 0.0033* 0.0001* 

Sensory presentation 605K 166 17 3.88 0.0001* 0.0001* 0.0009* 

Attribute/Object control 242K 89 10 3.83 0.8697 0.0134 0.9871 

Action/Control vehicle 457K 92 10 3.79 0.078 0.5021 0.0289 

Action/Control vehicle/Drive 439K 88 10 3.71 0.0784 0.5686 0.0233 

Event/Category/Participant response 451K 95 17 3.68 0.0926 0.64 0.038 

Sensory presentation/Visual 483K 130 15 3.63 0.0001* 0.0001* 0.0114* 

Attribute/Object control/Perturb 211K 63 9 3.58 0.8717 0.0069* 0.9903 

Sensory presentation/Visual/Rendering 

type/Screen 
457K 108 9 3.46 0.0013* 0.0001* 0.051 

Participant/Effect/Visual 445K 104 9 3.40 0.0006* 0.0001* 0.072 

Participant/Effect/Cognitive/Target 293K 78 9 3.28 0.9788 0.5257 0.981 

Action/Button press 223K 63 11 3.27 0.8713 0.9246 0.6664 

Participant/Effect/Body part/Arm/Hand 209K 58 10 3.14 0.6295 0.8723 0.4559 

Participant/Effect/Cognitive/Oddball 272K 42 6 3.03 0.994 0.609 0.9949 

Participant/Effect/Body 

part/Arm/Hand/Finger 
190K 54 10 2.98 0.6693 0.9606 0.4254 

Participant/Effect/Cognitive/Oddball/  

Button pressing for target 
262K 37 4 2.92 0.9739 0.3046 0.9856 

Action/Button press/Keyboard 185K 27 7 2.87 0.9314 0.9781 0.843 

Participant/Effect/Cognitive/Non-target 356K 46 8 2.86 0.007 0.404 0.0063 

A * indicates an association between the respective EEG pattern(s) and cognitive aspects (HED tags) that is 

significantly stronger than random (p < 0.01) after FDR multiple comparison correction across all p values in the table. 
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Statistically significant associations that occur (p < 0.01) only when correcting for multiple comparison using p values 

of the same pattern type are shown in black. Light gray type indicates non-significance. 

 

The Action tags tend to be associated with participant responses, while Participant/Effect tags tend 

to be associated with stimulus type events. These results are consistent with the types of studies 

analyzed for this paper: many of the studies have a visual target component, a large subset of 

studies involve driving in a simulator with lateral vehicle perturbations, and many experiments 

require some type of button or key press as an explicit subject response. Several of these tags 

appear in only a few event codes and hence have a lower “diversity”, increasing their susceptibility 

to the peculiarities of specific event types. 

  

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 10, 2018. ; https://doi.org/10.1101/411371doi: bioRxiv preprint 

https://doi.org/10.1101/411371
http://creativecommons.org/licenses/by/4.0/


24 

 

 

 

 

4 Discussion/conclusion 

The results of this paper were based on 17 studies from 6 sites at 4 different institutions that 

captured approximately 7.8 million event instances from several different experimental paradigms. 

This work demonstrates the viability of event-related mega-analysis for EEG and presents a variety 

of applicable methods. The core analysis of this paper explores the relationship of cognitive aspects 

as represented by HED tags to EEG event-related patterns (ERPs, rERPs, ERSPs, and rERSPs) 

across a large corpus. At the first (recording) level, we compute these patterns separately for each 

study-specific event code and each recording. As observed by other authors (Burns et al., 2013) 

(Ehinger and Dimigen, 2018), temporal overlap regression provides much cleaner event-related 

patterns and substantially reduces confounding effects from nearby events.  

 

We constructed a database of these patterns, labeled by (Event-code, Recording) tuples and used 

this database for analysis (RSA) and visualization (t-SNE). Application of RSA analysis to rERPs 

and rERSPs reveals statistically significant relationships between the presence of common HED 

tags and the structure of the associated EEG event-related signal patterns. These relationships are 

exhibited in more detail through the ERSPs. 

 

We combined patterns at a higher (multi-study) level by regressing the resulting first-level patterns 

onto HED tag, study-specific event codes, and recording factors to create a two-level hierarchical 

model of the collection as a whole (GRAND). The recording factors encapsulate both subject and 

session information. The study-specific event-code factors encapsulate the effects of study-specific 

differences on brain dynamics, associated with common cognitive aspects, caused by differences 

in paradigms and the protocols implementing these paradigms. Since each study used the same 

headset at a given site, the study-specific event-codes also capture common headset information. 

These factors allow the assessment of the variability of patterns across studies having the same 

paradigm (but different protocols or equipment), enabling a quantitative assessment of 

generalizability. Hierarchical general modeling has been successfully used to test for statistically 

significant ERP and ERSP patterns across subjects (Pernet et al., 2011), but the introduction of 

HED tags as cognitive aspects in the regression models allows decoupling of study-specific 

paradigm differences from fundamental or universal responses.  

 

This work demonstrates the importance of using temporal overlap regression at the recording level 

when comparing event-locked features across studies, within studies, or even at the single 

recording level. As demonstrated in Figure 5, blinks are ubiquitous confounds that are not always 

randomly distributed with respect to other stimuli, particularly in visually intensive tasks. We 

believe that blinks should be treated as events in their own right and regressed out as part of the 

processing. Further, overlap regression can reveal unexpected features resulting from protocol 

design that are obscured by simple averaging (Figure 6 and Figure 8).  

 

As demonstrated in Figures 9 through 11, the consequence of not taking into account confounds 

at the recording level propagate downstream in the form of diffuse structure when recording-level 

results are combined in mega-analysis. Thus, clean results at the recording level are essential for 

downstream comparisons. 
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The particular organization of the pattern database at the first level by (Event-code, Recording) 

allows new studies to be easily incorporated and first-level features computed in a scalable manner. 

Our database effectively consists of a map that associates identifying characteristics (event codes 

and recordings) with various EEG features. The second-level regression over the database is, 

therefore, a relatively low-cost operation compared with preprocessing and first-level pattern 

processing. This is particularly important as the 17 studies included in this work are heavily 

oriented towards visual processing, target detection, and driving. As a broader selection of well-

annotated raw EEG becomes available, we hope to analyze additional patterns in the context of 

the collection. Pattern matching across ERP datasets has been proposed by Liu et al. (Liu et al., 

2012). However, we believe that because of the variability and confounding factors of EEG as a 

neuroimaging modality, such matching cannot be effective without a common processing pipeline 

and consistently implemented temporal overlap regression.  

 

The association of study-specific event-codes with cognitive aspects represented by HED tags is a 

crucial step in this cross-study analysis and, once completed, allows fully-automated downstream 

processing. However, successful analysis is predicated on the assumption that HED annotation is 

done in a consistent manner. The current 17 studies were annotated by one or two people and 

checked by a small group for consistency. In our experience, annotating a study that uses an 

unfamiliar paradigm requires thought and discussion, but once reviewed, annotation of other 

studies using variations of the paradigm is relatively easy.  

 

HED has recently been incorporated into the BIDS standard (Gorgolewski et al., 2016) as the 

method for annotating events for all neuroimaging modalities (fMRI, fNIRS, MEG, EEG). We 

have developed a HED annotation guide (HED tags and related tools, 2018) and continue to add 

examples as we gain experience annotating studies involving new experimental paradigms. We 

are beginning to add identifiers from the Cognitive Atlas (Cognitive atlas, 2018) directly into the 

HED schema to better enable more sophisticated methods of automated event processing in the 

future.  HED has a variety of validation tools and we are also working to deploy web-based HED 

validation. 

 

EEG mega-analysis is a nascent subfield and this is a work in progress. The automated nature of 

this approach and the assembly of a large corpus of data will permit more systematic investigation 

of brain dynamics associated with cognitive phenomena, along with an assessment of 

generalizability of results obtained from single studies or paradigms. We believe that a barrier to 

community adoption of preprocessing standards is the lack of benchmarking and systematic 

evaluation of methodological effects. This work and related analysis of continuous EEG proposed 

in a companion paper (Bigdely-Shamlo et al., 2018) provide a potential framework for 

systematically evaluating the influence and effectiveness of various preprocessing strategies.  
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