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Abstract 

Phenotypically identical mammalian cells often display considerable variability in transcript 

levels of individual genes. How transcriptional activity propagates in cell lineages, and how 

this varies across genes is poorly understood. Here we combined live-cell imaging of short-

lived transcriptional reporters in mouse embryonic stem cells with mathematical modelling to 

quantify the propagation of transcriptional activity over time and across cell generations. In 

sister cells we found mean transcriptional activity to be strongly correlated and 

transcriptional dynamics tended to be synchronous; both features control how quickly sister 

cells diverge in a gene-specific manner. Mean transcriptional activity was also highly 

correlated between mother and daughter cells, leading to multi-generational transcriptional 

memory whose duration scaled with the spread of transcriptional activities in the population. 

The resulting family-specific transcriptional levels suggest a potential role of transcriptional 

memory in patterning tissue gene expression. 
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Introduction 

Major changes in transcriptional states that then propagate through cell generations is 

characteristic of embryonic development. Such dynamics often result in irreversible changes 

in phenotypic states that are then transmitted through cell division1. While genome-wide 

alterations of gene expression profiles are characteristic of cell differentiation, even 

phenotypically identical cells display significant variability in the levels at which individual 

genes are expressed2–4. The dynamic properties of such fluctuations are determined by both 

intrinsic noise resulting from the randomness in biochemical reactions controlling gene 

expression, as well as extrinsic variability caused by differences in cellular parameters5, 

such as size6,7, mitochondrial content8,9, cell cycle stage6,10–12, or differences in cellular 

microenvironment9,13,14. In particular, transcriptional bursting causes intrinsic fluctuations with 

a time scale on the order of one to several hours15–17, while extrinsic fluctuations in cellular 

parameters can be significantly longer-lived18. How such transcriptional fluctuations structure 

gene expression dynamics in families of phenotypically homogenous cells, and to which 

extent genes exhibit transcriptional memory, is largely unknown. Trans-generational 

transcriptional memory might have direct consequences in generating spatial gene 

expression patterns, for instance in solid tissues where cells sharing a common ancestor 

typically remain in close proximity. 

 

Only few studies have investigated transcriptional memory in lineages of phenotypically 

identical cells. For example, transcriptional parameters in Dictyostelium were found to be 

correlated both between sister and mother-daughter cells19. In the developing Drosophila 

embryo, higher transcriptional activity in mother nuclei increases the probability of rapid re-

activation in daughter nuclei20. In mammalian cells, a study showed that endogenous protein 

expression levels could be passed on during cell division, with memory time scales typically 

ranging between 1 to 3 cell cycles21. Such protein memory may largely reflect mRNA and 
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protein half-lives22, which can easily exceed the duration of the cell cycle23. Altogether, little 

is known about the times scales of transcriptional memory in mammalian cells. 

 

Here we used short-lived transcriptional reporters to determine how transcriptional 

fluctuations are propagated over time and across cell division in mouse embryonic stem 

cells. We found that genes differ broadly in the dynamics of their transcriptional fluctuations 

at both short (in the hour range) and long (cell generations) time-scales, which results in 

large differences in the propagation of transcriptional activity. We also found a remarkably 

large correlation in transcriptional activity of sister cells, suggesting that inherited factors 

from the mother cell and/or similarity in cellular microenvironment contribute to 

transcriptional dynamics in dividing cells. Our results suggest that inheritance of 

transcriptional activity structures temporal fluctuations and overall mRNA production across 

cell lineages. 

 

Results 

 

Spread and relatedness of transcriptional fluctuations are gene specific 

 

To monitor how transcriptional levels fluctuate and propagate over cell generations, we 

inserted a short-lived transcriptional luminescent reporter by gene trapping into endogenous 

genes (Supplementary Fig. 1). This method allows sensitive monitoring of transcriptional 

activity by luminescence imaging at high time resolution without observable toxicity over long 

periods of time15. In total we produced eight different gene trap cell lines, and an additional 

cell line where a construct driving the expression of the short-lived luciferase from the pGK 

promoter was integrated as a single copy in the genome15. The insertion sites of the 

constructs were mapped using splinkerette PCR (Supplementary Fig. 2)24. To analyse how 

temporal transcriptional activity profiles compare both in pairs of mother-daughter as well as 
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sister cells (Fig.1a, b), we monitored total transcriptional reporter levels with a time 

resolution of 5 minutes, and manually tracked approximately 50 pairs of sister cells per cell 

line from division to division to obtain single-cell traces. In addition, for three clones we 

quantified transcriptional activity profiles of mother and daughter cells over two cell 

generations.  

 

We first aimed to determine whether differences in transcriptional levels across cells 

decayed quickly or if they were maintained over longer timescales and transmitted to 

daughter cells (Fig. 1c). The live-cell imaging of sister cells generated pairs of time traces, 

and exploratory data analysis revealed several key features of transcriptional dynamics. 

First, the mean and spread of transcriptional reporter levels across the population of cells in 

function of time were gene-specific (Fig. 2a, Supplementary Fig. 3). The average 

transcriptional reporter levels across the population increased during G1 phase (see 

Methods for cell cycle phase definition), consistent with RNA-seq analysis of pre-mRNA 

around the cell cycle 25, and then stayed approximately constant during S and G2 phases for 

most genes. Sorting cells by initial transcriptional reporter levels showed that for the pGK 

clone, cells tended to retain their relative expression levels for longer time than for the Dstn 

gene (Fig. 2a). For pGK, transcriptional activity fluctuated around largely different mean 

levels in individual cells (Fig. 2b), suggesting that cells retained their average transcriptional 

levels over longer times than for Dstn. Unexpectedly, transcriptional profiles of sister cells 

often showed striking similarity over the cell cycle (Fig. 2c). Moreover, sister cells showed 

high correlation in reporter levels immediately following cell division, as explained from the 

partitioning of reporter protein and mRNA molecules. This sister-cell correlation then 

decreased over the cell cycle in a gene-specific manner at a slower pace than non-sister 

control pairs matched for similar initial levels (Fig. 2d, all genes shown in Supplementary Fig. 

4), suggesting that transcriptional activity is transmitted along cell lineages. 

 

A stochastic model to analyse transcriptional dynamics in dividing cells 
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Next, we developed a mathematical model to quantitatively assess how transcriptional 

activity fluctuates in pairs of sister cells, taking into account the features described in Fig. 2. 

We built a minimal kinetic model (Fig. 3) to fit the transcriptional reporter data for each gene. 

This model describes fluctuations both at the single-cell and population level (i.e. the set of 

all time traces for paired sister cells). In each cell, our model describes the production and 

degradation of the transcriptional reporter R and consists of two time-dependent and 

stochastic variables: the transcriptional activity S that acts as a source for the transcriptional 

reporter R (Fig. 3a). To account for the spread in mean levels (Fig. 2b), S is allowed to 

fluctuate around a cell-specific mean, and the variances of S and R are also cell-specific. 

Reporter levels R are produced at rate S and their effective half-lives were measured 

independently by blocking transcription with actinomycin D (Supplementary Fig. 5; assumed 

to be constant across cells for the analysis). This estimated half-life is therefore dependent 

both on reporter protein and mRNA half-lives. We further introduced the parameter U 

describing the correlation of transcriptional fluctuations between sister cells, which tunes the 

extent to which sister cells acquire similar reporter profiles over the cell cycle (Fig. 3b). To 

set the initial conditions, we modelled the mean, variance and co-variance of R and S in the 

beginning of each cell cycle from the predicted steady-state, assuming R at the beginning of 

the cell cycle to be at half its steady state value to reflect cell division.  

 

The population model is then built hierarchically, whereby the cell-specific parameters are 

related to each other through a population level distribution (Fig. 3c), and these population 

parameters are estimated within our inference scheme. These global parameters therefore 

control the distribution of cell-specific parameters over all pairs of sister cells, such as the 

cell-to-cell variability in mean transcription rates. In this model, high intercellular variability in 

mean transcription rates leads to a broad range of cell-specific means across the population, 

whereas lower intercellular transcriptional variability describes cells in the population sharing 

similar mean levels (Fig. 3c). The correlation in mean transcriptional activity between sister 

cells is quantified with the parameter O (Fig. 3d), and along with the similarity in dynamics (U) 
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these two parameters connect sister cells. Time traces are analysed and model parameters 

estimated within a Bayesian hierarchical framework, which combines Gaussian processes 

with Hamiltonian Markov Chain Monte Carlo (MCMC) sampling for efficient inference 

(Methods). 

 

Mean transcriptional activity is highly correlated between sister cells 

We applied our inference scheme to estimate the parameters of our model for each gene 

individually (parameters estimates for all genes shown in Supplementary Fig. 6, example 

trace plots shown in Supplementary Fig. 7). To validate our method we simulated 

bioluminescent time series for a range of parameters using 50 pairs of cells and cell-cycle 

lengths that were similar to our data (Supplementary Note 1), and we found that for all 

parameters the true values used for simulation were in the 90% credible intervals 

(Supplementary Fig. 8), showing our method can reliably recover parameters for data that 

resembled our experiments. We next used our model to analyse the gene-specificity of the 

variability of cell-specific means and correlations between sister cells (Fig. 2). The spread of 

cell-specific means varies significantly across genes, with pGK being the most (coefficient of 

variation, CV=0.7) and Dstn the least (CV=0.2) variable (Fig. 4a). To test whether cell-

specific means are correlated between the two daughters, we analysed the parameter 𝜆 

(Fig. 4b). Interestingly, O was less variable and consistently high across genes, ranging from 

0.7 to 0.95 (Fig. 4b). The genes with the highest variability of cell-specific means also 

exhibited the most highly correlated sister cells (Fig. 4c). Of note this was not due to a 

structural property of the model, namely, the two parameters were not correlated during 

inference (Supplementary Fig. 9). These analyses thus suggest that sister cells inherit highly 

correlated mean transcriptional activities. Below, we investigate the impact on the 

maintenance of sister-cell correlation over the cell cycle. 

 

Transcriptional fluctuations show synchronicity in sister cells 
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We next determined whether the similarity in the dynamics of sister cells we observed (Fig. 

2c) could be substantiated by our mathematical model. In the model, similarity of dynamics 

is quantified with the correlation parameter 𝜌, ranging from -1 to 1. 𝜌 = 0 indicates 

independent fluctuations in S, while 𝜌 = 1 indicates identical shapes of transcriptional 

activity over the cell cycle (for identical initial conditions). Intriguingly, the inferred values of 𝜌 

were positive for all genes, confirming that sister cells tend to show correlated dynamics 

(Fig. 4d). The degree of similarity in dynamics was gene-specific but overall lower than 𝜆, 

ranging from 𝜌 = 0.3 for Spry4 to 𝜌 = 0.7 for Jam2. Having found that correlated 

transcriptional fluctuations are detectable for all genes, we wanted to further explore the 

origins of this similarity in dynamics by analysing pairings of randomised non-sister cells 

(examples shown in Supplementary Fig. 10). If there was cell-cycle dependent 

transcriptional control affecting all cells, this would lead to a non-zero U value even amongst 

random pairings of cells. In fact, we found that most 𝜌 values were only slightly above zero 

for random cell pairings, which suggests a modest contribution of cell cycle progression to 𝜌 

(Fig. 4e). 

The origin of correlated dynamics between sister cells remains unsolved, but one possible 

explanation is that sister cells share a common microenvironment, and that transcriptional 

activity could be regulated by local signalling. To address this question, we compared to a 

control situation in which non-sister cells separated by same average distance as true sister 

cells were paired. This showed that while 𝜌 was higher for sisters than non-sisters for both 

Rbpj and Jam2 (Fig. 4f), the value of 𝜌 for non-sisters pairs was still higher than for fully 

randomised pairings of cells, the latter being on average more spatially distant (compare 

Figs. 4e and f). Therefore, the microenvironment can, at least in some cases, increase the 

synchrony in transcriptional dynamics of cells that are close in space.  

 

Correlated mean transcription levels and similar dynamics control sister cell 

correlations 
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We next aimed to investigate how the correlated levels of mean transcriptional activity (O) 

and similarity in dynamics (𝜌) between sister cells impact the observed loss of correlation 

between sister cells for each gene over the cell cycle (Fig. 2d). We therefore used the model 

to predict how the correlation between sister cells evolves over time, using the inferred 

parameter values (the posterior means) of each gene and the empirical correlation between 

sisters at the beginning of the cell cycle. Remarkably, comparing the correlation over the cell 

cycle from the model (red, Fig. 4g-i) with the empirical correlation from the data (green, Fig. 

4g-I, all genes shown in Supplementary Fig. 11) showed very good agreement, even if the 

model was fitted to the time series and hence not directly fitted to this correlation decay. 

Next, to quantify the relative contributions of different processes to maintaining similar 

transcriptional levels between sisters, we dropped certain features from the model. First, we 

set the parameter s to zero (such that all cells share the same mean transcriptional activity), 

which made the predicted correlation between sister cells decay much faster for most genes 

(violet, Fig. 4g-i). Similarly, setting 𝜌 to zero led to a faster decorrelation between sister cells 

(yellow, Fig. 4g-i) (when 𝜌 and s are removed from the model before fitting to data the 

correlation remains underestimated, showing that both features are required to account for 

the sister-cell correlation in the data (Supplementary Fig. 12)). Therefore, both s and 𝜌 

positively contributed to the correlation between sister cells, but the relative contributions of 

these two parameters was gene-specific. For pGK, the predicted sister-sister correlation was 

much lower when variability in cell-specific means was removed (s=0, Fig. 4g), which 

suggests that variable cell-specific means are important to maintain similar transcriptional 

activity between sisters for this gene. In contrast, the predicted correlation was not changed 

significantly for Dstn when variable cell-specific means were abolished (s=0) from the model, 

and the similarity in dynamics (𝜌) were more important for maintaining correlation between 

sisters (Fig. 4i). Our model therefore shows that not only is the maintenance of sister-sister 

correlation gene-specific, but also that different processes tune sister-sister correlation for 

different genes. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 7, 2018. ; https://doi.org/10.1101/411447doi: bioRxiv preprint 

https://doi.org/10.1101/411447


 9 

 

Mean transcriptional activity is transmitted to daughter cells 

 

Having observed that transcriptional activity is highly correlated between sister cells, we next 

explored whether transcriptional states were also propagated through cell division. Given 

that sister cells inherit highly correlated mean transcriptional activities and display similarity 

in their transcriptional dynamics (Fig. 4b,d), we asked whether this was also the case for 

mother-daughter pairs. We thus measured the reporter levels of mother and daughter cells 

for three genes (pGK, Jam2 and Rbpj) and re-fitted our model (examples of two pairs shown 

in Fig. 5a, pGK gene). Similarly to the sister cells, cell-specific means between mother and 

daughter cell were again highly correlated, showing that mean transcriptional activity can be 

robustly transmitted across generations (Fig. 5b). In contrast, the similarity in dynamics 

between mother and daughter cells was low (Fig. 5c). Taken together, this data suggests 

that while the mother cell may to some extent set temporal patterns of transcriptional 

fluctuations in daughter cells, the shape of fluctuations is largely independent between cell 

generations. Therefore, the transmission of cell-specific mean transcriptional activity through 

cell division is the main contributor to the propagation of transcriptional levels from mother to 

daughter cells. Given that the mean correlation (𝜆) between mother and daughter cells for 

pGK, Jam2 and Rbpj was 0.92, 0.87 and 0.86, respectively, a simple extrapolation predicts 

that it would take 17, 9 and 8 cell generations for this correlation to be reduced by a factor of 

1/e~0.37. Thus, this indicates that the inheritance of correlated mean levels of transcriptional 

activity results in multi-generational transcriptional memory.  

 

 

Gene-specific transcriptional memory generates gene expression patterns across cell 

families 
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As mother-daughter analysis showed that transcriptional activity could be transmitted across 

generations, we reasoned that this should lead cells sharing a common ancestor to display 

more similar transcriptional activities than unrelated cells. To test this hypothesis, we first 

measured transcriptional activities within and across families of at least four cells (i.e. all 

cells sharing the same grandmother) for the pGK, Jam2 and Dstn genes, as examples of 

genes with slow, intermediate and fast loss of correlation between sister cells 

(Supplementary Fig. 4). To minimise biases linked to cell-cycle related changes in 

expression levels, we averaged luminescence levels from three image frames preceding 

nuclear envelope breakdown in families of at least four cells. We found that the family-

averaged levels of transcriptional activity were more variable for pGK and Jam2 than for 

Dstn (Fig. 6a-d). In contrast, transcriptional activity within cell families was less variable for 

pGK and Jam2 than for Dstn (Fig. 6e), in line with the higher strength of transcriptional noise 

(i.e. the steady state distribution of S) of Dstn (Fig. 6f). These results suggest that the 

maintenance of cell-specific mean transcriptional activity across cell generations allows cells 

to propagate intercellular variability in transcriptional activity, thus generating differences 

between average transcriptional levels of cell families. 

While it is technically difficult to quantify transcriptional memory over a much larger number 

of cell generations, we reasoned that we could obtain qualitative insights into longer-term 

memory by comparing the average transcriptional activity of ES cell colonies resulting from 

about five cell divisions. We thus seeded the pGK, Jam2 and Dstn cell lines at low density, 

and imaged the resulting cell colonies 60 hours later. In contrast to the Dstn and Jam2 

colonies, the pGK colonies displayed markedly different average luminescence between 

them (Fig. 6d), suggesting that transcriptional activity can be inherited over many cell 

generations. 

 

Discussion  

One of the major challenges in quantitative biology is to understand how gene expression 
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dynamics of single cells are related in the context of multicellularity. The combination of 

lineage-tracing and mRNA measurements has previously been used to quantify the 

dynamics of cell-fate transitions26,27. However, thus far, it remained unclear how 

transcriptional fluctuations are propagated in lineages of phenotypically homogenous cells, 

and to which extent this transmission is gene-specific. Previous studies in fixed mammalian 

cell lines have reported higher similarity of mRNA levels of neighbouring cells9 and that 

population context can predict cellular features such as membrane lipid composition and 

endocytosis13, but the impact of lineage relationships on such microenvironment-related 

correlations was not addressed in these studies. 

Lineage information was found to be an important contributor to patterning gene expression 

in bacterial microcolony formation28,29, where it can act as the dominant cause of spatial 

correlations30. While properties such as cell cycle duration have been shown to propagate in 

mammalian cell lineages31,32, the importance of genealogy for transcriptional activity in 

mammalian cells is still poorly studied. Here, we used live-cell imaging to measure and 

compare transcriptional activity of lineage-related mammalian cells over time. We developed 

a simple yet powerful stochastic model of gene expression fluctuations, which combined with 

Bayesian inference allowed us to identify the key processes and parameters underlying the 

observed correlation patterns of transcriptional reporter levels within lineage-related cells. 

This quantitative analysis allowed us to separate short-term transcriptional fluctuations from 

long-term trends, which both contribute to population heterogeneity in the dynamics of the 

observed reporter levels.  

In particular, we found that transcriptional activities in each cell within the population 

fluctuate around cell-specific mean levels, which propagate through cell division in a gene-

specific manner and result in multigenerational transcriptional memory. Remarkably, we also 

showed that the rate at which transcriptional activity of sister cells diverge from each other to 

be correlated with the spread of transcriptional activity in the population (Fig. 4c). This 

implies that the time required for a cell to explore the full range of expression levels scales 
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with variability – in other words, a gene displaying a large spread of transcriptional activities 

will transmit cell-specific activities for a longer period of time.   

Surprisingly, sister cells displayed not only similar cell-specific mean levels, but also 

correlation of their transcriptional dynamics over the cell cycle. Our model uses a dedicated 

parameter (U) to capture similarity in dynamics, which contrasts with previous mathematical 

modelling assuming that transcriptional dynamics of sister cells are independent 33,34. At the 

mechanistic level, this correlation in dynamics could be caused by correlated inheritance of 

factors from the mother cell that control transcriptional dynamics. The much lower correlated 

dynamics between mother and daughter cell pairs suggest that the factors controlling 

transcriptional activity may fluctuate significantly over the course of one cell cycle, and thus 

set a different transcriptional dynamics program in the next cell generation. For some genes 

non-sister cells in the same spatial proximity as sister cells also exhibit correlated 

transcriptional fluctuations (Fig. 4f), which could be due to the exposure to shared 

extracellular signals, compared to cells that are more distant in space. However, we cannot 

exclude that such non-sister cells could be more distantly related. Notably, both the inherited 

and microenvironmental factors may have indistinguishable consequences on transcriptional 

dynamics similarity of proliferating adherent cells, as related cells will typically remain in 

close spatial proximity.  

Several potential regulators could determine the timescale of transcriptional memory. While 

physiological parameters such as cell size variability could explain differences in mRNA 

counts across cells9, these global factors are unlikely to fully explain our data as they are 

common for all genes examined, and for example the CV of the cell-specific transcriptional 

activities ranges from 0.2-0.7 across the genes we measured (Fig. 4a). Potential gene-

specific factors include both cis-regulatory elements such as epigenetic marks of promoters 

and enhancers, or trans-regulatory elements – i.e. molecules such as transcription factors. 

While memory conferred by trans-regulatory elements essentially depends on their half-lives 

and inheritance of their expression levels, cis-regulatory mechanisms have the potential to 
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fine-tune inheritance of transcriptional activity over a broad range, since different types of 

chromatin modifications fluctuate on drastically different time scales35. 

The findings we describe here suggest a potential role for propagation of transcriptional 

activity in tissue patterning during developmental processes in the sense that transcriptional 

memory may act as a pattern generator. As lineage-related cells often remain spatially close 

in a growing tissue, transcriptional memory may contribute to the formation of cell clusters 

retaining similar gene activity profiles. This passive mechanism could thereby initiate 

changes in expression patterns between groups and families of cells, which may be further 

reinforced and stabilised by diverging cell fate decisions. Future studies shall investigate 

whether genes encoding master regulators of cell fate may exhibit long-term transcriptional 

memory, allowing cells to propagate their expression levels across several generations to 

initiate tissue patterning during developmental processes. 

 

Methods 

 

Experimental methods 

 

Generation of lentiviral constructs 

To generate the pSTAR-GTX gene trap lentiviral vector, ten repeats of the 9-nucleotide 

IRES element derived from the 5’UTR sequence of the gtx mRNA (Chappell, Edelman, 

Maura, PNAS 2000), interspersed with 9-nt spacers based on a segment of the β-globin 5' 

UTR (nt 9-17), were inserted upstream of bsdF2ANLSLuc by restriction cloning into the 

pSTAR lentiviral vector36. To generate the pGK-Luc lentiviral construct, the pGK promoter 

was PCR-amplified from the pLV-pGK-rtTA3G-IRES-Bsd36 and inserted upstream of 

bsdF2ANLSLuc by restriction cloning into the pSTAR lentiviral vector. 
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Stable cell line generation 

The stable gene trap (GT) cell lines were generated by transducing E14 mouse embryonic 

stem (ES) cells (kindly provided by Didier Trono, EPFL) with the concentrated virus carrying 

the pSTAR-GTX or pGK-Luc construct. Virus production was performed by co-transfection of 

HEK 293T cells with the construct of interest, the envelope (PAX2) and packaging (MD2G) 

constructs using calcium phosphate, and concentrated 120-fold by ultracentrifugation as 

described previously15. ES cells were then seeded at a density of 125,000 cells per 10 cm 

dish and transduced with 125 μl of virus. Antibiotic selection was started by addition of 10 

µg/ml of blasticidin 3 days after transduction, while the outgrown colonies were picked 14-21 

days after. The small number of outgrown colonies per 10 cm dish (two on average) ensured 

we obtained a single active insertion per clone. Colonies were then expanded in the 

selection medium and subsequently frozen. The FUCCI ES cell line was generated by 

transducing ES cells with 50Pl of 120-fold concentrated lentiviral vectors encoding mKO2-

hCdt1 and mAG-hGem37, followed by FACS to sort cells positive for both mKO2 and mAG 

fluorescence. 

 

Cell culture 

ES cell lines were cultured at 37°C and 5% CO2, on dishes coated with 0.1% gelatin type B 

(Sigma), in GMEM (Sigma) medium supplemented with 10% ES cell-qualified FBS, 1x 

nonessential amino acids (NEAA), 2 mM L-glutamine, sodium pyruvate, 100PM 

2-mercaptoethanol, 1% penicillin and streptomycin, home-made leukemia inhibitory factor 

(LIF), CHIR99021 at 3PM and PD184352 at 0.8PM. Cells were split every 2-3 days. The 

pGK-Luc cell line was constantly maintained in the presence of 10Pg/ml of blasticidin to 

prevent silencing of the reporter.  

HEK 293T cells were cultured at 37°C and 5% CO2, in DMEM medium (Sigma) 

supplemented with 10% FBS and 1% penicillin and streptomycin (BioConcept, 4-01F00H).  
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Mapping of insertion sites in gene trap cell lines 

To identify the endogenous gene into which the pSTAR-GTX was inserted in each GT cell 

line, we used splinkerette PCR (spPCR) 24 with modified primer sequences adapted to our 

lentiviral gene trap construct (Supplementary Table 1). This method allows the amplification 

of a portion of DNA between the GT cassette and a known DNA sequence (adaptor). 

Genomic DNA (gDNA) was extracted from cells of each clone using the Qiagen gDNA 

Extraction Kit  (Qiagen). gDNA was cut with 4-cutter restriction enzyme MluCI, followed by 

ligation to the annealed small and long adaptor. The ligation was followed by HindIII 

digestion, allowing removal of the adaptors and most of the GT cassette. Then, the portion 

of DNA between the adaptor and the GT cassette was amplified through two rounds of PCR. 

The bands from the nested PCR were purified using the QIAquick gel extraction kit (Qiagen) 

and directly sequenced using nested primers (Supplementary Table 2; F2 and R2). 

Sequences derived from spPCR were used to identify the insertion site through the BLAT 

genome alignment tool (http://genome.ucsc.edu) (Supplementary Fig. 2)38. At the same time, 

since MluCI and EcoR V cut both LTRs, an additional 200 bp DNA segment was amplified in 

all samples, which was used as a control of successful nested PCR amplification. 

 

Luminescence Microscopy 

Luminescence imaging was performed on an Olympus LuminoView LV200 microscope 

equipped with an EM-CCD camera (Hamamatsu photonics, EM-CCD C9100-13), a 60-fold 

oil-immersion magnification objective (Olympus UPlanSApo 60x, NA 1.35, oil immersion) in 

controlled environment conditions (37°C, 5% CO2). 16 to 24 hours before imaging, 50,000-

75,000 cells were seeded on FluoroDishes (WPI, FD35-100) coated with E-cadherin, 

allowing to obtain a monolayer of individual cells suitable for single cell tracking39. The 

medium was supplemented with 0.5 mM luciferin (NanoLight Technology, Cat#306A) two to 

four hours before imaging. Fields of view with about 10 to 30 cells were imaged every 5 

minutes with an exposure time of 299 seconds for 24 to 48 hours. To examine propagation 

of gene expression levels within ES cell colonies (Fig. 6d), 500-1000 cells were seeded on 
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Fluorodishes coated with gelatin, and grown as colonies for 60 hours. For each clone, two 

consecutive images with an exposure time of 5 (Dstn and Jam2) or 3 (pGK) minutes in at 

least 10 fields of view were acquired.  

 

Reporter half-life measurements  

Single cell reporter half-lives were determined by treating cells with 5 μg/ml of Actinomycin 

D, which inhibits RNA elongation and thus results in transcriptional arrest40. Luminescence 

imaging was performed as described above for 3 to 5 hours, starting immediately after 

addition of Actinomycin D. Although both protein and mRNA half-lives contribute to overall 

reporter half- life (𝜏𝑅), the decay curve was well fitted by a first order exponential function 

(Supplementary Fig. 5).  

 

Cell cycle phase durations 

In order to determine the durations of the different cell cycle phases, we combined different 

approaches. We first used time-lapse imaging of ES cells expressing both components of 

the FUCCI system41 to measure the duration of the whole cell cycle and of G1 phase. The 

FUCCI systems relies on biphasic cell cycle-dependent activity and proteolysis of the 

ubiquitination oscillators Cdt1 and Geminin, whose fragments are fused to mKO2 and mAG, 

respectively. Cells were seeded on E-cadherin at a density of 50,000 cells per well of a black 

96-well plate (Sigma) 16 to 24 hours before imaging. Time-lapse fluorescence imaging was 

performed using an inverted Olympus Cell xCellence microscope equipped with a 20x 

objective (Olympus UPlanSApo 20x, NA 0.75) in controlled environment conditions (37°C, 

5% CO2). Green and red fluorescence were measured using the GFP and Cy3 channel, 

respectively, every 10 minutes with an exposure time of 300 ms for 24 hours. The 

fluorescence time-lapse acquisitions were analysed manually using the Fiji software. mKO2 

expression allowed us to define the duration of G1, while mAG was expressed in the S, G2 

and M phases. To directly measure the length of M phase in mES cells, we used single cell 

traces from the luminescence time-lapse acquisitions in which nuclear envelope breakdown 
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is clearly visible as a sudden increase in the area occupied by the luminescence signal of an 

individual cell. We thus manually determined the number of frames from the moment of 

nuclear breakdown in the prophase of the cell cycle, until the moment when we see 

formation of two new nuclei manually. Using this information we were able to calculate the 

average length of M phase in single cells (Supplementary Fig. 13). 

 

Cell tracking and image analysis 

Prior to quantification of single cell gene expression from luminescence microscopy movies, 

we removed imaging artifacts known as cosmic rays using the Min operation of the Fiji 

software Image Calculator function. To track cells, we used Fiji to manually draw the outlines 

around cells, using a fixed area with shape adjustment when required. Background 

measurements were performed close to every tracked cell, in regions devoid of luminescent 

signal separately for each time point of the movie, and these values were subtracted from 

cell measurements. Cells were tracked from the time they were born (just after division of 

their mother cell) until the last frame before cytokinesis, either as pairs of sisters or pairs of 

mother and daughter cells. For the experiments investigating the impact of 

microenvironment on similarity of gene expression between cells, the distance between 

sister cells and non-sister cells was measured by hand-drawing a line between the 

approximate centres of two nuclei. The distance between sister cells was measured every 

ten frames for 500 minutes, starting from the tenth frame after their birth. In the case of non-

sister cells, the distances between cells present over the same time period in the field of 

view were measured every ten frames for 500 minutes. For the Jam2 gene, the average 

distance of sisters was 0.07 r 0.01 Pm (standard error), and for non-sisters the average 

distance was 0.08 r 0.01 Pm. For the Rbpj gene, the average distance of sisters was 0.11 r 

0.01 Pm, and for non-sisters the average distance was 0.12 r 0.01 Pm. We defined the first 

measurement as the time frame when the later cell in a pair was born. Additionally, for the 
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cell family experiments (Fig. 6a-c), we tracked families of 4 cells that were from the middle 

towards the end of the cell cycle for 3 frames. 

 

Data analysis 

 

The objective of the mathematical model was to capture the key processes that underlie the 

observed correlation patterns of transcriptional reporter levels within lineage-related cells. 

We first describe the stochastic model of single-cell dynamics that captures noisy 

fluctuations amongst pairs of cells, and then describe how cell-specific parameters are 

connected via a population model. Parameter inference of the model is performed for each 

gene using Markov Chain Monto Carlo within a Bayesian framework. 

 

Single-cell reporter level dynamics 

 

For two sister cells labelled 𝑖 ∈ {1,2}, we model the total production rate of the 

bioluminescent reporter with the variable S, which we interpret as a total transcriptional 

activity. The dynamics of the transcriptional activity for cell i follows the stochastic differential 

equation 

𝑑𝑆𝑖(𝑡)
𝑑𝑡 = −

1
𝜏𝑆

(𝑆𝑖(𝑡) − 𝜇𝑖) + 𝜖𝑖(𝑡),     (1) 

where the first term describes the relaxation to a cell-specific mean level (𝜇𝑖). The time scale 

𝜏𝑆 controls the rate at which S fluctuates (i.e. slow or rapid fluctuations for large or small 𝜏𝑆, 

respectively). The distribution of the cell-specific means 𝜇𝑖 is further modelled at the 

population level (described below). The term 𝜖𝑖(𝑡) models biological noise, for example 

arising from the stochastic biochemical processes occurring in single cells, and acts to 

continuously deliver random perturbations to the transcriptional activity. 𝜖𝑖(𝑡) is modelled as 

Gaussian white noise with zero mean and variance 
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Cov[𝜖𝑖(𝑡)𝜖𝑖(𝑡′)] =
2𝜎𝑆,𝑖

2

𝜏𝑆
𝛿(𝑡 − 𝑡′), 

where 𝜎𝑆,𝑖
2 controls the size of the perturbations on Si  and is cell specific. In the stationary 

state, the covariance of the transcriptional activity is Cov[𝑆𝑖(𝑡)𝑆𝑖(𝑡)] = 𝜎𝑆,𝑖
2. To account for 

the similarity in dynamics observed in sister cells we introduced a correlation parameter U 

linking the noise terms of two sisters :  

Cov[𝜖1(𝑡)𝜖2(𝑡′)] = 𝜌
𝜎𝑆,1𝜎𝑆,2

𝜏𝑆
𝛿(𝑡 − 𝑡′).      

𝜌 can vary between -1 and 1. When 𝜌=0 the cells are fluctuating independently and have 

uncorrelated trajectories, but when 𝜌>0 (or 𝜌<0) the perturbations are correlated (or anti-

correlated) between the cells.   

 

The measured total transcriptional reporter level is modelled with the variable R. The 

reporter R is produced at rate S and is degraded with half-life  𝜏𝑅 

𝑑𝑅𝑖(𝑡)
𝑑𝑡 =

ln(2)
𝜏𝑅

(𝑆𝑖(𝑡) − 𝑅𝑖(𝑡)) + 𝜂𝑖(𝑡),     (2) 

where 𝜂𝑖(𝑡) corresponds to noise at the reporter level. Note that to save parameters, mRNA 

is not explicitly modelled; we estimated the net reporter half-life (which thus depends on both 

the mRNA and protein half-life) by blocking transcription with actinomycin D and by fitting a 

first order exponential decay to the decrease in reporter levels (values shown in in Supp Fig. 

4). 𝜂𝑖(𝑡) is taken as Gaussian white noise, and represents effective noise combining both 

molecular fluctuations in reporter levels as well as experimental noise. 𝜂𝑖(𝑡) is assumed to 

be independent between two cells. The variance of the reporter Gaussian white noise terms 

is given by 

Cov[𝜂𝑖(𝑡)𝜂𝑖(𝑡′)] =
2𝜎𝑅,𝑖

2ln (2)
𝜏𝑅

𝛿(𝑡 − 𝑡′), 

where 𝜎𝑅,𝑖
2 controls the cell-specific variance in reporter levels. Our model consists of a 

system of two linear stochastic differential equations (Equations 1 and 2), and if the initial 
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conditions of the two variables are normally distributed then the model can thus be analysed 

within the framework of Gaussian processes (Supplementary Note 1).  

 

Initial conditions 

As for any system of SDEs the distribution for the initial conditions at time t=0 (i.e. following 

cell division) need to be specified. Here, the distributions over R and S were taken from the 

steady state solution of the model, with the modification that the R variable was divided by 

two, reflecting the fact that we measure the total levels of transcriptional reporter, which are 

approximately halved at cell division (Supplementary Note 1). 

 

Population level 

 

The above model (Equations 1 and 2) introduced cell-specific mean levels 𝜇𝑖 (Fig. 2d), as 

well as cell-specific transcriptional noise (𝜖𝑖) and noise in reporter dynamics (𝜂𝑖). Across the 

population, we assumed that these quantities are log-normally distributed. For example, this 

captures the heavy tails of expression levels (e.g. data in Fig. 2a show few high-expressing 

cells). Moreover, we introduce a parameter 𝜆 representing the correlation in mean 

transcriptional activities between sister cells (i.e. the population correlation between 𝜇1 and 

𝜇2 for pairs of cells across the population). Together the population distributions of 𝜇𝑖, 𝜎𝑆,𝑖 

and 𝜎𝑅,𝑖 are parameterised as follows 

 

log (
𝜇1
𝜇2

) = 𝑁 ([𝑚
𝑚] , [ 𝑠2 𝜆𝑠2

𝜆𝑠2 𝑠2 ]), 

log (
𝜎𝑆,1
𝜎𝑆,2

) = 𝑁 ([Λ𝑆
Λ𝑆

] , [Σ𝑆 0
0 Σ𝑆

]), 

log (
𝜎𝑅,1
𝜎𝑅,2

) = 𝑁 ([Λ𝑅
Λ𝑅

] , [Σ𝑅 0
0 Σ𝑅

]). 
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where N stands for a 2-variable normal distribution. Thus, the population mean of log 𝜇𝑖, 𝜎𝑆,𝑖 

and 𝜎𝑅,𝑖 are parameterised with 𝑚, Λ𝑆 and Λ𝑅, respectively. The intercellular population 

variances of 𝜇𝑖, 𝜎𝑆,𝑖 and 𝜎𝑅,𝑖 are parameterised with 𝑠2, Σ𝑆 and Σ𝑅, respectively.  

 

Parameter inference 

Because of the population parameters the full model is a so-called hierarchical model. 

Parameter inference for each gene was performed within a Bayesian framework. The joint 

posterior distribution over all parameters (of all cell pairs of a given gene) was inferred using 

Hamiltonian Markov Chain Monte Carlo (MCMC) sampling, which uses the gradients of the 

posterior to improve the efficiency of the sampling. We discarded the first 200 samples of 

each chain as burn-in and then obtained 2500 samples from 4 parallel chains. The inference 

procedure (including the priors for all parameters) is fully described in Supplementary Note 

1. Data and code to generate all figures will be available on a public repository.  
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Figure Legends 

Fig. 1. Monitoring the propagation of transcriptional activity in proliferating cells 

(a) A cell from the Rbpj reporter line progressing through two cell cycles. Luminescent cell 

nuclei are tracked manually.  

(b) Representation of events in (a). 

(c) Schematic of the transcriptional activity profiles over cell lineages in genes with short or 

long memory. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 7, 2018. ; https://doi.org/10.1101/411447doi: bioRxiv preprint 

https://doi.org/10.1101/411447


 26 

 

Fig. 2. Single-cell transcriptional reporter profiles and their correlation between sister 

cells. 

(a) Single-cell transcriptional reporter time series (total intensity per cell) for two genes (top: 

Pgk, 59 pair of cells; bottom: Dstn, 50 pairs), measured from one cell division to the next 

(time is expressed in % of cell cycle time). Cells are colour-coded according to the ranking of 

the initial reporter level within the population. Dotted black line: population mean. 

(b) The top three cells with the highest/lowest initial reporter levels. 

(c) Examples of three pairs of sister cells (sister cells have the same colour). 

(d) The decrease in correlation between sister cells over the cell cycle. Green: correlation 

between sister cells; red: correlation between random cells, where each cell is matched with 

a non-sister with the nearest initial values. Error bars denote standard deviations obtained 

with bootstrap sampling. 

 

Figure 3. A hierarchical model of single-cell reporter dynamics in pairs of sister cells.  

(a) Single-cell dynamics are modelled probabilistically using stochastic differential equations 

(Methods). Each cell has a transcriptional activity (S) and a bioluminescent reporter (R) 

variable, where S controls the production of R.  

(b) To account for stochastic fluctuation, both S and R are perturbed by noise terms H and K, 

respectively. The transcriptional noise (𝜖) experienced in the two sister cells is correlated 

with parameter U, which describes whether sister cell dynamics are independent (U = 0) or if 

they share a similar shape over the cell cycle (U > 0). 

(c) The mean level of S is cell-specific and denoted by P𝑖  for cell i, and the strength of the 

noise terms for S and R are also cell-specific and are denoted by 𝜎𝑆,𝑖 and 𝜎𝑅,𝑖, respectively. 

The distribution of cell-specific parameters P𝑖, 𝜎𝑆,𝑖 and 𝜎𝑅,𝑖 are described at the population 

level with log-normal distributions. s describes the population level variability in cell-specific 

means. 
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(d) The correlation of mean transcriptional levels between sister cells is quantified with O.  

 

Figure 4. Sister cell correlation over the cell cycle is controlled by gene-dependent 

variability of cell-specific means and similarity in dynamics.  

(a) Posterior distributions (shown as boxplots) of the coefficient of variation (CV) for cell-

specific means, calculated from the posterior distributions of s and m. The boxplots 

represent the 25th, median (50th) and 75th percentiles of the posterior distribution and the 

whiskers represent the 5th and 95th percentiles. 

(b) Posterior distributions of the correlation of mean transcriptional activity between sister 

cells (O).  

(c) O correlates with CV of cell-specific means (crosses denote mean posterior values for 

each gene). 

(d) The inferred posterior probability distribution of the similarity in dynamics (𝜌) between 

sister cells. 

(e) The inferred posterior probability distribution of the similarity in dynamics (𝜌) between 

randomised cells, where the randomisation ensures that cells have the same correlation in 

cell-cycle lengths as sister cells. 

(f) The inferred posterior probability distribution of the similarity in dynamics 𝜌 for both sister 

cells and non-sister cells with the same average distance as non-sister cells. 

(g-i) Decrease in correlation between sister cells over the cell cycle. Green - the evolution of 

the sister-cell correlation over the cell cycle from the data, where time is expressed in % of 

cell cycle time. Red - the parameter posterior means for each gene are used to predict the 

evolution of sister-sister correlation over the cell cycle from the model, which is normalised 

to the average cell cycle length (13.5 hours). Yellow - the correlation between sisters is 

recalculated with ρ=0. Blue - the correlation between sisters is recalculated with s=0, which 

removes cell-specific means from the model. 
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Figure 5. The mean transcriptional activities are highly correlated between mother 

and daughter cells while the similarity in dynamics is weak 

(a) Examples of two pairs of mother and daughter cells from the pGK gene. Red and blue 

represent different pairs of cells.  

(b) Posterior distribution (show as boxplots) of the correlation of mean transcriptional levels 

(O) between mother and daughter cells. The box represents the 25th, median (50th) and 75th 

percentiles of the posterior distributions and the whiskers represent the 5th and 95th 

percentiles. 

(c) The inferred posterior probability distribution of the similarity in dynamics (ρ) between 

mother and daughter cells. 

 

Figure 6. Families of related cells have similar transcriptional levels 

(a-c) The distribution of transcriptional reporter levels in different families. For each family, 

crosses represent averaged luminescence levels from three frames preceding nuclear 

envelope breakdown in individual cells. Circles represent the mean of the family.  

(d) Boxplot showing family means (circles in (a-c)). The CV is calculated by dividing the 

standard deviation of family means by the average of the family means. The box represents 

the 25th, median (50th) and 75th percentiles of the posterior distributions and the whiskers 

represent the 5th and 95th percentiles. 

(d) For each family in (a-c) the CV is calculated by dividing the standard deviation of all cells 

within the family by the family mean.  

(c) The strength of the transcriptional noise is quantified by averaging the 𝜎𝑆 over all cells 

and dividing by the global mean 𝑚.  

(d) Samples of ES cell colonies resulting from ~ five cell divisions for pGK, Jam2 and Dstn. 

Cells were seeded at low density and colonies were imaged 60 hours later.  
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