
Hybrid Automata Library 1

Rafael Bravo, Mark Robertson-Tessi, Alexander R. A. Anderson 2

September 10, 2018 3

Anderson Lab / Integrated Mathematical Oncology Department / H. Lee Moffitt 4

Cancer Center & Research Institute, Tampa, Florida, USA 5

rafael.bravo@moffitt.org, mark.robertsontessi@moffitt.org, 6

alexander.anderson@moffitt.org 7

Abstract 8

The Hybrid Automata Library (HAL) is a Java Library made of simple, 9

efficient, generic components that can be used to model complex spatial systems. 10

HAL’s components can broadly be classified into: on- and off-lattice agent 11

containers, finite difference diffusion fields, a Gui building system, and additional 12

tools and utilities for computation and data collection. These components are 13

designed to operate independently and are standardized to make them easy to 14

interface with one another. As a demonstration of how modeling can be simplified 15

using our approach, we have included a complete example of a hybrid model (a 16

spatial model with interacting agent-based and PDE components, commonly used 17

for oncology modeling). HAL is a useful asset for researchers who wish to build 18

efficient 1D, 2D and 3D hybrid models in Java, while not starting entirely from 19

scratch. It is available on github at https://github.com/torococo/HAL under the 20

MIT License. HAL requires at least Java 8 or later to run, and the java jdk 21

version 1.8 or later to compile the source code. 22

1 Author Summary 23

In this paper we introduce the Hybrid Automata Library (HAL) with the purpose of 24

simplifying the implementation and sharing of hybrid models for use in mathematical 25

oncology. Hybrid modeling is used in oncology to create spatial models of tissue, 26

typically by modeling cells using agent-based techniques, and by modeling diffusible 27

chemicals using partial differential equations (PDEs). HAL’s key components are 28

designed to run agent-based models, PDEs, and visualization. The components are 29

standardized and are completely decoupled, so models can be built with any 30

combination of them. We first explore the philosophy behind HAL, then summarize the 31

components. Lastly we demonstrate how the components work together with an 32

example of a hybrid model, and a walk-through of the code used to construct it. HAL is 33

open-source, and will produce identical results on any machine that supports Java 8 and 34

above, making it highly portable. We recommend HAL to modelers interested in spatial 35

dynamics, even those outside of mathematical oncology, as the components are general 36

enough to facilitate a variety of model types. A community page that provides a 37

download link and online documentation can be found at https://halloworld.org [1]. 38

2 Introduction 39

We created The Hybrid Automata Library (HAL) to address a need at the Moffitt 40

Cancer Center Integrated Mathematical Oncology department to have a common 41

1

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 10, 2018. ; https://doi.org/10.1101/411538doi: bioRxiv preprint 

https://doi.org/10.1101/411538
http://creativecommons.org/licenses/by-nc-nd/4.0/


Name Language Scheduling Structure Spatial Representations
HAL Java For-Loop Iteration On/Off-lattice, Newtonian Physics

PhysiCell C++ Domain Specific Newtonian Physics
CompuCell 3D Python/XML Domain Specific On Lattice Composites

Chaste C++ Modular Behavior Based On/Off-lattice, Newtonian Physics, Voronoi
Repast Java Group-Based Scheduler On/Off-lattice, Network
Mason Java Agent-Level-Scheduler On/Off-lattice
Netlogo Netlogo Go Loop On/Off-lattice, Spatial Networks

Table 1. Comparison of HAL with other agent-based Modeling Frameworks commonly
used in tissue modeling

framework for building efficient hybrid models. Hybrid models in oncology usually 42

represent cells as agents and the concentrations of relevant chemicals (drugs, resources 43

or signaling molecules) as partial differential equations (PDEs). These models can 44

simulate local interactions between cells with complex internal dynamics and 45

decision-making processes while also allowing cells to interact with the PDE 46

concentration fields in their local environment. Hybrid models have been widely 47

adopted within the Mathematical Oncology community [2–5], and whilst a number of 48

agent-based modeling frameworks have been used for tissue modeling, including 49

MASON, Repast, Physicell, CompuCell3D, Chaste, and Netlogo, we designed HAL to 50

be simpler, more efficient, and easier to use. 51

Some of these frameworks facilitate model building under specific spatial interaction 52

assumptions like PhysiCell [6], which treats cells as spheres that force each other apart 53

and is optimized for large cell populations, and CompuCell 3D [7], which models cells as 54

contiguous composites of lattice positions, allowing cell deformation. HAL does not 55

include the same depth in the domains specific to these frameworks, but uses a broader 56

approach to provide the capacity for modeling a variety of systems. 57

Some of the most popular frameworks that also take a broad approach are Chaste, 58

Repast, Mason, and Netlogo. Chaste uses an assumption based system for model 59

building, in which modular rules are composed to define behavior, and behaviors that 60

are not currently represented can be added as new modules [8]. This modular approach 61

allows for very rapid prototyping, and increases the reproducibility of results. Repast 62

uses a hierarchical nesting approach to group agents into sets that will all execute some 63

action, and also features a highly customizable scheduling procedure to sequence these 64

actions [9]. MASON is probably the most architecturally similar to HAL, as it also 65

strives to be a modular agent-based modeling package, with built-in optional 66

visualization tools and comparatively lax structure [10]. Netlogo uses a custom scripting 67

language in order to simplify the coding process [11]. Netlogo also provides an accessible 68

model development environment, making it a great choice for new modelers/coders. 69

Each of these frameworks facilitates modeling under a different centralized control 70

structure: In Chaste centralized control is done by a Simulator object, in Repast this 71

component is called an Engine, in Mason it is called the Schedule object, and in Netlogo 72

it is called the Go loop 1. 73

HAL shares many characteristics with these frameworks, but differentiates itself with 74

a minimal, decentralized design made up of independent building blocks that are 75

thematically similar. There is no centralized controller or scheduler, so the modeler 76

designs the logical flow and the scheduling of interactions between components of the 77

model. Having no scheduler makes the model design flexible (there are no pre-set 78

configurations, eg. when models should be visualized, when their step logic should run, 79

when models should be created or destroyed.) These considerations have led to a 80

lightweight framework that is easy to use, highly flexible, and effective within the scope 81

of hybrid modeling, agent-based modeling, and the solving of simple 82

September 10, 2018 2/24

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 10, 2018. ; https://doi.org/10.1101/411538doi: bioRxiv preprint 

https://doi.org/10.1101/411538
http://creativecommons.org/licenses/by-nc-nd/4.0/


reaction-convection-diffusion PDEs using finite differences. 83

The main components of HAL consist of 1D, 2D and 3D Grids that hold Agents, 1D, 84

2D and 3D finite difference PDE fields, and methods for sampling distributions, data 85

recording, and model visualization. The assumptions behind these main components are 86

detailed in this paper and within the manual 6. 87

HAL was designed with mathematical oncology in mind, but is general enough to 88

facilitate modeling systems from many domains (eg. ecology [12], development, 89

population dynamics, and network theory). [6]. We also imagine that its simplicity and 90

explicit nature could make it a useful educational platform. Some familiarity with the 91

Java programming language is recommended for new users. 92

3 Design And Implementation 93

3.1 Design Philosophy 94

In the next section, we discuss some of the design decisions that have driven the 95

architecture of HAL. 96

3.1.1 Language Choice 97

In designing HAL we have tried to balance an adherence to speed/memory management, 98

simplicity/stability, and modularity. The Java language itself balances these 99

considerations very well, making it a suitable basis for HAL. High performance 100

languages such as C, C++, and Fortran, can be coded to run at speeds comparable to 101

or faster than Java, however these lanugages require more low-level management. 102

Moreover, they do not have the same security guarantees as they permit out-of-bounds 103

memory accesses and memory leaks. Higher level languages, such as Python, while more 104

flexible and syntactically intuitive than Java, are typically significantly slower. Java is 105

also one of the most commonly used and taught programming languages today, which 106

helps facilitate the adoption of HAL by new users. The fact that Java is cross-platform 107

is also a plus. 108

3.1.2 Modularity and Extensibility 109

As part of HAL’s modular design, each framework component can function 110

independently. This permits any number of components to be used in a single model, 111

with the use of spatial queries to combine components, as seen in Fig 1. Modularity also 112

allows modelers to choose the components of HAL that interest them. These 113

components can be easily mixed and matched with other software, such as using the 114

AgentGrids with a different PDE solver, or using the Gui and Visualization components 115

with a different modeling system. Modularity also makes adding and testing new 116

components more manageable and easier to test without adding bulk or heavy 117

modifications to the core of the platform. 118

September 10, 2018 3/24

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 10, 2018. ; https://doi.org/10.1101/411538doi: bioRxiv preprint 

https://doi.org/10.1101/411538
http://creativecommons.org/licenses/by-nc-nd/4.0/


On-Lattice Agent Grid

Off-Lattice Agent Grid

PDE Grids

Figure 1. The modular design of HAL helps build complex models out of simple
components. The highlighted on-lattice agent in the topmost grid searches for local
overlaps with several other grids and PDEs. These overlaps can be used in a model to
generate spatial interactions.

Given the incremental nature of many scientific endeavors, we also wanted to allow 119

models and components to be extended and modified. Java’s extension architecture 120

provides an excellent environment for layered development. 121

As an example of the extensibility of HAL, the built-in Spherical Agent types 122

(SphericalAgent2D, SphericalAgent3D) extend the Point Agent types (AgentPT2D, 123

AgentPT3D). Point Agents have no built-in radius and will not collide with each other. 124

This behavior can be useful for modeling phenomena such as the diffusion of gas 125

particles, as visualized in Fig 2a. Spherical Agents extend Point Agents by adding an 126

additional radius variable and velocity component variables. These properties combined 127

with added functions for summing force vectors in response to overlap allow for a 128

physics-based spherical model of spatial agents. This behavior can be useful for 129

modeling tissue formation, as visualized in Fig 2b. 130

A B
Figure 2. Off-lattice agent examples. (A) Example of 2D Point Agents modeling gas
diffusion. The Point Agents move freely and cannot collide. Displayed using the
GridWindow object. (B) Example of 2D Spherical Agents modeling growing tissue.
The pink cells divide slightly more rapidly than the purple cells. Displayed using the
OpenGL2DWindow object

It is also possible to extend completed models using the same approach. For 131

example, grids and agents from published models can be used as as a scaffold on which 132

to do additional studies. This allows for followup studies to focus on implementing 133

whatever additional assumptions and functionality they need, while leaving intact the 134

base model code with all of its published assumptions. Subsequent papers need only 135

September 10, 2018 4/24

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 10, 2018. ; https://doi.org/10.1101/411538doi: bioRxiv preprint 

https://doi.org/10.1101/411538
http://creativecommons.org/licenses/by-nc-nd/4.0/


publish the additional code, making it easy for readers to understand exactly what 136

additional assumptions were made on top of the prior work. 137

3.1.3 Simplicity and Stability 138

From the beginning, an important design principle was to make HAL simple to use 139

without sacrificing performance. Simplicity makes HAL easy to learn and forces the 140

components to be more generic, meaning that the same components can be applied to a 141

greater variety of modeling problems. There is also a consistency to each framework 142

component, such that learning to use some components is often sufficient to grasp the 143

others, and makes using them in combination intuitive. 144

Another key design principle is stability, which is achieved in three ways: 145

1. By only permitting correct interaction with the components via hiding variables 146

that would break the component if modified directly. For example, modelers are 147

not permitted to directly modify the position properties of agents. Instead, they 148

must call the provided movement functions that also update the grid position of 149

the agents for future spatial queries. 150

2. By including checks in functions for invalid inputs. The program stops 151

immediately when one of these problematic inputs occurs, allowing the user to see 152

what caused the problem, rather than seeing its effects later down the line. This 153

helps modelers fix bugs in the logic of their model, without having to worry about 154

how these bugs interact with HAL internally. 155

3. By including tests for most of the algorithms that HAL uses. These tests help 156

ensure confidence in the mathematics while also serving as simple tutorials to 157

demonstrate the functions of most of HAL’s components. HAL is also very 158

shallow by design, leaving little complexity for bugs to hide in. 159

3.1.4 Speed and Memory Management 160

Much of the performance capability of HAL comes directly from its decentralized design. 161

Having no built-in scheduler/underlying structure means that there is comparatively 162

little work that the program does that the modeler is unaware of. This combined with 163

the modular components and utilities allows modelers the flexibility to incorporate the 164

functionality that they need, without the software sacrificing performance by implicitly 165

doing unnecessary tasks. 166

HAL also prioritizes performance in its algorithmic implementation. HAL includes 167

efficient PDE solving algorithms, such as the ADI (alternating direction implicit) 168

method, and uses efficient distribution samplers rather than naive approaches. The 169

integrated visualization tools are also highly efficient, using BufferedImages and 170

OpenGL. Whenever possible, primitives and arrays are used to store data rather than 171

classes, which takes advantage of Java’s optimization for these simpler data types. Java 172

is also an inherently fast language, which helps efficiently execute agent behavioral logic. 173

There is a memory footprint consideration with most of HAL’s assets. A common 174

criticism of Java applications is that they tend to use a lot of memory and are slowed 175

down by Java’s “garbage collector” which deletes objects that are no longer being used. 176

To sidestep these memory issues, objects that are used frequently are recycled rather 177

than discarded. Most functions that would use an object as part of their calculation will 178

take the object as an argument rather than create a new one, which allows for reuse of 179

that same object in multiple function calls. When possible, components will also store 180

used objects internally for reuse in subsequent calculations. If the same function is 181

September 10, 2018 5/24

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 10, 2018. ; https://doi.org/10.1101/411538doi: bioRxiv preprint 

https://doi.org/10.1101/411538
http://creativecommons.org/licenses/by-nc-nd/4.0/


called many times in series with the same object argument, the reused object will be 182

more readily accessible in the computer’s memory, further improving performance. 183

A key example of this reuse: when agents are removed during a simulation run, the 184

removed agent objects are kept by the AgentGrid and will be returned again for 185

re-initialization when a new agent is requested. Agent recycling ensures that the 186

number of agents that the grid creates is capped to the maximum population that 187

existed on the grid at one time. 188

3.2 Component Overview 189

We now move from the abstract discussion of the unifying principles behind HAL to a 190

look at its core components in more detail. Though it may seem that learning how to 191

use these components would be a difficult task given their number and variety, an 192

important feature to keep in mind is that all components were designed with a 193

consistent API, which makes changing between agent/grid types and learning their 194

methods much easier. 195

3.2.1 AgentGrids 196

AgentGrids are used as spatial containers for agents. They come in 1D, 2D, 3D, and 197

non-spatial varieties. Internally, AgentGrids are composed of two datastructures: an 198

agent list for agent iteration, and an agent lattice for spatial queries (even off-lattice 199

agents are stored on a lattice for quick access). The agent list can be shuffled at every 200

iteration to randomize iteration order, and the list holds onto removed agents to 201

facilitate object recycling. An example of the 3D capabilities of HAL is shown in Fig 3. 202

3.2.2 Agents 203

There are 10 base types of agent, introduced in Table 2. The SQ and PT suffixes refer 204

to whether the agents are imagined to exist as lattice bound squares/voxels, or as as 205

non-volumetric points in space. 206

Name Spatial Dimension Lattice Bound Stackable
Agent0D 0 N/A N/A

AgentSQ1D 1 yes yes
AgentSQ1Dunstackable 1 yes no

AgentPT1D 1 no yes
AgentSQ2D 2 yes yes

AgentSQ2Dunstackable 2 yes no
AgentPT2D 2 no yes
AgentSQ3D 3 yes yes

AgentSQ3Dunstackable 3 yes no
AgentPT3D 3 no yes

Table 2. The 10 base agent types in HAL. The differences between them are displayed
in each column. Stackable refers to whether multiple agents can exist on the same
lattice position

Agent objects are always bound to a grid. In their base class form, agents keep track 207

of their position on the grid and their age. Newly created agents are not included in the 208

same iteration loop in which they are created, to prevent infinite loops of “runaway 209

proliferation”. The base agent classes can be extended to include additional state 210

properties and methods as needed. 211

September 10, 2018 6/24

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 10, 2018. ; https://doi.org/10.1101/411538doi: bioRxiv preprint 

https://doi.org/10.1101/411538
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3. An example of a 3D on-lattice hybrid model of tumor cells spreading
through tissue. The red vertical lines model vessels, and the blue dots model tumor
cells. The cell color goes from pink to blue depending on how much oxygen is locally
available. Displayed using the OpenGL3DWindow object.

3.2.3 PDEGrids 212

The PDE Grids consist of either a 1D, 2D, or 3D lattice of concentrations. PDE grids 213

contain functions that will solve reaction-advection-diffusion equations. Solutions are 214

facilitated by recording the next timestep values on a secondary swap lattice and then 215

exchanging the identities of these lattices. Currently implemented PDE solution 216

methods include: 217

• Explicit 1st Order Diffusion 218

• Modification of values at single lattice positions to facilitate reaction with agents 219

or other sources/sinks. 220

• ADI Diffusion [13] 221

• Explicit upwind 1st order Convection [14] 222

Most of these methods are flexible, allowing for variable diffusion rates and convection 223

velocities as well as different boundary conditions such as periodic, Dirichlet, and 224

zero-flux Von Neumann. 225

3.2.4 Graphical User Interface (Gui) 226

The Gui building system consists of the following components: 227

• UIWindow: a container for Gui sub-components which are added in columns that 228

automatically scale to the appropriate size. The following four sub-components 229

can be added: 230

– UIGrid: a grid of pixels whose values are set individually. These are typically 231

used to plot agent positions and diffusible concentrations, and can be easily 232

output in GIF or PNG formats. 233

– UILabel: a label that presents modifiable text. 234

– UIButton: a button that executes a function when clicked 235

– UIInputFields: fields that facilitate bounded input of Integers, Doubles, 236

Strings, Booleans, File Creation/Selection, and Combo boxes 237

• Window2DOpenGL/Window3DOpenGL: visualization windows that use OpenGL 238

to efficiently render polygon graphics. 239

September 10, 2018 7/24

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 10, 2018. ; https://doi.org/10.1101/411538doi: bioRxiv preprint 

https://doi.org/10.1101/411538
http://creativecommons.org/licenses/by-nc-nd/4.0/


• GridWindow: A shortcut to generate a UIWindow with a single UIGrid 240

component embedded. This simple component is used in the results section 241

example. 242

• GifMaker: An object that can turn UIGrid visualization snapshots into gifs 243

(Original source code created by Patrick Meister [15]). 244

An example Gui that uses the UIWindow with embedded UIButtons, InputFields, 245

UILabels, and a UIGrid is shown in Fig 4. 246

Figure 4. An example Gui. When the Run button is clicked, the visualization window
displays a running model that is parameterized with the given settings. In this example
model based on [16], the red cells are stem cells, and the blue cells are differentiated
cells. Differentiated cells have a limited number of divisions and therefore can only
spread a limited distance from the stem cells. Labels at the top of the Gui show the
current timestep and population size. Displayed using the UIWindow object.

3.2.5 Utilities 247

The Util class is used with almost every project. It is a collection of standalone 248

functions that solve common problems such as: Generating colors for use with the 249

visualization tools, array manipulation, sampling distributions (eg. Gaussian, Poisson, 250

Binomial, Multinomial - created using code pulled from the Colt and Numpy open 251

source libraries [17,18]), generating coordinate neighborhoods (eg. VonNeumann, 252

Moore, Hex, Triangular), spatial mathematical operations, multicore parallelization, 253

functions to save and load model states, etc. See the manual for more information 6. 254

3.2.6 Tools 255

A set of miscellaneous tool objects are included to help with specific modeling tasks, 256

these include: 257

September 10, 2018 8/24

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 10, 2018. ; https://doi.org/10.1101/411538doi: bioRxiv preprint 

https://doi.org/10.1101/411538
http://creativecommons.org/licenses/by-nc-nd/4.0/


• A FileIO object that is used to read input files and output results. 258

• A GenomeTracker object that internally stores phylogeny information in a 259

searchable tree structure. 260

4 Results: Competitive Release Model 261

To demonstrate how the aforementioned principles and components of HAL are applied, 262

we consider a simple but complete example of hybrid modeling. We implement the 263

model of pulsed therapy based on a recent publication from the Anderson Lab [19]. We 264

also showcase the flexibility that the modular component approach brings by displaying 265

3 different parameterizations of the same model side by side. 266

4.1 Competitive Release Introduction 267

The model in [19] describes two competing tumor-cell phenotypes: a rapidly dividing, 268

drug-sensitive phenotype and a slower dividing, drug-resistant phenotype. There is also 269

a diffusible drug that enters the system through the domain boundaries and is up-taken 270

by the tumor cells over time. 271

Every timestep (tick), each cell has a probability of death and a probability of 272

division. The division probability is affected by phenotype and the availability of space. 273

Sensitive cells have a death rate that increases when the cells are exposed to drug, while 274

resistant cells have a constant death rate. 275

The modular design of HAL allows us to test 3 different treatment conditions, each 276

with an identical starting tumor (No drug, constant drug, and pulsed drug). An 277

interesting outcome of the experiment is that pulsed therapy is better at managing the 278

tumor than constant therapy. Under pulsed therapy the sensitive population is kept in 279

check, while still competing spatially with the resistant phenotype and preventing its 280

expansion. The rest of the section describes in detail how this abstract model is 281

generated. 282

Fig 5 provides a high level look at the structure of the code. Table 3 provides a 283

quick reference for the built-in HAL functions in this example. Any functions that are 284

used by the example but do not exist in the table are defined within the example itself 285

and explained in detail below the code. Those fluent in Java may be able to understand 286

the example just by reading the code and using the reference table. Built-in framework 287

functions and classes used in the code are highlighted in red to make identifying 288

framework components easier. 289

September 10, 2018 9/24

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 10, 2018. ; https://doi.org/10.1101/411538doi: bioRxiv preprint 

https://doi.org/10.1101/411538
http://creativecommons.org/licenses/by-nc-nd/4.0/


A

Main	

For	each	Model:	

Grid	Constructor	

InitTumor	

Setup	constants,	
visualization,		
and	file	output	

For	each	Timestep:	

For	each	Model:	

ModelStep	
For	each	Cell:	

Close	visualization		
and	file	output	

Record	populations		
and	visualization	

CellStep	

DrawModel	

Drug	Diffusion	

Shuffle	Agents	

Program	Start	

Program	End	

Make	models	unique	

B

CellStep	
	
	
	
	
	
	
	
	
	
	
	

Consume	
Drug	

No	

Yes	 Dispose	
Cell	

Divide?	

Die?	

Yes	 Create	
Daughter	

Figure 5. (A) Example program flow diagram. Red font indicates where functions are
first called. (B) CellStep function flow diagram.

September 10, 2018 10/24

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 10, 2018. ; https://doi.org/10.1101/411538doi: bioRxiv preprint 

https://doi.org/10.1101/411538
http://creativecommons.org/licenses/by-nc-nd/4.0/


Function Object Action
MapHood( NEIGH-
BORHOOD,X,Y)

AgentGrid2D Finds all indices in the provided neighborhood, centered around
X,Y on the AgentGrid2D. Writes these indices into the NEIGH-
BORHOOD argument, and returns the number that were found.

NewAgentSQ(INDEX) AgentGrid2D Returns a new agent, placed at the center of the of the square
at the provided INDEX.

ShuffleAgents(RNG) AgentGrid2D Usually called after every timestep to shuffle the order of agent
iteration.

GetTick() AgentGrid2D Returns the current grid timestep.
ItoX(INDEX),
ItoY(INDEX)

AgentGrid2D Converts from a grid position INDEX to the x and y components
that point to the same grid position.

G AgentSQ2D Gets the grid that the agent occupies.
Isq() AgentSQ2D Gets the index of the grid square that the agent occupies.

MapEmptyHood(
NEIGHBORHOOD)

AgentSQ2D Finds all indices in the provided neighborhood, centered around
the agent, that do not have an agent occupying them. Writes
these indices into the NEIGHBORHOOD argument, and returns
the number that were found.

Dispose() AgentSQ2D Removes the agent from the grid and from iteration.
Get(INDEX) PDEGrid2D Returns the concentration of the PDE field at the given index.

Mul(INDEX, VALUE) PDEGrid2D Multiplies the concentration at the given INDEX by VALUE.
DiffusionADI( RATE) PDEGrid2D Applies diffusion using the ADI method with the rate constant

provided. A reflective boundary is assumed.
DiffusionADI(

RATE,
BOUNDARY_COND)

PDEGrid2D Applies diffusion using the ADI method with the RATE constant
provided. The BOUNDARY_COND value diffuses from the grid
borders.

Update() PDEGrid2D Applies all state changes simultaneously to the PDEGrid
SetPix(INDEX,

COLOR)
GridWindow Sets the color of a pixel.

TickPause(
MILLISECONDS)

GridWindow Pauses the program between calls to TickPause. The function
automatically subtracts the time between calls from MILLISEC-
ONDS to ensure a consistent framerate.

ToPNG(FILENAME) GridWindow Writes out the current state of the UIWindow to a PNG image
file.

Close() GridWindow Closes the GridWindow.
RGB(RED, GREEN,

BLUE)
Util Returns an integer with the requested color in RGB format. This

value can be used for visualization.
HeatMapRGB(VALUE) Util Maps the VALUE argument (assumed to be between 0 and 1)

to a color in the heat colormap.
CircleHood(

INCLUDE_ORIGIN,
RADIUS)

Util Returns a set of coordinate pairs that define the neighborhood of
all squares whose centers are within the RADIUS distance of the
center (0, 0) origin square. The INCLUDE_ORIGIN argument
specifies whether to include the origin in this set of coordinates.

MooreHood(
INCLUDE_ORIGIN)

Util Returns a set of coordinate pairs that define a Moore neighbor-
hood around the (0, 0) origin square. The INCLUDE_ORIGIN
boolean specifies whether we intend to include the origin in this
set of coordinates.

Write(STRING) FileIO Writes the STRING to the output file.
Close() FileIO Closes the output file.

Table 3. HAL functions used in the example. Each function is a method of a
particular object, meaning that when the function is called it can readily access
properties that pertain to the object that it is called from.

September 10, 2018 11/24

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 10, 2018. ; https://doi.org/10.1101/411538doi: bioRxiv preprint 

https://doi.org/10.1101/411538
http://creativecommons.org/licenses/by-nc-nd/4.0/


4.2 Main Function 290

We first examine the ’main’ function for a bird’s-eye view of how the program is 291

structured. Source code elements highlighted in red are built-in HAL functions and 292

objects, and can be referenced in Table 3. 293

294
1 p u b l i c s t a t i c vo i d main ( S t r i n g [ ] a r g s ) { 295

2 // s e t t i n g up s t a r t i n g c on s t a n t s and data c o l l e c t i o n 296

3 i n t x = 100 , y = 100 , v i s S c a l e = 5 , tumorRad = 10 , msPause = 0 ; 297

4 doub l e r e s i s t a n t P r o b = 0 . 5 ; 298

5 GridWindow win = new GridWindow ( " Compe t i t i v e Re l e a s e " , x ∗ 3 , y , 299

v i s S c a l e ) ; 300

6 F i l e IO popsOut = new F i l e IO ( " p opu l a t i o n s . c s v " , "w" ) ; 301

7 // s e t t i n g up models 302

8 ExampleModel [ ] models = new ExampleModel [ 3 ] ; 303

9 f o r ( i n t i = 0 ; i < models . l e n g t h ; i++) { 304

10 models [ i ] = new ExampleModel ( x , y , new Rand ( ) ) ; 305

11 models [ i ] . In i tTumor ( tumorRad , r e s i s t a n t P r o b ) ; 306

12 } 307

13 models [ 0 ] .DRUG_DURATION = 0 ; //no drug 308

14 models [ 1 ] .DRUG_DURATION = 200 ; // con s t an t drug 309

15 //Main run loop 310

16 f o r ( i n t t i c k = 0 ; t i c k < 10000 ; t i c k++) { 311

17 win . TickPause ( msPause ) ; 312

18 f o r ( i n t i = 0 ; i < models . l e n g t h ; i++) { 313

19 models [ i ] . ModelStep ( t i c k ) ; 314

20 models [ i ] . DrawModel ( win , i ) ; 315

21 } 316

22 // data r e c o r d i n g 317

23 popsOut . Wr i te ( models [ 0 ] . GetPop ( ) + " , " + models [ 1 ] . GetPop ( ) + 318

" , " + models [ 2 ] . GetPop ( ) + "\n" ) ; 319

24 i f ( ( t i c k ) % 100 == 0) { 320

25 win .ToPNG( "ModelsTick " + t i c k + " . png" ) ; 321

26 } 322

27 } 323

28 // c l o s i n g data c o l l e c t i o n 324

29 popsOut . C l o s e ( ) ; 325

30 win . C l o s e ( ) ; 326

31 } 327328

3-4: Defines all of the constants that will be needed to setup the model and display. 329

5: Creates a GridWindow of RGB pixels for visualization and for generating timestep 330

PNG images. x*3, y define the dimensions of the pixel grid. X is multiplied by 3 331

so that 3 models can be visualized side by side in the same window. The last 332

argument is a scaling factor that specifies that each pixel on the grid will be 333

viewed as a 5x5 square of pixels on the screen. 334

6: Creates a file output object to write to a file called populations.csv 335

8: Creates an array with 3 entries that will be populated with models. 336

9-12: Fills the model list with models that are initialized identically. Each model will 337

hold and update its own cells and diffusible drug. See the Grid Definition and 338

Constructor section and the InitTumor Function section for more details. 339

13-14: Setting the DRUG_DURATION constant creates the only difference in the 3 340

models being compared. In models[0] no drug is administered (the default value of 341

DRUG_DURATION is 0). In models[1] drug administration is constant 342

(DRUG_DURATION is set equal to DRUG_CYCLE). In models[2] drug will be 343

administered periodically. See the ExampleModel Constructor and Properties 344

section for the default values. 345

September 10, 2018 12/24

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 10, 2018. ; https://doi.org/10.1101/411538doi: bioRxiv preprint 

https://doi.org/10.1101/411538
http://creativecommons.org/licenses/by-nc-nd/4.0/


16: Executes the main loop for 10000 timesteps. See the ModelStep Function for where 346

the Model timestep is incremented. 347

17: Requires every iteration of the loop to take a minimum number of milliseconds. 348

This slows down the execution and display of the model and makes it easier for 349

the viewer to follow. 350

18: Loops over all models to update them. 351

19: Advances the state of the agents and diffusibles in each model by one timestep. See 352

the Model Step Function for more details. 353

20: Draws the current state of each model to the window. See the Draw Model 354

Function for more details. 355

23: Writes the population sizes of each model every timestep to allow the models to be 356

compared. 357

24: Every 100 timesteps, writes the state of the model as captured by the GridWindow 358

to a PNG file. 359

29-30: After the main for loop has finished, the FileIO object and the visualization 360

window are closed, and the program ends. 361

4.3 ExampleModel Constructor and Properties 362

This section explains how the grid is defined and instantiated. 363

364
1 p u b l i c c l a s s ExampleModel e x t end s AgentGrid2D<ExampleCe l l> { 365

2 //model c on s t a n t s 366

3 p u b l i c f i n a l s t a t i c i n t RESISTANT = RGB(0 , 1 , 0) , SENSITIVE = RGB(0 , 367

0 , 1) ; 368

4 p u b l i c doub l e DIV_PROB_SEN = 0.025 , DIV_PROB_RES = 0 .01 , 369

5 DEATH_PROB = 0.001 , DRUG_DIFF_RATE = 2 , DRUG_UPTAKE = 0 .91 , 370

6 DRUG_TOXICITY = 0 .2 , DRUG_BOUNDARY_VAL = 1 . 0 ; 371

7 p u b l i c i n t DRUG_START = 400 , DRUG_CYCLE = 200 , DRUG_DURATION = 40 ; 372

8 // i n t e r n a l model o b j e c t s 373

9 p u b l i c PDEGrid2D drug ; 374

10 p u b l i c Rand rng ; 375

11 p u b l i c i n t [ ] divHood = MooreHood ( f a l s e ) ; 376

12 377

13 p u b l i c ExampleModel ( i n t x , i n t y , Rand g en e r a t o r ) { 378

14 supe r ( x , y , Examp leCe l l . c l a s s ) ; 379

15 rng = gen e r a t o r ; 380

16 drug = new PDEGrid2D ( x , y ) ; 381

17 } 382383

1: The ExampleModel class, which is user defined and specific to this example, is built 384

by extending the generic AgentGrid2D class. The extended grid class requires an 385

agent type parameter, which is the type of agent that will live on the grid. To 386

meet this requirement, the <ExampleCell> type parameter is added to the 387

declaration. 388

3: Defines RESISTANT and SENSITIVE constants, which are created by the Util RGB 389

function. These constants serve as both colors for drawing and as labels for the 390

different cell types. 391

4-7: Defines all constants that will be needed during the model run. These values can 392

be reassigned after model creation to facilitate testing different parameter settings. 393

In the main function, the DRUG_DURATION variable is modified for the 394

Constant-Drug, and Pulsed Therapy experiment cases. 395

September 10, 2018 13/24

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 10, 2018. ; https://doi.org/10.1101/411538doi: bioRxiv preprint 

https://doi.org/10.1101/411538
http://creativecommons.org/licenses/by-nc-nd/4.0/


9: Declares that the model will contain a PDEGrid2D, which will hold the drug 396

concentrations. The PDEGrid2D can only be initialized when the x and y 397

dimensions of the model are known, which is why we do not define them until the 398

constructor function. 399

10: Declares that the Grid will contain a Random number generator, but take it in as a 400

constructor argument to allow the modeler to seed it if desred. 401

11: Defines an array that will store the coordinates of a neighborhood generated by the 402

MooreHood function. The MooreHood function generates a set of coordinates that 403

define the Moore Neighborhood, centered around the (0, 0) origin. The 404

neighborhood is stored in the format [0102, ..., 0n, x1, y1, x2, y2, ..., xn, yn] . The 405

leading zeros are written to when MapHood is called, and will store the indices 406

that the neighborhood maps to. See the CellStep function for more information. 407

13: Defines the model constructor, which takes as arguments the x and y dimensions of 408

the world and a random number generator. 409

14: Calls the AgentGrid2D constructor with super, passing it the x and y dimensions of 410

the world, and the ExampleCell Class. This Class is used by the Grid to generate 411

a new cell when the NewAgentSQ function is called. 412

15-16: The random number generator argument is assigned and the drug PDEGrid2D 413

is defined with matching dimensions. 414

4.4 InitTumor Function 415

416
1 p u b l i c vo i d In i tTumor ( i n t r ad i u s , doub l e r e s i s t a n t P r o b ) { 417

2 // get a l i s t o f i n d i c e s t ha t f i l l a c i r c l e a t the c e n t e r o f the 418

g r i d 419

3 i n t [ ] tumorNeighborhood = Ci r c l eHood ( t rue , r a d i u s ) ; 420

4 i n t hoodS ize = MapHood( tumorNeighborhood , xDim / 2 , yDim / 2) ; 421

5 f o r ( i n t i = 0 ; i < hoodS ize ; i++) { 422

6 i f ( rng . Double ( ) < r e s i s t a n t P r o b ) { 423

7 NewAgentSQ( tumorNeighborhood [ i ] ) . t ype = RESISTANT ; 424

8 } e l s e { 425

9 NewAgentSQ( tumorNeighborhood [ i ] ) . t ype = SENSITIVE ; 426

10 } 427

11 } 428

12 } 429430

The next segment of code is a function from the ExampleModel class that defines how 431

the tumor is first seeded after the ExampleModel is created. 432

1: The arguments passed to the InitTumor function are the approximate radius of the 433

circular tumor being created and the probability that each created cell will be of 434

the resistant phenotype. 435

3: Sets the circleCoords array using the built-in CircleHood function, which stores 436

coordinates in the form [01, 02, ..., 0n, x1, y1, x2, y2, ...xn, yn]. These coordinate 437

pairs define a neighborhood of all squares whose centers are within the radius 438

distance of the center (0, 0) origin square. The leading 0s are used by the 439

MapHood function to store the mapped indices. The boolean argument specifies 440

that the origin will be included in this set of squares, thus making a completely 441

filled circle of squares. 442

4: Uses the built-in MapHood function to map the neighborhood defined above to be 443

centered around xDim/2,yDim/2 (the dimensions of the AgentGrid). The results 444

September 10, 2018 14/24

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 10, 2018. ; https://doi.org/10.1101/411538doi: bioRxiv preprint 

https://doi.org/10.1101/411538
http://creativecommons.org/licenses/by-nc-nd/4.0/


of the mapping are written as indices to the beginning of the tumorNeighborhood 445

array. MapHood returns the number of valid indices found, and this will be the 446

size of the starting population. 447

5: Loops from 0 to hoodSize, allowing access to each mapped index in the 448

tumorNeighborhood. 449

6: Samples a random number in the range (0− 1] and compares to the resistantProb 450

argument to set whether the cell should have the resistant phenotype or the 451

sensitive phenotype. 452

7-9: Uses the built-in NewAgentSQ function to place a new cell at each 453

tumorNeighborhood position. In the same line we also specify that the phenotype 454

should be either resistant or sensitive, depending on the result of the rng.Double() 455

call. 456

4.5 ModelStep Function 457

This section looks at the model’s step function which is executed once per timestep by 458

each Model. 459

460
1 p u b l i c vo i d ModelStep ( i n t t i c k ) { 461

2 Shu f f l eAg en t s ( rng ) ; 462

3 f o r ( Examp leCe l l c e l l : t h i s ) { 463

4 c e l l . C e l l S t e p ( ) ; 464

5 } 465

6 i n t p e r i o dT i c k = ( t i c k − DRUG_START) % DRUG_CYCLE; 466

7 i f ( p e r i o dT i c k > 0 && pe r i o dT i c k < DRUG_DURATION) { 467

8 // drug w i l l e n t e r th rough bounda r i e s 468

9 drug . D i f f u s i o nAD I (DRUG_DIFF_RATE, DRUG_BOUNDARY_VAL) ; 469

10 } e l s e { 470

11 // drug w i l l not e n t e r th rough bounda r i e s 471

12 drug . D i f f u s i o nAD I (DRUG_DIFF_RATE) ; 472

13 } 473

14 drug . Update ( ) 474

15 } 475476

2: The ShuffleAgents function randomizes the order of iteration so that the agents are 477

always looped through in random order. 478

3-4: Iterates over every cell on the grid, and calls the CellStep function on every cell. 479

6-7: The GetTick function is a built-in function that returns the current Grid timestep. 480

The If statement logic checks if the timestep is past the drug start and if the 481

timestep is in the right part of the drug cycle to apply drug. (See the Grid 482

Definition and Constructor section for the values of the constants involved, the 483

DRUG_DURATION variable is set differently for each model in the Main 484

Function) 485

9: If it is time to add drug to the model, the built-in DiffusionADI function is called. 486

The default Diffusion function uses the standard 2D Laplacian and is of the form: 487
δC
δt = D∇2C, where D in this case is the DRUG_DIFF_RATE. DiffusionADI 488

uses the ADI method which is more stable and allows us to take larger steps. The 489

additional argument to the DiffusionADI function specifies the boundary 490

condition value DRUG_BOUNDARY_VAL. This causes the drug to diffuse into 491

the PDEGrid2D from the boundary. Here we assume that drug is only delivered 492

from the boundaries of the domain 493

September 10, 2018 15/24

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 10, 2018. ; https://doi.org/10.1101/411538doi: bioRxiv preprint 

https://doi.org/10.1101/411538
http://creativecommons.org/licenses/by-nc-nd/4.0/


12: Without the second argument the DiffusionADI function assumes a no-flux 494

boundary, meaning that drug concentration cannot escape or enter through the 495

sides. Therefore the only way for the drug concentration to decrease is via uptake 496

by the Cells. See the CellStep function section, line 6, for more information. 497

14: Update is called to apply the reaction and diffusion changes to the PDEGrid. 498

4.6 CellStep Function and Cell Properties 499

We next look at how the ExampleCell Agent is defined and at the CellStep function 500

that runs once per Cell per timestep. 501

502
1 c l a s s Examp leCe l l e x t end s AgentSQ2Dunstackable<ExampleModel> { 503

2 p u b l i c i n t type ; 504

3 505

4 p u b l i c vo i d C e l l S t e p ( ) { 506

5 // uptake o f Drug 507

6 G. drug . Mul ( I s q ( ) , G .DRUG_UPTAKE) ; 508

7 doub l e deathProb , d i vProb ; 509

8 //Chance o f Death , depends on r e s i s t a n c e and drug c o n c e n t r a t i o n 510

9 i f ( t h i s . t ype == RESISTANT) { 511

10 deathProb = G.DEATH_PROB; 512

11 } e l s e { 513

12 deathProb = G.DEATH_PROB + G. drug . Get ( I s q ( ) ) ∗ 514

G.DRUG_TOXICITY ; 515

13 } 516

14 i f (G . rng . Double ( ) < deathProb ) { 517

15 Dispose ( ) ; 518

16 r e t u r n ; 519

17 } 520

18 //Chance o f D i v i s i o n , depends on r e s i s t a n c e 521

19 i f ( t h i s . t ype == RESISTANT) { 522

20 d ivProb = G.DIV_PROB_RES; 523

21 } e l s e { 524

22 d ivProb = G.DIV_PROB_SEN; 525

23 } 526

24 i f (G . rng . Double ( ) < d ivProb ) { 527

25 i n t o p t i o n s = MapEmptyHood (G . divHood ) ; 528

26 i f ( o p t i o n s > 0) { 529

27 G. NewAgentSQ(G. divHood [G . rng . I n t ( o p t i o n s ) ] ) . t ype = 530

t h i s . t ype ; 531

28 } 532

29 } 533

30 } 534

31 } 535536

1: The ExampleCell class is built by extending the generic AgentSQ2Dunstackable 537

class. The extended Agent class requires the ExampleModel class as a type 538

argument, which is the type of Grid that the Agent will live on. To meet this 539

requirement, we add the <ExampleModel> type parameter to the extension. 540

2: Defines a cell property called ’type’. Each Cell holds a value for this field. If the 541

value is RESISTANT, the Cell is of the resistant phenotype, if the value is 542

SENSITIVE, the cell is of the sensitive phenotype. The RESISTANT and 543

SENSITIVE constants are defined in the ExampleGrid as constants. 544

6: The G function is used to access the ExampleGrid object that the Cell lives on. G is 545

used often with Agent functions as the AgentGrid is expected to contain any 546

information that is not local to the Cell itself. Here it is used to get the drug 547

PDEGrid2D. The drug concentration at the index that the Cell is currently 548

September 10, 2018 16/24

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 10, 2018. ; https://doi.org/10.1101/411538doi: bioRxiv preprint 

https://doi.org/10.1101/411538
http://creativecommons.org/licenses/by-nc-nd/4.0/


occupying (Isq()) is then multiplied by the drug uptake constant, thus modeling 549

local drug uptake by the Cell. 550

7: Defines deathProb and divProb variables, these will be assigned different values 551

depending on whether the ExampleCell is RESISTANT or SENSITIVE. 552

9-12: If the cell is resistant, the deathProb variable is set to the DEATH_PROB value 553

alone, if the cell is sensitive, an additional term is added to account for the 554

probability of the cell dying from drug exposure, using the concentration of drug 555

at the cell’s position (Isq()) 556

14-16: Samples a random number in the range (0− 1] and compares to deathProb to 557

determine whether the cell will die. If so, the built-in agent Dispose() function is 558

called, which removes the agent from the grid, and then return is called so that 559

the dead cell will not divide. 560

19-22: Sets the divProb variable to either DIV_PROB_RES for resistant cells, or 561

DIV_PROB_SEN for sensitive cells. 562

24: Samples a random number in the range (0− 1] and compares to divProb to 563

determine whether the cell will divide. 564

25: If the cell divides, the built-in MapEmptyHood function is used which displaces the 565

divHood (the Moore neighborhood as defined in the Grid Definition and 566

Constructor section) to be centered around the x and y coordinates of the Cell, 567

and writes the empty indices into the neighborhood. The MapEmptyHood 568

function will only map indices in the neighborhood that are empty. 569

MapEmptyHood returns the number of valid division options found. 570

26-27: If there are one or more valid division options, a new daughter cell is created 571

using the built-in NewAgentSQ function and its starting location is chosen by 572

randomly sampling the divHood array to pull out one if its valid locations. Finally 573

with the .type=this.type statement, the phenotype of the new daughter cell is set 574

to the phenotype of the pre-existing daughter that remains in place, thus 575

maintaining phenotypic inheritance. 576

4.7 DrawModel Function 577

We next look at the DrawModel Function, which is used to display a summary of the 578

model state on a GridWindow object. In this program, DrawModel is called once for 579

each model per timestep; see the Main Function section for more information. 580

581
1 p u b l i c vo i d DrawModel ( GridWindow v i s , i n t iMode l ) { 582

2 f o r ( i n t x = 0 ; x < xDim ; x++) { 583

3 f o r ( i n t y = 0 ; y < yDim ; y++) { 584

4 Examp leCe l l drawMe = GetAgent ( x , y ) ; 585

5 i f ( drawMe != n u l l ) { 586

6 v i s . Se tP i x ( x + iMode l ∗ xDim , y , drawMe . type ) ; 587

7 } e l s e { 588

8 v i s . Se tP i x ( x + iMode l ∗ xDim , y , 589

HeatMapRGB( drug . Get ( x , y ) ) ) ; 590

9 } 591

10 } 592

11 } 593

12 } 594595

2-3: Loops over every lattice position of the grid being drawn, xDim and yDim refer to 596

the dimensions of the model. 597

September 10, 2018 17/24

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 10, 2018. ; https://doi.org/10.1101/411538doi: bioRxiv preprint 

https://doi.org/10.1101/411538
http://creativecommons.org/licenses/by-nc-nd/4.0/


4: Uses the built-in GetAgent function to get the Cell that is at the x,y position. 598

5-6: If a cell exists at the requested position, the corresponding pixel on the 599

GridWindow is set to the cell’s phenotype color. To draw the models side by side, 600

the pixel being drawn is displaced to the right by the model index. 601

7-8: If there is no cell to draw, then the pixel color is set based on the drug 602

concentration at the same index, using the built-in heat colormap. 603

4.8 Imports 604

The final code snippet looks at the imports that are needed. Any modern Java IDE 605

should generate import statements automatically. 606

607
1 package Examples . _6Compet i t i v eRe l ea se ; 608

2 impor t Framework . Gr idsAndAgents . AgentGrid2D ; 609

3 impor t Framework . Gr idsAndAgents . PDEGrid2D ; 610

4 impor t Framework . Gui . GridWindow ; 611

5 impor t Framework . Gr idsAndAgents . AgentSQ2Dunstackable ; 612

6 impor t Framework . Too l s . F i l e IO ; 613

7 impor t Framework . Rand ; 614

8 impor t s t a t i c Examples . _6Compet i t i v eRe l ea se . ExampleModel . ∗ ; 615

9 impor t s t a t i c Framework . U t i l . ∗ ; 616617

1: The package statement specifies where the file exists in the larger project structure 618

2-7: Imports all of the classes that we will need for the program. 619

8: Imports the static fields of the model so that we can use the type names defined 620

there in the Agent class. 621

9: Imports the static functions of the Util file, which adds all of the Util functions to 622

the current namespace, so we can natively call them. Statically importing Util is 623

recommended for every project. 624

4.9 Model Results 625

Fig 4 displays the model visualization at timestep 0, timestep 400, timestep 1100, 626

timestep 5500, and timestep 10,000. The caption explores the notable trends visible in 627

each image. Fig 6 displays the population sizes as recorded by the FileIO object at the 628

end of every timestep. 629

September 10, 2018 18/24

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 10, 2018. ; https://doi.org/10.1101/411538doi: bioRxiv preprint 

https://doi.org/10.1101/411538
http://creativecommons.org/licenses/by-nc-nd/4.0/


Timestep No Drug / Constant Drug / Pulsed Drug

0

400

1100

5500

10000
Table 4. Selected model visualization PNGs. Blue cells are drug sensitive, Green cells
are drug resistant, background heatmap colors show drug concentration.

September 10, 2018 19/24

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 10, 2018. ; https://doi.org/10.1101/411538doi: bioRxiv preprint 

https://doi.org/10.1101/411538
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 6. FileIO population output. This plot summarizes the changes in tumor
burden over time for each model. This plot was constructed in python using data
accumulated in the program output csv file. Displayed using Seaborn with Python

This modeling example illustrates the power of HAL’s approach to model building. 630

Writing relatively little complex code, we setup a 3 model experiment with nontrivial 631

dynamics along with methods to collect data and visualize the models. We now briefly 632

review the model results. 633

As can be seen in Fig 6, at timestep 0 and timestep 400 (right before drug 634

application starts), all 3 models are identical. At timestep 1100 the differences in 635

treatment application show different effects: when no drug is applied, the rapidly 636

dividing sensitive cells quickly fill the domain, while when drug is applied constantly, 637

the resistant cells overtake the tumor. Pulsed drug kills some sensitive cells, but leaves 638

enough alive to prevent growth of the resistant cells. At timestep 5500, the resistant 639

cells have begun to emerge from the center of the pulsed drug model. At timestep 640

10000, all domains are filled. Interestingly, the sensitive cells are able to survive in the 641

center of the domain because drug is consumed by cells on the outside. This creates a 642

drug-free zone in which the sensitive cells out-compete the resistant cells. 643

As can be seen in Table 4, the pulsed therapy is the most effective at preventing 644

tumor growth, however the resistant cells ultimately succeed in breaking out of the 645

tumor center and out-competing the sensitive cells on the fringes of the tumor. It may 646

be possible to maintain a homeostatic population of sensitive and resistant cells for 647

longer by using a different pulsing schedule or by modifying the treatment schedule in 648

response to the tumor growth (adaptive therapy). As the presented model is primarily 649

an example, we do not explore how to improve treatment further. For a more detailed 650

exploration of the potential of adaptive therapy for prolonging competitive release, 651

see [19]. 652

September 10, 2018 20/24

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 10, 2018. ; https://doi.org/10.1101/411538doi: bioRxiv preprint 

https://doi.org/10.1101/411538
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 Availability And Future Directions 653

5.1 How to Download and Contribute 654

HAL is publicly available on GitHub, at https://github.com/torococo/HAL. A manual is 655

included that walks the user through installation and serves as a coding reference. 656

There is a long list of issues to be addressed on the Github page, only some of which are 657

discussed in the next section. Contributors can tackle these or share generalized 658

solutions to any modeling problems that they encounter by sending pull requests to the 659

repository. 660

5.2 Future Directions 661

5.2.1 Additional agent-based Modeling Paradigms 662

Currently the only paradigm implemented on top of the base agent types are the 663

SphericalAgent2D/3D extension classes, which facilitate modeling cells as spheres with 664

force vectors. In the future we hope to incorporate additional modeling paradigms that 665

are commonly used in agent-based modeling of cells. An expected addition is a 666

Delaunay Agent type, which will use Delaunay tessellation [20] to find the cell’s nearest 667

neighbors and determine their volume. We are also considering including modeling 668

paradigms that construct cells out of smaller subunits, such as Deformable Ellipsoid 669

Cell Modeling [21], as it would allow us to model the mechanics of tissue formation and 670

migration in more detail. 671

5.2.2 Cross Model Validation 672

Having many different paradigms to choose from adds several complications to 673

modeling: It can take significant effort to build a model from scratch under one 674

paradigm, and then significant additional effort to migrate the model to a different 675

paradigm. By adding more modeling approaches with a consistent interface, HAL will 676

lower the model migration barrier and allow modelers to test the merits of many 677

paradigms in their investigation, and to validate their results by seeing whether they 678

hold true across paradigms. Note that our goal is not to recreate all of the functionality 679

of the pre-existing frameworks that support these paradigms, it is to provide their core 680

algorithms so that users can compare and choose from among them. 681

5.2.3 Bridging Spatial Scales 682

We also hope to explore the possibility of changing spatial scales for both our PDEs and 683

Agents. For PDEs, this is a readily understood problem, and we intend to add scalable 684

PDEGrids to HAL soon. However, for agent-based modeling the process of changing 685

scales while preserving dynamics is not so well defined, though we imagine that it may 686

be possible under certain assumptions. This would be useful for helping us bridge the 687

divide between cell level and tissue/organ/tumor level dynamics, as the number of cells 688

involved at these scales are orders of magnitude greater than what desktop machines 689

can tractably model. 690

5.2.4 Assumption Modules 691

A common modeling task is exploring how combinations of different assumptions 692

influence model behavior. A planned abstraction that will improve how models are built 693

incrementally will be the inclusion of a system for separating model design assumptions 694

into assumption modules. This design entails providing code “hooks” into specific agent 695

September 10, 2018 21/24

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 10, 2018. ; https://doi.org/10.1101/411538doi: bioRxiv preprint 

https://doi.org/10.1101/411538
http://creativecommons.org/licenses/by-nc-nd/4.0/


decisions and model events, (eg. whether an agent will reproduce). Modelers can then 696

write assumption modules that will influence these events (eg. by altering the 697

probability of reproduction based on an environmental factor that would otherwise be 698

ignored). 699

This approach allows modelers to combine and remove assumption modules without 700

having to worry about breaking the model. This facilitates easy exploration of the space 701

of assumptions until ones suitable for understanding biological phenomena are found. 702

5.2.5 Advanced Scheduling 703

Taking inspiration from Repast, SWARM, and MASON, another expected extension is 704

the inclusion of optional schedulers to facilitate more complex methods of iterating 705

through agents than simply looping over each grid. This is not intended to replace the 706

simple grid iteration approach, but instead should augment it with optional complex 707

methods. An AgentList class is currently included to begin to address this. It allows 708

modelers to make selective lists of agents for more flexible iteration. 709

5.2.6 Building a Community 710

HAL has already seen adoption within the labs at the Integrated Mathematical 711

Oncology department of Moffitt Cancer Center. We certainly hope that outside users 712

will also be interested in its potential. As the user-base for HAL grows, we plan to 713

extend the base of resources around the platform. The current set of resources that 714

exist for new users to get started are the manual 6, a website with an online version of 715

the manual [1] and a playlist of YouTube videos [22]. We intend to increase HAL’s 716

online presence, by moving the manual to an online searchable format, as well as 717

including a website with a code repository to make sharing models and tools easier. 718

6 Conclusion 719

Cancer is a complex and heterogeneous disease whose mathematical study is still being 720

developed. To make better progress in this endeavor, it is helpful to have a set of highly 721

generic tools that encapsulate the key components of spatial modeling so that 722

researchers can produce efficient models without being constrained in their approach, 723

nor in the complexity of the systems that they can produce. HAL is our attempt to 724

achieve this. 725

HAL was made easily extensible so that researchers can build models and more 726

specific tools on top of HAL’s generic base. The hope is that by this process HAL will 727

grow into a powerful toolset that will help standardize and coordinate hybrid modeling 728

in mathematical oncology. 729

We recommend HAL to anyone building spatial models for oncology, as the tools 730

presented are primarily geared toward this end. However, given the amount of overlap 731

and cross talk between the approaches used in different modeling applications, we hope 732

that modelers outside of mathematical oncology will also take interest and contribute, 733

to our mutual benefit. 734

Supporting information
S1 Fig. HAL (Hybrid Automata Library) Manual. Includes setup
instructions, implementation details, and a function glossary.

September 10, 2018 22/24

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 10, 2018. ; https://doi.org/10.1101/411538doi: bioRxiv preprint 

https://doi.org/10.1101/411538
http://creativecommons.org/licenses/by-nc-nd/4.0/


References
1. Jefferey West RB. Hybrid Automata Library; 2018. Available from:

https://halloworld.org.

2. Rejniak KA, Anderson AR. Hybrid models of tumor growth. Wiley
Interdisciplinary Reviews: Systems Biology and Medicine. 2011;3(1):115–125.

3. Basanta D, Anderson A. Homeostasis Back and Forth: An Eco-Evolutionary
Perspective of Cancer. bioRxiv. 2016; p. 092023.

4. Anderson AR. A hybrid mathematical model of solid tumour invasion: the
importance of cell adhesion. Mathematical medicine and biology: a journal of the
IMA. 2005;22(2):163–186.

5. Anderson AR, Chaplain M. Continuous and discrete mathematical models of
tumor-induced angiogenesis. Bulletin of mathematical biology.
1998;60(5):857–899.

6. Ghaffarizadeh A, Friedman SH, Macklin P. Agent-based simulation of large
tumors in 3-D microenvironments. bioRxiv. 2015; p. 035733.

7. Swat MH, Thomas GL, Belmonte JM, Shirinifard A, Hmeljak D, Glazier JA.
Multi-scale modeling of tissues using CompuCell3D. Methods in cell biology.
2012;110:325.

8. Mirams GR, Arthurs CJ, Bernabeu MO, Bordas R, Cooper J, Corrias A, et al.
Chaste: an open source C++ library for computational physiology and biology.
PLoS computational biology. 2013;9(3):e1002970.

9. Collier N. Repast: An extensible framework for agent simulation. The University
of Chicagos Social Science Research. 2003;36:2003.

10. Luke S, Cioffi-Revilla C, Panait L, Sullivan K. Mason: A new multi-agent
simulation toolkit. In: Proceedings of the 2004 swarmfest workshop. vol. 8.
Department of Computer Science and Center for Social Complexity, George
Mason University Fairfax, VA; 2004. p. 316–327. Available from:
http://cobweb.cs.uga.edu/~maria/pads/papers/mason-SwarmFest04.pdf.

11. Tisue S, Wilensky U. Netlogo: A simple environment for modeling complexity.
In: International conference on complex systems. vol. 21. Boston, MA; 2004. p.
16–21. Available from:
https://ccl.northwestern.edu/papers/netlogo-iccs2004.pdf.

12. Anderson A, Sleeman B, Young I, Griffiths B. Nematode movement along a
chemical gradient in a structurally heterogeneous environment: 2. Theory.
Fundamental and applied nematology. 1997;20(2):165–172.

13. Peaceman DW, Rachford HH Jr. The numerical solution of parabolic and elliptic
differential equations. Journal of the Society for industrial and Applied
Mathematics. 1955;3(1):28–41.

14. Courant R, Isaacson E, Rees M. On the solution of nonlinear hyperbolic
differential equations by finite differences. Communications on Pure and Applied
Mathematics. 1952;5(3):243–255.

15. Meister P. gifAnimation processing library; 2015. Available from:
https://github.com/extrapixel/gif-animation.

September 10, 2018 23/24

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 10, 2018. ; https://doi.org/10.1101/411538doi: bioRxiv preprint 

https://halloworld.org
http://cobweb.cs.uga.edu/~maria/pads/papers/mason-SwarmFest04.pdf
https://ccl.northwestern.edu/papers/netlogo-iccs2004.pdf
https://github.com/extrapixel/gif-animation
https://doi.org/10.1101/411538
http://creativecommons.org/licenses/by-nc-nd/4.0/


16. Poleszczuk J, Macklin P, Enderling H. Agent-based modeling of cancer stem cell
driven solid tumor growth. In: Stem Cell Heterogeneity. Springer; 2016. p.
335–346.

17. Oliphant TE. A guide to NumPy. vol. 1. Trelgol Publishing USA; 2006.

18. CERN. Colt; 2004. Available from: http://dst.lbl.gov/ACSSoftware/colt/.

19. Gallaher JA, Enriquez-Navas PM, Luddy KA, Gatenby RA, Anderson AR.
Adaptive vs continuous cancer therapy: Exploiting space and trade-offs in drug
scheduling. bioRxiv. 2017;.

20. Bock M, Tyagi AK, Kreft JU, Alt W. Generalized voronoi tessellation as a model
of two-dimensional cell tissue dynamics. Bulletin of mathematical biology.
2010;72(7):1696–1731.

21. Alexander Anderson KR Mark A J Chaplain. Single-Cell-Based Models in
Biology and Medicine. illustrated ed. Springer Science & Business Media; 2007.

22. Bravo R. HAL Tutorial 1: Setup; 2018. Available from:
https://www.youtube.com/watch?v=yjTmH3qORFQ&t=43s.

Acknowelgements
This work was possible through the generous support of NIH funding, Anderson and
Robertson-Tessi acknowledge NCI U54CA193489, Anderson and Bravo acknowledge
NCI UH2CA203781.

September 10, 2018 24/24

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 10, 2018. ; https://doi.org/10.1101/411538doi: bioRxiv preprint 

http://dst.lbl.gov/ACSSoftware/colt/
https://www.youtube.com/watch?v=yjTmH3qORFQ&t=43s
https://doi.org/10.1101/411538
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Author Summary
	Introduction
	Design And Implementation
	Design Philosophy
	Language Choice
	Modularity and Extensibility
	Simplicity and Stability
	Speed and Memory Management

	Component Overview
	AgentGrids
	Agents 
	PDEGrids
	Graphical User Interface (Gui)
	Utilities
	Tools


	Results: Competitive Release Model
	Competitive Release Introduction
	Main Function
	ExampleModel Constructor and Properties
	InitTumor Function
	ModelStep Function
	CellStep Function and Cell Properties
	DrawModel Function
	Imports
	Model Results

	Availability And Future Directions 
	How to Download and Contribute
	Future Directions
	Additional agent-based Modeling Paradigms
	Cross Model Validation
	Bridging Spatial Scales
	Assumption Modules
	Advanced Scheduling
	Building a Community


	Conclusion

