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Abstract 

Humans and vocal animals use vocalizations (human speech or animal 'calls') to 

communicate with members of their species. A necessary function of auditory 

perception is to generalize across the high variability inherent in the production of these 

sounds and classify them into perceptually distinct categories (‘words’ or ‘call types’). 5 

Here, we demonstrate using an information-theoretic approach that production-invariant 

classification of calls can be achieved by detecting mid-level acoustic features. Starting 

from randomly chosen marmoset call features, we used a greedy search algorithm to 

determine the most informative and least redundant set of features necessary for call 

classification. Call classification at >95% accuracy could be accomplished using only 10 10 

– 20 features per call type. Most importantly, predictions of the tuning properties of 

putative neurons selective for such features accurately matched some previously 

observed responses of superficial layer neurons in primary auditory cortex. Such a 

feature-based approach succeeded in categorizing calls of other species such as 

guinea pigs and macaque monkeys, and could also solve other complex classification 15 

tasks such as caller identification. Our results suggest that high-level neural 

representations of sounds are based on task-dependent features optimized for specific 

computational goals. 
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Human speech recognition is a highly robust behavior, showing tolerance to 20 

variations in prosody, stress, accents and pitch. For example, speech features such as 

formant frequencies exhibit large variations within- and between- speakers1, 2, arising 

from production mechanisms (production variability). To achieve accurate speech 

recognition, the auditory system must generalize across these variations. This challenge 

is not uniquely human. Animals produce species-specific vocalizations ('calls') with large 25 

within- and between-caller variability3, and must classify these calls into distinct 

categories to produce appropriate behaviors. For example, in common marmosets 

(Callithrix jacchus), a highly vocal New World primate species, critical behaviors such as 

finding other marmosets when isolated depend on accurate extraction of call-type and 

caller information4 – 8. Similar to human speech, marmoset call categories overlap in 30 

their long-term spectra (Fig. 1A), precluding the possibility that calls can be classified 

based on spectral content alone, and requiring selectivity for fine spectrotemporal 

features to classify calls. At the same time, marmoset calls also show considerable 

production variability along a variety of acoustic parameters8. For example, 'twitter' calls 

produced by different marmosets vary in such parameters as dominant frequencies, 35 

lengths, inter-phrase intervals, and harmonic ratios (Fig. 1). Tolerance to large 

variations in spectrotemporal features within each call type is thus necessary to 

generalize across this variability. Therefore, there is a simultaneous requirement for fine 

and broad selectivity for production-invariant call classification. The present study 

explores how the auditory system resolves these conflicting requirements. 40 
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Figure 1: Production variability in marmoset calls. (A) The overall spectra of 3 major 
marmoset call types and other minor call types (grouped as 'Other calls'), showing spectral 
overlap between call categories. (B) Spectrograms of three twitter calls showing examples of 45 
production variability between individuals. (C - F) Production variability of twitter calls quantified 
along multiple parameters: (C) bandwidth, (D) dominant frequency, (E) duration, and (F) inter-
phrase interval. Dots are parameter values of a single call produced by an individual marmoset. 
Histograms are overall parameter distributions, split into the training (blue) and testing (red) 
sets. These data show the large production variability captured by the training and test data 50 
sets, over which the model must generalize. No systematic bias is evident in calls used for 
model training and testing. 

 

This problem of requiring fine- and tolerant feature tuning, necessitated by high 

variability amongst members belonging to a category, is not unique to the auditory 55 

domain. For example, in visual perception, object categories such as faces also 

possess a high degree of intrinsic variability9 – 12. To classify faces from other objects, 

using an exemplar face as a 'template' typically fails because this does not generalize 

across within-class variability12. Face detection algorithms use combinations of mid-

level features, such as regions with specific contrast relationships13, 14, or combinations 60 

of face parts12, to accomplish classification. Of these algorithms, the one proposed by 
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Ullman et al.12 is especially interesting because of its potential to generalize to other 

classification tasks across sensory modalities. In this algorithm, starting from a set of 

random fragments of faces, the authors used ‘greedy’ search to extract the most 

informative fragments that were highly conserved across all faces despite within-class 65 

variability. Post-hoc analyses revealed that these fragments were 'mid-level', i.e., they 

typically contained combinations of face parts, such as eyes and a nose. The features 

identified using this algorithm were consistent with some physiological observations, for 

example at the level of BOLD responses15. While the differences between visual and 

auditory processing are vast, these results inspired us to ask whether a similar concept 70 

– sound categorization using combinations of acoustic features – could be implemented 

by the auditory system. 

 

The behavioral salience of calls for marmosets4 – 8, and the increasing resources 

allocated to the processing of calls along the cortical processing hierarchy17, suggest 75 

that call processing is a computational goal of auditory cortex. Call processing involves 

detecting the presence of calls in the acoustic input, classifying them into behaviorally 

relevant categories, extracting information about caller identity, determining the 

behavioral state of the caller, and developing situational awareness of the environment. 

Although a number of studies have described call-selective responses at various stages 80 

of the auditory pathway, there has been little investigation into how the auditory system 

goes about solving these problems, both at the algorithmic and mechanistic levels. In 

this study, we started with the premise that the detection and classification of calls into 

discrete call types is a critical first step that enables the above computations. Our 
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overall question in this study was to ask how production-invariant call classification 85 

could be accomplished in the auditory pathway. Specifically, we tested the hypothesis 

that production-invariant call classification could be accomplished by detecting 

constituent features that maximally distinguish between call types. Starting from an 

initial set of randomly selected marmoset call features, we used a greedy search 

algorithm to determine the most informative and least redundant set of features 90 

necessary for call classification. We show that high classification performance can 

indeed be achieved by detecting combinations of a small number of mid-level features. 

We then demonstrate that predictions of tuning properties of putative feature-selective 

neurons match previous data from marmoset primary auditory cortex. Finally, we show 

that the same algorithm is equally successful in caller identification with marmoset calls, 95 

and in call classification in other species such as guinea pigs (Cavia porcellus) and 

macaque monkeys (Macaca mulatta). Taken together, our findings suggest that 

classification of sound categories using mid-level features may be a general auditory 

computation.    

 100 

 

 

 

 

 105 
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Figure 2: Initial feature generation and evaluation. (A) The spectrogram of a twitter call (top), 
and its corresponding cochleagram (bottom) from the application of an auditory nerve model. 
Color scale denotes the firing rates of auditory nerve fibers arranged by their center frequencies 110 
on the y-axis. (B) Schematic for initial random feature generation for a twitter (within-class) 
versus other calls (outside-class) categorization task. Waveforms (top) were converted to 
cochleagrams (middle). Random initial features were picked from twitter cochleagrams (for 
example, magenta box). The maximum value of the normalized cross correlation function 
between each call (within-class – blue, outside-class – green) and each random feature was 115 
taken to be the 'response' of a feature to a call. (C) Distributions (top) of a feature's responses to 
500 within-class (blue) and 500 outside-class (green) calls. The mutual information (bottom) of a 
feature computed as a function of a parametrically varied threshold. The dotted line, 
corresponding to maximal mutual information, is taken to be each feature's optimal threshold. 
Feature 'response' has to be greater than this optimal threshold for a feature to be considered 120 
present within a call. 

 

Results 

Features of intermediate lengths and complexities are more effective for call 

classification 125 

We start with the premise that the first step in call processing is the 

categorization of calls into discrete call types, generalizing across the production 

variability that is inherent to calls. Let us consider the example of classifying twitter calls 

from all other call types. Marmoset twitters can be characterized along several acoustic 

parameters such as bandwidth, duration, dominant frequency, and inter-phrase 130 

interval8. In Fig. 1C – F, we plot the values of these parameters for individual calls 
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emitted by 8 animals, showing the extent of within- and between-individual variability 

over which generalization is required for twitter categorization. Similar generalization is 

required for categorizing the other call types as well (Supplementary Fig. 1). We first 

generated 6000 random initial features from the cochleagrams of 500 twitter calls 135 

emitted by 8 marmosets (‘training’ set, blue histograms in Fig. 1). For the purposes of 

this study, a ‘feature’ is a randomly selected rectangular segment of the cochleagram, 

corresponding to the spatiotemporal activity pattern of a subset of auditory nerve fibers 

within a specified time window. For each random feature, we determined an optimal 

threshold at which its utility for classifying twitters from other calls was maximized. The 140 

merit of each feature was taken to be the mutual information value at this optimal 

threshold in bits (Fig. 2).  

In Supplementary Fig. 2, we plot the merits of all 6000 initial features as a 

function of each feature's bandwidth and temporal integration window. Along the 

margins, we plot the maximum merit of features within each bandwidth- or temporal 145 

window bin. These distributions compare the best features from each time bin, and 

show that features of intermediate lengths relative to the total call length show higher 

merits for call classification. This is an expected consequence of two characteristics of 

calls: 1) call types overlap in spectral content, so that brief features do not contain 

sufficient information to separate out categories, and 2) calls have high production 150 

variability, so that long features are less likely to be found across all calls belonging to 

the same category. We observed similar distributions for the classification of other 

marmoset call types, i.e., for trill vs. other calls, and phee vs. other calls (Suppl. Fig. 2). 

We characterized feature complexity using the reduced kurtosis of the activity 
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distribution of all auditory nerve fibers contained within a feature. Briefly, if the feature 155 

was an ‘empty’ region of the cochleagram, or a region of uniform activity, the activity of 

all nerve fibers in all time bins would be about equal. This activity would thus be 

normally distributed, and show a reduced kurtosis value of zero. At the other extreme, 

for entire calls, there would be many bins of high activity, and a large number of bins 

with zero activity, resulting in an activity distribution with very high reduced kurtosis. We 160 

hypothesized that ‘mid-level’ features that represent aspects of calls such as frequency-

modulated sweeps or combinations of phrases over time would show intermediate 

reduced kurtosis values, and be more informative than ‘low-level’ (tones) or ‘high-level’ 

(entire calls) features. Consistent with this idea, we found that while features of low 

merit showed low kurtosis values and whole calls showed high kurtosis values, features 165 

of high merit showed intermediate kurtosis values, supporting the hypothesis that ‘mid-

level’ features of intermediate complexity were most informative for classification 

(Suppl.. Fig. 2). 

 

 170 

 

 

 

 

 175 
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Figure 3: Most informative features for the classification of marmoset calls. Magenta 
boxes correspond to MIFs for the classification of twitters vs. all other calls (A), phees vs. all 
other calls (B), and trills vs. all other calls (C), overlaid on the cochleagrams of the 'parent' calls 180 
from which the MIFs were obtained. 
 

Call categorization can be accomplished using a handful of optimal features 

Because we generated the initial features at random, many of these have low merit, and 

many are similar. Therefore, the set of optimal features for classification is expected to 185 

be much smaller than this initial set. To determine the set of optimal features that 

together maximize classification performance, we used a greedy-search algorithm (see 

Methods). Briefly, we started with the feature of highest merit, and successively added 

features that maximized pairwise mutual information with respect to the already chosen 

features. We refer to the set of these optimal features as Most Informative Features 190 

(MIFs) following the nomenclature of Ullman et al.12, 18. We determined that call 

classification could be accomplished using 11 MIFs for twitter vs. all other calls, 20 MIFs 

for trill vs. all other calls, and 16 for phee vs. all other calls. In Figure 3, magenta boxes 
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outline the top 5 MIFs that are optimal for each of these classification tasks (the first five 

MIFs in Fig. 4A). The optimal features that we arrive at are mostly intuitive – for 195 

example, the top MIFs for classifying twitters detect the frequency contour of individual 

twitter phrases and the repetitive nature of the twitter call. In some cases, features 

seemed counter-intuitive – for example, the second MIF for trill classification seems to 

detect 'empty' regions of the cochleagram. In this theoretical framework, the lack of 

energy at those frequencies is also informative about the presence of a trill.  200 

In Figure 4A, we show the pairwise information added by each MIF, the merits, 

and the weights of the top 10 MIFs for these classification tasks. Note that 1 bit of 

information corresponds to perfect classification. For twitters, detecting a single feature 

(the top MIF) was sufficient to gain 0.95 bits of information. Subsequent features 

probably detected only a few additional twitters without introducing new false alarms. 205 

For the other call types, however, the top MIF only provided 0.78 or 0.6 bits of 

information. Although successive MIFs individually had high merit (second column), 

they added little information to the top MIF (first column), likely because of redundancy 

– each MIF could only add a small number of additional ‘hits’ without introducing new 

false alarms. However, detecting these features was crucial for solving the task, as they 210 

ultimately elevated the total information to > 0.9 bits. The MIFs have positive weights, 

suggesting that they are informative by virtue of their presence (rather than absence) in 

the target category. Because we approach very high levels of classification using our 

pairwise optimization of mutual information, and because joint optimization of mutual 

information across the entire MIF set is computationally expensive, we used the 215 

pairwise-optimized MIF set for all further analyses. In frequency, MIFs neither 
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encompassed an entire call, nor consisted of only few frequency bands. In time, MIFs 

showed integration windows of the order of hundreds of milliseconds (Fig. 4B). The 

mean MIF lengths were 215 ms, 68 ms, and 406 ms for twitters, trills, and phees 

respectively. Compared to the average lengths of the calls (twitters: 1.25 s, trills: 0.5 s, 220 

phees: 1.27 s), these correspond to 17%, 14%, and 32% of mean call length 

respectively. Interestingly, these lengths may correspond to time scales of temporal 

modulations in calls – for twitters, the sum of mean phrase length and mean inter-

phrase interval is ~190 ms; for trills, the mean amplitude modulation period is ~30 ms. 

Thus, features of intermediate lengths were especially informative for call classification. 225 

 
Figure 4: Information content and size of MIFs. (A) The added information, merit, and weight 
(log-likelihood ratio) of the top 10 MIFs for twitter, phee, and trill. (B) Scatter plot of the 
distribution of all MIFs as a function of their bandwidth and temporal integration period. Dashed 
line indicates the mean length of each call type. 230 
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High classification performance for novel calls can be achieved using MIFs alone 

To validate our model and to test the effectiveness of using only the MIFs for classifying 

call types, we used a novel set of calls consisting of 500 new within-category and 500 

new outside-category calls drawn from the same 8 marmosets. This ‘test’ call set did not 235 

significantly differ from the training set along any of the characterized parameters (red 

histograms in Fig. 1). We conceptualized each MIF as a simulated template-matching 

neuron whose 'response' to a stimulus was defined as the maximum value of the 

normalized cross-correlation (NCC) function. This simulated MIF-selective neuron 

'spiked' whenever its response crossed its optimal threshold, i.e., when an MIF was 240 

detected in the stimulus. In Fig. 5, we plot the spike rasters of simulated MIF-selective 

neurons for twitter, phee, and trill (top 10 MIFs shown), responding to a train of 

randomly selected calls from the novel test set. Each spike was weighted by the log-

likelihood ratio of the MIF and the weighted sum of responses in 50 ms time bins was 

taken as the evidence in support of the presence of a particular call type. Although 245 

occasional false positives and misses occurred, over the set of MIFs, the evidence in 

support of the correct call type was almost always the highest. Therefore, production-

invariant call categorization is a two-step process – first, MIFs are detected in the 

stimuli, and then each feature is weighted by its log-likelihood ratio to provide evidence 

for a call type. 250 

We quantified the performance of the entire set of MIFs (n=11, 16, and 20 for 

twitter, phee, and trill respectively) for the classification of novel calls by parametrically 

varying an overall evidence threshold and computing the hit rate (true positives) and 

false alarm rate (false positives) at each threshold. From these data, we plotted receiver 
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operating characteristic (ROC) curves (Fig. 6A). In these plots, the diagonal 255 

corresponds to chance, and perfect performance corresponds to the upper left corner. 

The MIFs achieved >95% classification performance for all call types with very low false 

alarm rates. 

Figure 5: MIF responses to marmoset call sequences. (A) The cochleagram of a sequence 
of marmoset calls, some of which overlap. (B) Raster plot of the responses of the top 10 MIFs 260 
for twitter (top, blue), phee (middle, red), and trill (bottom, yellow). Each dot represents spiking 
of a putative MIF-selective neuron (i.e. when the response of the MIF exceeds its optimal 
threshold). (C) The evidence for presence of a particular call type, defined as the normalized 
sum of the firing rate of all MIF-selective neurons, weighted by their log-likelihood ratio. Over the 
duration of each call, the call type with the most evidence is considered to be present. 265 
Occasional false alarms are usually outweighed by true positive MIF detections. 

 

Control simulations 

First, we ensured that our selection of 6000 initial random features adequately 

sampled stimulus space. To do so, we iteratively selected sets of MIFs using our greedy 270 

search algorithm from initial random sets from which previously picked MIFs were 

excluded. We found that distinct sets of MIFs that had similar classification performance 

could be selected in successive iterations (Supplementary Fig. 3). This suggests that 
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our initial random feature set indeed contained several redundant MIF-like features, 

confirming the adequacy of our initial sampling.  275 

Second, in order to determine the contributions of various model assumptions 

and parameters, we repeated this process of random initial feature generation, 

threshold optimization, and MIF selection in different scenarios. To better visualize 

these differences, we used detection-error tradeoff curves (Fig. 6B), where perfect 

performance is the lower left corner. In this figure, the performance of the default model, 280 

as described above, is plotted in blue. First, when we used the acoustic waveform of 

calls instead of cochleagrams, classification performance was on average worse (Fig. 

6B; red), suggesting that phase information in the waveform may be detrimental for 

classification. Second, we used the features with top merits without greedy-search 

optimization for classification, and again found that performance compared to the 285 

default model was worse (Fig. 6B, green). Finally, using entire calls as features, either 

treating entire individual calls as features (‘grandmother cell’ model; Fig. 6B, yellow)  or 

using the aligned and averaged training call as a single feature (Supp. Fig. 4) also 

resulted in worse performance compared to the intermediate feature-based model. 

 290 
We compared the cumulative information added by successive features in all of 

these cases using non-parametric rank-sum tests, accounting for multiple comparisons 

(3 comparisons) using the Bonferroni correction. In Fig. 6C, we plot the average 

cumulative information across all three classification tasks (twitter vs. all other calls, trill 

vs. all other calls, and phee vs. all other calls) for each of these conditions. The default 295 

model significantly outperformed (at p < 0.01) the no greedy-search model for all 

classification tasks. Exact p-values for the rank-sum tests, corresponding to default 
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model comparison with the constrained model and the no-greedy-search model were: 

twitter (p=0.000087 and p = 0.00021, respectively), trill (p = 0.0058 and p = 0.00067, 

respectively), and phee (0.00015 and p = 0.00021, respectively). While the default 300 

model for trill exhibited significantly higher performance compared to the acoustic-

waveform model (p = 0.000091), the default models for twitter and phee did not (p = 

0.89 and p = 0.43, respectively). These results suggest that our underlying assumptions 

– using the cochleagram, unconstrained initial feature selection, and MIF optimization 

using a greedy search – were justified. Twitter MIFs were not qualitatively different 305 

when derived from calls emitted by a smaller set of animals (4 animals). Training on a 

set of 4 animals and testing on the other 4 animals yielded high performance (Fig. 6D), 

confirming the robustness of using MIFs for categorization of new calls. Twitter MIF 

performance in classifying twitters from other twitters was near-chance, suggesting that 

the estimation of mutual information values was unbiased (Fig. 6D). Finally, MIFs 310 

derived for one task (such as trill vs. other calls) showed chance level performance for 

other tasks (such as twitter vs. other calls; Fig. 6D), demonstrating the task-dependence 

of the derived MIFs. 

 

 315 

 

 

 

 

 320 
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Figure 6: Classification performance and controls. (A) Receiver operating characteristic 
(ROC) curves for the classification of twitters, phees, and trills using MIFs alone. (B) Detection 
error tradeoff (DET) curves for comparison between classification performance of the default 325 
model (blue), and other model variations: i) MIF-based classification tested on acoustic 
waveforms as opposed to cochleagrams (red), ii) when features are selected without using the 
greedy search algorithm (green), and iii) when entire calls are used in place of features (yellow). 
(C) Comparison between various model conditions (same as B) in terms of cumulative 
information added by each successive feature, averaged across all three call type classification 330 
tasks. Random (purple) is the classification of twitters using randomly selected features as 
MIFs, averaged across 20 trials. Negative values are not shown. (D) ROC curves of three model 
controls. Independent training and testing sets (triangles) is the classification of twitters when 
the model is trained on the twitters of 4 animals, and tested on twitters from 4 new animals. 
Task control (circles) is the classification of twitters from other twitter calls, where performance 335 
is expected to be at chance levels. MIF control (crosses) is the classification of twitters using trill 
MIFs, also expected to be worse than chance level performance. 
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The precedence of intermediate-sized features for classification 340 

We have previously shown that features of intermediate lengths and complexities 

possess high individual merits for classification (Supp. Fig. 2). We have also shown that 

the set of MIFs is composed mainly of features of intermediate lengths relative to the 

entire call (Fig. 4B). To directly test whether features of intermediate size were indeed 

the most informative, we re-derived MIFs after constraining the initial set of features to 345 

particular time and frequency bins and quantified model performance (Fig. 7). When we 

constrained the features to be only small (<100 ms and <1 oct.) or removed all small 

features, performance was worse than the default model (Fig. 7, top row). Similarly, 

model performance was worse when we constrained to large features (>250ms and >2 

oct.), or removed all large features compared to the default model. When we 350 

constrained bandwidth and time independently to be large or small, model performance 

was worse compared to the default model, with large values being more detrimental 

(Fig. 7, bottom row). As previously discussed, using the largest possible features (whole 

calls or average call) resulted in poor classification performance as well. These results 

demonstrate that features of intermediate size indeed provide the best classification 355 

performance.  

 

 

 

 360 
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Figure 7: The precedence of intermediate features for classification. DET curves for call 
classification using features of different sizes, bandwidths, and durations for the classification of 
Twitters (A), Phees (B), and Trills (C). In all these plots, the default model is in black. Top row 365 
shows performance when using small features only (<100 ms and <1 oct.) or excluding small 
features, and using large features only (>250 ms and >2 oct.) or excluding large features. For 
trills, some of these conditions fall outside the range of the axes. Bottom row shows 
performance when the bandwidth and duration of features used for classification were 
independently varied. Note that because of the short duration of trill calls, we did not test the 370 
effect of using only long duration features. 

 

In this study, we used greedy search and pairwise maximization of information to 

find optimal features. However, it is possible that the greedy search algorithm does not 

find an optimal solution because of its inability to overcome local maxima. We do not 375 

think this is the case because: 1) the model performs at high accuracy levels, leaving 

little room for significant improvements, 2) we could arrive at similar sets of MIFs and 

achieve similar performance levels from different initial feature sets, specifically when 

highly informative features were excluded (Supp. Fig. 3), and 3) we could match or 

outperform other machine learning based algorithms for marmoset call classification19. 380 

Therefore, the implemented greedy search algorithm likely converges at a true optimal 

solution. 
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Factors contributing to the success of the MIF-based approach 

Three factors were critical in the design and implementation of our approach. First, 385 

focusing on a behaviorally critical task (call categorization), and choosing model species 

with rich vocal repertoires and behaviors (marmosets and guinea pigs) allowed us to 

clearly identify a computational goal of cortical processing – call categorization. 

Previous experiments, both using electrophysiological20 – 24 and imaging techniques17, 25, 

26, showing an increase in cortical resources allocated to call processing, validate our 390 

choice of call categorization as a critical computational goal in vocal animals. Second, 

our analyses were based on a large sample of calls recorded from a large number of 

animals8. From this data set, we deliberately oversampled a large number of initial 

potential features.  This ensured that the full extent of production variability was 

represented in this data set. Third, the greedy search algorithm efficiently identified 395 

informative features from a training data set of a few hundred calls. Since clean and 

labelled training data sets are laborious to generate, the efficiency of greedy search 

provided a significant methodological advantage. 

 

MIF-based reconstruction of call stimuli 400 

The observation that an MIF-based approach successfully generalizes across 

production variability implies that most calls belonging to a category will contain one or 

more of the MIFs. Therefore, we asked how well calls could be reconstructed based on 

MIFs alone, using twitters as a specific example. To do so, we detected model twitter 

MIF neuron 'spiking' as earlier to the 500 training and 500 test twitters, and convolved 405 

these spike times with an alpha function (with a time constant of 20 ms) to detect the 
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peak locations of twitter MIFs within a twitter (Supplementary Fig. 5A). We then placed 

copies of MIF cochleagrams at these peak locations, or added copies of MIF 

cochleagrams to previously placed feature cochleagrams. The final summed 

cochleagram was taken to be the reconstructed call (Supplementary Fig. 5B). We 410 

evaluated the accuracy of reconstruction as the NCC value at zero lag. The mean 

reconstruction accuracy was 0.69 (Supplementary Fig. 5C), suggesting that MIFs were 

indeed common denominators across twitter calls produced by different animals. 

 

MIF tuning properties match some single unit recordings from A1 L2/3 415 

So far, we have demonstrated that classification based on MIFs derived purely using 

theoretical principles can achieve high levels of production-invariant call categorization. 

We then asked if the auditory system uses such an optimal feature-based approach to 

call classification. To explore this possibility, as a first step, we generated 'tuning curves' 

of putative MIF-selective model neurons responding to commonly used acoustic stimuli 420 

and asked if these tuning curves matched previous experimental observations. In this 

effort, we were restricted by the appropriateness and availability of previous data. To do 

so, we first constructed cochleagrams of stimuli such as single and trains of frequency 

modulated sweeps, amplitude modulated tones, noise bursts, clicks, two-tone 

combinations, etc. We then used the maximum value of the NCC function as a metric of 425 

putative MIF neurons' 'response' to these stimuli, as we did earlier for test calls. These 

responses were conceptualized as 'membrane potential' responses, which elicited 

spiking only if they crossed each MIF neuron's optimal threshold. We used a power law 

nonlinearity, applied to the maximum NCC values (see Methods), to determine the firing 
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rate responses of model MIF neurons (Supplementary Fig. 6). We then compared the 430 

MIF responses to available neural data from marmoset primary auditory cortex (A1).  

 
Figure 8: Predictions of putative MIF-neuron tuning properties match cortical data. (A – 
D, top row) Neural data from marmoset A1. (A-D, bottom row) Model predictions. (A-top) 
Preference of marmoset A1 responses for natural twitters over reversed twitters. (A-bottom) 435 
Preference of MIF neurons for natural calls over reversed calls. (B-top) Sparse responses of 
marmoset A1 L2/3 neuron. (B-bottom) Sparse responses of MIF neurons. The number of MIF 
neurons showing responses to the stimulus categories on the x-axis are plotted. Colors 
correspond to call type. (C-top) Marmoset A1 L2/3 neuron tuned to upward lFM sweeps of a 
specific length (~80 ms). (C-bottom) Twitter MIF neurons show similar tuning. (D-top) 440 
Marmoset A1 L2/3 neuron that does not respond to single lFM sweeps but shows tuning to 
trains of upward lFM sweeps with 50ms inter-sweep interval. Grayscale corresponds to the 
number of lFM sweeps in the train. (D-bottom) Three of the top 5 twitter MIFs showed similar 
tuning for lFM sweep trains. A-top reproduced from Wang and Kadia (2001), B-D top 
reproduced from Sadagopan and Wang (2009). 445 
 

Although the MIF model was purely theoretical and did not have prior access to 

neurophysiological data, we found that model MIF neuron tuning recapitulated actual 

data to a remarkable degree, both at the population and single-unit levels. For example, 

the population of model MIFs showed high preference for natural calls compared to 450 

reversed calls (Fig.8A, bottom), similar to observations by Wang and Kadia27 

(reproduced in Fig. 8A, top). The high sparseness of auditory cortical neurons is well-
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documented28 – 30. The responses of model MIF-selective neurons were also sparse – 

only few MIF neurons were activated by any given stimulus set, and only after 

extensively optimizing the parameters of the stimulus set to drive specific model MIF 455 

neurons. For example, in Fig. 8B (top), we show a single-unit recording from a 

marmoset A1 L2/3 neuron that did not respond to most stimulus types (reproduced from 

Sadagopan and Wang30), and only strongly responded to two-tone stimuli. Twitter MIFs 

(Fig. 8B, bottom) were similarly not responsive to most stimulus types, and only 

responded to carefully optimized linear frequency-modulated (lFM) sweeps. None of the 460 

model twitter and trill MIF-selective neurons responded to pure tones (Fig. 8B, bottom), 

similar to many A1 L2/3 neurons.  

Most strikingly, we could recapitulate some specific and highly nonlinear single-

neuron tuning properties as well. Figure 8C (top; reproduced from Sadagopan and 

Wang30) is a single-unit recording from marmoset A1 L2/3 that did not respond to pure 465 

tones, but selectively responded to upward lFM sweeps of specific lengths (~80 ms). 

Responses of at least three of the top 5 twitter MIF-selective model neurons showed 

similar tuning for 80 ms-long upward lFM sweeps (Fig. 8C, bottom). A second peak at 

~40 ms was also present in responses of two model twitter MIF-selective neurons, also 

matching the experimental data. Figure 8D (top; reproduced from Sadagopan and 470 

Wang30) shows another single-unit recording from marmoset A1 L2/3, where the neuron 

did not respond to single lFM sweeps (lightest gray line), but strongly responded to 

trains of upward lFM sweeps occurring with 50 ms inter-sweep interval. The neuron's 

response scaled with the number of sweeps present in the train (darker colors 

correspond to more sweeps). Three of the top 5 twitter MIF-selective neurons also 475 
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showed remarkably similar tuning (Fig. 8D, bottom). These model neurons did not 

respond to single sweeps as well, but responded to trains of at least 2 or more sweeps 

occurring with a 50 ms inter-sweep interval. Taken together, these data suggest 

neurons tuned to MIF-like features are present in A1 L2/3. Therefore, we would predict 

that a spectral-content based representation of calls in the ascending auditory pathway 480 

becomes largely a feature-based representation in A1 L2/3. 

 

Consistent with the prediction of feature selectivity, we have found neurons in A1 

of both marmosets and guinea pigs that respond selectively to conspecific call features. 

In Fig. 9, we present the spike rasters of example single neurons in both marmoset and 485 

guinea pig A1 responding to marmoset (Fig. 9A) and guinea pig calls (Fig. 9B) 

respectively. We presented multiple exemplars of each call type as stimuli. These 

example neurons responded at specific time points to a few call stimuli, typically across 

1 – 3 categories. Such responses are consistent with our feature-based model because 

single features alone do not completely categorize calls, i.e., MIFs do not have 1 bit of 490 

information for categorization. Rather, combinations of features weighted by their log-

likelihood ratios are necessary to ultimately achieve complete call category information. 

These data provide promising support for our model, but further experiments are 

necessary to: 1) determine how informative these neural features are about call 

category and how they compare with model features, 2) to confirm where such 495 

responses arise in the auditory pathway, and 3) to account for possible low-level 

confounds. Experiments are presently ongoing to address these issues. 
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Figure 9: Feature selectivity in cortical neurons. (A) Spike rasters of three single units from 
marmoset A1 responding to marmoset call stimuli. Black dots correspond to spikes, gray 500 
shading corresponds to stimulus duration (different calls have different lengths). Note that 
spikes occur at specific times, and in response to 2 or 3 call types, suggesting that the neurons 
are responding to smaller features within these calls. (B) Spike rasters of three single units from 
guinea pig A1 responding to guinea pig call stimuli. 

 505 

Task-dependent MIF-based classification as a general auditory computation 

Our approach has two limitations. First, the number of auditory tasks that an 

animal is potentially required to solve is ill-defined. While we mitigate this limitation by 

choosing ethologically critical tasks such as call categorization, it is likely that we are 

only probing a small subset of all behaviorally relevant auditory tasks. Consequently, 510 

while a subset of neurons in auditory cortex match predictions from our model for call 

and caller classification, developing a larger bank of natural auditory behavior (for 

example, predator sounds versus neutral sounds) will allow us to model and predict a 
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larger fraction of cortical responses. Second, our model derives features from the 

auditory nerve representation of stimuli. It is well-known that this representation is 515 

transformed more than once before impinging on cortical neurons. Therefore, the actual 

representation from which cortical neurons detect features are not accurately modeled 

here. This limitation arises from the current lack of predictive models for central auditory 

processing stages. It is possible that the performance of our algorithm will increase if we 

could accurately model other sub-cortical processing stages. 520 

Recognizing these limitations, we asked if MIF-based representations of sounds 

could also be used for optimally solving other tasks, such as caller identification, and if 

MIF-based call classification also generalized to other vocal species. To test these 

hypotheses, we performed three proof-of-principle simulations using limited available 

data sets. For caller identification, we generated training and test sets of 60 twitters 525 

each from eight marmosets, and generated 500 initial random features from the training 

set. We applied the greedy-search algorithm to determine the MIFs for caller 

identification in a caller A vs. all other callers task (Fig. 10A). We found that similar to 

call categorization, caller identification could also be achieved using a small number of 

MIFs (n = 4). If caller identification was performed in a binary fashion (four 530 

classifications between two animals each), in half of these tasks, classification could be 

accomplished using less than 3 MIFs, indicating that the calls of these marmosets 

probably differed along the frequency axis. This is because if there are clear differences 

in dominant frequency (for example, Animal 1 vs. 4 in Fig. 1E), all features that lie in 

one animal’s frequency range will detect all of that animal’s calls and none of the other 535 

animal’s calls. During the greedy search procedure, these features will be considered 
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redundant and reduced to a single feature. In the other half, more MIFs were required 

for caller identification, and in general, MIFs were larger than those for call-type 

classification. This is likely because the differences between twitters produced by these 

animals are smaller compared to the differences between call types and can only be 540 

resolved in a higher dimensional space. Thus, integration over more frequencies and a 

larger time window may be necessary to resolve caller differences. In Supplementary 

Fig. 7, we plot the ROC for caller identification between a pair of marmosets with 

overlapping dominant frequencies. The MIF-based approach (n = 20 MIFs) achieved 

>80% hit rates with <10% false alarm rate for caller identification. 545 

For determining the efficacy of MIF-based call classification in other species, we 

used guinea pig and macaque call classification as examples. Guinea pigs are highly 

vocal rodents that produce seven main call types23, 31, 32, which are highly overlapping in 

the low frequency end of the spectrum, and show high production variability. We used 

the MIF-based approach to classify guinea pig call types (‘whine’, 'wheek', and ‘rumble’) 550 

from all other guinea pig call types. Similar to marmosets, guinea pig classification could 

be accomplished using a handful of features (12, 9, and 3 MIFs for whine, wheek, and 

rumble), and MIF-based classification achieved high performance levels (Fig. 10B). 

Similarly, we implemented the MIF-based algorithm to classify macaque calls (using 5, 

4, and 9 MIFs for coos, grunts and harmonic arches) from a limited macaque call data 555 

set33 and achieved high classification performance (Fig. 10C). These proof-of-principle 

experiments demonstrate that an MIF-based approach indeed succeeds for different 

auditory classification tasks and in different species, suggesting that building 
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representations of sounds using task-relevant features in auditory cortex may be a 

general auditory computation. 560 

Figure 10: The applicability of MIF-based classification for other auditory tasks. The top 
four MIFs and ROC curves for: (A) marmoset caller identification (twitter calls), (B) Guinea pig 
call classification (MIFs for 'whine' calls shown), and (C) Macaque call classification (MIFs for 
'coo' calls shown). 

 565 

Discussion 

In these experiments, we set out to understand the computations performed by 

the auditory system that enable the categorization of behaviorally critical sounds, such 

as calls, despite wide variations in the spectrotemporal structure of calls belonging to a 

category (production variability). We found that the optimal theoretical solution is to 570 

detect the presence of informative mid-level features (termed MIFs) in calls. These MIFs 

generalize over production variability, and conjunctions of MIFs accomplish production-

invariant call classification with high accuracy. Critically, the tuning properties of putative 

MIF-selective neurons match previous recordings from marmoset A1 to a surprising 

degree. MIF-based classification was also successful for other tasks (marmoset caller 575 
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identification), and in other species (guinea pig and macaque call recognition). Our 

results suggest that the representation of sounds in higher auditory cortical areas might 

enable performance of auditory tasks based on the detection of optimal task-relevant 

features. 

 580 

Comparison to previous theoretical and experimental methods 

An implication of our results is that in higher auditory processing stages, neural 

representations of sounds serve specific behavioral purposes. For example, the MIF-

based classification approach that we proposed here is targeted to solve well-defined 

classification problems. At earlier stages of the auditory pathway, however, it may be 585 

more important to faithfully represent sounds using basis sets that enable the accurate 

encoding of novel stimuli. Previous theoretical studies have proposed, for example, that 

natural sounds can be efficiently encoded using spike patterns, where each spike 

represents the magnitude and timing of input acoustic features34. However, when 

optimized to encode the complete waveforms of natural sound ensembles, the kernel 590 

functions that elicit each spike show a striking similarity to cochlear filters. The 

advantage of this approach is that novel stimuli can be completely encoded using these 

kernel functions. In our approach, the input to our model implements a similar encoding 

schematic – in the cochleagram, inputs are encoded as spatiotemporal spike patterns, 

where each spike is the result of cochlear filtering. In this early representation, while 595 

information about category identity is present, it is distributed in the activity of many 

neurons in a high-dimensional space. We propose that in later processing stages, this 

early representation is transformed into a representation where category identity is more 
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easily separable. By encoding MIF-like features, sound representation in later 

processing stages is less useful for high-fidelity encoding, but is instead goal-oriented. 600 

However, this means that each task will require a distinct set of MIFs for optimal 

performance, and animals likely perform a large number of such behaviorally relevant 

tasks. The observed 1000-fold increase between the number of cochlear inputs and 

auditory cortical neurons may partially result from this necessity to encode a multitude 

of task-dependent MIFs. Previous theoretical studies have suggested that the 605 

generation of redundant and over-complete representations of sounds to solve spatial 

localization problems might underlie this increase in the number of neurons35. Our study 

proposes another computational reason why such an expanded representation of 

sounds may be necessary. 

A second class of increasingly popular models use hierarchical convolutional 610 

neural networks to accomplish classification tasks. In these models, layers of filtering, 

normalization and pooling operations are cascaded, resulting in individual units 

exhibiting increasingly complex tuning properties36 – 38. A final layer 'reads out' class 

identity. These ‘deep’ networks are a powerful set of models that claim to achieve near-

human levels of performance on specific tasks, but carry some disadvantages. First, 615 

they often require training data of the order of millions of samples. In the visual domain, 

deep networks appear not to use the same features as humans for object 

classification39. Finally, an intuitive explanation for how deep network models actually 

accomplish classification is not available. In our approach, we explicitly train our MIF 

units to extract maximally distinguishing features, providing insight into why certain 620 

features are represented amongst these units. We consider our approach 
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complementary to the deep learning approach, in that we aim to provide an explicit and 

intuitive explanation of why certain features are extracted, as opposed to matching 

human performance using complex model architectures. 

Recently, theoretical efforts have been directed at learning invariant 625 

representations from small training sets using unsupervised methods40. In this model, 

image ‘signatures’ which serve as a proxy for the probability distribution of an image 

and its transformations are learnt by leveraging the time correlations of image 

transformations in the real world to label image identity. Image signatures can be 

computed by complex cell-like units using Hebbian learning rules. This model predicts 630 

that a similar computation might occur in auditory cortex. The MIFs that we have 

derived for call categorization are similar to the image ‘signatures’ in that they serve as 

a proxy for the probability distribution of a sound category that has been subjected to 

production variability. Indeed, vocalizations can be viewed as multivariate probability 

distributions along multiple call parameters41, and MIFs could serve as the ‘gist’ of a call 635 

category around which these variations occur. Similar to image signatures, MIFs seem 

to be computed by superficial-layer auditory cortex neurons. However, differences arise 

in how MIFs are learnt. Although small sample sizes are adequate, unlike image 

‘signatures’ that are learnt by observing image transformations over time, explicit 

labeling of the class of input examples is necessary for learning the MIFs of calls. 640 

Conceptually, whereas image ‘signatures’ are learnt by observing within-category 

transformations, MIFs are learnt by contrasting the distributions of sound categories. 

Previous experimental studies have described call selectivity primarily using two 

methods: 1) categorization of neural tuning along an exhaustive list of call parameters41, 
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and 2) categorizing call tuning as tuning for regions of the modulation spectrum42 – 44. In 645 

the former study, marmoset calls were parametrized along multiple acoustic 

dimensions. Some of these parameters were common to all call types, such as the 

length or dominant frequency of a call. The more distinguishing parameters, however, 

were unique to individual call types, such as the inter-phrase interval for twitters, or 

sinusoidal frequency modulation rate for trills. Neural tuning to calls was described 650 

using tuning to these parameters but did not use the same set of parameters across call 

types. In our study, different MIFs are used for classification of different call types, but 

MIFs are parametrized along the same axes – bandwidth and integration window, 

allowing for a uniform basis for comparisons. In the latter set of studies, neural tuning 

for birdsong was described using selectivity for specific frequency and temporal 655 

modulations. In this case, tuning could be expressed in a unified stimulus space (of 

spectral- and temporal modulation rates). Both these methods, however, serve to 

describe neural tuning, and not to explain why tuning to certain parameters or regions of 

modulation space are necessary in the first place. Our results suggest that generating 

selectivity for task-relevant features explains why selectivity for stimulus parameters 660 

arises in the first place. 

 

Possible mechanisms of generation of MIF-based representations 

MIF-based representations are constructed from MIF-selective neurons. Neural 

selectivity for MIFs may be generated 1) gradually along the ascending auditory 665 

pathway, or 2) de-novo in cortex. Single-neuron feature selectivity often (but not always, 

see below) leads to selectivity for one or a few call types, and analyzing call selectivity 
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of neurons at different auditory processing stages could provide insight into where MIF-

based representations might be generated in the auditory pathway. In early auditory 

processing stages, evidence for call selectivity at the single-neuron level is minimal. For 670 

example, at the level of the cochlear nucleus, few single neurons in species other than 

mice show call selectivity45. At the level of inferior colliculus, a population-level bias in 

call-selectivity has been reported45 – 47, but evidence for single-neuron level call-

selectivity is equivocal48. It is only at the level of auditory cortex where clear single-

neuron selectivity for calls or call features has been observed. Therefore, it is quite likely 675 

that selectivity for MIF-like features in species with spectrotemporally complex calls is 

generated at the level of auditory cortex. This is supported by the expansion in the 

number of cortical neurons mentioned above.  Importantly, the cortical emergence of 

MIF-based representations is also supported by the fact that MIF-like responses have 

been observed in the superficial layers of marmoset A130. 680 

We propose the following hierarchical model for auditory processing based on 

the representation of task-relevant features. In thalamorecipient layers of A1, 

representation of sound identity is still based on spectral content. This is reflected in the 

strongly tone-tuned responses of A1 L4 neurons. From these neurons, tuning for MIF-

like features may be generated using nonlinear mechanisms such as combination-685 

sensitivity. For example, the tuning properties of the marmoset A1 responses shown in 

Fig. 8 was determined to be the result of selectivity for precise spectral and temporal 

combinations of two tone pips30. This is also consistent with a recent computational 

model showing that combinations of spectrotemporal kernels, optimized for representing 

natural sounds, recreates aspects of experimentally observed spectrotemporal 690 
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receptive fields from recordings in cat auditory cortex49. Further experiments, probing 

call and feature selectivity in identified layers of A1, are necessary to more precisely 

address where selectivity for MIF-like features first an emerges in the ascending 

auditory pathway.  

The MIF-detection stage of processing is not necessarily categorically selective. 695 

In our model, the final decision about call category is the result of a weighted 

combination of MIF-detection responses. Since MIF-like features are likely represented 

in the superficial layers of A1, true call category selectivity likely arises in area further up 

the processing hierarchy. The most likely candidate for this read-out layer is the 

anterolateral belt region (AL) in primates21, or the ventral-rostral belt (VRB) region in 700 

guinea pigs, where single-neurons have been shown to have high selectivity for call 

types23. We propose that belt neurons integrate a weighted combination of MIF-

selective inputs to generate call category-selective responses. Weighted combination of 

synaptic inputs is a canonical neurophysiological operation, and our model does not 

involve any other specialized mechanisms.  705 

What we have described are the emergent stages for the processing of 

behaviorally relevant sounds. Once categories are detected, further hierarchical 

processing stages might be necessary to accomplish more sophisticated behavioral 

goals such as caller identification25, integration of social context with call perception, or 

decoding the emotional valence of calls. 710 
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Computations underlying the perception of auditory categories 

In conclusion, we propose a hierarchical model for solving a central problem in 715 

auditory perception – the goal-oriented categorization of sounds that show high within-

category variability such as speech1, 2 or animal calls3. Our work has broad implications 

as to where in the auditory pathway categorization begins to emerge, and what features 

are optimal to learn in categorization tasks. For example, the lack of distinction of 

perceptual categories of English /r/ and /l/ by native Japanese speakers, and the 720 

success of bilingual Japanese speakers in accomplishing this classification, suggests 

that categorical differences can be learned50. Our model suggests that native speakers 

do not distinguish /r/-/l/ differences because the optimal features necessary for /r/-/l/ 

categorization are not encoded, as this categorization is not task-relevant for Japanese 

speech. FMRI evidence supports this conjecture51. Our model would predict that what is 725 

learned in bilingual speakers are optimal features that maximize /r/-/l/ differences. Our 

model would further predict that this learning would be primarily reflected in changes to 

the A1 L2/3 circuit. Consistent with this hypothesis, a recent study showed that training 

humans to categorize monkey calls resulted in finer tuning for call features in the 

auditory cortex52. We therefore suggest that the neural representation of sounds at 730 

higher cortical processing stages uses task-dependent features as building blocks, and 

that new blocks can be added to this representation to enable novel perceptual 

requirements. 

 

 735 
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Materials and Methods 

Vocalizations: All procedures conformed to the NIH Guide for Care and Use of 

Laboratory Animals. All marmoset procedures were approved by the Institutional Animal 

Care and Use Committee (IACUC) of The Johns Hopkins University. All guinea pig 740 

procedures were approved by the IACUC of the University of Pittsburgh. We used 

vocalization recordings from 8 adult marmosets, both male and female, for these 

experiments. Marmoset calls were recorded from a marmoset colony at The Johns 

Hopkins University using directional microphones. Details of these recording 

techniques, and detailed characterizations of recorded calls are previously published8. 745 

Guinea pig calls were recorded from 3 male and 3 female adult guinea pigs. Two or 

more guinea pigs with varied social relationships were placed on either side of a 

transparent divider in a sound attenuated booth. Directional microphones, suspended 

above the guinea pigs were used to record calls. Calls were recorded using Sound 

Analysis Pro 201153, digitized at a sampling rate of 48 KHz, low-pass filtered at 24 KHz, 750 

manually segmented using Audacity, and classified into different call types. 

 

Random feature generation: All modeling was implemented in MATLAB. We focused on 

classifying each of three major marmoset call types, twitter, trill, and phee, from all other 

call types. That is, three main binary classification tasks – twitter vs. all other calls, trill 755 

vs. all other calls, and phee vs. all other calls were considered. We set up the 

categorization tasks as a series of binary classifications (Twitter vs. all other calls, Trill 

vs. all other calls, etc.) based on the results of an earlier study of visual categorization 

that demonstrated the advantages of features learnt using multiple binary classifications 
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compared to those learnt using a single multi-way classification. Specifically, in that 760 

study, multiple binary classifications resulted in features that were distinctive and highly 

tolerant to distortions56. For each classification task, we first generated training data 

sets, which consisted of 500 random within-class calls (e.g., twitters) produced by 8 

animals (about 60 calls per animal), and 500 random outside-class calls (e.g., trills, 

phees, other calls) produced by the same 8 animals. In order to convert sound 765 

waveforms of the calls into a physiologically meaningful quantity, we transformed these 

calls into cochleagrams using a previously published auditory nerve model54 using 

human auditory nerve parameters with high spontaneous rate. We used human auditory 

nerve parameters because of the close similarity between marmoset and human 

audiograms55. The output of this model was the time-varying activity pattern of the entire 770 

population of auditory nerve fibers, and resembles the spectrogram of the call (Fig. 2A, 

B). We then extracted 6000 random features from these 500 within-class cochleagrams. 

To do so, we randomly chose a center frequency, bandwidth, onset time and length and 

extracted a snippet of activity from the cochleagram. Each feature thus corresponded to 

the spatiotemporal pattern of activity of a subset of auditory nerve fibers within a 775 

specified time window (magenta box in Fig. 2B). We used rectangular feature shapes 

rather than other shapes to minimize assumptions – for example, an ellipse shaped 

feature would imply that the weighting of individual auditory nerve fibers changes over 

time. To ensure that smaller features were well-sampled, 2000 of these features were 

restricted to have a bandwidth less than 1 octave and a duration less than 100 ms. The 780 

bandwidth and duration of the remaining 4000 fragments were not constrained.  
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Threshold optimization: We defined the 'response' of a feature to a call as the maximum 

value of the normalized cross correlation (NCC) function between the feature's 

cochleagram and the call's cochleagram, restricted to the auditory nerve fibers that are 785 

represented in the feature. We effectively implemented a one-dimensional version of 

NCC by only considering the auditory nerve fibers that overlapped between the call and 

the feature. Note that this means features can only be detected in the frequency range 

that they span, but can be detected anywhere in time within a call. NCC is a commonly 

used metric to quantify template-match. To compute the NCC, the feature and the 790 

cochleagram patch at each lag were normalized by subtracting their respective mean 

values and dividing by their respective standard deviations before convolving them. This 

results in a value between -1, signifying that the feature and cochleagram patch at that 

lag are completely anti-correlated, and +1, signifying a perfect match between the 

feature and the cochleagram. Because this is a computation-intensive step, template 795 

matching was implemented on an NVIDIA GeForce 980 Ti GPU. For each feature, then, 

we obtained 500 within-class responses, and 500 outside-class responses (response 

histograms of an example feature in Fig. 2C). To transform these continuous response 

distributions into a binary detection variable, we used mutual information to quantify the 

information provided by a feature about the class (within- or outside-class) over a 800 

parametrically varied range of thresholds. We computed mutual information following 

the method of Ullman et al.12, by measuring the frequency of detecting a feature fi at a 

given threshold i (fi = 1 if present, 0 if absent) in the within-class (C=1) or outside-class 

(C=0) cochleagrams as: 

 805 
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where P(C) was assumed to be 0.10. We empirically verified that features identified 

were insensitive to variations of this value. The optimal threshold for each feature was 

taken to be the threshold value at which the mutual information was maximal, and the 

merit of each feature was taken to be the maximum mutual information value in bits 

(Fig. 2C). The 'weight' of each feature was taken to be its log-likelihood ratio. At the end 810 

of this procedure, each of the initial 6000 features were allocated a merit, a weight, and 

an optimal threshold at which each individual feature's utility for classifying calls as 

belonging to within- or outside-class was maximized. Note that merit and weight are 

distinct quantities that need not be monotonically related. For example, if the lack of 

energy in a frequency band is indicative of a target category, features that contain 815 

energy in this frequency band will be detected often in the other categories, but not in 

the target category. The feature will thus have high merit for classification, as it is 

informative by its absence, but have a negative weight. 

 

Greedy search: Because we chose initial features are random, many of these features 820 

individually provided low information about call category, and many of the best features 

for classification were self-similar, or redundant. Therefore, to extract maximal 

information from a minimal set of features for classification, we used a greedy search 

algorithm12 to iteratively 1) eliminate redundant features, and 2) pick features that add 

the most information to the set of selected features. The minimal set of features that 825 

together maximize information about call type were termed maximally informative 

features (MIFs). The first MIF was chosen to be the feature with maximal merit from the 
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set of all 6000 initial random features. Every consecutive MIF was chosen to maximize 

pairwise added information with respect to the previously chosen MIFs. Note that these 

consecutive features need not have high merit individually. We iteratively added MIFs 830 

until we could no longer increase the hit rate without increasing the false alarm rate. 

Practically, this meant adding features until total information reached 0.999 bits, or 

individual features added less than 0.001 bits, whichever was reached earlier. At the 

end of this procedure, a small set of MIFs, containing the optimal set of features for call 

classification was obtained. 835 

 

Analysis and statistics: To test how well novel calls could be classified using these MIFs 

alone, we generated from the same 8 animals a test set of 500 within- and outside-class 

calls that the model had not been exposed to before. We computed the NCC between 

each test call and MIF, and considered the MIF to be detected in the call if the 840 

maximum value of the NCC function exceeded its optimal threshold. If detected, the MIF 

provided evidence in favor of a test call belonging to a call type, proportional to its log-

likelihood ratio. We then summed the evidence provided by all MIFs and generated 

ROC curves of classification performance by systematically varying an overall evidence 

threshold. We used the area under the curve (AUC) to compare ROC curves for 845 

classification performance by MIFs generated with different constraints (see Results). 

Statistical significance was evaluated using non-parametric methods for comparing 

between these conditions, and for comparing performance to a large number of 

simulations generated using random MIFs.  

 850 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 16, 2018. ; https://doi.org/10.1101/411611doi: bioRxiv preprint 

https://doi.org/10.1101/411611


   
 

   
 

Generating predictions: To generate predictions of the 'responses' of putative MIF-

selective neurons to other auditory stimuli, we first generated a large battery of stimuli 

encompassing stimuli used in previous recordings from marmoset A1 in MATLAB and 

computed their cochleagrams as earlier. We then computed the maximum value of the 

NCC function between the MIF and the stimulus cochleagram. This resulted in response 855 

values that could be conceptualized as equivalent to membrane potential (Vm) 

responses. These were converted to firing rates by applying a power law nonlinearity, of 

the form: 

   FR = k . [Vm – ]p 

 Where FR is the firing rate response in spk/s, is the MIF’s optimal threshold, p is the 860 

exponential nonlinearity set to a value of 4, and k is an arbitrary scaling factor. 

 

Call reconstruction from MIFs: To reconstruct calls, we conceptualized MIFs as MIF-

selective neurons, and considered the times at which NCC values exceeded the optimal 

threshold to be the spike times of these neurons. MIF spike times were computed with a 865 

time resolution of 2 ms to simulate refractoriness, and alpha-functions were convolved 

with the spike times to determine the peak time at which each MIF was detected. A 

copy of the MIF cochleagram was then placed at the peak time, or summed (with log-

likelihood weights) if overlapping with a previously placed cochleagram. The accuracy of 

reconstruction was defined as the NCC between the original stimulus and its 870 

reconstructed version at zero lag. 
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Electrophysiology methods: Predictions generated from the MIFs were compared to 

earlier recordings from marmoset A1. Details of recording procedures are available from 

original experimental data sources. All recordings were from adult marmosets. 875 

Population data comparing natural to reversed twitters were obtained from Wang and 

Kadia27. These experiments were performed in anesthetized marmosets. Single-neuron 

data regarding feature selectivity were obtained from Sadagopan and Wang30. These 

recordings were from awake, passively-listening marmosets. Single-neuron data 

regarding feature selectivity in guinea pigs were obtained from adult, head-fixed, 880 

passively-listening guinea pigs at the University of Pittsburgh. Briefly, a headpost and 

recording chambers were secured to the skull using dental cement following aseptic 

procedures.  Animals were placed in a double-walled, anechoic, sound attenuated 

booth. A small craniotomy was performed over auditory cortex. High-impedance 

tungsten electrodes (3 – 5 MΩ, A-M Systems Inc. or FHC, Inc.) were advanced through 885 

the dura into cortex to record neural activity. Stimuli were generated in MATLAB, and 

presented (TDT Inc.) from the best location in an azimuthal speaker array (B&W-600S3 

or Fostex FT-28D for marmosets, TangBand 4” full-range driver for guinea pigs).  Single 

units were sorted online using a template matching algorithm (Alpha Omega Inc. or 

Ripple, Inc), and for guinea pigs, refined offline (MKSort). All analyses were performed 890 

using custom MATLAB code.  

 

Code availability: Custom code will be provided upon request to the corresponding 

author (SS). 

895 
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Supplementary Figure 1: Production variability of major marmoset call types. (A-C) Production 
variability of phee calls quantified along various parameters: (A) bandwidth, (B) duration, and (C) 
dominant frequency. Dots depict parameter values for single calls, and histograms indicate the 
overall distribution of these parameters, split into the training (blue) and testing (red) sets. (D-F) 
Production variability of trill calls quantified as in (A-C).
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Supplementary Figure 2: Information content, complexity, and size of all initial random 
features. Scatter plot of all 6000 features generated for each call type: twitter (A), phee (B), 
and trill (C), as a function of their bandwidth and temporal extent. Color scale corresponds to 
the merit of each feature. Marginal histograms depict the maximum merit in each time- or 
bandwidth-bin. (D-F) Features of high merit for classifcation tend to be of intermediate 
complexity. Merit vs complexity plot of all randomly generated twitter (D), phee (E), and trill (F) 
features. Feature complexity is estimated to be proportional to the reduced kurtosis of the 
distribution of activity within a feature or call. In these plots, low- or mid-merit features (defined 
as the bottom 33-%ile (light gray) and 33rd - 66th %-ile (dark gray)) show distributions of low 
kurtosis values. Whole calls show high kurtosis values (purple). Across call types, high-merit 
features (top 33%-ile) show intermediate kurtosis values, indicating that high-merit features are 
of intermediate complexity.

B
W

 (
oc

t.)

D

0

0.25

0.5

0.75

1.0

0 25 50 75 100

 

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

E F

Feature Kurtosis

0 .9.45 0 .8.4 0 .6.3

Merit Merit Merit

Supplementary Material Optimal features for auditory categorization

Liu ST, Montes Lourido MP, Wang X, and Sadagopan S.

Low merit
Mid merit

High merit
Whole call

0

0.25

0.5

0.75

1.0

0 25 50 75 100
0

0.25

0.5

0.75

1.0

0 25 50 75 100

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 16, 2018. ; https://doi.org/10.1101/411611doi: bioRxiv preprint 

https://doi.org/10.1101/411611


H
it 

R
at

e 
(%

)

False Alarm Rate (%)

0

20

40

60

80

100
Set 3 Set 4

0 20 40 60 80 100 0 20 40 60 80 100

Set 1 Set 2

0 20 40 60 80 100 0 20 40 60 80 100

Supplementary Figure 3: Similar classification performance obtained using distinct 
MIF sets. ROC curves for twitter classification using four successive iterations of MIFs, 
generated by removing all MIFs from the previous set, and selecting MIFs from the 
remaining features. High performance demonstrates that feature space was adequately 
sampled, and that the algorithm was not stuck in local maxima. 
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Supplementary Figure 4: Classification using average calls. An average twitter (A), trill 
(B), and phee (C) constructed by aligning and averaging over the calls. (D-F) 
Classification performance using the average call as the single informative feature.
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Supplementary Figure 5: Reconstruction of twitter calls using only twitter MIFs. (A) 
Cochleagrams of MIFs were placed at the time points at which MIFs were detected within a 
sample twitter call. All MIF cochleagrams were then summed, weighted by their log-
likelihood ratios. (B) Cochleagrams of and example original twitter call and its reconstructed 
version. (C) Histogram of the reconstruction accuracy of 1000 twitter calls. 
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Supplementary Figure 6: Simulation of putative MIF-neuron tuning properties. The 
responses of MIFs to cochleagrams of commonly used auditory stimuli were taken to be the 
maximum value of the normalized cross-correlation function. A power law nonlinearity was 
applied to this value to obtain 'tuning curves' of the MIF-neurons to these stimuli.
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Supplementary Figure 7: Caller identification for a pair of marmoset callers with 
overlapping dominant frequencies. (A) MIFs for caller identification. (B) ROC curve for caller 
identification.  
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