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Abstract  
 
Hi-C and chromatin immunoprecipitation (ChIP) have been combined to identify long-range chromatin 
interactions genome-wide at reduced cost and enhanced resolution, but extracting the information from the 
resulting datasets has been challenging. Here we describe a computational method, MAPS, Model-based 
Analysis of PLAC-seq and HiChIP, to process the data from such experiments and identify long-range 
chromatin interactions. MAPS adopts a zero-truncated Poisson regression framework to explicitly remove 
systematic biases in the PLAC-seq and HiChIP datasets, and then uses the normalized chromatin contact 
frequencies to identify significant chromatin interactions anchored at genomic regions bound by the protein of 
interest. MAPS shows superior performance over existing software tools in analysis of chromatin interactions 
centered on cohesin, CTCF and H3K4me3 associated regions in multiple cell types. MAPS is freely available 
at https://github.com/ijuric/MAPS. 
  
Main text 
 
While millions of candidate enhancers have been predicted in the human genome, annotation of their target 
genes remains challenging, because these elements are known to regulate genes far away and often not their 
immediate neighbors1. Mapping of long-range chromatin interactions between enhancers and target gene 
promoters has been increasingly used to predict the target genes of enhancers and dissect gene regulatory 
networks2. Chromosome conformation capture (3C)3 based methods, such as in situ Hi-C4, have been used to 
detect long-range chromatin interactions in mammalian cells. However, billions of reads are typically needed to 
achieve kilobase resolution, limiting their applications. PLAC-seq5 and HiChIP6 technologies combine in situ Hi-
C and chromatin immunoprecipitation (ChIP) to efficiently capture chromatin interactions anchored at genomic 
regions bound by specific proteins or histone modifications, achieving kilobase (Kb) resolution with much 
reduced sequencing cost7. However, compared to in situ Hi-C, the ChIP procedure introduces additional layers 
of experimental biases, posing significant challenges for data analysis.  
 
Several software tools, including Fit-Hi-C8, HiCCUPS4, Mango9 and hichipper10 have been used to process 
PLAC-seq and HiChIP data. However, these methods are not optimal for such datasets. Specifically, both Fit-
Hi-C and HiCCUPS are developed to analyze Hi-C data, and do not take into account the experimental biases 
introduced by the ChIP procedure. Mango is developed for ChIA-PET, a method that is similar to PLAC-seq 
and HiChIP, but carries different set of experimental biases due to the reverse order of the ChIP and proximity 
ligation procedures. Further, it only assesses the chromatin interactions between genomic regions bound by 
the protein of interest. In practice, chromatin interactions may also occur between a genomic region bound by 
the protein and other unoccupied regions, and Mango would miss such interactions due to the use of the filter. 
Hichipper10 is tailored for HiChIP data but still relies on Mango to identify long-range chromatin interactions, 
thus suffers the same weakness (more discussions in Supplementary Note 1). 
  
MAPS addresses the above issues by taking into account of the unique experimental setup and biases of 
PLAC-seq and HiChIP data in each step of data pre-processing, normalization and chromatin interaction 
determination (Figure 1a). First, MAPS splits the intra-chromosomal reads into two groups: short-range reads 
(<=1Kb) corresponding to the primary sites of protein occupancy and long-range reads (>1Kb) informative of 
the captured long-range chromatin interactions (Figure S1). Each valid long-range paired-end read is further 
assigned into “NOT”, “XOR” or “AND” set of bin pairs in the contact matrix depending on whether the pair of 
bins is bound by the protein of interest. As illustrated in Figure 1a, the “NOT” set refers to bin pairs not 
overlapping any ChIP-seq peaks; the “XOR” set refers to bin pairs with only one end overlapping ChIP-seq 
peaks; whereas the “AND” set refers to those with both bins overlapping the ChIP-seq peaks. MAPS models 
interactions in the “AND” and “XOR” sets only, since bin pairs in the “NOT” set are not targets of the 
experiment and often contain very few reads for a reliable interaction call. Second, MAPS considers a variety 
of systematic biases shared by all 3C-based methods including differential effective fragment length, GC 
content, and sequence uniqueness (i.e., mappability)11, and additional experimental noises introduced by the 
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ChIP procedure in PLAC-seq and HiChIP experiment (Figure S2). To mitigate these systematic biases, MAPS 
incorporates a modified version of HiCNorm12 algorithm, which successfully removes most of the biases, as 
illustrated by greatly reduced Pearson correlation coefficients between contact frequency and each bias factor 
(Figure S2). MAPS then calculates the expected contact frequency, P-value and false discovery rate (FDR) of 
each bin pair in “XOR” and “AND” sets. Noticeably, MAPS treats “XOR” or “AND” sets as two independent 
groups for data normalization, since bin pairs in the “AND” set have much higher chromatin contact frequency 
than bin pairs in the “XOR” set due to ChIP enrichment on both ends (Figure S3).  
 
To benchmark the performance of MAPS against hichipper, we applied both methods to three distinct PLAC-
seq and HiChIP datasets, one published Smc1a HiChIP dataset from GM12878 cells6 and two in-house PLAC-
seq datasets focusing on H3K4me3 and CTCF binding sites in the mouse embryonic stem cells (mESCs) 
(Table S1). Considering variable sequencing depth of each dataset, we used MAPS to call interactions at 5Kb 
resolution for GM12878 Smc1a HiChIP and mESC H3K4me3 PLAC-seq data, and at 10Kb resolution for 
mESC CTCF PLAC-seq data. We did not test HiCCUPS nor Fit-Hi-C, since Lareau and Aryee study10 has 
demonstrated that hichipper outperforms both HiCCUPS and Fit-Hi-C. We first examined the reproducibility of 
MAPS and hichipper between two biological replicates. The reproducibility of interactions called from MAPS 
among biological replicates ranges 69.4% ~ 85.3% for these three datasets, slightly higher than the results 
from hichipper (61.0% ~ 81.9% for these 3 datasets) (Figure S4). As a reference, using the same definition of 
reproducibility, the widely used HiCCUPS for in situ Hi-C data has 64.3% ~ 67.4% reproducibility in interaction 
calls between biological replicates (Supplementary Note 2). Since MAPS- and hichipper-identified interactions 
are reproducible between replicates, we combined the two biological replicates and utilized interactions 
identified from the combined data for all the downstream analysis. MAPS identified 37,951, 53,788 and 
134,179 interacting bin pairs from GM12878 Smc1a, mESC CTCF, and mESC H3K4me3 data, respectively. 
The numbers of interacting bin pairs identified by MAPS are ~2-4 folds more than the numbers of hichipper 
(Figure S5). Although the median distance of the interacting bin pairs is similar between MAPS and hichipper 
(Figure S5), MAPS detects more longer-range interactions, with only 3% ~ 7% of MAPS-identified interactions 
spanning a distance less than 50Kb, while 16% ~ 31% of hichipper-identified interactions are within 50Kb. 
Noticeably, MAPS is able to identify the same set of interactions from mESC CTCF and mESC H3K4me3 data 
on the “common” anchors (regions with both H3K4me3 and CTCF binding), suggesting the robustness of 
MAPS (Supplementary Note 3).  
 
Next, we investigated the sensitivity of MAPS and hichipper in detecting chromatin interactions, by comparing 
the results to chromatin loops identified from deeply sequenced in situ Hi-C data from the matching cell types4, 

13 (Table S2). Since PLAC-seq and HiChIP are designed to detect interactions associated with a specific 
protein, we filtered chromatin loops from in situ Hi-C data and only kept the ones associated with the protein of 
interest for this analysis (Supplementary Note 4, Table S3). MAPS achieved consistently higher sensitivity 
than hichipper (91.8%, 92.2%, 95.2% vs 77.3%, 61.6%, 32.5%, Figure 1b) in all three datasets. The 
substantially improved sensitivity achieved by MAPS is partly due to the fact that MAPS can identify 
interactions in the “XOR” set, yielding ~2-4 folds more interactions than hichipper (Figure S5).  
 
We also tried to assess the true positive rate for MAPS- and hichipper-identified interactions. However, due to 
lack of a gold standard of chromatin interactions in these cells, we resort to analysis of orientation of CTCF 
binding motifs in the identified chromatin interactions, since convergent CTCF motif has been shown to be a 
key feature of CTCF and cohesin-mediated chromatin loops due to loop extrusion4, 14, 15. Supporting the validity 
of the MAPS-identified interactions, convergent CTCF motif is found in 76.7%, and 61.3% testable MAPS-
identified interactions from GM12878 Smc1a and mESC CTCF dataset, respectively (see Methods for details). 
By comparison, convergent CTCF motif is found in lower proportions of testable hichipper-identified 
interactions (72.8% and 53.7%, Chi-square test p-value is 3.54e-7 and <2.2e-16), suggesting that MAPS 
yielded more accurate calls than hichipper (Figure 1c). The MAPS- and hichipper-identified interactions can be 
grouped into singletons or clusters, depending on whether additional significant chromatin interactions exist 
within their neighborhoods (see Methods for details). For each interaction cluster, its summit can be further 
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identified as the bin with the lowest FDR value. We repeated sensitivity and CTCF motif orientation analysis 
using only the sum of singletons and cluster summits and obtained consistent results (Figure S6), showing 
that MAPS performs almost equally well if restricted to a conservative subset of interaction calls. 
 
One of the major advantages of MAPS over hichipper is that MAPS can detect interactions in both “AND” and 
“XOR” set whereas hichipper only considers the "AND" set. The “XOR” set clearly contains true positives. For 
example, in mESC H3K4me3 PLAC-seq data, we observe both promoter-promoter interactions (i.e., in the 
“AND” set) and enhancer-promoter interactions (i.e., in the “XOR” set). MAPS analysis detects many 
interactions in the “XOR” set in every dataset we studied (59.2% - 78.6% of MAPS-identified interactions are in 
the “XOR” set, see Table S4), suggesting that a significant portion of MAPS-identified interactions have one 
anchor bin not bound by the protein of interest (hereafter referred to as the “target” bin). We then ask whether 
those target bins are enriched for cis-regulatory elements (CREs) that may contribute to gene regulation. In 
GM12878 Smc1a data, we found that there are twice more target bins containing ATAC-seq peaks compared 
to control bins (Figure S7, Figure 1d). This enrichment holds for H3K27ac, H3K4me1, H3K4me3 and CTCF 
ChIP-seq peaks (all Chi-square test p-values < 2.2e-16). We also observed enrichment of CREs among target 
bins in the mESC CTCF and H3K4me3 PLAC-seq datasets, suggesting the existence of functional interactions 
in the “XOR” set (Figure 1d). To further evaluate the performance between MAPS and hichipper, we examined 
ten experimentally determined long-range chromatin interactions in mESC16-20 (Table S5). Among them, eight 
were identified by MAPS using mESC H3K4me3 PLAC-seq data. By contrast, only five of them were found by 
hichipper (Table S5). In these loci, MAPS additionally identified promoter-centered long-range interactions, 
most of which are enriched in H3K4me1, CTCF or H3K27ac marks (Figure 1e, Figure S8). 
 
A large proportion (52.6% - 87.3%) of MAPS-identified interactions do not overlap with chromatin loops 
identified from in situ Hi-C data by HiCCUPS (Table S6). Several lines of evidence support the reliability of 
these additional chromatin interactions called by MAPS. First, the “XOR” set of MAPS-specific interactions are 
enriched for active chromatin marks to the same degree as the chromatin interactions called by both HiCCUPS 
(from in situ Hi-C data) and MAPS (from PLAC-seq data or HiChIP datasets) (Figure 2a, Figure S9). Second, 
the MAPS-identified interactions are also detectable using SPRITE (split-pool recognition of interactions by tag 
extension)21, an orthogonal method for mapping 3D chromatin structure independent of proximity ligation. Both 
HiCCUPS/MAPS-shared and MAPS-specific interactions show higher interaction frequency detected by 
SPRITE than the matched control set, indicating that the two anchors of MAPS-specific interactions are indeed 
in close spatial proximity (Figure 2b). Third, the MAPS-identified enhancer-promoter interactions match well 
with functionally defined enhancer-promoter target relationships. A recent study revealed multiple functional 
enhancer-promoter pairs in mESCs via functional perturbation of enhancers22. For the five promoter-enhancer 
pairs spanning a distance greater than 50Kb, MAPS is able to identify three of them (Figure 2c, Figure S10). 
By contrast, none of these five enhancer-promoter pairs are defined by HiCCUPS from in situ Hi-C data (Table 
S7). This analysis indicates that MAPS can identify biologically relevant long-range chromatin interactions 
more sensitively and accurately than existing methods. 
 
The rapidly growing popularity of PLAC-seq and HiChIP technologies necessitates the development of 
effective data analysis method tailored to the new datasets. MAPS takes into account of method-specific 
biases introduced by the ChIP procedure, and identifies long-range chromatin interactions anchored at 
different proteins with high reproducibility and accuracy. More importantly, MAPS can detect a large number of 
biologically relevant chromatin interactions that are missed by the state of art mapping approaches, making it a 
useful tool for investigators working on chromatin architecture, epigenomics, and gene regulatory networks.  
 
Data and software availability 
 
The mESC CTCF and mESC H3K4me3 PLAC-seq data have been deposited to GEO. MAPS software can be 
freely downloaded from the GitHub website: https://github.com/ijuric/MAPS. (Supplementary Note 5). 
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Figure legends 
 
Figure 1. Model-based analysis of PLAC-seq and HiChIP data (MAPS). a. Schematic of the data analysis 
procedure. MAPS includes of two major components: pre-processing and interaction calling. In pre-processing, 
valid intra-chromosomal reads are obtained from raw sequencing file after mapping, reads pairing and 
duplicates removal, and then split into short-range and long-range reads depending on whether the pair of 
reads is separated by 1Kb or not. The long-range reads are further assigned into the “AND”, “XOR” or “NOT” 
set. MAPS only considers the “AND” and “XOR” set of bin pairs for normalization and identification of the 
statistically significant long-range chromatin interactions. Short-range reads are used to estimate and correct 
for biases introduced by the ChIP procedure. b. Comparison of sensitivity of MAPS and hichipper. The Y-axis 
is the sensitivity, defined as the percentage of detectable HiCCUPS loops of deeply sequenced in situ Hi-C 
data (Table S3) recovered by MAPS- or hichipper-identified interactions. c. Assessment of reliability of MAPS 
and hichipper. The proportion of convergent, tandem and divergent CTCF motif pairs among testable MAPS- 
and hichipper-identified interactions. Only interactions with both ends containing either single CTCF motif or 
multiple CTCF motifs in the same direction are considered. The dotted vertical line indicates the expected 
convergent proportion from randomly chosen CTCF motif pairs (25%). d. Cis-regulatory elements are enriched 
in the target bins of MAPS-identified “XOR” interactions. As only interactions from “XOR” are considered, 
CTCF enrichment analysis is not applicable for mESC CTCF PLAC-seq data, and H3K4me3 enrichment 
analysis is not applicable for mESC H3K4me3 PLAC-seq data (denoted as N.A. in the heatmap). For each 
ChIP-seq/ATAC-seq data, we calculated the proportion of target bins and control bins containing ChIP-
seq/ATAC-seq peaks, defined as %target and %control, respectively. We further defined the enrichment score 
as the ratio between %target and %control. e. Genome-browser shows MAPS-identified interactions anchored 
at Mtnr1a promoter from mESC H3K4me3 PLAC-seq data. Anchor regions around Mtnr1a promoter are 
highlighted by yellow box (chr8:45,065,000-45,075,000, two 5Kb bins). The MAPS-identified interactions 
overlapping this anchor region are marked by magenta arcs. The black arrow points to the interaction verified 
in the previous publication20 and the other end of the interaction is marked by magenta box. Additional 
interacting regions identified by MAPS are marked by grey boxes. No interaction is identified by hichipper 
anchored at this region from mESC H3K4me3 PLAC-seq data. 
 
Figure 2. MAPS identified biologically relevant chromatin interactions from PLAC-seq and HiChIP 
datasets. a. Enrichment of CREs around the target bins of XOR set of MAPS-specific interactions. Enrichment 
of H3K27ac (ChIP-seq peaks), H3K4me1 (ChIP-seq peaks), ATAC-seq peaks, H3K4me3 (ChIP-seq peaks) 
and CTCF (ChIP-seq peaks) in a window of 500Kb around the target bins for all 3 datasets. Due to the 
definition of XOR set of interactions, H3K4me3 and CTCF enrichment level is not analyzed for mESC 
H3K4me3 and mESC CTCF PLAC-seq data, respectively. b. Frequency of MAPS-identified interactions and 
control bin pairs versus their rankings in the SPRITE contact matrix. A bin pair with higher normalized SPRITE 
interaction frequency tends to rank top, among all bin pairs with the same genomic distance (only bin pairs in 
“AND” and “XOR” sets from the SPRITE contact matrix are considered). c. MAPS-identified interactions from 
mESC H3K4me3 PLAC-seq data anchored at Med13l promoter. Anchor region around target promoter is 
highlighted by yellow box. The MAPS-identified interactions overlapping this anchor region are marked by 
magenta arcs. The deleted enhancer region in Moorthy et al study22 is marked by magenta box. 
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Supplementary figure legends. 
 
Figure S1. Flowchart of MAPS pre-processing steps. Details can be found in Methods section. 
 
Figure S2. Data normalization by MAPS. (a) MAPS removes biases in GM12878 Smc1a HiChIP data. For 
all autosomal chromosomes, we calculated the Pearson correlation coefficients (Y-axis) between the systemic 
biases (effective length, GC content, mappability, ChIP efficiency) and the raw contact frequency in the “AND” 
set, the normalized contact frequency in the “AND” set, the raw contact frequency in the “XOR” set and the 
normalized contact frequency in the “XOR” set, highlighted in red, yellow, blue and purple boxes, respectively. 
The grey dash line presents the Pearson correlation coefficient zero. Three panels show the results in replicate 
1, replicate 2, and the combined data (replicate 1 + replicate 2), respectively. (b) Similar to Figure S2a, MAPS 
removes biases in mESC CTCF PLAC-seq data. (c) Similar to Figure S2a, MAPS removes biases in 
mESC H3K4me3 PLAC-seq data.  
 
Figure S3. Contact frequency plot for chromosome 1 in mESC H3K4me3 PLAC-seq data replicate 1 at 
5Kb bin resolution. The X-axis is Log10 genomic distance between two interacting bins (unit: Kb). The Y-axis 
is the Log10 average raw PLAC-seq contact frequency. The red line and blue line represent the contact 
probability for bin pairs in the “AND” and “XOR” set, respectively.   
 
Figure S4. The reproducibility of MAPS- and hichipper-identified interactions between two biological 
replicates. The Y-axis represents the percentage of reproducible interactions among two biological replicates. 
“rep1” denotes the proportion of interactions identified in biological replicate 1 reproducible in biological 
replicate 2, whereas “rep2” denotes the proportion of interactions identified in biological replicate 2 
reproducible in biological replicate 1.   
 
Figure S5. Summary of MAPS- and hichipper-identified interactions of all three datasets. (a) The 
number of interactions and the distribution of interaction length from MAPS-identified interactions. The 
left, middle and right column represents the MAPS calls from GM12878 Smc1a HiChIP, mESC CTCF PLAC-
seq and mESC H3K4me3 PLAC-seq combined data (replicate 1 + replicate 2), respectively. Each histogram 
shows the distribution of interaction length. The vertical blue bar represents the median distance of 
interactions. (b) Similar to Figure S5a, the number of interactions and the distribution of interaction 
length from hichipper-identified interactions. 
 
Figure S6. Sensitivity and convergent CTCF motif analysis results using only singletons and cluster 
summits from MAPS- and hichipper-identified interactions. (a) Similar to Figure 1b, the sensitivity of 
MAPS- and hichipper-identified interactions, using only singletons and cluster summits. (b) Similar to 
Figure 1c, the proportion of convergent CTCF motif pairs among testable MAPS- and hichipper-
identified interactions, using only singletons and cluster summits. The dotted vertical line indicates the 
expected convergent proportion from randomly chosen CTCF motif pairs (25%). 
 
Figure S7. Cartoon illustration of anchor bin, target bin and control bin used in cis-regulatory elements 
enrichment analysis (related to Figure 1e, Figure 2a and Figure S9). The solid yellow curve at left 
represents a statistically significant long-range chromatin interaction in the “XOR” set, connecting the anchor 
bin (the red box) and the target bin (the blue box). The dashed yellow curve at right represents a random 
collision between the anchor bin (the red box) and the control bin (the purple box). The interaction and the 
random collision has the same genomic distance.  
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Figure S8. MAPS-identified interactions from mESC H3K4me3 PLAC-seq data anchored at: (a) Pou5f1 
promoter, (b) Sox2 promoter, (c) Tbx5 promoter, (d) Wnt6 promoter, (e) Nanog promoter. Anchor regions 
around target promoter are highlighted by yellow boxes. The MAPS-identified interactions overlapping the 
anchor regions are marked by magenta arcs. The black arrow points to the interaction verified in previous 
publications16-20 and the other end of the interaction is marked by magenta boxes. Additional interacting 
regions identified by MAPS are marked by grey boxes. 
 
Figure S9. Enrichment of CREs around the target bins of XOR set of HiCCUPS/MAPS-shared 
interactions. Enrichment of H3K27ac (ChIP-seq peaks), H3K4me1 (ChIP-seq peaks), ATAC-seq peaks, 
H3K4me3 (ChIP-seq peaks) and CTCF (ChIP-seq peaks) in a window of 500Kb around the target bins for all 3 
datasets. Due to the definition of XOR set of interactions, H3K4me3 and CTCF enrichment level is not 
analyzed for mESC H3K4me3 and mESC CTCF PLAC-seq data, respectively. 
 
Figure S10. MAPS-identified interactions from mESC H3K4me3 PLAC-seq data anchored at: (a) Elt4 
promoter (chr2:20,515,000-20,525,000), (b) Ifitm3 promoter (chr7:141,005,000-141,015,000). Anchor 
regions around target promoters are highlighted by yellow boxes. The MAPS-identified interactions overlapping 
this anchor region are marked by magenta arcs. The deleted enhancer regions in Moorthy et al study22 are 
marked by magenta boxes. 
 
Figure S11. MAPS running time (Y-axis) increases linearly proportional to overall sequencing depth (X-
axis).  
 
Supplementary table titles 
 
Table S1. A brief summary of three PLAC-seq and HiChIP datasets used in this study. 
 
Table S2. A brief summary of HiCCUPS loops identified from deeply sequenced in situ Hi-C data. 
 
Table S3. Number of HiCCUPS loops which are detectable in each PLAC-seq and HiChIP data. 
 
Table S4. Number of MAPS-identified interactions in AND and XOR sets. 
 
Table S5. Ten long-range promoter-centered interactions in mESC verified by 3C or 4C in previous 
publications16-20. 
 
Table S6. Overlap between MAPS-identified interactions and HiCCUPS loops in all three PLAC-seq and 
HiChIP datasets.  
 
Table S7. A list of functional validated enhancer-promoter pairs in mESC from Moorthy et al study22. 
Only enhancer-promoter pairs are >50Kb in genomic distance are listed. 
 
Table S8. Summary of all sequencing data sets used in this study. 
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Methods 
 
Sequencing Data. All data sets used (both external and in-house generated for this study) are summarized in 
Table S8.  
 
Cell culture and fixation. The F1 Mus musculus castaneus × S129/SvJae mouse ESC line (F123 line) was a 
gift from Dr. Rudolf Jaenisch and was previously described23. F123 cells were cultured in DMEM (10013-CV, 
Corning), supplement with 15% knockout serum replacement (10828028, Invitrogen), 1×penicillin/streptomycin 
(15140122, Thermo Fisher Scientific), 1×non-essential amino acids (11140050, Thermo Fisher Scientific), 
1×GlutaMax (35050061, Thermo Fisher Scientific), 1000 U/ml LIF (ESG1107, Millipore), 0.1 mM β-
mercaptoethanol (M3128, Sigma). F123 cells were maintained on irradiated CF1 mouse embryonic fibroblasts 
(A34180, Thermo Fisher Scientific) and were passaged once on 0.1% gelatin-coated feeder-free plates before 
harvesting.  

Cells were harvested by accutase treatment and resuspended in culture medium described above but without 
knockout serum replacement at a concentration of 1x106 cells per 1ml. Methanol-free formaldehyde solution 
was added to a final concentration of 1% (v/v) and fixation was performed at room temperature for 15 min with 
slow rotation. The fixation was quenched by addition of 2.5 M glycine solution to a final concentration of 0.2 M 
with slow rotation at room temperature for 5 min. Fixed cells were pelleted by centrifugation at 2,500×g for 5 
min at 4 °C and washed with ice-cold PBS once. The washed cells were pelleted again by centrifugation, snap-
frozen in liquid nitrogen and stored at -80 °C.  

PLAC-seq on F123 cells. PLAC-seq libraries were prepared using method as previously described5. The 
detailed experimental procedures are provided in Supplementary Note 7. In brief, 1-3 million crosslinked F123 
cells were digested 2 hours at 37 °C using 100 U MboI followed by biotin fill-in and proximity ligation at room 
temperature for 4 hours. Then the nuclei were further lysed, sonicated and immunoprecipitated against the 
antibodies of choice. After immunoprecipitation, reverse crosslink was performed overnight at 65 °C after 
adding proteinase K to extract DNA. DNA fragments containing ligation junctions were enriched with 
streptavidin beads followed by on-beads end repair, A-tail adding, adapter ligation and PCR amplification for 
12-13 cycles.  

ATAC-seq on F123 cells. ATAC-seq was performed using method as previously described24. In brief, 100,000 
freshly harvested F123 cells were resuspend in lysis buffer (10 mM Tris-HCl, pH 7.4, 10 mM NaCl, 3 mM 
MgCl2 and 0.1% IGEPAL CA-630) and rotate at 4oC for 15 minutes. After lysis the nuclei was spun down at 
500×g for 5 min at 4 °C. Then the reaction was carried out for 30 min at 37 °C in 1×TD buffer with 2.5 μL 
transposase from Nextera DNA Library Prep Kit (Illumina). After reaction completion DNA is purified using 
MinElute PCR Purification Kit (Qiagen). PCR amplification was perform with 1×NEBNext PCR MasterMix and 1 
μM i7-index and i5-index primers using the following PCR condition: 72 °C for 5 min; 98 °C for 30 s; and 8 
cycles of 98 °C for 10 s, 63 °C for 30 s and 72 °C for 1 min. The amplified libraries are purified and size 
selected using 0.55× and 1.5× (total) of sample volume. 

ChIP-seq on F123 cells. 2 million fixed F123 cells were thawed on ice, resuspend in hypotonic lysis buffer (20 
mM HEPES, pH 8.0, 10 mM KCl, 1 mM EDTA, 10% glycerol) with proteinase inhibitors and rotate at 4 °C for 
15 minutes. The nuclei were then washed once with hypotonic lysis buffer with proteinase inhibitors and 
resuspend in 130 μL RIPA buffer (10 mM Tris, pH 8.0, 140 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% 
SDS, 0.1% sodium deoxycholate) with proteinase inhibitors. After incubation on ice for 10 minutes, the nuclei 
were sheared using Covaris M220 with following setting: power, 75 W; duty factor, 10%; cycle per burst, 200; 
time, 10 minutes; temp, 7 °C. The cell lysate was cleared by centrifugation at 15,000×g for 20 min and 
supernatant was collected. The clear cell lysate was precleared with Protein G Sepharose beads (GE 
Healthcare) and for 3 hours at 4 °C with slow rotation. ~5% of precleared cell lysate was saved as input 
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control. The rest of the lysate was mixed with 2.5 µg of H3K4me3 (04-745, Millipore) antibody and rotate at 
4 °C for at least 12 hours. On the next day, 0.5% BSA-blocked Protein G Sepharose beads (prepared one day 
ahead) were added and rotated for another 3 hours at 4 °C. The beads were collected by centrifugation at 
400×g for 1 min and then washed with RIPA buffer three times, high-salt RIPA buffer (10 mM Tris, pH 8.0, 300 
mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% SDS, 0.1% sodium deoxycholate) twice, LiCl buffer (10 mM 
Tris, pH 8.0, 250 mM LiCl, 1 mM EDTA, 0.5% IGEPAL CA-630, 0.1% sodium deoxycholate) once, TE buffer 
(10 mM Tris, pH 8.0, 0.1 mM EDTA) twice. Washed beads were treated with 10 µg Rnase A in extraction 
buffer (10 mM Tris, pH 8.0, 350 mM NaCl, 0.1 mM EDTA, 1% SDS) for 1 hours at 37 °C, followed by reverse 
crosslinking in the presence of proteinase K (20 µg) overnight at 65 °C. After reverse crosslink the DNA was 
purified by Zymo DNA Clean&Concentrator. For library preparation, 10-100 ng ChIP DNA or input DNA was 
first end repaired at 20 °C for 30 minutes in 1×T4 DNA ligase buffer (NEB) with 0.5mM dNTP mix, 3U T4 DNA 
polymerase (NEB), 2.5U Klenow fragment (NEB) and 10U T4 PNK (NEB). The repaired DNA was then purified 
by Zymo DNA Clean&Concentrator and adenylated at 37 °C for 30 minutes in 1×NEBbuffer 2 (NEB) with 
0.4mM dATP, 10U Klenow fragment (3’-5’ exo-) (NEB). The adenylated was purified by Zymo DNA 
Clean&Concentrator and ligated to the adapters (Illumina, TruSeq, 0.1 μL per 100ng DNA) at 16 °C for 
overnight in 1×T4 DNA ligase buffer (NEB) with 400U T4 DNA ligase. After purification with Zymo DNA 
Clean&Concentrator, DNA was amplified with KAPA HiFi HotStart ReadyMix PCR Kit for 12 cycles according 
to the manufacturer’s instructions. The amplified libraries were purified with Ampure Beads to extract 
fragments between 200-600bp for sequencing. 

ChIP-seq data processing. The H3K4me3 ChIP-seq data on F123 cells was analyzed using ENCODE 
Uniform processing pipeline for ChIP-seq (histone marks) (https://github.com/ENCODE-DCC/chip-seq-
pipeline) with default parameters.  
 
ATAC-seq data processing. ATAC-seq reads were mapped to mm10 genome using bowtie 1.1.2 with flags "-
X2000 --no-mixed --no-discordant". The reads were converted to bam files, sorted, and PCR duplicates and 
mitochondrial reads were removed using samtools. To account for the Tn5 insertion position, read end 
positions were moved 4bp towards the center of the fragment. Bigwig signal tracks and peak calls were 
generated using MACS2 2.1.1.20160309 and the following flags: "-nomodel -shift 37 -ext 73 -pval 1e-2 -B -
SPMR -call-summits". To obtain the set of replicated peaks for each sample, the data were processed as 
described above for each replicate independently as well as pooled. Using bedtools 2.27.1, the pooled peaks 
were intersected against each replicate's peaks sequentially, and pooled peaks present in both replicates were 
considered to be 'replicated'.  
 
MAPS pre-processing component. MAPS takes the raw paired-end reads (fastq files) from PLAC-seq and 
HiChIP experiment as input, maps them to the reference genome (Figure S1). Specifically, we use “bwa mem” 
to map each end of paired-end reads to the reference genome separately (mm10 or hg19, Table S1), and 
remove non-mappable reads and low mapping quality reads. We further remove read pairs mapped to less 
than 2 or more than 3 locations. The read pairs mapped to only 1 location contain no information about 
chromatin structures whereas the chance of a pair mapped to more than 3 locations are rare and such pairs 
most likely represent spurious ligation events. A read pair is defined as “valid” if it can be mapped to exactly 2 
locations. For a read pair mapped to 3 locations, if all 3 locations are on the same chromosome, it spans over 
one ligation junction. In this case, the mapping pair with the second largest linear distance is defined as “valid”, 
since it represents the pair that is closer to the ligation junction. If 3 locations are on 2 different chromosomes, 
in most cases the 2 locations within the same chromosome are close to each other, therefore we randomly 
select one of the two locations on the same chromosome, and pair with the location on the other chromosome. 
The chance of 3 locations are on 3 different chromosomes is very low and such pairs most likely represent 
spurious ligation events, therefore we discard such pairs. After pairing all the reads as described above, we 
use “samtools rmdup” to remove PCR duplicates. Furthermore, we select short-range reads (<=1Kb) with two 
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reads from different strands to measure IP efficiency, and keep long-range reads (>1Kb) to identify long-range 
chromatin interactions. MAPS then extracts the intra-chromosomal long-range reads and takes the ChIP-seq 
peaks of protein of interest as the interaction anchors (Table S8), and groups all bin pairs into the “AND”, 
“XOR” and “NOT” sets. MAPS only selects the “AND” and “XOR” sets for the next data normalization step. 
When the ChIP-seq data is not available, one can apply hichipper to PLAC-seq and HiChIP data to obtain 
interaction anchors. 
 
Data normalization is a challenging issue for any chromatin interaction data. Notably, the matrix-balancing 
algorithms used for Hi-C data normalization, including ICE25, VC26 and KR4, are inappropriate for PLAC-seq 
and HiChIP data normalization. Due to the ChIP procedure, in theory the bins with protein binding always have 
much higher total number of contacts compared to the bins without protein binding, which violates the crucial 
“equal visibility” assumption implied by the matrix-balancing algorithms. 
 
To accommodate unique features of PLAC-seq and HiChIP data, we propose to extend our previous 
HiCNorm12 method to normalize PLAC-seq and HiChIP data. Let 𝑥𝑖𝑗 represent the read count (i.e., number of 
paired-end reads) spanning between bin 𝑖 and bin 𝑗. Due to symmetry, we only consider bin pairs (𝑖, 𝑗) with 𝑖 <
𝑗. In addition, we only consider intra-chromosomal contacts within 1Mb, and do not use two adjacent bin pairs 
(𝑗 − 𝑖 ≥ 2). Let 𝑓𝑖, 𝑔𝑐𝑖, 𝑚𝑖 and 𝐼𝑃𝑖 represent the effective fragment length, GC content, mappability score, and 
antibody IP efficiency (measured by the number of short-range reads, i.e., intra-chromosomal reads <=1Kb) of 
bin 𝑖, respectively. The definition of 𝑓𝑖, 𝑔𝑐𝑖 and 𝑚𝑖 are described in HiCNorm12. Also, let 𝑑𝑖𝑗 denote the genomic 
distance between bin 𝑖 and bin 𝑗. We only model bin pairs (𝑖, 𝑗) with non-zero count (𝑥𝑖𝑗 ≥ 1), and assume that 
𝑥𝑖𝑗 follows a zero-truncated Poisson (ZTP) distribution with mean 𝜇𝑖𝑗, where 
 

log(𝜇𝑖𝑗) = 𝛽0 + 𝛽𝑓 log(𝑓𝑖 ∗ 𝑓𝑗) + 𝛽𝐺𝐶 log(𝑔𝑐𝑖 ∗ 𝑔𝑐𝑗) + 𝛽𝑚 log(𝑚𝑖 ∗ 𝑚𝑗) + 𝛽𝐼𝑃 log(𝐼𝑃𝑖 ∗ 𝐼𝑃𝑗) + 𝛽𝑑 log(𝑑𝑖𝑗). 
 
Here 𝛽0 is the intercept for overall sequencing depth. 𝛽𝑓, 𝛽𝐺𝐶, 𝛽𝑚, 𝛽𝐼𝑃 and 𝛽𝑑 are regression coefficients for 
effective fragment length, GC content, mappability score, antibody IP efficiency and genomic distance, 
respectively. We fit the aforementioned ZTP regression model for each chromosome, separately for the “AND” 
set and the “XOR” set, using R function “ppois” in the “VGAM” library, to obtain the expected contacted 
frequency 𝑒𝑖𝑗  for each bin pair (𝑖, 𝑗) . These 𝑒𝑖𝑗 ’s represent background expected from random chromatin 
collisions. Next, we calculate a ZTP p-value for each bin pair (𝑖, 𝑗), defined as 𝑝𝑖𝑗 = 𝑍𝑇𝑃(𝑋 > 𝑥𝑖𝑗|𝑒𝑖𝑗). Similar to 
Fit-Hi-C, we view bin pairs with extremely low p-values (< 1 / total number of non-zero bin pairs) as outlies. We 
then remove those outliers, and re-fit the ZTP regression model using the remaining data to re-calibrate the 
background, obtaining re-calibrated expected contact frequency �̃�𝑖𝑗  and corresponding ZTP p-value �̃�𝑖𝑗 =
𝑍𝑇𝑃(𝑋 > 𝑥𝑖𝑗|�̃�𝑖𝑗). We further convert ZTP p-value �̃�𝑖𝑗  into false discovery rate (FDR) 𝑞𝑖𝑗  using R function 
“p.adjust”. Within each chromosome, the FDR is calculated by the “AND” and “XOR” set, separately.  
 
MAPS interaction calling component. We then identify statistically significant long-range chromatin 
interactions from normalized PLAC-seq and HiChIP data. Specifically, we define a bin pair (𝑖, 𝑗)  as an 
statistically significant bin pair if it satisfies the following three criteria simultaneously: (1) 𝑥𝑖𝑗 ≥ 12, (2) 𝑥𝑖𝑗 �̃�𝑖𝑗⁄ ≥
2 and (3) 𝑞𝑖𝑗 < 0.01. Details of justification of such thresholds can be found in Supplementary Note 6. Starting 
from these significant bin pairs, we further group adjacent ones into clusters, and singletons (defined as 
isolated significant bin pairs without adjacent ones). Specifically, we denote 𝑑𝑖𝑗  as the genomic distance 
between bin 𝑖  and bin 𝑗 , and group significant bin pair (𝑖, 𝑗)  and significant bin pair (𝑚, 𝑛)  into the same 
interaction cluster if max {𝑑𝑖𝑚, 𝑑𝑗𝑛} ≤ 15Kb. Each significant bin pair belongs to one unique cluster, or it is a 
singleton. For the significant bin pairs defined as singletons, we apply additional filtering and only keep the 
ones with 𝑞𝑖𝑗 < 10−4  as significant interactions since singletons are more likely to be false positives. For the 
significant bin pairs as part of a cluster, we keep all of them as significant interactions. For each interaction 
cluster, we further identify its summit, defined as the bin pair(s) with the lowest FDR. Therefore, the final MAPS 
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output contains the following information: 1) a list of statistically significant long-range chromatin interactions; 
2) for each interaction, whether it is a singleton or belongs to a cluster; 3) if an interaction is part of a cluster, 
whether it is the summit of this cluster and which interactions are in the same cluster.  
 
Identification of interactions with hichipper. To call interactions from the same PLAC-seq and HiChIP 
datasets using hichipper, we performed the mapping and preprocessing using the default settings of HiC-Pro 
2.7.6 and bowtie 2.3.0 as base mapper (recommended by hichipper), specifying digestion fragment size of 100 
to 100,000. Genome fragment size files were obtained from the GitHub repository of hichipper 
(https://github.com/aryeelab/hichipper). Since the data in each run are from one sample and no merging was 
required, therefore we removed allValidPairs and mRStat files to make the HiC-Pro output consistent with the 
requirements of the hichipper input. We then used hichipper v0.4.4 to call interactions using ChIP-seq peaks 
as interaction anchors (Table S8). In the default setting, hichipper outputs all interacting bin pair with 𝑥𝑖𝑗 ≥ 2. 
Such liberal threshold leads to a large number of false positives (data not shown). To make a fair comparison 
with MAPS, we used the same thresholds described above for MAPS calls to filter the outputs from hichipper, 
only keeping hichipper-identified interactions with 𝑥𝑖𝑗 ≥ 12  and 𝑞𝑖𝑗 < 0.01  (hichipper does not output the 
expected contact frequency, so the filter based on normalized contact frequency cannot be applied). We then 
group hichipper-identified interactions into interaction clusters and singletons using the same definition as 
described above and further filter the interactions defined as singletons using FDR threshold 𝑞𝑖𝑗 < 10−4. The 
final hichipper output has the same format as the MAPS output.  
 
HiCCUPS loops from in situ Hi-C data. The HiCCUPS loops of GM12878 are acquired from Rao et al. 
study4. Specifically, file “GSE63525_GM12878_primary+replicate_HiCCUPS_looplist.txt.gz” was downloaded, 
which contains in total 9,448 loops. Among these 9,448 loops, we selected 6,316 loops where both two 
interacting anchors are 5Kb bins (Table S2). To generate the 5Kb and 10Kb resolution of HiCCUPS loops of 
mESCs, we downloaded the raw fastq files of all four biological replicates from Bonev et al. study13 and 
performed mapping, pairing reads and PCR duplicates removal in the same way as we did for PLAC-seq and 
HiChIP data (refer to “MAPS pre-processing component” above). Afterwards we combined the valid pairs 
from all four replicates and then applied HiCCUPS to call loops at 5Kb and 10Kb resolution with the following 
parameters: “-r 5000,10000 -k KR -f .1,.1 -p 4,2 -i 7,5 -t 0.02,1.5,1.75,2 -d 20000,20000” (Table S2). 
 
Reproducibility analysis. We evaluate the reproducibility of MAPS- and hichipper-identified interactions 
between two biological replicates. We denote 𝑑𝑖𝑗 as the genomic distance between bin 𝑖 and bin 𝑗. We then 
define an interaction, bin pair (𝑖, 𝑗), in one replicate is reproducible, if and only if there exists an interaction, bin 
pair (𝑚, 𝑛), in the other replicate such that max {𝑑𝑖𝑚, 𝑑𝑗𝑛} ≤ 15Kb. 
 
Sensitivity analysis. We evaluate the sensitivity of MAPS- and hichipper-identified interactions, using 
HiCCUPS loops called from deeply sequenced in situ Hi-C datasets as true positives. Specifically, we used 
GM12878 in situ Hi-C data with ~4.9 billion reads from Rao et al. study4, and mESC in situ Hi-C data with ~7.3 
billion reads from Bonev et al. study13. We first selected a subset of HiCCUPS loops which are detectable in 
corresponding PLAC-seq and HiChIP data (Table S3, Supplementary Note 4). Next, we defined a HiCCUPS 
loops, bin pair (𝑖, 𝑗), is re-discovered from PLAC-seq and HiChIP data, if and only if there exists an interaction, 
bin pair (𝑚, 𝑛), in PLAC-seq and HiChIP data such that max {𝑑𝑖𝑚, 𝑑𝑗𝑛} ≤ 15Kb. The sensitivity is calculated by 
the ratio between the number of HiCCUPS loops re-discovered from PLAC-seq and HiChIP data and the total 
number of HiCCUPS loops detectable in PLAC-seq and HiChIP data. 
 
CTCF motif orientation analysis. We examine the CTCF motif orientation of testable MAPS- and hichipper-
identified interactions. Specifically, we first download the CTCF ChIP-seq peak lists of GM12878 and mESC 
(Table S8) and then search for all the CTCF sequence motifs among those peak using FIMO27 (default 
parameters) and the CTCF motif (MA0139.1) from the JASPAR28 database. Based on this list of CTCF motifs, 
we then select a subset of MAPS- or hichipper-identified interactions with both ends containing either single 
CTCF motif or multiple CTCF motifs in the same direction. Finally, we count the frequency of four possible 
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directionality of CTCF motif pairs, and calculate the proportion of convergent, tandem and divergent CTCF 
motif pairs among all testable interactions. 
 
Cis-regulatory elements enrichment analysis. For two interacting bins in the “XOR” set, we define the bin 
which binds to the protein of interest as the “anchor” bin, and the bin which does not bind to the protein of 
interest as the “target” bin. In order to access the biological relevance of peaks in the “XOR” set, we evaluated 
whether cis-regulatory elements are enriched within those target bins, compared to the control bins which are 
in the same distance with the anchor bin, but do not bind to the protein of interest (Figure S7).  
 
The ChIP-seq and ATAC-seq data used for this analysis is summarized in Table S8. For each ChIP-
seq/ATAC-seq data, we calculated the proportion of target bins and controls containing ChIP-seq/ATAC-seq 
peaks, defined as %target and %control, respectively. We further defined the enrichment score as the ratio 
between %target and %control.  
 
Definition of MAPS-specific interactions and HiCCUPS/MAPS-shared interactions. We divided all MAPS-
identified interactions into two groups based on their overlap with HiCCUPS loops. Similar to our method in the 
sensitivity analysis, we defined a MAPS interaction, bin pair (𝑖, 𝑗), is overlapped with a HiCCUPS loop, if and 
only if there exists an interaction, bin pair (𝑚, 𝑛), in HiCCUPS loop list such that max {𝑑𝑖𝑚, 𝑑𝑗𝑛} ≤ 15Kb. If a bin 
pair (𝑖, 𝑗) is overlapped with a HiCCUPS loop, we define it as a HiCCUPS/MAPS-shared interaction. If a bin 
pair (𝑖, 𝑗) is not overlapped with a HiCCUPS loop, we define it as a MAPS-specific interaction. The number of 
MAPS-specific interactions and HiCCUPS/MAPS-shared interactions are listed in Table S6. 
 
Validation of MAPS-specific interactions by SPRITE data. The normalized SPRITE interaction frequency 
matrices were downloaded from GEO with access number GSE11424221. The GM12878 and mESC SPRITE 
data is at 25Kb bin and 20Kb bin resolution, with reference genome hg19 and mm9, respectively. The MAPS-
identified interactions consist of two types of bin pairs: singletons and interaction clusters (defined in “MAPS 
interaction calling component” section). For each singleton bin pair (𝑖, 𝑗), we define it as “shared” if there 
exists a bin pair (𝑚, 𝑛) in HiCCUPS loop such that max {𝑑𝑖𝑚, 𝑑𝑗𝑛} ≤ 15Kb. Otherwise, we define the singleton 
bin pair (𝑖, 𝑗) as “MAPS-specific”. For each interaction cluster, we define it as “shared” if any one bin pair in the 
interaction cluster is a “shared” bin pair. Otherwise, if all bin pairs in an interaction cluster are “MAPS-specific”, 
we define the entire interaction cluster as “MAPS-specific”. Since PLAC-seq and HiChIP data is at higher 
resolution than SPRITE data, we only selected singletons and the summits of “shared” and “MAPS-specific” 
interaction clusters for the downstream analysis. We then zoomed the selected bin pairs out to the matched 
lower resolution in SPRITE data for a fair comparison. Specifically, for MAPS-identified interactions from 
GM12878 Smc1a HiChIP data, we first selected the center position of 5Kb interacting bin of an interaction 
summit, and then allocated the 25Kb bin containing that center position. This procedure created a list of 25Kb 
bin pair, among which each contains MAPS-identified interaction summit. Similarly, for MAPS-identified 
interactions from mESC CTCF and mESC H3K4me3 PLAC-seq data, we first selected the center position of 
10Kb/5Kb interacting bin of an interaction summit (reference genome mm10), converted it into reference 
genome mm9 using UCSC Liftover tool (https://genome.ucsc.edu/cgi-bin/hgLiftOver), and then allocated the 
20Kb bin containing that center position. This procedure created a list of 20Kb bin pair, among which each 
contains MAPS-identified interaction summit.  
 
To evaluate the normalized SPRITE interaction frequency for MAPS-identified interactions, we used the 
following procedure to create the control set. For a bin pair in the “XOR” set, we defined the bin with ChIP-seq 
peak as the “anchor” bin and the bin without ChIP-seq peak as the “target” bin. We then find the “control” bin 
and such as the “anchor” bin has the same genomic distance between the “target” bin and the “control” bin 
(Figure S7). The control bin pair is defined as the pair of the “anchor” bin and the “control” bin. For a bin pair in 
the “AND” set, since both two bins contain ChIP-seq peak, we randomly selected one bin as the “anchor” bin, 
and defined the remaining one as the “target” bin. Next, we repeated the procedures described above to find 
the “control” bin, and created the control bin pair for the bin pairs in the “AND” set. Finally, we filtered out any 
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control bin pairs which are overlapped with MAPS-identified interactions. Let 𝑆𝑖𝑗  represent the normalized 
SPRITE interaction frequency between 25Kb/20Kb bin 𝑖 and 𝑗. We defined the rank of bin pair (𝑖, 𝑗) as the 
number of bin pair in the same genomic distance, but with higher normalized SPRITE interaction frequency 
than 𝑆𝑖𝑗. Here in the normalized SPRITE interaction frequency matrices, we only used all bin pairs in the “AND” 
and “XOR” set.  
 

𝑅𝑎𝑛𝑘(𝑖, 𝑗) = #{𝑆𝑚,𝑛 > 𝑆𝑖𝑗: |𝑚 − 𝑛| = |𝑖 − 𝑗|, at least one of two bins (𝑚, 𝑛) contains ChIP − seq peak. } 
 
A bin pair with higher normalized SPRITE interaction frequency tends to rank top, among all bin pairs with the 
same genomic distance. 
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