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ABSTRACT 
To understand the molecular etiology of human disease, precision analyses of individual 

cell populations and their molecular alternations are desperately needed. Single-cell genomics 

represents an ideal platform to enable to the quantification of specific cell types, the discovery of 

transcriptional cell states and underlying molecular differences that can be compared across 

specimens. We present a new computational approach called cellHarmony, to consistently 

classify individual cells from a query (i.e., mutant) against a reference (i.e., wild-type) dataset to 

discover crucial differences in discrete or transitional cell-populations. CellHarmony performs a 

supervised classification of new scRNA-Seq data against a priori delineated cell populations and 

associated genes to visualize the combined datasets and derive consistent annotations in a 

platform-independent manner. Such analyses enable the comparison of results from distinct 

single-cell platforms against well-curated references or against orthogonal profiles from a related 

experiment. In addition, cellHarmony produces differential expression results from non-

confounded aligned cell populations to explore the impact of chemical, genetic, environmental 

and temporal perturbations. This approach works seamlessly with the unsupervised classification 

and annotation of cell-states using the software ICGS in AltAnalyze. Using cellHarmony, we 

demonstrate novel molecular and population insights in scRNA-Seq data from models of Acute 

Myeloid Leukemia, across technological platforms and using references derived from the Human 

Cell Atlas project. 
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INTRODUCTION 
Single-cell RNA-Seq provides the unique ability to profile transcripts from diverse cell 

populations along a continuum of related or disparate states (Olsson et al., 2016). From a 

developmental perspective, scRNA-Seq can define molecular decisions that describe the 

differentiation of progenitors to one or more distinct states. The ability to accurately map such 

cellular decisions becomes important when considering diseases in which abnormal cell states 

arise, such as cancer. Although approaches to identify cell populations from scRNA-Seq are 

abundant, new methods are needed to map individual cells that may underlie discrete or 

transitional cell populations. The ability to align cells from different distinct conditions, animals or 

individuals opens the door for automated approaches to compare cells from distinct cell 

populations to identify population-specific regulated genes and pathways. 

Recently, several new approaches have been developed to align genetically similar cells 

within the same platform, across distinct platforms, and even across species for comparison. 

These methods include scmap, Seurat CCA, BISCUIT and MNN, which are designed to align 

similar cells from distinct datasets and account for batch or other technical effects (Butler and 

Satija, 2017; Haghverdi et al., 2018; Kiselev et al., 2018; Prabhakaran et al., 2016). In the case 

of Seurat CCA, these analyses provide the capability to derive unsupervised scRNA-Seq 

subtypes from the combined data to align cells. The software scmap projects queried scRNA-Seq 

cells against a reference set of classified cell states and cells to obtain cell-type predictions. 

Recently, we demonstrated the ability to classify cells across scRNA-Seq platforms (Fluidigm, 

DropSeq, 10x Genomics) to standardize the detection of common cell states in mouse embryonic 

kidney and compare genes uniquely expressed in those associated cell states (Magella et al., 

2017). This approach employed k-nearest neighbor classification of individual cells against 

reference cell-state centroids and provides an important proof of concept for alignment and 

comparison of individual cell profiles. While an important step, such approaches are likely limited 

in their ability to distinguish rare transitioning populations and differences that result from disease. 

Herein, we describe a new approach called cellHarmony which provides the unique ability 

to align, visualize and compare scRNA-Seq data from a query sample (perturbed or non-

perturbed) against all referenced cell states. Unlike other approaches to perform de novo 

alignment between different scRNA-Seq datasets or captures, cellHarmony is designed to align 

cells from a query dataset of single-cell profiles directly to a reference (cells or centroids). This 

approach can be run in conjunction with results produced from unsupervised or supervised single-

cell analyses in the software AltAnalyze, on the command-line or through an intuitive graphical 

user interface. Beginning with unsupervised clustering results from ICGS, classified query cells 
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can be arranged along a continuum of discrete, transitional or multi-lineage cell states. In doing 

so, one can: 1) determine the frequency and specificity of individual cell captures against larger 

ideally curated reference datasets based on each individual cell’s closest match using Pearson 

correlation and 2) quantify differences in the expression of genes from aligned cell states in two 

compared single-cell datasets. While the latter should only be performed for comparable datasets 

analyzed with the same single-cell platform, the alignment-only step can be applied to datasets 

obtained from different laboratories or experimental platforms to obtain predicted cell states in a 

supervised manner. These results highlight unique molecular cell-biology in perturbed cells 

corresponding to distinct cell populations. 

 

METHODS 
 

Algorithm Design: cellHarmony uses a KNN classification approach (K=1) to assign class labels 

for individual cells in the queried dataset against an established reference set of cell or centroid 

gene expression profiles. The nearest neighbor of a query cell profile is assigned to its best match 

in the reference set based on all possible cell-cell Pearson correlations. cellHarmony performs its 

supervised analysis only on genes which are dynamically expressed from initial unsupervised 

analyses and thus represent core cell-identity gene expression programs, excluding variable or 

stochastic programs.  

We originally developed this approach to classify cells from different scRNA-Seq 

technologies in embryonic kidneys according to a common consensus set or reference centroids 

(Magella et al., 2017). In the current implementation, the class label (e.g., cluster 1) of the nearest 

neighbor is reported as the label for the queried cell. A Pearson correlation cutoff threshold (0-1, 

user-defined) is required to exclude cells which insufficiently match to the reference. Such outlier 

cells may represent cell-types not found in the reference, poorly sequenced cells or multiplet cell 

profiles (e.g., doublets). Such cells themselves may be of interest, as they may represent novel 

cell populations missing from the reference. As such, we reported these cells to the user to allow 

for independent analyses (CellClassification results folder). By default, cellHarmony can use 

different outputs from the AltAnalyze analysis tool Iterative Clustering and Guide-gene Selection 

(ICGS), which are formatted in a standard tab-delimited text file format but can also work with 

results from external workflows (e.g., Seurat) (Butler and Satija, 2017; Olsson et al., 2016). For 

such analyses, cell-populations that have already inferred identities (e.g., monocyte) are 

recommended, as those annotations will be later projected onto mapped cells from the query 
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dataset. Importantly, ICGS results already include predictions for cell-type identity using prior cell-

type specific references.  

 

Implementation: cellHarmony is compatible with Python 2.7 and is distributed as a component 

of the software AltAnalyze (https://github.com/nsalomonis/altanalyze) and thus works 

seamlessly with other modules in AltAnalyze (e.g., ICGS). It can be run both on the command-

line and through the AltAnalyze version 2.1.1 graphical user-interface (Additional Analyses 

Menu > Cell Classification Menu). Pre-compiled graphical user-interface distributions are 

provided from http://altanalyze.org and the command-line version from Github or via installation 

from PyPI ($ sudo pip install AltAnalyze). A development R version of cellHarmony 

performs the basic cell-alignment analyses but does not currently support downstream 

differential expression or multi-reference merge analyses 

(https://github.com/EDePasquale/cellHarmony).  

 

Combined Reference Creation: cellHarmony is capable of merging multiple references which 

may be confounded by batch or donor effects (cellHarmony merge function). While CellHarmony 

does not explicitly correct for batch effects, when providing multiple ICGS or other unsupervised 

subtype detection results (i.e., multiple individual donor ICGS results) it will produce a merged 

result file with the union of all supplied marker genes and averaged similar-cell profiles. The 

standard inputs for this analysis are the ICGS clustered heatmap text file results or ICGS 

MarkerGenes heatmap text file (see https://altanalyze.readthedocs.io/). To produce these results, 

the cellHarmonyMerge function: 1) selects all unique marker genes from the collectively provided 

set of inputs, 2) imports the expression data for these genes from the original complete gene 

matrix (e.g., AltAnalyze ExpressionInput “exp.” file) and converts these to log2 values, 3) 

computes median expression for cells (medoid) within the same identified cluster for all marker 

genes, 4) averages similar medoid “clusters” based on all pairwise medoid comparisons (Pearson 

correlation>0.9) to create reference centroids, 5) filters the combined dataset to only include 

genes with non-zero values for all columns, 6) re-clusters the new reference centroids (HOPACH 

clustering) to produce a re-ordered matrix of reference cell-population centroids and genes. The 

resultant reference text file can be used for downstream cellHarmony analyses. As an example, 

we have applied this workflow to 35 distinct cell populations we identified from bone marrow RNA-
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Seq generated by the Human Cell Atlas project, following independent ICGS analyses of each 

independent donor (Hay et al., 2018). 

 

cellHarmony Outputs: cellHarmony produces as output multiple tabular and visualization 

results, depending on the type reference dataset supplied (full expression matrix versus pre-

filtered). The initial outputs of cellHarmony are: 1) final association z-score matrix derived from 

the Pearson correlation coefficients for all cells, 2) an expression matrix in which each cell is 

placed adjacent to its best match, 3) query-only cell matrix with cells ordered and annotated 

according to the classification, 4) gene expression heatmaps of the expression matrices, 5) cell 

frequency and gene expression difference bar charts, 6) statistical differences in the frequency of 

aligned cell populations between reference and query samples, 7) UMAP projection of the query 

and reference cells combined, and 8) a MarkerFinder (Olsson et al., 2016) ordered heatmap with 

enriched Gene Ontology terms of fold differences in all compared cell populations (Fig. 1A). The 

log-normalized expression profiles for both the reference and query are displayed as a combined 

heatmap, in the reference gene and cell order, with the query inserted alongside each 

cellHarmony match to assess their relative similarity. The frequency of cells present or absent 

from the query in each cell population are further reported and statistically quantified using a chi-

squared test to allow for the assessment of the lineage impact with cellular, molecular or genetic 

perturbation in the query (Fig. 1B). 

 

Differential Expression Analysis: Cell populations with similar or dissimilar frequencies can 

result in differential expression when compared directly (Fig. 1C). When the reference input file 

(e.g., ICGS heatmap text file) is present in a standard AltAnalyze output directory (e.g., ICGS 

folder), the software will automatically search for the associated full expression dataset file in the 

ExpressionInput directory (exp. prefix file - https://altanalyze.readthedocs.io/). Using the cluster 

labels in the reference file, cells assigned to a specific label are compared in the query to the 

same labelled group in the reference (e.g., monocytes). All pairwise query and reference 

comparisons are performed for a given cluster in which at least 4 cells are present in both the 

query and reference. Differential expression is performed using an empirical Bayes moderated t-

test (limma) with Benjamini-Hochberg adjustment. The default threshold for differential expression 

is fold>1.5 and p<0.05 (FDR corrected). The results are saved to tab-delimited text files with 

summary statistics and basic annotations (DifferentialExpression_Fold_1.5_adjp_0.05 directory) 

along with a summary graphical output (see Fig. 4F). These differentially expressed genes are 

subsequently compared across all comparisons to identify genes with higher specificity for 
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specific comparisons using MarkerFinder and output to a final summary heatmap with statistically 

enriched Gene Ontology terms (GO-Elite algorithm) for MarkerFinder assigned genes to each 

comparison (see Fig. 4G and the example data provided with the software).  

If using external outputs from tools such as Seurat, differential expression can be 

computed between the cellHarmony assigned cell populations in those tools (e.g., MAST 

differential expression) or within AltAnalyze (metaDataAnalysis function), after merging the query 

and reference expression files (see cellHarmony documentation).  

 

Algorithm Evaluation: The psych R package was used to calculate inter-rater agreement using 

Cohen's kappa (unweighted) to evaluate the performance of cellHarmony in terms of ability to 

place originally sampled cells back into their source populations. CellHarmony was tested using 

variable genes selected by ICGS or MarkerFinder. scmap was tested using ICGS genes and 

scmap variable genes to evaluate the impact of feature selection. In brief all 23,956 genes were 

input to scmap with 30% of the cells extracted from each ICGS cluster (with a minimum of 1 for 

each group) for the testing set. Of the remaining 70% of the cells, features were selected using 

the default expression and dropout method available in scmap to select 500 genes as variable 

features. The model was projected onto the test set.  

An option in cellHarmony is the ability to specify a minimum correlation required to classify 

a cell as belonging to one of the present cell clusters. To evaluate Type I errors, one distinct cell 

cluster was excluded from each training dataset and added to the testing set (10% sampled from 

the remaining clusters), with cells falling below the correlation cutoff saved in a separate outlier 

cell table instead of being aligned to the reference. Correlation cutoffs between 0 and 1 in 0.05 

increments were tested to determine which correlation reduced errors in placement into either the 

training set or outlier cell table. This second testing was performed on each individual cluster in 

the testing datasets to assess consistency of the method across varying similarities of query cells 

and Cohen's kappa was used as the error metric. The evaluation script for cellHarmony for 

different datasets can be found in the cellHarmony R Github repository. Putative cell multiplet 

profiles were removed in the human Melanoma scRNA-Seq dataset using a prototype version of 

DoubletDecon (version 1.0 alpha).  

  Differential gene expression estimates from the software cellHarmony (empirical Bayes), 

SCDE and MAST were compared using bulk RNA-Seq as a control. Bulk RNA-Seq T-cells and 

B-cells (GSE51984) were aligned to the human genome (hg19) with the program STAR and 

analyzed using AltAnalyze to identify differentially expressed genes (DEGs) with an FDR 

corrected p<0.05. Single-cell RNA-Seq from human PBMCs was downloaded from the 10x 
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Genomics website (https://support.10xgenomics.com/single-cell-vdj/datasets) and processed in 

AltAnalyze with the ICGS algorithm to identify a CD8+ T-cell population and B-cell population. 

These data were compared in SCDE, MAST and AltAnalyze. For genes identified in the bulk and 

single-cell comparisons with a fold change in the same direction, DEGs were compared to 

calculate sensitivity and specificity.   

 

RESULTS 
 

Cell-Alignment Performance 

cellHarmony is designed to be compatible with cell-to-cell or cell-to-centroid assignments. 

To assess the global accuracy of the cellHarmony in matching cells to their most similar cell, 

Monte Carlo cross-validation was performed. The core matching module of cellHarmony was 

recreated in R to facilitate the testing process, which is described as follows. As an evaluation 

dataset we used a previously described Fluidigm scRNA-Seq dataset of 382 murine bone marrow 

hematopoietic progenitors (BM), which includes reasonably well-defined rare and common 

progenitors as well as transitional cell populations. We additionally evaluated an index-sorted 

human Melanoma dataset which combines over 4,000 cells from 19 different patients, with distinct 

immune and non-immune cell populations (Melanoma).  

For each test dataset, 10% of the cells from each empirically derived cell cluster (ICGS 

determined) were randomly selected as the testing set and removed from the remaining cells, 

which became the training set. cellHarmony was used to place test cells back into the training 

expression matrix (adjacent to the classified cell). As similarly evaluated in the scmap publication, 

we used a combination of unweighted Cohen's kappa, to assess inter-rater agreement while 

accounting for chance agreement, and percent assignment. The average of these scores 

comprised the performance metric, with high performance values indicating correct placement in 

the original groups. This first test was performed over 10 rounds of simulation for each validation 

dataset. For the Melanoma dataset we additionally removed prospective hybrid cell profiles (aka 

multiplets) using a recently described doublet detection method (DoubletDecon) (DePasquale et 

al., 2018). 

The Cohen’s kappa analysis indicates that cells can be placed with a high degree of inter-

rater agreement (kappa of 0.76 in the BM and 0.94 in Melanoma), even without the use of an 

explicit correlation cutoff (100% assignment of tested cells) (Fig. 2A-D). Increasing the correlation 

cutoff beyond a Pearson rho=0.7, increased the Cohen’s kappa to 0.85 (BM) and 0.97 

(Melanoma), respectively, while retaining 62% and 90% of cells, respectively. Without excluding 
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putative doublets in Melanoma, kappa decreased to 0.84 with no correlation cutoff and to 0.92 

with a correlation cutoff of 0.7 (Fig. S1A).  

When we examine cells that are inaccurately aligned to clusters, mis-aligned cells most 

often were assigned to adjacent highly similar clusters (Fig. 2E, Fig. S1B). In the BM dataset, 

two highly related hematopoietic stem cell (HSC) progenitor clusters (HSCP-1, HSCP-2) were 

found to account for 43% misplacements. Likewise, two clusters (c7 and c8) resulted in the 

greatest number of misplacements in the Melanoma scRNA-Seq dataset. Here, clusters 2, 7 and 

8 correspond to T-cells. While cluster 2 is CD8A+ and clusters 7 and 8 are CD4+ by RNA, cluster 

7 appears to represent lower quality CD4+ T-cell transcriptomes, with no distinguishing marker 

genes by MarkerFinder. Hence, it appears that misplacements are not always inaccurate but 

rather can reflect developmental intermediates or imprecise assignment of cells by ICGS.  

Given that cells from a query dataset may not be represented in the reference, due to 

selection strategy or disease-state, we additionally excluded one cell cluster from each evaluation 

dataset and tested the placement of these cells in the reference (type I errors). Iterative removal 

of all cells in each cell-cluster, alongside removal of 10% of the cells from the remaining clusters, 

and testing their classification resulted in variable performance depending on the similarity of the 

removed cluster to the remaining reference clusters (Fig. 2F, Fig. S1C). For example, below a 

correlation cutoff of 0.7, removal of monocytic or granulocytic progenitor clusters resulted in the 

frequent misplacement of these respective cells into other cell populations based with similar 

transcriptomes (e.g., monocytic, granulocytic, MDP), whereas removal of HSCP-1 and HSCP-2 

resulted in poor performance, as these cell populations are highly similar. 

While alignment accuracy for cellHarmony is generally high, to further evaluate its 

performance in relation to similar methods we compared to the recently described scmap 

algorithm. scmap employs a related strategy for cell alignment with multiple algorithms used for 

assignment (Pearson, Spearman, cosine) as well as its own built-in feature selection method (Fig. 
2G). When applied to our BM dataset, scmap resulted in a low Cohens kappa of 0.45 of cells with 

41% of all cells excluded (not aligned) with the default thresholds. However, when the scmap 

analysis was restricted ICGS genes, Cohen’s kappa was comparable to cellHarmony (0.76 with 

only 11.6% of the cells excluded) (Fig. 2H). 
 

Batch Effects 

Although cellHarmony does not explicitly correct for batch effects, it is designed to classify 

cell types independent of such effects. This is accomplished by defining population-specific genes 

and cell-cluster references (e.g., ICGS on a single dataset) that are not conflated with donor or 
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batch effects. To evaluate, we examined the classification of scRNA-Seq from the Human Cell 

Atlas project, in which multiple donors and multiple captures for each donor were generated. 

Using data from human bone marrow donors (n=8), first we performed ICGS on each individual 

donor and then combined the resultant MarkerFinder results using the cellHarmony merge 

function (Hay et al., 2018). This merge function produces a non-redundant combined reference 

from the cellular medoids, composed of distinct MarkerFinder outputs. When such datasets are 

independently analyzed with ICGS, we assume that cell-type differences as opposed to donor 

effects will be identified. Although no clear differences could be identified from the different 

batches for the same donor, donor-skewed population predictions were evident using the software 

Seurat when blinded to donor composition (Fig. 3A). Following the identification of putative cell-

populations with the cellHarmony merge function, projected cell-types showed a similar donor-

skewed distribution in this data, with specific donor effects evident for multiple cell populations, 

notably, Neutrophils, Immature Neutrophils and Dendritic cells. (Fig. 3B). However, re-analysis 

within Seurat of the cellHarmony merged reference genes minimized these donor effects and 

allowed for largely coherent unbiased identification of distinct hematopoietic cell-types (Fig. 
3C,D). 

 

Differential Expression Analysis of Aligned Cell Populations 

 Numerous algorithms for scRNA-Seq differential expression analysis have been 

developed and compared to bulk RNA-Seq methods (Jaakkola et al., 2017). cellHarmony applies 

an empirical Bayes (eBayes) moderated t-test method, designed for bulk RNA-Seq and 

microarray studies, to identify genes meeting a user-defined fold and p-value cutoff. Comparison 

of scRNA-Seq differentially expressed genes for T-cells versus B-cells with eBayes, SCDE and 

MAST, relative to bulk RNA-Seq for these populations, found almost no differences in the overall 

accuracy of predictions from these methods (<2% difference) (Fig. S2).  

   

Comparison of Related Cells Across Datasets  

We next examined previously evaluated datasets in which cell-population predictions 

and/or cell-type specific gene expression changes were described by the original authors. The 

hematopoietic system again provides a useful proof of concept for evaluation, as associated cell 

populations and disease association changes have been largely resolved. Recently, we 

demonstrated the existence of distinct mixed-lineage cell populations in mouse bone marrow with 

multilineage potential (Olsson et al., 2016). These populations include a relatively frequent group 

of cells with myeloid, erythroid and megakaryocyte coincident expression (Multi-Lin), progenitors 
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in a metastable uncommitted state (GG1) and bi-potential intermediates that produce specified 

monocytic or granulocytic progenitors (IG2). Indeed, other research groups have isolated cells 

with similar predicted potential, such as myeloid-restricted pre–granulocyte-macrophage 

progenitors (aka pre-GM) (Drissen et al., 2016). CellHarmony of GG1 and IG2 cells into the 

published reference ICGS expression results aligns these most specifically to distinct progenitor 

populations, in agreement with previously published predictions (Fig. 4A). Specifically, IG2 cells 

are localized to a subset of the monocytic progenitor cluster with monocytic/granulocytic priming. 

While nearly half of all GG1 cells aligned to these same cells, GG1s (unlike IG2s) are frequently 

localized to Multi-Lin cells (Fig. 4B). These predictions align with the experimentally determined 

colony forming potential of these distinct cells. Although produced from an independently 

laboratory, Pre-GM’s aligned to Multi-Lins, monocytic/dendritic progenitors and megakaryocytes, 

as predicted by the original authors (Fig. 4C). In addition to classifying subsets of cells, 

cellHarmony can organize a large dataset with comparable cell populations against established 

references. To demonstrate, we applied ICGS centroids from Fig. 4C to thousands of 

hematopoietic progenitors that were sequenced to a relatively shallow depth using the inDrops 

platform (GSM2388072) (Tusi et al., 2018). This analysis identified comparable cell populations 

with similar transcriptomes for the large majority of cells in the dataset (3,870 out of 4,535 cells, 

rho>0.3) (Fig. 4D). 

 In the above examples, all hematopoietic progenitors are present at steady-state. To 

assess progenitor frequencies in disease, we compared genetically perturbed hematopoietic 

progenitors derived from a mouse model of human Acute Myeloid Leukemia (AML) carrying both 

Flt3-ITD and Dnmt3a variants (Meyer et al., 2016). Splenic c-kit positive progenitors from these 

animals were aligned to the same bone marrow progenitor reference from the same strain of 

animals, collected from the same laboratory using the same scRNA-Seq methodology. Aligned 

cell-populations roughly matched the independently obtained AML populations reported from the 

original study (e.g., HSCP-like1, MDP-like and neutrophil-like) (Fig. 4E). A novel intriguing 

observation is that AML progenitors frequently localize with IG2 cells. These data suggest that a 

genetically defined subset of AMLs may derive from a short-lived cellular intermediate with 

bipotential monocytic and granulocytic potential (IG2). Differentially expressed genes calculated 

from the comparison of the AML cells to their cellHarmony matched populations reveals distinct 

patterns of up and downregulation in different cell populations (Fig. 4F). Direct comparison of the 

genes within these populations revealed both lineage-restricted differences as well as common 

gene expression changes, linked to experimentally validated findings (e.g., Il18r1) (Fig. 4G). 
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Dissection of Disease Cell-States from Clinical Samples 

Given our findings in mouse, we applied the same workflow to previously generated human 

patient specimens with AML. To minimize potential batch and donor effects for differential 

analyses, we selected scRNA-Seq from a pre-transplantation AML bone marrow biopsy relative 

to a post-transplantation biopsy on the same patient, although the donor genetics will differ from 

the recipient. In addition to aligning the samples against each other (pre versus post), we directly 

aligned both to 35 bone marrow hematopoietic cell populations derived from an independent 

analysis of 8 healthy donors collected from the Human Cell Atlas (HCA) project (see Methods) 

(Hay et al., 2018). Alignment of these data to the HCA references identified variable numbers of 

samples associated with distinct progenitor and committed cell populations (Fig. 5A). These data 

suggest that this patient exhibits a wide-spread increase in the Erythroblast compartment prior to 

transplant (~5 fold increase), with a broad decrease in early progenitor populations (e.g., HSC, 

megakaryocytic, erythroid, granulocytic, early-erythroid) and committed cell populations (e.g., 

naïve T-cell, platelets, Eosinophil), compared to post-transplantation. Consistent with this 

observation, this patient was diagnosed with erythro-leukemia, which is characterized by 

proliferation of erythroblastic precursors. Importantly, these observations were reflected in the 

direct comparison of pre and post samples (Fig. S3A). Although variable numbers of cells aligned 

to these distinct populations, differential expression between the cellHarmony aligned populations 

revealed differences in the magnitude and direction of changes in different cell-types (Fig. 5B). 

Interestingly, the most divergent gene expression differences are found between Erythroblasts 

and CD34+ early erythroid progenitors, which showed preference for downregulation and 

upregulation in pre- vs. post-transplant, respectively. Global comparison of prior gene signatures 

among these sets of differentially expressed genes suggests regulation by distinct cancer gene 

networks in different hematopoietic subsets (Fig. S3B). A selective examination of differential 

genes from Erythroblasts finds previously observed genes up-regulated or down-regulated in 

leuekmia and clonal variation in the Erythroblast compartment prior to transplantation (Lazarini et 

al., 2016; Maitta et al., 2011; Martens et al., 2010). 

 

Discussion 
The accurate classification of single-cell profiles between datasets is a requirement for 

future efforts to reproducibly understand cellular diversity from scRNA-Seq datasets. Although 

unsupervised analysis approaches, such ICGS, can readily define cell populations in a de novo 

manner, such predictions will remain highly speculative without comparison to prior knowledge. 

Here, we demonstrate the ability of our new software, cellHarmony, to accurately classify cells 
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from data generated from the same and independent laboratories within the entirety of a reference 

dataset by performing cell-to-cell mapping. As we demonstrated in the hematopoietic system, this 

approach is able to identify rare or meta-stable cell populations (e.g., Multi-Lin’s, IG2) across 

datasets, even when the original authors were unable to find such on their own. For alignment, 

this approach is able to overcome differences occurring due to batch or technology effects through 

the use of a non-batch conflated reference with reliable population-specific marker genes. For 

differential expression analysis, this approach uses the propagated cell-cluster labels to assess 

discrete differences between two reasonably comparable datasets, in which donor or batch 

effects are not found or have been corrected for outside of cellHarmony.  

We should note, the direct mapping of cells between datasets has several potential 

advantages and disadvantages. The mapping of cells to obtain optimal matches allows for the 

detection of extremely rare sets of cells, which may represent unique biologically informative cell 

states (e.g., transitional cell populations), technical artifacts (multiplets) or simply mis-clustered 

cells. In the case of transitional cell populations, such as IG2, these could only effectively be 

aligned to a previously published reference given the entirety of the single-cell dataset. 

Furthermore, when mapping data across technological platforms, correlation to reference 

centroids will be more stable than to individual cells which are prone to high dropout gene 

expression. While cellHarmony suggests molecular differences that presumably are not 

dependent on batch effects or secondary genetic differences in the compared perturbation 

dataset, we recommend independent replication of the experiment to confirm such differences. 

Nonetheless, statistical confidence in the molecular differences underlying two compared 

datasets will be dependent on the number of cells aligning to a given population. With increasing 

use and decreasing expense of scRNA-Seq technologies, we anticipate approaches such as 

cellHarmony to become necessary to derive higher order insights into the investigation of 

pharmacological and disease heterogeneity.  
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FIGURE LEGENDS 
 
Figure 1. The cellHarmony workflow for matching and comparing single-cell 
transcriptomes. A) Illustration of the cellHarmony workflow when comparing a query (i.e. 

disease) to a reference (i.e. healthy) single-cell dataset. B-C) Distinct outputs of the cellHarmony 

workflow to assess (B) cell frequency differences and (C) cell-specific transcriptomic perturbations 

between compared samples.  

 

Figure 2. cellHarmony accurately classifies cells from distinct and granular single-cell 
populations. A-B) Evaluation of mouse bone marrow hematopoietic progenitor scRNA-Seq. A) 

The heatmap is the primary ICGS output used for cellHarmony (tab-delimited text file), in which 

10% of all cells are removed and tested against the remaining cells over 100 independent rounds. 

B) Inter-rater agreement assessed using Cohen’s kappa (unweighted) at various cellHarmony 

correlation cutoffs (left panel) and the percentage of cells placed at each cutoff (middle panel). 

The right panel indicates the combined performance metric (kappa and placement). C-D) 

Evaluation of human melanoma patient scRNA-Seq (putative doublets removed) by ICGS using 

the same strategy outlined in panel A and B. E) Frequency of cell population mis-assignments by 

cellHarmony for the bone marrow dataset. The original source cell clusters are indicated for the 

tested cells, followed by the assigned, misplaced population. F) To assess the specificity of cell 

placements using distinct correlation cutoffs, all cells from each indicated cell-cluster were 

removed and aligned back to the remaining cellHarmony clusters along a random set of selected 

test cells (10%). The differing inter-rater agreement is indicated for each panel with removal of 

the indicated cell cluster. Poor inter-rater agreement indicates that cellHarmony incorrectly 

classified the removed cluster cells into another cluster for that indicated correlation threshold. G) 

The top 500 variable genes identified from scmap using default options, based on gene 

expression intensity and dropout. H) Inter-rater agreement with Cohen’s Kappa (unweighted) for 

scmap using its own variable genes or those explicitly provided from ICGS. 
 
Figure 3. Cell-population specific marker genes reduce batch effect bias. Demonstration of 

the improved use of pre-selected marker genes for cellHarmony alignment with different donor 

samples. Cell populations and associated marker genes were independently derived using donor-

specific ICGS analyses followed by cellHarmonyMerge analysis for all eight HCA donor samples 

(Methods). A-B) Seurat unsupervised analysis applied to all genes with putative cell populations 
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visualized for three combined bone marrow donor samples. A) Visualization of independently 

derived cell-type labels indicates significant batch effects as compared to B) visualization of 

donors on the t-SNE. C-D) Seurat analysis repeated using only the cellHarmonyMerge workflow 

population-specific genes. 

 
Figure 4. Identification and characterization of transitional cell populations in perturbed 
and unperturbed hematopoiesis with cellHarmony. A) cellHarmony heatmap generated when 

aligning previously isolated bipotential hematopoietic progenitors (IG2) to ICGS results from all 

captured normal mouse bone marrow hematopoietic progenitors. A minimum Pearson correlation 

cutoff of 0.6 was applied. B-C) This analysis was repeated for mixed multi-potent cellular 

intermediates (GG1 and Pre-GM) obtained from two laboratories. D) cellHarmony classification 

of over 4,500 mouse bone marrow progenitors using the inDrops platform against the same 

Fluidigm bone marrow cell population reference with IG2 cells included. This analysis was 

performed using the centroid correlation option (--referenceType centroid) with a correlation cutoff 

of 0.3. We these options, 664 cells were excluded due insufficient centroid matching. E) 

cellHarmony alignment of prior profiled AML c-kit-positive cells from the mouse spleen relative to 

the same Fluidigm reference bone marrow ICGS results. F) The number of cellHarmony 

differentially up- and down-regulated expressed genes associated with each cell-population 

comparison (AML versus wild-type) from cellHarmony. G) cellHarmony produced sorted heatmap 

(MarkerFinder algorithm) of differentially expressed genes in AML versus normal matched cell 

populations. Genes in red indicate those experimentally verified in the original study using either 

bulk RNA-Seq or flow cytometry. 

 

Figure 5. Changes in cell population frequency and gene expression in AML over-time. 
Analysis of bone marrow mononuclear cells obtained by scRNA-Seq (10x Genomics) from a 

single-patient (AML027) prior to and after bone marrow transplantation. A-B) cellHarmony 

classification of cells from AML027 A) post-transplantation and B) prior to transplantation. C) 

Number of patient cells assigned to prior annotated bone marrow cell populations (Figure 3) by 

cellHarmony. D) Magnitude of differential gene expression changes in post-transplantation 

associated cell populations versus pre-transplantation.  E) Variation in Erythroblast gene 

expression among individual cells in the pre- and post-transplantation AML samples for 

cellHarmony differentially expressed genes. Previously defined leukemia up-or down-regulated 

genes are highlighted. 
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Figure S1. Evaluation of cellHarmony from Melanoma scRNA-Seq. A) Inter-rater agreement 

for Melanoma scRNA-Seq without putative doublet removal, assessed using Cohen’s kappa 

(unweighted) at various cellHarmony correlation cutoffs (left panel) and the percentage of cells 

placed at each cutoff (middle panel). The right panel indicates the combined performance metric 

(kappa and placement). B) Frequency of cell population mis-assignments by cellHarmony in 

Melanoma with doublet removal included. The original source cell clusters are indicated for the 

tested cells, followed by the assigned, misplaced population. C) The differing inter-rater 

agreement is indicated for each panel with removal of the indicated Melanoma cell cluster. Poor 

inter-rater agreement indicates that cellHarmony incorrectly classified the removed cluster cells 

into another cluster for that indicated correlation threshold. 

 

Figure S2. Suitability of different algorithms for scRNA-Seq differential expression relative 
to bulk RNA-Seq. Venn diagrams are shown comparing reported differentially expressed genes 

(DEGs) from T-cells and B-cells profiled either by bulk RNA-Seq or scRNA-Seq. Three algorithms 

for differential gene expression analysis (eBayes, SCDE and MAST) were applied for scRNA-

Seq. 

 

Figure S3. Comparison of human bone marrow mononuclear cells (BMMCs) prior to and 
after transplantation. A) cellHarmony alignment of pre-transplantation BMMCs to post-

transplantation ICGS marker gene results (left) and for pre-transplantation alone (right). Gene set 

enrichment results in AltAnalyze are shown on the left of each heatmap gene-cluster against 

marker genes corresponding to 35 cell populations identified from an independent analysis of 

bone marrow hemopoietic cell populations (Methods). B) Comparison of gene-set enrichment 

results using the software GO-Elite for MSigDB signature gene sets for cellHarmony population 

associated differences (pre- versus post-transplantation, up- and down-regulated genes).  
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