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Abstract

Although a standard reinforcement learning model can capture many aspects of
reward-seeking behaviors, it may not be practical for modeling human natural behaviors
because of the richness of dynamic environments and limitations in cognitive resources.
We propose a modular reinforcement learning model that addresses these factors. Based
on this model, a modular inverse reinforcement learning algorithm is developed to
estimate both the rewards and discount factors from human behavioral data, which
allows predictions of human navigation behaviors in virtual reality with high accuracy
across different subjects and with different tasks. Complex human navigation
trajectories in novel environments can be reproduced by an artificial agent that is based
on the modular model. This model provides a strategy for estimating the subjective
value of actions and how they influence sensory-motor decisions in natural behavior.

Author summary

It is generally agreed that human actions can be formalized within the framework of
statistical decision theory, which specifies a cost function for actions choices, and that
the intrinsic value of actions is controlled by the brain’s dopaminergic reward machinery.
Given behavioral data, the underlying subjective reward value for an action can be
estimated through a machine learning technique called inverse reinforcement learning.
Hence it is an attractive method for studying human reward-seeking behaviors.
Standard reinforcement learning methods were developed for artificial intelligence
agents, and incur too much computation to be a viable model for real-time human
decision making. We propose an approach called modular reinforcement learning that
decomposes a complex task into independent decision modules. This model includes a
frequently overlooked variable called the discount factor, which controls the degree of
impulsiveness in seeking future reward. We develop an algorithm called modular inverse
reinforcement learning that estimates both the reward and the discount factor. We show
that modular reinforcement learning may be a useful model for natural navigation
behaviors. The estimated rewards and discount factors explain human walking direction
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decisions in a virtual-reality environment, and can be used to train an artificial agent
that can accurately reproduce human navigation trajectories.

1 Introduction 1

Modeling and predicting visually guided behavior in humans is challenging. In various 2

contexts, it is unclear what information is being acquired and how it is being used to 3

control behaviors. Empirical investigation of natural behavior has been limited, largely 4

because it requires immersion in natural environments and monitoring of ongoing 5

behavior. However, recent technical developments have allowed more extensive 6

investigation of visually guided behavior in natural contexts [1]. At the empirical level it 7

appears that complex behaviors can be broken down into a set of subgoals, each of 8

which requires specific visual information [2–4]. In a complex task such as crossing a 9

road, a person must simultaneously determine the direction of heading, avoid tripping 10

over the curb, locate other pedestrians or vehicles, and plan for future trajectory. Each 11

of these particular goals requires some visual evaluation of the state of the world in 12

order to make an appropriate action choice in the moment. A fundamental problem for 13

understanding natural behavior is thus to be able to predict which subgoals are currently 14

being considered, and how these sequences of visuomotor decisions unfold in time. 15

A theoretical basis for modeling such behavioral sequences is reinforcement learning 16

(RL). Since the breakthrough work by [5], a rapidly increasing number of studies have 17

used a formal reinforcement learning framework to model reward-seeking behaviors. 18

Numerous studies have linked sensory-motor decisions to the underlying dopaminergic 19

reward machinery [1, 6]. The basic mechanisms of reinforcement learning, such as 20

reward estimation, temporal-difference error, model-free and model-based learning, and 21

discount factor, have been linked to a broad range of brain regions [7–16]. Because 22

studies of the neural circuitry involve very restrictive behavioral paradigms, it is not 23

known how these effects play out in the context of natural visually guided behavior. 24

Similarly, the application of RL models to human behavior has been restricted almost 25

exclusively to simple laboratory paradigms, and there are few formal attempts to model 26

natural behaviors [17]. The goal of the presented work is to predict action choices in a 27

virtual walking setting by estimating the subjective value of some of the sub-tasks that 28

the sensory-motor system must perform in this context. We show that it is possible to 29

estimate the subjective reward values of behaviors such as obstacle avoidance and path 30

following, and accurately predict the trajectories walkers take through the environment. 31

This demonstration suggests a potential analytical tool for the exploration of natural 32

behavioral sequences. 33

Modular reinforcement learning for modeling natural behaviors The 34

primary focus of reinforcement learning has been on forward models that, given reward 35

signals, can learn to produce policies, which specify action choices when immersed in an 36

environment state. A state refers to information about the environment that is needed 37

for decision making. An important breakthrough of RL in behavior modeling is inverse 38

reinforcement learning (IRL), which aims to estimate the underlying subjective reward 39

of decision makers given behavioral data [18]. IRL is an appealing tool for modeling 40

human behavior: A behavioral model can be quantitatively evaluated by comparing 41

human behaviors with reproduced behaviors by an artificial agent trained using the RL 42

model with the estimated reward function. 43

An important factor that makes standard RL difficult in modeling natural behaviors 44

is its sophistication and resulting computational burden as a model for general 45

reward-seeking behaviors. The natural environment has at least two features that could 46

make RL/IRL algorithms computationally intractable. First, a large number of 47
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task-relevant objects may be present, hence the decision state space is likely to be 48

high-dimensional. Standard RL suffers from the curse of dimensionality with 49

high-dimensional state space, where the computational burden grows exponentially with 50

the number of state variables [5, 19]. Second, the natural environment is ever-changing 51

such that humans must make decisions under different situations although these 52

situations might have similar components. Living in a natural environment requires a 53

decision maker to be able to transfer knowledge learned from previous experience to a 54

new situation. In contrast an RL agent is often trained and tested repeatedly in a fixed 55

environment. The optimal behavior is obtained through either a model-based dynamic 56

programming approach that requires full knowledge of the environment, or a model-free 57

learning approach that requires a large amount of experience. Both approaches 58

generally put a heavy burden on memory storage or computation in order to calculate 59

the optimal behavior. Consequently both of them may not be suitable for the real-time 60

decision-making strategy in natural conditions since decision makers encounter new 61

environment all the time and need to make decisions with reasonable cognitive load. For 62

these reasons, standard RL must be extended to make computation tractable. 63

An extension of standard RL named modular reinforcement learning utilizes 64

divide-and-conquer as an approximation strategy [19–21]. The modular RL takes the 65

statistical structure present in the environment, decomposes a task into modules where 66

each module solves a subgoal of the original task. Generally an arbitrator is required to 67

synthesize module policies and make final decisions. Modularization alleviates the 68

problem of curse of dimensionality since each module only concerns a subset of state 69

variables. Introducing a new state variable may not affect the entire state space and 70

cause its size to grow exponentially. Additionally, the decomposition naturally allows 71

the decision maker to learn a behavior specifically for a module and reuse it later in a 72

new environment. Under the modular RL framework, a more sample-efficient IRL 73

algorithm is possible [19], which matters for modeling natural human behaviors since 74

such behavioral data is often expensive to collect. 75

Recent studies have explored the plausibility of a modular architecture for natural 76

visually guided behavior where complex tasks can be broken down into concurrent 77

execution of modules, or microbehaviors [4, 9, 22,23]. Thus in the example of walking 78

across the street, each particular behavioral subgoal such as avoiding obstacles can be 79

treated as an independent module. This leads to a view of the human brain as the 80

centralized arbitrator that divides and coordinates these modules in a hierarchical 81

manner. The current investigation explores the modular architecture in more detail. 82

Estimating the discount factor A frequently overlooked variable in RL is the 83

discount factor that determines how much a decision-maker weighs future reward 84

compared to immediate reward. In the agent-environment interaction paradigm, a 85

standard RL model typically treats the discount factor as a part of the environment and 86

as fixed. The alternative approach is to view the discount factor as a subjective 87

decision-making variable that is part of the agent and may vary. Behavioral 88

neuroscience studies suggest that the magnitude of the discount factor is correlated with 89

serotonin level in human subjects [24]. As a consequence decision-makers may exhibit 90

between-subject variations [25]. At the same time, between-task variation may also 91

exist, i.e., the same decision maker may use different discount factors for various tasks. 92

An fMRI study by [16] suggests that different cortico-basal ganglia loops are responsible 93

for reward prediction at different time scales, allowing multiple discount factors to be 94

implemented. Hence it is necessary to extend the standard RL model to adapt discount 95

factors to different human subjects and tasks. A modular approach is ideal for this 96

modeling effort. Allowing different modules to have their own discount factors makes 97

the model flexible in modeling potential variations in human data. 98
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(A) (B)

Fig 1. The virtual-reality human navigation experiment with motion tracking. (A) A
human subject wears a head mounted display (HMD) and trackers for eyes, head, and
body. (B) The virtual environment as seen through the HMD. The red cubes are
obstacles and the blue spheres are targets. There is also a gray path on the ground
leading to a goal (the green disk). At the green disk the subject is ‘transported’ to a
new ‘level’ in a virtual elevator for another trial with a different arrangement of objects.

Spatial navigation has been used as a canonical benchmark task for standard RL/IRL 99

algorithms in machine learning, and therefore is selected as the experimental domain for 100

testing our model. The task is an ideal testbed for modular RL since it is convenient for 101

introducing multiple (sub-)tasks. In following sections of this paper, computer 102

simulations are conducted first to validate the correctness of the proposed algorithm 103

and to compare with existing methods. We then use human behavioral data previously 104

collected in an immersive virtual environment [4] to show that the proposed sparse 105

modular IRL algorithm allows prediction of human walking trajectories by estimating 106

the subjective reward values and discount factors of different modules. By 107

demonstrating the ability to model naturalistic human sensory-motor behavior we lay 108

the ground work for future analysis of similar behaviors. 109

2 Methods 110

We introduce the experimental designs and computational models first since they are 111

necessary to understand the results. 112

2.1 Experiments 113

Virtual reality (VR) and motion tracking were employed to create a naturalistic 114

environment with a rich stimulus array, while maintaining experimental control. Fig 1 115

shows the basic setup. The subject wore a binocular head-mounted display (the nVisor 116

SX111 by NVIS) that showed a virtual room (8.5× 7.3 meters). The subject’s eye, head, 117

and body motion were tracked while walking through the virtual room. Subjects were 118

recruited from a subject pool of undergraduates at the University of Texas at Austin, 119

and were naive to the nature of the experiment. The human subject research is 120

approved by the University of Texas at Austin Institutional Review Board with 121

approval number 2006-06-0085 [4]. 122

Although we do not know the set of normal subtasks involved in walking through a 123

room like this, three plausible candidates might be following a path across the room, 124
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avoiding obstacles, and perhaps heading towards target objects. To capture some of this 125

natural behavior we asked subjects to collect the targets (blue spheres) by intercepting 126

them, follow the path (the gray line), and/or avoid the obstacles (red cubes). Objects 127

disappeared after collision. This type of state transition function encourages subjects to 128

navigate through the virtual room instead of sticking at a single target. 129

The global task has at least three modules: following the path, collecting targets, 130

and avoiding obstacles. We gave subjects four types of instructions that attempt to 131

manipulate their reward functions (and potentially the discount factors), resulting in 132

four experimental task conditions: 133

1. Task 1: Follow the path only 134

2. Task 2: Follow the path and avoid the obstacles 135

3. Task 3: Follow the path and collect the targets 136

4. Task 4: Follow, avoid, and collect together 137

There were no monetary rewards in the task. Since following paths, avoiding obstacles, 138

and heading towards targets are frequent natural behaviors, we assume that subjects 139

have some learned, and perhaps context-specific subjective values associated with the 140

three task components, and our goal was to modulate these intrinsic values using the 141

instructions. The instructions were to walk normally, but to give some priority to the 142

particular task components in the different conditions. To encourage such prioritization, 143

Subjects received auditory feedback when colliding with obstacles or targets. When 144

objects were task-relevant, this feedback was positive (a fanfare) or negative (a buzzer), 145

while collisions to task-irrelevant objects resulted in a neutral sound (a soft bubble 146

pop) [4]. The color of the targets and obstacles was counterbalanced in another version 147

of the experiment and was found not to affect task performance or the distribution of 148

eye fixations so the control was not repeated in the present experiment [26]. The order 149

of the task was Task 1, 2, 3, and 4. This order was chosen so as not to influence the 150

single task conditions by doing the double task. Thus it is possible there are some order 151

effects. In another experiment in the environment the order of the conditions was 152

counterbalanced and no obvious order effects were observed [26]. 153

We analyze data collected from 25 human subjects. A single experimental trial 154

consisted of a subject traversing the room, with the trial ending when the goal at the 155

end of the path is reached. Objects’ positions and the path’s shape differed on every 156

trial. Each subject performed four trials for each task condition. 157

Data availability This general paradigm of navigation with targets and obstacles 158

has been used to evaluate modular RL and IRL algorithms [2, 19] and to study human 159

navigation and gaze behaviors [4, 27]. The data that support the findings of this study 160

are made public and available at [28]. 161

2.2 Modular Reinforcement Learning 162

Reinforcement learning basics A standard reinforcement learning model is 163

formalized as a Markov decision process (MDP). The MDP models the interaction 164

between the environment and a decision maker which will be referred as an agent. 165

Formally, an MDP is defined as a tuple 〈S,A,P,R, γ〉 [5], where: 166

• S is a finite set of environment states. Let st denote the agent’s state at discrete 167

time step t. The state encodes relevant information for an agent’s decision. 168

• A is a finite set of available actions. Let at be the action agent chooses to take at 169

time t. The agent interacts with the environment by taking an action in its 170

observed state. 171
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• P is the state transition function which specifies the probability P (s′|s, a), i.e., 172

the probability of entering state s′ when agent takes action a in state s. The state 173

transition function describes the dynamics of the environment that are influenced 174

by an agent’s action. 175

• R is a reward function. rt denotes the scalar reward agent received at time step t. 176

• γ ∈ [0, 1) is a discount factor. The agent values future rewards less than an 177

immediate reward, therefore future rewards are discounted by parameter γ at 178

every discrete time step. γ = 0 indicates that the agent is myopic and only seeks 179

to maximize the immediate reward. 180

• π : S 7→ A is called a policy of the agent, which specifies the probability of chosen 181

each action in each state. 182

In machine learning, the purpose of a reinforcement learning algorithm is to find an 183

optimal policy π∗ that maximizes the longterm cumulative reward. Many RL 184

algorithms are based on value function estimation. The action-value function (also 185

called Q-value function) estimates the expected longterm reward for taking an action in 186

a given state, and follow policy π afterwards. Formally, the Q-value function 187

conditioned on policy π is defined as [5]: 188

Qπ(s, a) = Eπ{
∞∑
k=0

γkrt+k+1|st = s, at = a} (1)

Given the Q-value function it is convenient for an agent to select the action that 189

maximizes expected future returns. 190

Modular Reinforcement Learning The divide-and-conquer approximation of RL 191

leads to modular reinforcement learning, in which a module is a subtask of the original 192

task. Each module is hence a simpler problem, so that its value function and policy can 193

be learned or calculated efficiently. A module is also modeled by an MDP 194

〈S(n),A,P(n),R(n), γ(n)〉, where n is the index of the nth module. Note that each 195

module has its own state space, transition function, reward function, and discount 196

factor, but the action space is shared between modules because all modules reside in a 197

single agent. 198

Let N be the number of modules and Q(n)π(n)

denote module Q-value function of 199

the nth module conditioned on module policy π(n). For simplicity, we will drop π(n)
200

and write Q(n). Let Q without superscription denote the global Q function (also drop 201

global policy π). Modular RL sums module Q functions to obtain the global Q 202

function [21,29]: 203

Q(s, a) =
N∑
n=1

Q(n)(s(n), a) (2)

There can be multiple module objects of a module, e.g., several identical obstacles 204

nearby to avoid. The number of objects of each module is denoted as M (1), . . . ,M (N). 205

Note that for a given module, its module objects share the same Q(n) since their 206

module MDPs are identical. But at a given time they could be in different states 207

relative to the agent’s reference frame which can be denoted as s(n,m) for module n 208

object m. To generalize the above equation: 209

Q(s, a) =
N∑
n=1

M(n)∑
m=1

Q(n)(s(n,m), a) (3)
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This assumes independent transition functions between module objects [19]. A module 210

action-value function Q(n) may be calculated from solving Bellman equations using 211

dynamic programming or through standard learning algorithms with enough experience 212

data, which we argue to be infeasible for human performing natural tasks. Q(n) needs 213

to be calculated efficiently with reasonable cognitive load. 214

In our experiments, both the state transition function and reward function are 215

deterministic hence the expectation in Eq (1) can be dropped. Since each module Q 216

function only considers a single source of reward from a single module object, and 217

assuming a policy that leads the agent directly to the module object, Q(n)(s(n,m), a) 218

takes the following simple form: 219

Q(n)(s(n,m), a) = r(n)(γ(n))d(s
(n,m),a) (4)

where r(n) is the reward for the nth module, γ(n) is its discount factor, and d(s(n,m), a) 220

is the spatial or temporal distance between the agent and the module object m after 221

taking action a at state s(n,m). Note Eq (4) converts value function back to its simplest 222

form in [15]. This simple form allows a decision maker to calculate the action-value for 223

a state efficiently when needed instead of beforehand. This matters when humans need 224

to make decisions fast and when it is computationally expensive to calculate value 225

functions using a standard RL algorithm. It is also unlikely for a human to pre-compute 226

the values for all future states and use dynamic programming to obtain a global policy 227

when they visit the environment for the first time. Doing so would at least require a 228

human to store Q-values for relevant states (a Q-table) in its memory system, which is 229

convenient for an artificial agent but would be difficult for a real-time human decision 230

maker. 231

Why does modular RL alleviate the problem of curse of dimensionality? Consider 232

the joint state space of a standard RL which can be represented as the Cartesian 233

product of the module state spaces: S = S(1) × S(2) × . . . . The computation cost for 234

one iteration in value iteration (a popular RL algorithm) is O(|S|2|A|) where | · | 235

denotes the cardinality of a set [30]. When a new module S(N) is added, the cost of 236

standard RL becomes O(|S(1) × S(2) × · · · × S(N)|2|A|), while the cost of modular RL 237

becomes O(|S(1)|2|A|) +O(|S(2)|2|A|) + · · ·+O(|S(N)|2|A|). Therefore the 238

computational cost increases additively in modular RL instead of multiplicatively. 239

Visualizing modular reinforcement learning Eq (4) bridges modular RL with 240

an important planning method called artificial potential field [31–33]. Similar to a 241

potential field, we use a value surface to visualize the value function. Each module 242

objects is associated with a value surface. The module reward controls the maximum 243

absolute height of the surface, and the discount factor controls temporal or spatial 244

discounting rates. Module value surfaces can be composed directly by summation or 245

integration to produce a multi-module value surface. The concept of value surfaces and 246

their combination is illustrated in Fig 2. Given a composed value surface as in Fig 2F, a 247

modular RL agent would choose actions that lead to a local minima on the surface. A 248

sequence of actions could construct a trajectory in Fig 3A which traverses through a 249

sequence of local minima. 250

2.3 Modular Inverse Reinforcement Learning 251

While reinforcement learning aims at finding the optimal policy given a reward function, 252

inverse reinforcement learning (IRL) attempts to infer the unknown reward function 253

given the agent behavioral data in the form of state-action pairs (st, at) [18,34–36]. Our 254

work is largely based on the modular IRL algorithm by [19] which pioneered the first 255

modular IRL algorithm. Given the modular RL formulation in the previous section, the 256
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(A) Initial value surface (B) Postive reward vs. negative reward

(C) Large reward vs. small reward (D) Large discount factor γ vs. small γ

(E) Composed surface with two objects (F) Composed surface with many objects

Fig 2. The concept of modular reinforcement learning illustrated using value surfaces.
(A) The value surface is flat without any reward signal. (B) A module object with
positive reward has positive weight, and one with negative reward has negative weight.
They bend the value surface to have negative and positive curvatures respectively.
Therefore, an agent desires to follow the steepest descent to minimize energy, or
equivalently, to maximize reward. (C) An object with larger weight bends the surface
more. (D) An object with greater discount factor γ has larger influence over distance.
(E,F) Composing different objects with different rewards and γs results complicated
value surfaces that can model an agent’s value function over the entire state space.

goal of modular IRL is to estimate the underlying reward and discount factor for each 257

module to recover the value function, given a sequence of observed state-action pairs, 258

i.e., a trajectory that traverses through the state space, as shown in Fig 3A. 259

We follow the Bayesian formulation of IRL [36,37], Maximum Likelihood IRL [38], 260

and improve the modular IRL algorithm in [19]. These approaches assume that the 261

higher the Q-value for an action at in state st, the more likely action at is observed in 262

behavioral data. Let η denote the confidence level in optimality (the extent to which an 263

agent selects actions greedily, default to be 1), and let exp(·) denote the exponential 264

function. The likelihood of observing a certain state-action pair is modeled by the 265

softmax function with Gibbs (Boltzmann) distribution, as illustrated in Fig 3B: 266

P (at|st, Q, η) =
exp(ηQ(st, at))∑
a∈A exp(ηQ(st, a))

(5)

Let T denote the total length of the trajectory. The overall likelihood L for observed 267

data D = {(s1, a1), · · · , (sT , aT )} is the product of the likelihood of individual 268
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(A) (B)

Fig 3. Maximum likelihood modular inverse reinforcement learning. (A) From an
observed trajectory (a sequence of state-action pairs), the goal of modular IRL is to
recover the underlying value surface. (B) Maximum likelihood IRL assumes that the
probability of observing a particular action (red) in a state is proportional to its Q-value
among all possible actions as in Eq (5).

state-action pairs, given the states are Markovian and action decisions are independent: 269

L = P (D|Q, η) =
T∏
t=1

exp(ηQ(st, at))∑
a∈A exp(ηQ(st, a))

(6)

Next, the global action-value function Q(st, at) is decomposed using Eq (3) with module 270

Q functions Q(1:N), therefore the likelihood becomes: 271

L = P (D|Q(1:N), η)

=
T∏
t=1

∏N
n=1

∏M
(n)
t

m=1 exp(ηQ(n)(s
(n,m)
t , at))∑

a∈A
∏N
n=1

∏M
(n)
t

m=1 exp(ηQ(n)(s
(n,m)
t , a))

(7)

Take the log of the likelihood function: 272

logL =
T∑
t=1

(
N∑
n=1

M
(n)
t∑

m=1

ηQ(n)(s
(n,m)
t , at)

− log
∑
a∈A

N∏
n=1

M
(n)
t∏

m=1

exp(ηQ(n)(s
(n,m)
t , a))) (8)

Substituting Eq (4) into Eq (8): 273

logL =
T∑
t=1

( N∑
n=1

M
(n)
t∑

m=1

ηr(n)(γ(n))d(s
(n,m)
t ,at)

− log
∑
a∈A

N∏
n=1

M
(n)
t∏

m=1

exp(ηr(n)(γ(n))d(s
(n,m)
t ,a))

)
(9)
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The variables to be estimated from the data are module rewards r(1:N) and discount 274

factors γ(1:N). The number of modules N , the number of objects for each module 275

M
(1)
t , . . . ,M

(N)
t , and distances d(s

(n,m)
t , at) for each object are all state information and 276

can be observed from the environment. This formulation follows closely the work by [19], 277

extending it to use the new formulation of modular RL, handle multiple objects of each 278

module, estimate the discount factors, and derive a slightly different objective function. 279

Sparse modular inverse reinforcement learning Modular IRL can only guess 280

which objects are actually being considered by the decision maker when chosen an 281

action. To address this problem, we can further add a L1 regularizer −λ
∑N
n=1 ||r(n)||1 282

to Eq (9), which causes some module rewards to become 0 so these modules would be 283

ignored in decision making. This is an extension of using a Laplacian prior in Bayesian 284

IRL [36]. In addition to the benefit from an optimization perspective, the regularization 285

term has the following important interpretation in terms of explaining natural behaviors. 286

A hypothetical module set is a set H = {1, · · · , N} contains N modules that could 287

potentially be of an agent’s interest. However, due to the limitations in computational 288

resource, the agent can only consider a subset of H at a time, denoted H′. In a rich 289

environment many modules’ rewards would be effectively zero at current decision step, 290

hence |H′| � |H|. For instance, a driving environment could contain hundreds of 291

objects in H. But a driver may pay attention to only a few. The regularization constant 292

λ serves as a cognitive capacity factor that helps determine H′ from the observed 293

behaviors. Therefore the final objective function of modular IRL is: 294

max
r(1:N),γ(1:N)

T∑
t=1

( N∑
n=1

M
(n)
t∑

m=1

ηr(n)(γ(n))d(s
(n,m)
t ,at)

− log
∑
a∈A

N∏
n=1

M
(n)
t∏

m=1

exp(ηr(n)(γ(n))d(s
(n,m)
t ,a))

)

− λ
N∑
n=1

||r(n)||1

s.t. 0 ≤ γ(n) < 1. (10)

Note that if we are to fit r(1:N) and γ(1:N) simultaneously, the above objective function 295

is non-convex. However, the objective becomes convex if only fitting r(1:N). Since γ(n) 296

is in range [0, 1), one can perform a grid search over values for γ(1:N) with step size ε 297

and fit r(1:N) at each possible γ(1:N) value. This allows us to find a solution within 298

ε-precision of the true global optimum. 299

An accessible evaluation of the proposed algorithms in an artificial multitask 300

navigation environment can be found in Appendix 1. The environment is a 2D 301

gridworld that resembles the virtual room we use for the human experiments. The 302

validity of the modular IRL is proved empirically by showing its ability to recover true 303

module rewards and discount factors with high accuracy given enough behavioral data. 304

Meanwhile it requires significantly less data samples to obtain high prediction accuracy 305

comparing to a standard Bayesian IRL algorithm [36], presumably because the state 306

space is reduced significantly by modularization. Sparse modular IRL is shown to 307

further improve sample efficiency if task-irrelevant modules are present. Unlike 308

computer simulated experiments in which one can easily generate millions of behavioral 309

data, human experiments have a more expensive data collection procedure in general. 310

Therefore sample efficiency of sparse modular IRL is an important advantage in 311

modeling natural human behaviors, which will be seen in the next section. 312
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3 Results 313

Despite its computational advantages shown in simulation, the question remains 314

whether modular IRL can be used as a decision-making model to explain human 315

behaviors in the experiments. Sparse modular IRL (Eq (10)) is used as the objective 316

function to estimate reward r and discount factor γ for the target, obstacle, and path 317

modules. However the regularization constant is found to be close to zero since there 318

are only three modules. Recall that each subject performs each task four times, and 319

each time the path and the arrangement of objects are different. We use leave-one-out 320

cross evaluation, where r, γ are estimated using all-but-one training trials that are from 321

the same subject and same task condition and evaluated on the remaining test trial. 322

Since the parameter estimates are based on the other three trials, all of our prediction 323

results shown below are for a novel environment with similar components – this requires 324

the model to generalize across environments. The number of data samples obtained 325

from a single trial is typically around 100 hence sample efficiency is critical for the 326

performance of an algorithm. 327

Different r and γ are estimated for each subject under each task condition for each 328

module, hence there are 25 subjects × 4 conditions × 3 modules × 4 trials = 1,200 329

different pairs of r, γ estimations. The state information for the model includes the 330

distance and angle to the objects, while the state space is discretized using grids of size 331

0.572 by 0.572 meters, a parameter chosen empirically that produces the best modeling 332

result. It also matches the approximate length of a step in VR, so is a suitable scale for 333

human direction decisions. Empirically, as long as the grid size is within reasonable 334

range of human stride length (0.3-0.9 meters) the algorithm’s performance is fairly 335

robust. 336

The path is discretized into a sequence of waypoints which are removed after being 337

visited (similar to the targets). The action space spans 360 degrees and is discretized to 338

be 16 actions using bins of 22.5 degrees. This is a suitable discretization of the action 339

space, given the size of the objects at the distance of 1-2 meters, where an action 340

decision is most likely made. 341

Qualitative results and visualization The most intuitive way to evaluate the 342

modular RL model is to see whether the model can accurately reproduce human 343

navigation trajectories. The Q-value function of a modular RL agent is calculated using 344

r and γ estimated from human data. Next, the modular RL agent is placed at the same 345

starting position as the human subject and starts to navigate the environment until it 346

reaches the end of the path. The agent chooses an action probabilistically based on the 347

Q-value of the current state, using a softmax action selection function as in Eq (5). The 348

reason to let the agent choose actions with a certain degree of randomness is that the 349

Q-values for multiple actions can be very close, e.g., turning left or turning right to 350

avoid an obstacle, consequently a human subject may choose either. Therefore, a single 351

greedy trajectory may not overlap with the actual human trajectory. The softmax 352

action selection function generates a distribution of hypothetical trajectories, i.e., a 353

trajectory cloud, by running an agent many times in the same environment. The actual 354

human trajectory can be visualized in the context of this distribution. 355

Fig 4 shows generated trajectory clouds together with actual human trajectories, 356

along with estimated rewards and discount factors. The agent trajectories are shown in 357

semi-transparent green hence darker area represents trajectories with higher likelihood, 358

and the human trajectory on that trial is shown in black. Each row of figures presents 359

experimental trials from one experimental condition (Task 1-4), and three trials within 360

each row are from different subjects but the same environment, i.e., the same 361

arrangement of objects. 362
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(A) r : (0.11, 0.38,0.52)
γ : (0.85, 0.99, 0.88)

(B) r : (0.11, 0.25,0.63)
γ : (0.88, 0.99, 0.94)

(C) r : (0.07, 0.39,0.54)
γ : (0.82, 0.99, 0.94)

(D) r : (0.00,0.57,0.43)
γ : (0.00, 0.69, 0.91)

(E) r : (0.02,0.57,0.41)
γ : (0.99, 0.59, 0.97)

(F) r : (0.06,0.75,0.19)
γ : (0.95, 0.60, 0.88)

(G) r : (0.30, 0.22,0.48)
γ : (0.77, 0.72, 0.89)

(H) r : (0.27, 0.29,0.45)
γ : (0.69, 0.73, 0.96)

(I) r : (0.30, 0.17,0.52)
γ : (0.76, 0.99, 0.89)

(J) r : (0.28,0.34,0.39)
γ : (0.72, 0.76, 0.90)

(K) r : (0.12,0.60,0.28)
γ : (0.74, 0.56, 0.97)

(L) r : (0.12,0.77,0.11)
γ : (0.74, 0.53, 0.95)

Fig 4
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Fig 4. Bird’s-eye view of human trajectories and agent trajectory clouds across
different subjects. Black lines: human trajectories. Green lines: modular RL agent
trajectory clouds generated using softmax action selection. The green is
semi-transparent hence darker area represents trajectories with higher likelihood. Yellow
circles: end of the path. Blue circles: targets. Red squares: obstacles. Gray dots: path
waypoints used by the model (subjects see a continuous path). Below each graph are
the rewards and discount factors estimated from human and used by the modular RL
agent. The rewards and discount factors are shown in the order of (Target, Obstacle,
Path). The module rewards that correspond to task instructions are bold. Obstacle
module has negative reward, but to compare with the other two modules the absolute
value is taken. Three trials within each row are from different subjects but the same
environment. (A,B,C) show trials from Task 1: follow the path. (D,E,F) show trials
from Task 2: follow the path and avoid obstacles. (G,H,I) show trials from Task
3: follow the path and collect targets. (J,K,L) show trials from Task 4: follow
the path, collect targets, and avoid obstacles.

The figures demonstrate that the model’s generated trajectory clouds align well with 363

observed human trajectories. When a local trajectory distribution is multi-modal, e.g., 364

in Fig 4D, 4F, 4J, 4K, and 4L, the human trajectories align with one of the means. The 365

next important observation is the between-subject variation. Trials within each row are 366

from the same environment under the same task instruction. However, human 367

trajectories can sometimes exhibit drastically different choices, e.g., Fig 4E versus 4F, 368

4J versus 4K. These differences are modeled by the underlying r and γ, and accurately 369

reproduced by the distributions generated. This means that we can compactly model 370

naturalistic, diverse human navigation behaviors using only a reward and a discount 371

factor per module. The modeling power of modular RL is demonstrated by the 372

observation that varying these two variables can produce a rich class of human-like 373

navigation trajectories. 374

Between-task and between-subject differences We then look at the way average 375

reward estimates vary between different tasks when aggregating data from all subjects. 376

The results are shown in Fig 5A. Overall, the estimated r values vary in an appropriate 377

manner with task instructions. Thus obstacles are valued higher when the instructions 378

prioritize this task, and targets are valued higher when that task is prioritized. Note 379

that the obstacle avoidance module is given some weight even when it is not explicitly 380

prioritized – this is consistent with the observation that subjects deviates from the path 381

to avoid obstacles even when obstacles are task-irrelevant. This may reflect a bias which 382

is carried over from natural behavior with real obstacles. The relatively high value for 383

the path may indicate that subjects see staying near the path as the primary goal. 384

The between-subject differences in reward are shown in Appendix 2 for all 25 385

subjects. At each individual subject’s level, changing in the relative reward between the 386

modules is also consistent with task instructions. An one-way ANOVA test suggests 387

that individual differences are evident across subjects under the same task instruction 388

(see Appendix 2 for details). 389

Fig 5B shows average discount factor estimates for different tasks. Although the 390

reward evidently reflects and agrees with task instructions, the interpretation of the 391

discount factor is more complicated. The discount factors vary across tasks for target 392

and obstacle modules but are close to 1.0 and stable for the path module. This may 393

also reflect the primacy of the task of getting across the room, and the need to plan 394

ahead. Although the instructions do not directly manipulate discount factors, we will 395

later show that estimating discount factors from data instead of holding them fixed is 396

important for modeling accuracy. 397
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Table 1. Synthesized rewards and discount factors compared to the estimated ones.
Rewards are re-normalized. Results are presented as mean ± standard error between
subjects (N=25).

Target r Obstacle r Path r
Task 2+3 synthesized 0.177± 0.018 0.415± 0.028 0.408± 0.021
Task 4 0.180± 0.017 0.422± 0.029 0.398± 0.031

Target γ Obstacle γ Path γ
Task 2+3 synthesized 0.773± 0.017 0.689± 0.015 0.928± 0.006
Task 4 0.768± 0.009 0.679± 0.019 0.936± 0.006

(A) (B)

Fig 5. (A) Normalized average rewards across different task instructions. The error bar
represents the standard error of the mean between subjects (N = 25). The obstacle
module has negative reward, but to compare with the other two modules its absolute
value is taken. The estimated reward agree with task instructions. (B) Average discount
factors across different task instructions. The error bar represents the standard error of
the mean between subjects (N = 25).

Stability of rewards and discount factors across tasks An important
observation from Fig 5 is that task-relevant module rewards and discount factors are
stable across task conditions. To show this quantitatively, for each subject, we combine
module rewards from Task 2 (path + obstacle) and Task 3 (path + target) to synthesize
the rewards for Task 4 (path + obstacle + target) in the following way:

rtask4 target = rtask3 target (11)

rtask4 obstacle = rtask2 obstacle (12)

rtask4 path = (rtask2 path + rtask3 path)/2 (13)

Then the discount factors are synthesized in the similar way. The synthesized rewards 398

(re-normalized) and discount factors from Task 2 and 3 are found to be very close to 399

those estimated from Task 4, as shown in Table 1. However, task-irrelevant rewards and 400

discount factors are not stable. This result indicates that task-relevant module rewards 401

and discount factors generalize to a different task condition. Thus modules are 402

independent and transferable in this particular scenario. 403

Quantitative results and comparisons to alternative models Next we 404

compare our model with several alternative hypotheses. The full modular IRL model 405

chooses the action greedily that maximizes the Q-value function of each state using 406

both estimated r and γ. An ablation study is conducted to demonstrate the relative 407
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importance of the variables in the model. The binary reward agent estimates γ only, 408

and uses a unit reward of 1 for the module that is task-relevant, e.g., in Task 2 the path 409

and the obstacle modules would have rewards of +1 and -1 respectively, and the target 410

module would have a reward of 0. The fixed γ agents estimate r only, and use fixed 411

γ = 0.1, 0.5, 0.99. A Bayesian IRL agent without modularization and assumes a fixed 412

discount factor [36] is also implemented where the implementation details can be found 413

in Appendix 3. 414

We choose two performance metrics to evaluate these models. The first one is the 415

number of objects intercepted by the agent’s entire trajectory under different task 416

conditions. Fig 6 shows the performance of different models ((A) targets and (B) 417

obstacles). Overall, the modular IRL model has the closest performance to the human 418

data across task conditions. Note that the number of targets collected is only a little 419

affected by the avoid instruction and obstacles avoided do not change very much with 420

the target instruction, supporting the previous claim that the modules in this 421

experiment are independent hence task-relevant module values are stable. Bayesian IRL 422

and fixed γ = 0.99 models perform poorly–the number of objects hit does not vary 423

accordingly with task instructions. The binary reward model, γ = 0.1, 0.5 reflect task 424

instructions correctly but are less accurate than the full modular IRL model. 425

(A) Number of targets collected (B) Number of obstacles hit

Fig 6. Average number of targets collected/obstacles hit when different models
perform the navigation task across all trials. There are 12 targets/obstacles each in the
virtual room. Error bars indicate standard error of the mean (N = 100).

The second quantitative evaluation metric would be the angular difference, i.e., 426

policy agreement, which is obtained by placing an agent in the same state as a human 427

and measuring the angular difference between the agent’s action and the human 428

subject’s action. This metric differs from the previous one because it emphasizes more 429

on the accuracy of local decisions instead of the whole trajectory. Thus this angular 430

difference is a local metric instead of a holistic one. The comparison results are shown 431

in Table 2. All modular RL agents are more accurate in predicting human actions 432

comparing to the traditional Bayesian IRL algorithm. Again the full modular IRL 433

model results in higher accuracy comparing to the alternative models. The binary 434

reward model has comparable performance and is in general better than the models 435

that have the discount factor fixed. This supports our claim that module-specific 436

discount factor plays an important role in modeling human behaviors and should be 437

estimated from data. 438

To summarize, we are able to predict human novel trajectories in different 439

environments on the basis of rewards and discount factors estimated from behavioral 440

data. Since we do not know the actual set of visual operations involved in walking 441
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Table 2. Evaluation of the modular agent’s performance compared with baseline
agents, measured by the average angular difference (in degrees) compared to actual
human decisions. The results are presented as mean ± standard error (N = 100). The
agent that uses the full model outperforms all other models.

Task 1 Task 2 Task 3 Task 4
Bayesian IRL 53.87±2.54 53.37 ± 2.71 59.86 ± 2.00 51.09 ± 2.60
Fixed γ = 0.1 31.74±0.88 39.43±1.18 36.16±0.75 41.40±0.88
Fixed γ = 0.5 21.46±0.46 36.04±1.16 34.20±0.78 39.14±0.92
Fixed γ = 0.99 18.19±0.32 27.63±1.41 28.61±0.93 31.63±1.08
Binary Reward 17.66±0.38 27.66±1.44 29.97±0.72 29.80±0.95
MIRL (Full Model) 17.94±0.33 27.39±1.46 26.98±0.80 27.65±1.02

through a cluttered room like this, the fact that we can reproduce the trajectories 442

suggests that the three chosen modules can account for a substantial fraction of the 443

behavior while vision may be used for other tasks. In fact, close to half the fixations 444

made by the subject are on regions of the environment other than the path or 445

objects [4]. This suggests that there may be other visual computations going on but 446

that they do not have much influence on the behavior. Thus the modular RL agents 447

generate reasonable hypotheses about underlying human decision-making mechanism. 448

These results provides a strong support for using modular RL as the model for 449

explaining such multitask navigation behaviors, and modular IRL as a sample efficient 450

algorithm to estimate rewards and discount factors. Bayesian IRL has to deal with a 451

complex high-dimensional state space and settle for its approximations for a dynamic 452

multi-task problem with limited data, while modular RL can easily reduce the 453

dimensionality of the state-space by factoring out sub-tasks. Therefore the algorithm 454

significantly outperforms the previous standard IRL method in terms of the accuracy in 455

reproducing human behaviors. 456

4 Related Work in Reinforcement Learning 457

The proposed modular IRL algorithm is an extension and refinement of [19] which 458

introduced the first modular IRL and demonstrated its effectiveness using an simulated 459

avatar. The navigation tasks are similar but we use data from actual human subjects. 460

While they use a simulated human avatar and moving from the straight path, our 461

curved path proves quite different in practice, as well, being significantly more 462

challenging for both humans and virtual agents. We then generalize the state space to 463

let the agent consider multiple objects for each module, while the original work assumes 464

the agent considers one nearest object of each module. 465

Bayesian IRL was first introduced by [36] as a principled way of approaching an 466

ill-posed reward learning problem. Existing works using Bayesian IRL usually 467

experiment in discretized gridworlds with no more than 1000 states with an exception 468

being the work of [39] which was able to test on a goal-oriented MDP with 20,518 states 469

using hierarchical Bayesian IRL. 470

The modular RL architecture proposed in this work is most similar to a recent work 471

in [40], in which they decompose the reward function in the same way as the modular 472

reinforcement learning. Their focus is not on modeling human behavior, but rather on 473

using deep reinforcement learning to learn a separate value function for each subtask 474

and combining them to obtain a good policy. Other examples of divide-and-conquer 475

approach in RL include factored MDP [41] and co-articulation [42]. 476

Hierarchical RL [43,44] utilizes the idea of temporal abstraction to allow more 477

efficient computation of the policy. [45] analyzes human decision data in spatial 478
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navigation tasks and the Tower of Hanoi; they suggest that human subjects learn to 479

decompose tasks and construct action hierarchy in an optimal way. In contrast with 480

that approach, modular RL assumes parallel decomposition of the task. The difference 481

can be visualized in Fig 7. These two approaches are complementary, and are both 482

important for understanding and reproducing natural behaviors. For example, a 483

hierarchical RL agent could have multiple concurrent options [43, 44] executing at a 484

given time for different behavioral objectives. Another possibility is to extend the 485

modular RL to a two-level hierarchical system. Learned module policies are stored and 486

a higher-level scheduler or arbitrator decides which modules to activate or deactivate 487

given the current context and the protocol to synthesize module policies. An example of 488

this type of architecture can be found in [2]. 489

Fig 7. Modular reinforcement learning (left) vs. hierarchical reinforcement learning
(right). Modular RL assumes modules run concurrently and do not extend over multiple
time steps. Hierarchical RL assumes that a single option may extend over multiple time
steps.

5 Discussion 490

This paper formalizes a modular reinforcement learning model for natural multitask 491

behaviors. Modular RL is more suitable for modeling human behaviors in natural tasks 492

while standard RL serves as a general model for reward-seeking behaviors. The two 493

important variables in modular RL are module-specific reward and discount factor, 494

which can be jointly estimated from behavioral data using the proposed modular IRL 495

algorithm. A computer simulation demonstrated the validity and sample efficiency of 496

the modular IRL. In a virtual-reality human navigation experiment, we showed 497

multitask human navigation behaviors, across subjects and under different instructions, 498

can be modeled and reproduced using modular RL. 499

Modular RL/IRL makes it possible to estimate the subjective value of particular 500

human behavioral goals. Over the last 15 years it has become clear that the brain’s 501

internal reward circuitry can provide a mechanism for the role of tasks on both gaze 502

behavior and action choices. It is thought that the ventromedial prefrontal cortex and 503

basal ganglia circuits encode the subjective values driving behavior [46–48]. The present 504

work shows that it is possible to get a realistic estimate of the subjective value of goals 505

in naturalistic behavior, and these values might reflect the underlying reward machinery. 506

Many of the reward effects observed for neurons have very simple choice response 507

paradigms. Thus it is important to attempt to link the primary rewards used in 508

experimental paradigms and the secondary rewards that operate in natural behavior. 509

Previous human experiments have typically used simple behaviors with money or points 510

as rewards. In our experiment we used instructions to bias particular aspects of basic 511

natural behavior with no explicit rewards. 512

The results provide support for a modular cognitive architecture when modeling 513

natural visually guided behaviors. Modularization reduces the size of state space and 514
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alleviates the curse of dimensionality. Consequently modular IRL is more sample 515

efficient than the standard Bayesian IRL. In addition, modular RL estimates a discount 516

factor for every module hence it is more flexible and powerful than a standard RL 517

model in which the discount factor is unitary and fixed. The modeling result suggests 518

having such flexibility is indeed helpful. It may also explain why basal ganglia has the 519

mechanism to implement multiple discount factors [16]. 520

The decomposition of global task also allows humans to reuse a learned module later 521

in a new environment. This claim is supported by the observation that task-relevant 522

module rewards and discount factors are stable and generalize to a different task 523

condition. When immersed in a new environment, the simple form of Eq (4) allows value 524

function to be computed with reasonable cognitive load. It is possible that subjects 525

learn stable values for the costs of particular actions like walking and obstacle avoidance 526

and these subjective values factor into momentary action decisions [1]. For example, 527

humans direct gaze to nearby pedestrians in a simple uninstructed walking context with 528

a probability close to 0.5, with small variability between subjects [49] and a similar gaze 529

distribution was found in a virtual environment [50]. These values may change in more 530

complex contexts, as in the decoy effect for example [51]. The present work provides a 531

way of testing the circumstances in which such subjective values might change. 532

Modular RL allows intuitive interpretation for multitask behaviors, where relative 533

importance and reward discounting rates can be compared between modules directly. 534

We expect this modular approach of RL can be applied to and can explain many 535

natural tasks. [52] has shown that a wide range of human behaviors can be modeled as 536

consisting of microbehaviors, so many behaviors are a mixture of simple modules and 537

could potentially be modeled in this way. 538

A question remains of how these modules are formed originally. The intuition for a 539

modularized strategy comes from two conjectures: learning is incremental and 540

attentional resource is limited. From a developmental perspective, a complicated natural 541

task is often divided in to subtasks when learning happens, e.g., curriculum learning [53], 542

hence a real-time decision-making rule is likely to be a combination of pre-learned 543

subroutines. A subtask is attended when needed to save computational resource. 544

Limitations of the model and future work Although modular RL/IRL is able to 545

produce trajectories that are similar to human behavior, the match was imperfect as 546

demonstrated by the angular difference. One difficulty with modeling human behavior 547

is that we defined the state space and a set of modules by hand without knowing the 548

actual state representation or task decomposition that the human uses. This may 549

account for the discrepancy between the human and agent policies. Ideally, we could 550

learn state representation from data, but this involves the challenging task of combining 551

representation learning and IRL. The work in [54] provides a potential method for 552

inferencing goals and states for the modules. Recent development in deep reinforcement 553

learning [55] may possibly lead to a data-driven approach to IRL that can learn state 554

representation from data. 555

An important assumption about the centralized arbitrator of the modules needs to 556

be examined more carefully in the future: In our model, an agent forms global Q-values 557

by summing up module Q-values [21,29]. There has been work examining more 558

sophisticated mechanisms for global decision making [56,57]. For example, one could 559

schedule modules according to an attention mechanism [56,58]. Whether these 560

mechanisms can better explain human behaviors remains an open question that should 561

be explored. 562

An important consequence of being able to get a quantitatively estimated subjective 563

reward and discount factor of a module is that it is possible to test whether these values 564

are stable across contexts. For example, the value of avoiding an obstacle should be 565
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stable across moderate variations in the environment such as the changes in obstacle 566

density or changes in the visual appearance of the environment. If this is true, then it is 567

possible to make predictions about behavior in other contexts using learned modules. 568

And it would also be possible to use the prediction error to indicate that other factors 569

need to be considered. 570

Estimates of the value of the underlying behaviors will also allow prediction of the 571

gaze patterns subjects make in the environment. It has been suggested that gaze 572

patterns reflect both the subjective value of a target and uncertainty about 573

task-relevant state [2, 4, 59, 60]. For example, gaze should be frequently deployed to look 574

at pedestrians in a crowded environment since it is important to avoid collisions and 575

there is high uncertainty about their location. Also gaze is deployed very differently 576

depending on the terrain and the need to locate stable footholds, reflecting the 577

increased uncertainty of rocky terrain [61]. Estimates of the subjective value might thus 578

allow inferences about uncertainty as well. 579

In conclusion, we have demonstrated that modular reinforcement learning can 580

plausibly account for sequences of sensory-motor decisions in a natural context, and it is 581

possible to estimate the internal reward value of behavioral components such as path 582

following, target collection, and obstacle avoidance. The estimated reward values and 583

discount factors enabled us to predict long walking trajectories in a novel environment. 584

This framework provides a potentially useful tool for exploring the task structure of 585

natural behavior, and investigating how momentary decisions are modulated by internal 586

rewards and discount factors. 587
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S2 Video. A sample video from collected human data. The attached video 743

file shows a typical experimental trial from the subject’s point of view, with motion 744

tracking eye tracking enabled (the white cross). The task of this particular trial is to 745

collect the targets, avoid the obstacles, and follow the path at the same time. 746

Supporting Information 747

Appendix 1: Simulation Results 748

Using a canonical 2D gridworld in reinforcement learning (RL) research, the goals are to 749

empirically prove that modular IRL algorithm can estimate rewards and discount 750

factors correctly, demonstrate its advantages over standard IRL, and show an example 751

of sparse modular IRL. Part of the gridworld is shown in Fig 1. Different module 752

objects are indicated by different colors and shapes. Behavioral data (state-action pair 753

samples) are collected from a modular RL agent. 754

We first show that modular IRL is able to recover module rewards and discount 755

factors correctly. The environment contains six modules each with ten objects. Three of 756

them have positive rewards and the other three have negative rewards. 10 gridworlds 757

are generated with random layouts of objects. The agent navigates each world for 6,000 758

steps. Non-sparse modular IRL (Eq (9)) is used to estimate r(1:6) and γ(1:6) and we 759

calculate the mean estimation and standard error. The results are shown in Table 1, it 760

is evident that modular IRL is highly accurate in recovering the true rewards and 761

discount factors given a large amount of data. 762

Fig 1. Part of the 2D gridworld test domain. Red squares are obstacles with negative
reward. Blue circles are targets with positive reward. The small red dot is the modular
RL agent. Different colors indicate different modules with distinct rewards and discount
factors. The objects of the same module have the same color.
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Table 1. Estimated rewards and discount factors comparing to the ground truth for
the six modules in the 2D gridworld experiment. The results are presented as mean ±
standard error (N = 10). The estimations are highly accurate due to the availability of
a large amount of data.

r(1) r(2) r(3)

Truth +5 +10 +15
Estimation +5.00±0.02 +9.94±0.03 +15.02±0.03

r(4) r(5) r(6)

Truth -5 -10 -15
Estimation -4.97±0.02 -10.03±0.03 -14.85±0.07

γ(1) γ(2) γ(3)

Truth 0.7 0.6 0.5
Estimation 0.70±0.00 0.60±0.00 0.50±0.00

γ(4) γ(5) γ(6)

Truth 0.3 0.2 0.1
Estimation 0.30±0.00 0.20±0.00 0.10±0.00

Fig 2. Modular IRL vs Bayesian IRL on sample efficiency, measured by average policy
agreement ± standard error (N = 10). Modular IRL has significant higher sample
efficiency.

Modular vs. Bayesian inverse reinforcement learning In modeling natural 763

human behaviors, one particularly important aspect of a machine learning algorithm is 764

its sample efficiency, given that it could be expensive to collect behavior data unlike in 765

computer simulation. The performance of modular IRL on sample efficiency is 766

compared with a standard non-modular Bayesian IRL [36]. We use a Laplacian prior in 767

Bayesian IRL since the rewards are sparse. Fig 2 shows the results. The test 768

environment has 4 modules and each has 4 objects which is made smaller because 769

Bayesian IRL is computationally expensive. Both algorithms are given different amount 770

of samples (state-action pairs) for training. Then policies generated using the learned 771

rewards are compared. Policy agreement is defined as the proportion of the states that 772

have the same policy as the ground truth, which is used because the outputs of these 773

two algorithms are weights and rewards that can not be directly compared. Modular 774

IRL obtained nearly 100% policy agreement with far fewer data samples compared to 775

the Bayesian IRL. 776

Sparse modular inverse reinforcement learning Next we evaluate the 777

performance of sparse modular IRL algorithm (Eq (10)) in terms of sample efficiency. 778

Again the gridworld contains 10 modules and each has 10 objects. The agent only 779
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Fig 3. Modular IRL vs sparse modular IRL on sample efficiency, measured by mean
squired error (MSE) of estimated reward. Sparsity can greatly improve sample efficiency
with a carefully chosen value of λ.

Table 2. One-way ANOVA for individual differences in reward between subjects and
across task instructions. Between-subject differences for all modules are significant in all
task conditions.

Target r Obstacle r Path r
Task 1 F (25, 4) = 6.53 F (25, 4) = 5.60 F (25, 4) = 4.57

p = 3.38× 10−11 p = 1.16× 10−9 p = 8.44× 10−8

Task 2 F (25, 4) = 8.09 F (25, 4) = 12.11 F (25, 4) = 12.12
p = 1.41× 10−13 p = 1.18× 10−18 p = 1.16× 10−18

Task 3 F (25, 4) = 7.65 F (25, 4) = 5.91 F (25, 4) = 3.17
p = 6.11× 10−13 p = 3.50× 10−10 p = 4.50× 10−5

Task 4 F (25, 4) = 21.38 F (25, 4) = 5.03 F (25, 4) = 7.20
p = 6.57× 10−27 p = 1.21× 10−8 p = 3.00× 10−12

considers 2 modules, i.e., the agent makes decision by treating all other modules to have 780

zero rewards. Therefore, the hypothetical module set has size |H| = 10 and actual 781

module set has |H′| = 2. 782

The mean squared error (MSE) of the estimated reward is shown in Fig 3. If data is 783

scarce, the sparse version of modular IRL algorithm (λ = 0.1, 0.25) can recover rewards 784

more accurately than the non-sparse version. Sparse modular IRL correctly identifies 785

modules that the agent paid attention to, indicated by low MSE values obtained. As 786

the regularization constant λ controls the importance of the regularization term, a very 787

large λ introduces a large bias in estimation and may fail to converge to the truth, as 788

shown by λ = 1. One can use the standard cross-validation techniques in choosing the 789

value for λ. 790

Appendix 2: One-way ANOVA for Estimated 791

Rewards 792

Table 2 shows ANOVA results for individual differences in reward between subjects. 793

Fig 4 visualizes the effect of task condition on reward function for each individual 794

subject. 795
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(A) Task1: path only (B) Task2: obstacle + path

(C) Task3: target + path (D) Task4: target + obstacle + path

Fig 4. Average normalized rewards for each subject under different task instructions.
The relative reward magnitude changes between tasks and agrees with task instructions.
Under the same task instruction, individual differences in reward function are shown.
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Appendix 3: Bayesian Inverse Reinforcement 796

Learning 797

Bayesian IRL leverages demonstrated state-action pairs, treats them individually as 798

evidence for the underlying reward function and therefore is able to express the 799

likelihood of reward functions given demonstrations. The normalizing factor for 800

computing the probability of reward functions is hard to compute, hence Bayesian IRL 801

instead adopts a Monte Carlo Markov Chain (MCMC) sampling method to acquire a set 802

of reward samples using the unnormalized likelihood function [36]. In order to compute 803

the likelihood of a given reward function during sampling, it is required to compute the 804

Q-values for all the state-action pairs in the demonstration set, which means solving a 805

reinforcement learning (RL) problem given the Markov Decision Process (MDP). 806

Therefore, Bayesian IRL is indeed a very computationally expensive algorithm. 807

In order to make our human experiment environment tractable by Bayesian IRL, the 808

virtual room is discretized into a 2D gridworld of size 32× 24 with 0.2×0.2 m2 cells. 809

Each cell is a state in the MDP. The actions are discretized into 8 directions so that an 810

agent can move to any adjacent state in the gridworld. The (center) location of targets, 811

obstacles and waypoints are treated as different feature points, which contribute to each 812

state’s feature by distance. The problem is formulated as learning the weights for the 813

three different features: targets, obstacles and waypoints. The three features are 814

represented using three different continuous values at each state. More specifically, the 815

closer a state is to an target/obstacle/waypoint, the higher the feature value for the 816

particular object at that state. The reward at any given state is computed as the linear 817

combination of these features using their corresponding weights. The observations are a 818

set of state-action pairs extracted from the human’s trajectory, which are fitted to the 819

discretization of the space. 820

The parameters for Bayesian IRL are set empirically. The confidence factor α is set 821

at 80 and the chain length is set to be 3000 (since there are only three values, i.e. 822

feature weights, to be tweaked, which is relatively small). A value of 0.5 is used as the 823

discount factor for MDPs with the assumption that the decision making process of 824

humans tends to prefer immediate rewards. 825
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