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Abstract

With the increasing application of deep learning methods to the modelling
of regulatory DNA sequences has come an interest in exploring what types
of architecture are best suited to the domain. Networks designed to predict
many functional characteristics of noncoding DNA in a multitask framework
have to recognise a large number of motifs and as a result benefit from
large numbers of convolutional filters in the first layer. The use of large
first layers in turn motivates an exploration of strategies for addressing the
sparsity of output and possibility for overfitting that result. To this end we
propose the use of a dimensionality-reducing linear projection layer after the
initial motif-recognising convolutions. In experiments with a reduced version
of the DeepSEA dataset we find that inserting this layer in combination
with dropout into convolutional and convolutional-recurrent architectures
can improve predictive performance across a range of first layer sizes. We
further validate our approach by incorporating the projection layer into
a new convolutional-recurrent architecture which achieves state of the art
performance on the full DeepSEA dataset. Analysis of the learned projection
weights shows that the inclusion of this layer simplifies the network’s internal
representation of the occurrence of motifs, notably by projecting features
representing forward and reverse-complement motifs to similar positions in
the lower dimensional feature space output by the layer.
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Introduction

The abundance of data characterising the function of non-coding DNA at
high resolution facilitates the use of complex data-driven methods to learn
the sequence features known as ‘motifs’ that encode this function (Alipanahi
et al., 2015). A number of works have used neural networks to model hu-
man regulatory DNA, taking as input fixed-length regions of DNA sequence
and predicting properties such as transcription factor binding, chromatin
accessibility and histone marks using data collected by ENCODE and other
consortia (Zhou and Troyanskaya, 2015; Kelley et al., 2016; Quang and Xie,
2016; Kelley and Reshef, 2017; Gupta and Rush, 2017; Zhou et al., 2018).
Several of these networks are intended to simultaneously model a wide vari-
ety of the functional characteristics of the input region, by predicting hun-
dreds or even thousands of such measurements across multiple cell types
in a multi-task learning framework. With hundreds of known regulatory
motifs recorded in databases such as JASPAR (Khan et al., 2018), machine
learning models capable of fully characterising a significant variety of the
measurable functional properties of human noncoding DNA must be able to
recognise a large number of distinct patterns in the input sequence. Indeed
while existing approaches have varied in the details of their neural network
architectures, they have tended to share the use of relatively large num-
bers of convolutions as motif scanners in the first layer, and differed mainly
in the subsequent layers where standard convolutions, dilated convolutions
and recurrent layers have all been used to model interactions between fea-
tures (Zhou and Troyanskaya, 2015; Kelley et al., 2016; Quang and Xie,
2016; Kelley and Reshef, 2017; Gupta and Rush, 2017). The best reported
performance on the DeepSEA benchmark was achieved by a network having
1024 convolutional kernels in its first layer (Quang and Xie, 2016); indeed
even when experimenting with single-output networks designed to predict
binding for a single transcription factor, Zeng et al. (2016) observed that
the performance of convolutional networks continued increasing with the
number of filters in the first layer up to over 100 filters.1

The use of a sufficient number of first layer filters to capture the variety

1For comparison, top performing networks on imagenet (He et al., 2016; Simonyan and
Zisserman, 2014) make do with only 64 filters in the first layer despite the output dimension
being comparable to that of DeepSEA. This discrepancy may perhaps be explained by the
fact that while the features learned by the first layers of image processing networks are
small, generic and only gradually composed into more specific features by subsequent
layers, the features learned by the first layers of networks in regulatory genomics are by
design highly specific motifs, typically 10-20bp in length.
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of motifs relevant to the task at hand thus appears to be an important con-
sideration in the design of neural networks for processing noncoding DNA
sequences. At the same time, it raises questions. For one thing, the use
of a large number of parameters in the first layer raises the possibility of
overfitting. Moreover, first layers designed to recognise large numbers of
specific motifs are bound to produce outputs which are relatively sparse and
high-dimensional, which may hamper learning in subsequent layers (Bengio
et al., 2003). Finally, these layers are computationally expensive, particu-
larly when applied to long sequences, both due to the cost of computing the
activations by convolving the input at each point in the sequence, and the
cost in the next layer of processing sequences of high-dimensional activation
vectors.

Standard regularisation techniques such as dropout (Srivastava et al.,
2014) may be expected to help alleviate the problem of overfitting, and have
been applied to the first convolutional layer in previous works. But there
is room for further work both in terms of characterising the extent of the
problem and investigating alternative solutions. Projection layers, which
can be used to reduce the dimensionality of a representation without reduc-
ing its resolution, are a popular component of deep networks in computer
vision where they are often referred to as 1x1 convolutions (Szegedy et al.,
2014; He et al., 2016; Lin et al., 2013). Reducing the dimensionality of a
layer’s activations reduces the number of parameters required in the sub-
sequent layer, as well as the cost of computing that layer’s activations. At
the same time, depending on the nature of the features learned in the first
layer, the denser representation resulting from the projection may well pre-
serve much of the information contained therein. Even random projections
are well known to preserve distances in dense representations (Johnson and
Lindenstrauss, 1984; Bingham and Mannila, 2001).

The common practice of including amongst the training inputs both for-
ward and reverse-complement versions of each target sequence in particular
motivates the exploration of a more compressed representation. Models are
forced by this form of data augmentation to recognise distinct instances
(forward and reverse-complement) of functionally equivalent motifs. Meth-
ods capable of identifying these two instantiations therefore offer the same
expressivity at potentially lower representational cost. Recognition of this
issue has motivated the development of layers specially adapted to ensure
the identity of forward and reverse-complementary sequences (Shrikumar
et al., 2017). The use of projections offers an alternative approach to this
problem.

Here we focus on the design choices related to the capacity of multi-
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task networks to recognise a sufficient variety of motifs in input sequences,
by jointly exploring both the effect of the number of first layer filters and
the use of projection and dropout as approaches designed to mitigate the
disadvantages of a large first layer. We choose to address these questions
using the DeepSEA dataset (Zhou and Troyanskaya, 2015), since this has
previously been used to benchmark different network architectures (Gupta
and Rush, 2017; Quang and Xie, 2016). Initially using a reduced version of
the dataset with shortened input regions, we vary the number of first layer
filters for standard convolutional and convolutional-recurrent architectures
with and without a projection layer and dropout, with our results indicating
the importance of regularisation and the performance benefits of projection.
We incorporate the projection layer into a convolutional recurrent neural
network architecture with a number of modifications from the DanQ archi-
tecture proposed by Quang and Xie (2016). This new architecture achieves
state of the art performance on the full DeepSEA dataset.

Methods

Baseline architectures

We experiment with modifications to two classes of architecture which have
been successfully applied for multitask prediction in regulatory genomics.
Details of the hyperparameters we used when training versions of these mod-
els are provided in the sections describing the relevant experiments.

1. CNN: Both DeepSEA (Zhou and Troyanskaya, 2015) and Basset (Kel-
ley et al., 2016) use 3 layer CNNs, consisting of a stack of 3 convolution
and max-pooling operations followed by one or more fully connected
layers. DeepSEA’s convolutional layers are regularized using dropout
and a global L2 penalty, whereas Basset applies batch normalization
after each convolutional layer.

2. DanQ: The DanQ convolutional-recurrent architecture consists of a
single convolutional layer followed by a pooling layer and a bidirec-
tional LSTM (Graves and Schmidhuber, 2005). The full sequence of
LSTM outputs are passed through two fully connected layers in order
to generate predictions. Quang and Xie (2016) reported results for two
versions of this architecture, DanQ and DanQ-JASPAR, differing in
the sizes of the layers and in the initialization used for the first layer,
with half of the better-perfoming DanQ-JASPAR’s 1024 first-layer fil-
ters being initialized using known motifs from the JASPAR database.

4

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 10, 2018. ; https://doi.org/10.1101/412734doi: bioRxiv preprint 

https://doi.org/10.1101/412734
http://creativecommons.org/licenses/by-nc-nd/4.0/


Like DeepSEA, both DanQ architectures use dropout after their single
convolutional layer.

Linear projection layer

We investigate the use of a linear projection applied to the pooled activations
of the first layer of architectures of both types. In detail, suppose that the
first layer has m 1D convolutional filters and that after pooling the length
of the sequence representation is l. Then the pooled activations form a
sequence (a1, a2...al) of m-dimensional vectors. The output of the projection
layer is a sequence (v1, v2...vl) of k-dimensional vectors (k < m):

vi = Pai (1)

where P is a weight matrix of size k×m. The projection layer’s output is a
sequence of the same length as the sequence of the first layer’s pooled filter
activations, but whose members are vectors of a lower dimension, with the
same projection matrix P being used to reduce the dimension at each point
in the sequence. All the results reported below were obtained using a value
of k = 64, which seemed to represent a good tradeoff between dimensionality
reduction and preservation of information.

Improved convolutional-recurrent architecture

The best previously reported performance on the DeepSEA dataset was
achieved by the DanQ-JASPAR architecture which uses a single large con-
volutional layer followed by a max-pooling layer with stride and pool size of
15. This layer summarises the presence of the motifs identified by the con-
volutional layer across relatively large 15bp stretches of input. Pooling so
aggressively has the advantage of controlling the length of sequence to be fed
into the LSTM, preventing computation in the recurrent layer from becom-
ing prohibitively time consuming. We hypothesise that this pooling involves
throwing out useful positional information, which could be better preserved
by splitting the downsampling across two sets of convolution and pooling
layers rather than a single one. Therefore we propose an alternative con-
volutional recurrent (CRNN) architecture, which adds a projection layer,
a second convolutional layer and a second pooling operation between the
pooled outputs of the first convolutional layer and the bidirectional LSTM.
To ensure fair comparison, the overall level of downsampling in the convo-
lution and pooling layers is the same as in the DanQ-JASPAR networks,
such that the length of the sequence of inputs to the bidirectional LSTM is
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the same (64) in both cases. In common with the DanQ networks we use
a single fully-connected hidden layer before the output layer, but in order
to control overfitting we use as input to this layer not the full sequence of
LSTM outputs but their global mean. The proposed network, full details of
which are given below, has far fewer parameters than DanQ-JASPAR and
trains faster.

Experiments

The DeepSEA Dataset

The DeepSEA dataset consists of sequences of 1000bp from the human non-
coding genome, labelled for the presence of a peak in the central 200bp
in the signal for each of 919 chromatin features taken from ENCODE and
Roadmap (Consortium, 2012; Consortium et al., 2015). These features rep-
resent a range of transcription factor binding, chromatin accessibility and
histone modification measurements across a variety of cell types. Both for-
ward and reverse-complement versions of the sequence corresponding to each
set of targets are included in the dataset, meaning that models must be ca-
pable of learning both forward and reverse-complement motifs. We use the
original training, validation and test splits and follow Quang and Xie (2016)
in using as our primary evaluation metric test set AUPRC, which is cal-
culated after averaging predictions across forward and reverse complement
versions of each sequence.

Design choices related to first layer on reduced DeepSEA dataset

In our first set of experiments we seek to rigorously explore the optimal
configuration of the early layers of instantiations of both CNN and DanQ
network designs. We vary the number of first layer filters, the use of dropout
immediately after the first pooling layer, and the use of a projection layer
(we fix the output dimension of this layer at each point in the sequence to
64) while keeping other hyperparameters fixed for a version of each class of
architecture. When dropout and projection are used together, the dropout
is applied after the projection layer. A dropout rate of 0.2 is used in all cases,
which is the same as that applied to the activations of the first convolutional
layer in both the DeepSEA and DanQ architectures. Other modifications to
the original architectures were made in the interests of retaining comparable
performance while reducing computational cost and are described below.

The CNN model that we choose to explore here takes from Basset the
use of 3 convolutional layers, with kernel sizes of 19, 11 and 7 respectively,
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but varying in several other details. We use max pooling operations of sizes
6, 2, and 2 after the convolutional layers. The number of filters in the second
and third convolutional layers is held fixed at 128 and 256 respectively. The
outputs of the final pooling operation are fed into a single hidden layer of
2048 neurons to which dropout with dropout factor of 0.5 is applied. Leaky
ReLUs (Maas et al., 2013) are used for all activations. Our DanQ architec-
tures follow the original in most details other than those under investigation,
except for the use of Leaky ReLU rather than ReLU activations, and the
use of a reduced number of LSTM cells (100) in each direction.

To mitigate the cost of these experiments, we run them on a reduced
version of the DeepSEA dataset, using only the central 500bp of each 1000bp
sequence. For all networks we use the Adam optimizer (Kingma and Ba,
2014) with an initial learning rate of 3 × 10−4 to minimize the multitask
binary cross entropy loss via mini-batch gradient descent with a batch size
of 256. The learning rate was reduced by a factor of 5 if the validation loss
did not decrease for two epochs. Training was terminated if the validation
loss did not improve for five epochs. All models were implemented in Keras
(Chollet et al., 2015) using the Theano backend (Theano Development Team,
2016).

Evaluation of CRNN architecture on full DeepSEA dataset

For the second set of experiments we use the full 1000bp for each sequence
and seek to compare the performance of our improved CRNN architecture
to that of DeepSEA and the two DanQ architectures. For comparison with
the two variants of DanQ, DanQ and DanQ-JASPAR, which have, respec-
tively, 320 and 1024 filters in the first layer, we explore two variants of our
CRNN architecture with 320 and 700 filters of length 30 in the first layer.
To evaluate the contribution of the projection layer, for each CRNN variant
we train one network with projection after the first pooling operation, and
one network without projection but otherwise identical to the first. All net-
works use a second convolutional layer with 128 filters of length 11 whose
activations are pooled and fed into a bidirectional LSTM with 300 units in
each direction. Max-pooling with stride and pool size of 7 after the first
convolutional layer and 2 after the second convolutional layer together with
unpadded convolutions ensure that the sequence of inputs to the LSTM is
of the same length as in the DanQ-JASPAR model. Dropout with a rate of
0.15 is applied to the projected first layer activations if projection is used,
and to the pooled first layer activations if not. Recurrent dropout (Gal and
Ghahramani, 2016) with a rate of 0.2 is applied to the LSTM. Leaky ReLUs
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Figure 1: Test set AUPRC as function of first layer size for CNNs (left) and DanQ
networks (right) with and without projection layer (projecting down to 64 dimensions)
and dropout (dropout rate of 0.2). Jitter was added to the number of first layer filters for
DanQ architectures to enable the points to be distinguished.

are used for all layer activations. Networks are trained using the same learn-
ing rate schedules as in the previous set of experiments. We compare the
average test set AUPRCs of our models with those of the publicly available
trained DeepSEA and DanQ networks.

Results

Effects of first layer design choices on reduced-size dataset

In both fully convolutional and convolutional-recurrent architectures con-
sistent benefits were achieved by increasing the number of first layer filters,
with gradual saturation of performance (as measured by test set AUPRC
averaged across the tasks) at around 1000 filters in both cases (Figure 1).
In the fully convolutional networks the benefit of the projection layer was
very clear, with all networks which used projection outperforming those that
didn’t, often by considerable margins. A combination of dropout and pro-
jection achieved the best performance in every case. There is less evidence
of benefit in the case of the networks using DanQ-style architectures, with
networks with regularisation sometimes outperforming those without, but
a lack of a clear pattern in the results, at least under the test set AUPRC
metric. This is despite models incorporating dropout and the projection
layer consistently achieving lower cross-entropy loss on the validation set.
One factor in the difference between the two types of architectures is the
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Figure 2: Validation set loss curves for CNN (left) and DanQ (right) models with 500 first
layer filters, either with or without the two regularisation strategies. The CNN network
shows much more evidence of overfitting.

degree of overfitting that the standard, unregularised architecture suffers.
We observed that fully convolutional architectures showed a much greater
tendency to overfit than convolutional-recurrent architectures (Figure 2).
We note that unlike a convolutional layer, an LSTM already learns its own
projection in the form of the weight matrix which transforms the inputs into
the internal state space within the input and forget gates. These internal
projections may help reduce both the tendency to overfit and the poten-
tial performance improvement associated with incorporating an additional
projection layer. In contrast, inserting a projection layer into a CNN ar-
chitecture substantially reduces the degree of overfitting (Figure 2), which
allows CNN networks including projection layers continue to benefit from
adding additional filters in the first layer, whereas without projection, CNN
performance hardly improves beyond 500 first layer filters, as the benefit of
extra feature detectors is offset by the increased likelihood of overfitting.

Projection layer helps improved CRNN architecture outper-
form other models on full DeepSEA data

Table 1 shows the cross entropy losses on the validation and test sets for
our best-performing convolutional recurrent (CRNN) models as well as pub-
lished baselines. CRNN-700 achieves the best average test set AUPRC of the
compared models while being significantly less costly to train than DanQ-
JASPAR, and without requiring the use of any known motifs to initialize
first layer filters, as DanQ-JASPAR does. For both CRNN models we also
compare the performance of models with and without the projection layer.
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Model Params Valid
Loss

Test
Loss

Test
AUPRC

DeepSEA 155,159,839 0.0509 0.0554 0.343

DanQ 46,926,479 0.0491 0.0538 0.371

DanQ-JASPAR 67,892,175 0.0482 0.0533 0.379

CRNN-320-projection 2,477,479 0.0485 0.0532 0.383

CRNN-320 2,727,335 0.0489 0.0540 0.375

CRNN-700-projection 2,547,779 0.0475 0.0526 0.391

CRNN-700 3,174,595 0.0484 0.0533 0.385

Table 1: Performance of CRNN models with and without projection layer compared
to DeepSEA and DanQ networks. CRNN-n is a model with 2 convolutional layers with
n and 128 filters respectively, with kernel sizes of 30 and 11, followed by a bidirectional
LSTM with 300 units in each direction, whose outputs are averaged and fed through a
hidden layer with 919 units which in turn feeds into the output layer. CRNN-n-projection
is identical to CRNN-n except for the inclusion of a projection layer between the first
and second convolution layers, which effectively reduces the dimension of the first layer’s
activations from n to 64. Losses and AUPRCs for DanQ and DeepSEA networks are
calculated using the publicly available model weights files. AUPRCs for all models are
calculated after averaging predictions for forward and reverse complement versions of
each test sequence, whereas forward and reverse complement versions of each sequence
contribute independently to the reported losses.

In both cases, the projection layer leads to a clear increase in performance
and a reduction in the cost per epoch of training the network.

Projection layer simplifies learning by unifying representa-
tions for forward and reverse-complement motifs

To understand the nature of the performance benefits brought by the use of
the projection layer, we can investigate the relationship between the projec-
tion weights learned and the motifs learned by the first convolutional layer.
To associate a motif with each filter in the first layer we follow a procedure
similar to that introduced by (Alipanahi et al., 2015): several thousand se-
quences from the training set are passed through the trained model, and for
each first layer convolutional filter we record the identities of the nucleotides
at each position in the maximally-activating stretch of input in each sequence
in which that filter is activated. From this we construct a PFM which can
be converted into a motif representing the typical input pattern recognised
by the filter. Using TOMTOM (Gupta et al., 2006) to search the JASPAR
2018 database (Khan et al., 2018) we find that 257 of the 700 learned motifs
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Figure 3: PCA of projection weights corresponding to learned motifs with best matches
to known motifs in JASPAR database. Each point represents one of the 64 dimensional
column vectors of the projection weight matrix. Only columns corresponding to learned
motifs with a match with q-value less than 10−8 are included in the PCA to aid visualisa-
tion. Points are labelled by name of matched motif and whether it is the forward (f) or the
reverse complement (rc) version of the known motif that is matched. Points are coloured
by transcription factor family (cyan: C2H2 zinc finger, green: basic leucine zipper, red:
homeodomain, purple: basic helix-loop-helix, blue: all other).

of the best-performing CRNN-700-projection model have at least one signif-
icant match (q < 0.01). Each learned motif is also associated with one of the
columns in the 64× 700 weight matrix of the projection layer. Suppose for
example that at a certain point in an input sequence, the motif recognised
by the ith convolutional filter occurs. Assuming none of the other filters
are activated by this motif or its neighbouring region, the network’s repre-
sentation of this region of the input will then just be the vector obtained
by multiplying each weight in the ith column of the projection matrix by
the filter’s activation. Thus the ith column of the projection matrix can be
interpreted as representing an embedding of the motif learned by the ith

convolutional filter. To visualise these embeddings, we choose to focus on a
subset of the learned motifs which have the best matches to known motifs,
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selecting only the 44 learned motifs with q-values less than 10−8. The result
of performing a PCA on the 44 columns of the projection weight matrix
associated with these motifs is shown in Figure 3. Most strikingly, different
versions of the same motif tend to cluster together, with the embeddings for
filters which learn to recognise the forward version of a particular motif very
often close to those for filters which recognise the reverse complement of the
same motif. This suggests that the projection layer allows for a more effi-
cient internal representation of motifs, recognising that forward and reverse
complement patterns are functionally equivalent although completely differ-
ent and therefore requiring different feature extractors at the sequence level.
This representation of functional equivalence allows networks with a projec-
tion layer to harness the benefits of reverse-complement data augmentation
without paying a price in terms of representational complexity.

Discussion

Despite the recent progress in the application of deep learning methods to
model genomic data there remains work to be done in understanding the
types of architecture and design choices best suited to the domain. We
provide further evidence here that the performance of networks whose goal
is to predict hundreds of functional properties from the DNA sequence is
strongly dependent on the number of convolutional filters in the first layer.
In networks where the subsequent layer is also convolutional, performance
can be further improved by inserting a dimensionality-reducing projection
layer between the two sets of convolutions. A similar use of projection lay-
ers in networks designed to predict enhancers was independently proposed
by Chen et al. (2018) while we were finalising this manuscript. Their net-
work takes as input both DNA sequences and chromatin accessibility infor-
mation, and intersperses projections and convolutions on each of the two
data modalities. While their work shows that projections can be used in
highly performant architectures for regulatory genomics problems, they did
not explore the role of projections in achieving this performance. Here our
aim is to draw particular attention to the performance benefits and mode of
functioning of a single projection layer, inserted directly after a first DNA
motif-recognising convolutional layer, since we believe these point to its po-
tential utility beyond any single application. In particular, we show that
the projection layer is capable of learning the identity between forward and
reverse-complement versions of functionally equivalent motifs and thereby
simplifying the representation of the functional content of the sequence. It
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also reduces the number of parameters required in the subsequent layer,
leading to less overfitting (particularly in combination with dropout) and
reducing the computational cost. Incorporating the projection layer into
a convolutional-recurrent network architecture similar to the DanQ archi-
tecture leads to improved performance on the DeepSEA dataset with fewer
parameters and shorter per-epoch training times. Although we have only
tested the use of the projection layer on the DeepSEA dataset, we believe
that its use could be of important benefit in other situations in which accu-
rate prediction of the targets requires recognition of a large variety of motifs
in the input sequence.

Contributions

AHH proposed the use of the projection layer, implemented and trained the
models, ran the evaluations and wrote the paper. HK prototyped, imple-
mented and trained early versions of the models and designed the evalua-
tions. JR initiated the project, helped with the interpretation of the results
and helped write the paper.
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