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Abstract 11

Recent technologies are generating an abundance of genome sequence data and molecular and 12

clinical phenotype data, providing an opportunity to understand the genetic architecture and 13

molecular mechanisms underlying diseases. Previous approaches have largely focused on the 14

co-localization of single-nucleotide polymorphisms (SNPs) associated with clinical and expression 15

traits, each identified from genome-wide association studies and expression quantitative trait locus 16

(eQTL) mapping, and thus have provided only limited capabilities for uncovering the molecular 17

mechanisms behind the SNPs influencing clinical phenotypes. Here we aim to extract rich 18

information on the functional role of trait-perturbing SNPs that goes far beyond this simple 19

co-localization. We introduce a computational framework called Perturb-Net for learning the gene 20

network that modulates the influence of SNPs on phenotypes, using SNPs as naturally occurring 21

perturbation of a biological system. Perturb-Net uses a probabilistic graphical model to directly 22

model both the cascade of perturbation from SNPs to the gene network to the phenotype network 23

and the network at each layer of molecular and clinical phenotypes. Perturb-Net learns the entire 24

model by solving a single optimization problem with an extremely fast algorithm that can analyze 25

human genome-wide data within a few hours. In our analysis of asthma data, for a locus that was 26

previously implicated in asthma susceptibility but for which little is known about the molecular 27

mechanism underlying the association, Perturb-Net revealed the gene network modules that mediate 28

the influence of the SNP on asthma phenotypes. Many genes in this network module were well 29

supported in the literature as asthma-related. 30

Introduction 31

One of the key questions in biology is how genetic variation perturbs gene regulatory systems to 32

influence disease susceptibility or other phenotypes in a population. Recent advances in technologies 33

have allowed researchers to obtain genome sequence data along with phenotype data at different 34

levels of biological systems, such as gene expression,1 proteome,2 metabolome,3 and various clinical 35

phenotype data. Combining genome sequence data with various types of molecular and clinical 36
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phenotype data in a computational analysis has the potential to reveal the complex molecular 37

mechanisms controlled by different genetic loci that underlie diseases and other phenotypes. 38

To study gene regulatory systems, many previous works have considered the naturally-occurring 39

perturbation of gene expression by genetic variants such as single nucleotide polymorphisms (SNPs), 40

captured in expression and genotype data collected from a population. Compared to experimental 41

perturbation methods such as gene knockdown4 and genome editing techniques,5 SNP perturbation 42

for functional genomics studies has an advantage of being more cost effective, being easily applicable 43

to humans, and being potentially more meaningful subtle perturbations because they exist in 44

nature.6 However, it comes with the computational challenge of having to isolate the perturbation 45

effect of each individual genetic variant, when a large number of genetic variants are perturbing the 46

gene network simultaneously. Several computational methods have been proposed to address this 47

challenge. Sparse conditional Gaussian graphical models (sCGGMs) have been introduced for 48

simultaneously identifying the gene network and expression quantitative trait loci (eQTLs) from 49

population SNP and expression data.7,8,9 Many other works have relied on statistically less powerful 50

approaches of identifying eQTLs first and then incorporating the eQTLs in the network learning 51

procedure.10,11,12 52

However, there have been relatively few works on modeling how a gene network perturbed by 53

SNPs mediates the SNP perturbation of phenotypes. Most of the existing methods did not directly 54

address this problem and thus, provided only limited capabilities for uncovering the molecular 55

mechanisms behind the SNP perturbation of clinical phenotypes. Many of the previous approaches 56

were concerned with identifying simply the co-localization of eQTLs and trait-associated 57

SNPs,13,14,15 each of which were identified in a separate eQTL mapping1,10,16,17 and a genome-wide 58

association study.18,19 These methods did not provide a description of the regulatory roles of the 59

trait-associated SNPs beyond their co-localization with eQTLs. The genome-transcriptome-phenome 60

structured association method20 focused only on identifying eQTLs and trait-associated SNPs, and 61

was concerned with neither learning a gene network nor uncovering its role in modulating SNP 62

effects on phenotypes. A predictive network model for diseases that involves Bayesian networks for 63

gene regulatory networks have been proposed,21 but this approach relied on an elaborate pipeline of 64
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analysis to identify disease-related gene modules and genetic variants that could potentially lead to 65

loss of statistical power. 66

Here, our goal is to extract rich information on the functional role of trait-perturbing SNPs that 67

goes far beyond the simple co-localization with eQTLs, which was the focus of many of the previous 68

studies.13,14,15 Towards this goal, we introduce a computational framework called Perturb-Net for 69

directly modeling and learning the gene network that modulates the influence of SNPs on 70

phenotypes, using SNPs as naturally occurring perturbation of a biological system. Perturb-Net 71

builds on the key idea in the previous work on sCGGMs7,8 for learning a gene network using SNP 72

perturbations, and models the cascade of a gene network and a phenotype netowrk under SNP 73

perturbations as a cascade of sCGGMs, called a sparse Gaussian chain graph model (Figure 1A). Our 74

probabilistic graphical model framework naturally leads to a set of inference algorithms for inferring 75

a detailed description of how different parts of the gene network mediate the influence of SNPs on 76

phenotypes, given the model estimated from population genotype, expression, and phenotype data 77

(Figure 1B). The Perturb-Net model and inference procedures together provide a powerful tool for 78

studying the gene regulatory mechanisms whose perturbations by SNPs lead to diseases. 79

We present a statistically powerful and extremely efficient algorithm for learning the Perturb-Net 80

model. The Perturb-Net learning algorithm is statistically powerful, since it estimates the entire 81

model by solving a single optimization problem with minimal loss of statistical power and with a 82

guarantee in finding the optimal solution due to the convexity of the optimization problem. The 83

Perturb-Net learning algorithm is also computationally efficient and can analyze human 84

genome-wide data with 500,000 SNPs, 11,000 gene expression levels, and several dozens of phenotype 85

data within a few hours. The performance of the Perturb-Net learning algorithm directly depends on 86

that of sCGGM optimization, since it uses the sCGGM learning algorithm as a key module. The 87

previous state-of-the-art method22 had limited scalability due to expensive computation time and 88

large memory requirement, requiring more than 4 hours for only 10,000 SNPs and running out of 89

memory for 40,000 SNPs. We present a new learning algorithm Fast-sCGGM and its extension 90

Mega-sCGGM with orders-of-magnitude speed-up in computation time that runs on a single 91

machine without running out of memory and that is parallelizable. Our new sCGGM learning 92
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algorithms allow Perturb-Net to be applied to human genome-wide data. 93

We demonstrate Perturb-Net on the data collected for participants in the Childhood Asthma 94

Management Program (CAMP).23,24,25 Perturb-Net revealed the asthma gene network and how 95

different parts of this gene network mediate the SNP perturbations of phenotypes. Furthermore, for 96

a locus that was previously implicated in asthma susceptibility but for which little has been known 97

about the molecular mechanism underlying the association, Perturb-Net revealed the gene network 98

modules that mediate the influence of the SNP on asthma phenotypes. Many genes in this network 99

module were well supported in the literature as asthma-related, suggesting our framework can reveal 100

the molecular mechanisms underlying the SNP perturbations of phenotypes. 101

Material and Methods 102

We describe the model and learning/inference algorithms for Perturb-Net for learning the gene 103

network under SNP perturbations that underlies clinical phenotypes. 104

Perturb-Net model 105

Let x ∈ {0, 1, 2}p denote minor allele frequencies at p loci of an individual, y ∈ R
q expression levels 106

for q genes, and z ∈ R
r measurements for r phenotypes. Then, Perturb-Net models the cascaded 107

influence of SNPs on a gene network and a phenotype network as a Gaussian chain graph model 108

(Figure 1A), which is a factorized conditional probability distribution defined as follows: 109

p(y, z|x) = p(y|x)p(z|y). (1)

Each probability factor above is modeled as a conditional Gaussian graphical model (CGGM):7,8,22 110

p(y|x) = exp(−
1

2
yTΛyy − xTΘxyy)/Z1(x), (2)

p(z|y) = exp(−
1

2
zTΛzz− yTΘyzz)/Z2(y). (3)
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The first probability factor in Eq. (2) models the gene network perturbed by SNPs, representing the 111

gene network as a q × q positive definite matrix Λy and the SNP perturbation of this network as 112

Θxy ∈ R
p×q. The second probability factor in Eq. (3) models the phenotype network Λz, a r × r 113

positive definite matrix, and the perturbation of this network by gene expression levels Θyz ∈ R
q×r. 114

The Z1(x) and Z2(y) in Eqs. (2) and (3) are the constants for ensuring that each CGGM is a proper 115

probability distribution that integrates to one. Our model in Eq. (1) defines a probability 116

distribution over the graph shown in Figure 1A. Thus, a non-zero value in the (i, j)th element of the 117

network parameters, [Λy]i,j of Λy and [Λz]i,j of Λz, corresponds to presence of an edge between the 118

ith and jth expression or clinical phenotypes. Similarly, a non-zero value in the (i, j)th element of 119

the perturbation parameters, [Θxy]i,j of Θxy and [Θyz]i,j of Θyz, indicates an edge between the ith 120

perturbant and the jth expression or clinical phenotype. 121

This Gaussian chain graph model corresponds to the continuous counterpart of the chain graph 122

model obtained by threading conditional random fields (CRFs) for discrete random variables. CRFs 123

and the chain graph models built from CRFs have been hugely popular in other application areas of 124

statistical machine learning such as text modeling and image analysis for modeling multiple 125

correlated output features influenced by input features.26,27,28 Here, we explore the use of a chain 126

graph model constructed with sCGGMs, corresponding to Gaussian CRFs, and develop an extremely 127

fast learning algorithm that runs on human data within a few hours and a set of inference algorithms 128

for dissecting the gene regulatory mechanisms that govern the influence of SNPs on phenotypes. 129

Perturb-Net learning algorithms 130

We present an extremely efficient algorithm for obtaining a sparse estimate of the model parameters 131

with few edges in the graph. The Perturb-Net learning algorithm minimizes the negative 132

log-likelihood of data with L1 regularization,29 which is a convex optimization problem with a 133

guarantee in finding the optimal solution. Given genotype data X ∈ R
n×p for n samples and p 134

SNPs, expression data Y ∈ R
n×q for q genes, and phenotype data Z ∈ R

n×r for r phenotypes for 135

the same n samples, we estimate a sparse Gaussian chain graph model in Eq. (1) by minimizing the 136

6/40

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 10, 2018. ; https://doi.org/10.1101/412817doi: bioRxiv preprint 

https://doi.org/10.1101/412817
http://creativecommons.org/licenses/by-nc/4.0/


negative log-likelihood of data along with sparsity-inducing L1 penalty: 137

min
Λy≻0,Θxy,Λz≻0,Θyz

f(Λy,Θxy) + f(Λz,Θyz), (4)

where 138

f(Λy,Θxy) = −log |Λy|+tr(SyyΛy+2Sxy
TΘxy+Λy

−1ΘT
xySxxΘxy)

+λΛy
‖Λy‖1 + λΘxy

‖Θxy‖1

f(Λz,Θyz) = −log |Λz|+tr(SzzΛz+2Syz
TΘyz+Λz

−1ΘT
yzSyyΘyz)

+λΛz
‖Λz‖1 + λΘyz

‖Θyz‖1,

given data covariance matrices Sxx = 1
nX

TX, Sxy = 1
nX

TY, Syy = 1
nY

TY, Syz = 1
nY

TZ, and 139

Szz = 1
nZ

TZ, and ‖ · ‖1 for the non-smooth elementwise L1 penalty. The regularization parameters 140

λΛy
, λΘxy

, λΛz
, λΘyz

> 0 are chosen to maximize the Bayesian information criterion (BIC). We do 141

not penalize the diagonal entries of Λy and Λz, following the common practice for sparse inverse 142

covariance estimation. 143

The above optimization problem decouples into two subproblems, each containing one of two 144

disjoint sets of parameters {Λy,Θxy} and {Λz,Θyz}, each of which can be solved with an sCGGM 145

optimization algorithm. Since our learning algorithm uses an sCGGM learning method as a key 146

module, we developed sCGGM learning algorithms called Fast-sCGGM for reducing computation 147

time and Mega-sCGGM for futher improving Fast-sCGGM to remove the memory constraint, both 148

of which are parallelizable over multiple cores of a machine. Fast-sCGGM improves the computation 149

time of the previous method by alternately optimizing the network parameter (Λy and Λz) and the 150

perturbation parameters (Θxy and Θyz), where each of the alternate optimization can be efficiently 151

solved using the fast Lasso optimization technque as the key subroutine (see Appendix A for detail). 152

While Fast-sCGGM improves the computation time of the previous method, it is limited by the 153

memory size required to store large q × q or p× q matrices during the iterative optimization. A 154

naive approach to reduce the memory footprint would be to recompute portions of these matrices on 155
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demand for each coordinate update, which would be very expensive. Hence, we combine 156

Fast-sCGGM with block coordinate descent and introduce the Mega-sCGGM algorithm to scale up 157

the optimization to very large problems on a machine with limited memory. During the iterative 158

optimization, we update blocks of the large matrices so that within each block, the computation of 159

the large matrices can be cached and re-used. These blocks are determined automatically in each 160

iteration by exploiting the sparse stucture (see Appendix A for detail). 161

We introduce a modification of our learning algorithm for semi-supervised learning, to handle the 162

situation where expression data are available only for a subset of individuals because of the difficulty 163

of obtaining tissue samples. This modification corresponds to an expectation maximization (EM) 164

algorithm30 that imputes the missing expression levels in the E-step and performs our Fast-sCGGM 165

or Mega-sCGGM optimization in the M-step. For semi-supervised learning, given a dataset 166

D = {Do,Dh}, where Do = {Xo,Yo,Zo} for the fully-observed data and Dh = {Xh,Zh} for the 167

samples with missing gene-expression levels, we adopt an EM algorithm30 that iteratively maximizes 168

the expected log-likelihood of data: 169

L(Do;Θ) + E
[

L(Dh,Yh;Θ)
]

,

combined with L1-regularization, where L(Do;Θ) and L(Dh;Θ) are the log-likelihood of data Do

and Dh with respect to the model in Eq. (1) and the expectation is taken with respect to:

p(y|z,x) = N(µy|x,z,Σy|x,z), (5)

µy|x,z = −Σy|x,z(Θyzz+ΘT
xyx) and Σy|x,z = (Λy +ΘyzΛzΘ

T
yz)

−1.

A naive implementation of this EM algorithm leads to an algorithm that requires expensive 170

computation time and large storage of dense matrices that exceeds the computer memory. To make 171

the EM algorithm efficient in terms of both time and memory, we embed the expensive E-step 172

computation within the M-step, using a low-rank representation of dense matrices (see Appendix B). 173

This implementation produces the same estimate as the original EM algorithm. 174
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Perturb-Net inference procedures 175

While the sparse Gaussian chain graph model explicitly represents pair-wise dependencies among 176

variables as edges in the graph, there are other dependencies that are only implicitly represented in 177

the model but can be revealed by performing an inference on the estimated probabilistic graphical 178

model. Here, we provide an overview of the inferred dependencies, all of which involve simple matrix 179

operations. 180

The following two inference methods directly follow from the inference method for an sCGGM 181

(Figure 1A),7,8 which infers the indirect perturbation effects that arise from the direct perturbation 182

effects propagating to other parts of the network. 183

• Indirect SNP perturbation effects on gene expression levels: Bxy = −ΘxyΛy
−1,

where [Bxy]i,j represents the indirect perturbation effect of SNP i on the expression level of

gene j (blue dashed arrow in Figure 1A). This can be seen by deriving the marginal

distribution from the sCGGM component model p(y|x) as follows:

p(y|x) = N(BT
xyx,Λy

−1). (6)

From Eq. (6), the marginal distribution for the expression level [y]i of gene i can be obtained 184

as p([y]i|x) = N
([

[Bxy]:,i
]T

x, [Λy
−1]i,i

)

. While [Θxy]i,j represents the direct perturbation 185

effect of SNP i on the expression of gene j, [Bxy]i,j represents the overall perturbation effect 186

that aggregates all indirect influence of this SNP on gene j through other genes. When SNP i 187

does not influence the expression of gene j directly but exerts influence on gene j through 188

other genes connected to gene j in the network Λy, we have [Θxy]i,j = 0 but [Bxy]i,j 6= 0. 189

• Indirect effects of gene expression levels on clinical phenotypes: Byz = −ΘyzΛz
−1,

where [Byz]i,j represents the indirect influence of the expression level of gene i on phenotype j

(red dashed arrow in Figure 1A). Similarly as above, this can be seen by deriving the marginal
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distribution from the sCGGM component model p(z|y), as follows:

p(z|y) = N(BT
yzy,Λz

−1).

Then, the marginal distribution for [z]i of phenotype i can be obtained as p([z]i|y) 190

= N
([

[Byz]:,i
]T

y, [Λz
−1]i,i

)

. While [Θyz]i,j represents the direct influence of gene i on 191

phenotype j, [Byz]i,j represents the overall influence that aggregates all indirect influence of 192

this expression level on phenotype j through other phenotypes. 193

The sparse Gaussian chain graph model provides the following additional inference procedures for 194

extracting the information on whether SNP perturbation effects on the gene network reach the 195

phenotypes and how different genes or subnetworks of the gene network mediate SNP effects on 196

phenotypes (Figure 1B). 197

• SNP effects on clinical phenotypes: Bxz = BxyByz, where [Bxz]i,j represents the overall

influence of SNP i on phenotype j mediated by gene expression levels in gene network Λy

(purple dashed arrow in Figure 1B). The effects of SNPs on phenotypes are not directly

modeled in our model but can be inferred by deriving the marginal distribution p(z|x) as

follows:

p(z|x) = N(BT
xzx,Λz

−1 +Λz
−1ΘT

yzΛy
−1ΘyzΛz

−1).

The marginal distribution for the phenotype [z]i of phenotype i given x can be obtained as 198

p([z]i|x) = N
([

[Bxz]:,i
]T

x, [Λz
−1 +Λz

−1ΘT
yzΛy

−1ΘyzΛz
−1]i,i), where each element [Bxz]i,j 199

represents the overall influence of SNP i on phenotype j mediated by the gene network in Λy 200

and other phenotypes connected to phenotype j in Λz. 201

• SNP effects on clinical phenotypes mediated by a gene module: The overall SNP

effects on phenotypes in Bxz above can be decomposed into the SNP effects on phenotypes

mediated by each gene module. Let M be a gene module that consists of a subset of the q

genes whose expression levels were modeled in Λy (yellow and orange gene modules in Figure
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1B). Then, the effects of SNPs on phenotypes mediated by the genes in module M can be

obtained as follows:

BM
xz =

∑

k∈M

[Bxy]:,k[Byz]k,:,

where [Bxy]:,a represents the ath row of Bxy and [Byz]b,: represents the bth column of Byz. In 202

the above equation, [BM
xz]i,j quantifies the effect of SNP i on phenotype j through the 203

expression levels of genes in module M . If M1, . . . ,Ms are disjoint subsets of q genes, where 204

∪m=1,...,sMm is the full set of q genes, we have the following decomposition: 205

Bxz =
s

∑

m=1

BMm

xz .

• Inferred dependencies among genes after seeing phenotype data: 206

Λy|x,z = Λy +ΘyzΛz
−1ΘT

yz represents gene network Λy augmented with the component 207

ΘyzΛz
−1ΘT

yz introduced through dependencies in phenotype network Λz (blue dashed edge in 208

Figure 1B). In this augmented network, additional edges are introduced between two genes if 209

their expression levels influence the same trait or if they both affect traits that are connected 210

in the phenotype network Λz. The posterior gene network Λy|x,z, which contains the 211

dependencies among expression levels after taking into account phenotype data, can be 212

obtained by inferring the posterior distribution given phenotypes from the estimated Gaussian 213

chain graph model as follows: 214

p(y|x, z) = N
(

−
(

zTΘT
yz + xTΘxy

)

Λ−1
y|x,z, Λ−1

y|x,z

)

,

where

Λy|x,z = Λy +ΘyzΛz
−1ΘT

yz.

The inferred network Λy|x,z can also be seen by inferring from the estimated model the joint 215
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distribution 216

p(z,y|x) = N
(

−Λ−1
(z,y)Θ

T
(yz,xy)x,Λ

−1
(z,y)

)

,

where Θ(yz,xy) = (0p×r,Θxy) with p× r matrix of 0’s and Λ(z,y) =







Λz ΘT
yz

Θyz Λy|x,z






. This 217

joint distribution is an alternative representation of the same Gaussian chain graph model in 218

Eq. (1) and corresponds to another sCGGM over y and z conditional on x. This process of 219

introducing the additional dependencies via ΘyzΛz
−1ΘT

yz in this new sCGGM, which is 220

equivalent to the original chain graph model, is also known as moralization in the probabilistic 221

graphical model literature.27 222

Prediction tasks 223

We use the estimated Perturb-Net model and the results of probabilistic inference on this model to 224

make predictions on previously unseen patients. From each of the two component sCGGMs in our 225

model, we make the following predictions: 226

• ŷnew|xnew = BT
xyxnew for predicting the expression levels ŷnew given the genotypes xnew of a 227

new patient 228

• ẑnew|ynew = BT
yzynew for predicting the phenotypes ẑnew given the expression levels ynew of a 229

new patient 230

From the full sparse Gaussian chain graph model, we make the following predictions: 231

• ẑnew|xnew = BT
xzxnew for predicting the phenotypes ẑnew given the genotypes xnew of a new 232

patient 233

• ŷnew|xnew, znew = −
(

zTnewΘ
T
yz + xT

newΘxy

)

Λ−1
y|x,z for predicting the gene expression levels 234

ŷnew given the genotypes xnew and the phenotypes xnew of a new patient 235
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Lasso for comparison with our algorithms 236

We compare the performance of our method with that of Lasso,29,31 a popular statistical method 237

based on linear regression models for studying the associations among SNPs, expression 238

measurements, and phenotypes. We begin by setting up a two-layer multivariate regression model 239

for genotypes x ∈ {0, 1, 2}p, expression measurements y ∈ R
q, and phenotypes z ∈ R

r as follows: 240

y = AT
xyx+ ǫy, ǫy ∼ N (0q,Ωy),

z = AT
yzy + ǫz, ǫz ∼ N (0r,Ωz),

where Axy ∈ R
p×q and Ayz ∈ R

q×r are regression coefficients, ǫy ∈ R
q and ǫz ∈ R

r are noise 241

distributed with zero means and diagonal covariances Ωy = diag(σ2
y1
, . . . , σ2

yq
) and 242

Ωz = diag(σ2
z1
, . . . , σ2

zq
). 243

Given genotype data X ∈ {0, 1, 2}n×p for n samples and p SNPs, expression data Y ∈ R
n×q for q 244

genes, and phenotype data Z ∈ R
n×r for r phenotypes, we obtain a Lasso estimate of the regression 245

coefficients by minimizing L1-regularized negative log-likelihood as follows: 246

minAxy

1

n
tr
(

(

Y −XTAxy

)(

Y −XTAxy

)T
)

+ γ1||Axy||1,

minAyz

1

n
tr
(

(

Z−YTAyz

)(

Z−YTAyz

)

)T

+ γ2||Ayz||1.

Using the Lasso estimate of the regression coefficients Axy and Ayz, we compute predictions for 247

this model analogously to our sparse Gaussian chain graph model. 248

• ŷnew|xnew = AT
xyxnew 249

• ẑnew|ynew = AT
yzynew 250

• ẑnew|xnew = AT
xzznew, where Axz = AxyAyz. 251

• ŷnew|xnew, znew =
(

zTnewΩzA
T
yz + xT

newAxyΩz

)

Ωy|x,z, where 252

Ωy|x,z =
(

[Ωy]
−1 +Ayz[Ωz]

−1Ayz
T
)−1

. For this prediction task, we estimate the variances as 253
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follows:32 254

σ2
yi

=
1

n− syi

(

[Y]:,i −XT [Axy]:,i
)T (

[Y]:,i −XT [Axy]:,i
)

, for i = 1, . . . , q,

σ2
zi

=
1

n− szi

(

[Z]:,i −YT [Ayz]:,i
)T (

[Z]:,i −YT [Ayz]:,i
)

for i = 1, . . . , r,

where syi
and szi

are the numbers of non-zero entries in [Axy]:,i and [Ayz]:,i respectively. 255

Preparation of asthma dataset 256

We applied our method to a dataset comprising genotype, gene expression, and clinical phenotype 257

data, collected from asthma patients participating in CAMP study.23,24,25 We used 174 258

non-Hispanic Caucasian subjects for whom both genotype and clinical phenotype data were 259

available. For a subset of 140 individuals, gene expression data from primary peripheral blood CD4+ 260

lymphocytes were also available. After removing SNPs with minor allele frequency less than 0.1 and 261

those with missing reference SNP ids, we obtained 495,597 SNPs for autosomal chromosomes. We 262

then imputed missing genotypes using fastPHASE.33 Given expression levels for 22,184 mRNA 263

transcripts profiled with Illumina HumanRef8 v2 BeadChip arrays,25 we removed transcript levels 264

with expression variance less than 0.01, which resulted in a set of 11,598 expression levels to be used 265

in our analysis. Then, we converted the expression values to their z-scores. The clinical phenotype 266

data comprised 35 phenotypes (Table S1), including 25 features related to lung function and 10 267

features collected via blood testing. The clinical phenotypes were converted to their z-scores within 268

each phenotype so that all phenotypes have equal variance. We then imputed missing values using 269

low-rank matrix completion.34 270

Comparison of the computation time of different algorithms 271

In order to compare the computation of different algorithms, we used the following software and 272

hardware setup. For Lasso, we used the implementation in GLMNET35 with a backend written in 273

Fortran. For Newton coordinate descent, which is the previous state-of-the-art approach for 274

optimizing sCGGMs, we took the implementation written in C++ provided by the authors22 and 275
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sped up this implementation with the Eigen matrix library, by employing low-rank matrix 276

representations and using sparse matrix multiplications. For all methods, the code was compiled and 277

run with OpenMP multi-threading enabled on the same machines with 20Gb of memory and 16 278

cores. We used the same regularization parameters for our method and the previous method for 279

sCGGM optimization, so the resulting solutions were identical with the same sparsity levels. For 280

Lasso, we chose the regularization parameters so that the L1-norm of the regression matrix roughly 281

matched that of our inferred indirect SNP effects. 282

Results 283

Comparison of the scalability of Mega-sCGGM and other methods 284

We assess the scalability of Mega-sCGGM and other previous algorithms on the expression 285

measurements of 11,598 genes and the genotypes of 495,597 SNPs for 140 subjects from the CAMP 286

data. We estimated sCGGMs, using both our new method and the previous state-of-the-art method 287

based on the Newton coordinate descent method.22 Since the sCGGM optimization problem is 288

convex with a single globally optimal solution, both our and previous methods obtain the same 289

parameter estimates, although the computation time differs between the two methods. We also 290

obtained the computation time of Lasso implemented in GLMNET,29,35 the well-known 291

computationally efficient algorithm for learning a simple but less powerful regression model. 292

Although the sparse multivariate regression with covariance estimation36 has also provided a 293

methodology that could be used for learning a gene network influenced by SNPs, this approach has 294

been found to take days to learn a model from a small dataset of only 1,000 SNPs and 500 gene 295

expression levels,8 so we did not include it in our experiment. All of the optimization methods were 296

run on the same hardware setup with comparable software implementations. 297

In our comparison of different methods, our algorithm significantly outperformed the previous 298

state-of-the-art method for learning an sCGGM in terms of both computation time and memory 299

requirement and scaled similarly to Lasso (Figure 2). In comparison of our method with Lasso on 300

datasets with 40,056 SNPs from chromosome 1, 21,757 SNPs for chromosomes 1 through 6, and 301
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495,597 SNPs from all autosomal chromosomes and all expression measurements, our method was not 302

substantially slower than Lasso, even though our method learns a more expressive model than Lasso. 303

The previous sCGGM optimization algorithm ran out of memory even on the smallest dataset above 304

with SNPs only from chromosome 1, so we compared the two algorithms on a much smaller dataset 305

with 1,000 and 10,000 SNPs. On 10,000 SNPs, the previous algorithm for sCGGM required more 306

than four hours, whereas in less than four hours, our algorithm was able to run on all 495,597 SNPs. 307

Analysis of asthma data 308

We now fit a sparse Gaussian chain graph model to the genotype, expression, clinical phenotype data 309

gathered from participants in the Childhood Asthma Management Program (CAMP).23,24,25 After 310

preprocessing the data, we applied our method to the data from 140 subjects for whom all data were 311

available for 495,597 SNPs on 22 autosomal chromosomes, 11,598 gene expression levels, and 35 312

phenotypes (Table S1) and 34 additional subjects for whom data were available only for genotypes 313

and phenotypes but not for expression levels. Below we perform a detailed analysis of the estimated 314

model. 315

Overview of the Perturb-Net model 316

We first examined the overall estimated model for the module structures in the phenotype and gene 317

networks (Figure 3). To see the structure in the phenotype network Λz, we reordered the nodes of 318

the network by applying hierarchical clustering to each set of the lung function and blood test 319

phenotypes. This revealed the dense connectivities within the two known groups of phenotypes and 320

the two sub-clusters within the group of lung function phenotypes (Figure 3A). 321

The gene network Λy also showed a clear module structure (Figure 3B). To find the module 322

structure in the network, we identified the genes that are connected to at least one other gene in the 323

network Λy and partitioned the network over those genes into 20 subnetworks with roughly equal 324

number of nodes, using the network clustering algorithm METIS.37 Out of 11,598 genes, 6,102 genes 325

were connected to at least one other gene in the network. For the rest of our analysis, we focus on the 326

network and modules over the 6,102 genes, since these genes are likely to form modules for pathways 327
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with a functional impact on asthma phenotypes. Modules 1-15 were densely connected clusters of 328

co-expressed genes, suggesting those modules are likely to consist of a functionally coherent set of 329

genes, whereas modules 16-20 had relatively fewer edge connections within each cluster. 330

Next, we considered the effects of the gene modules on the lung and blood phenotypes in Θyz 331

and the SNP perturbations of the gene modules in Θxy. Modules 1-12 had relatively small effects on 332

the phenotypes despite their dense connectivities, whereas modules 13-20 appeared to have stronger 333

effects on both groups of phenotypes (Figure 3C). The SNP effects on the modules in Θxy for the 334

top 1000 eQTL hotspots, determined by overall SNP effects on all genes (
∑

j |[Θxy]i,j | for each SNP 335

i), showed that many of these hotspots perturb the expression of genes in the same module in the 336

gene network (Figure 3D). Given these observations from the visual inspection of Θyz and Θxy, we 337

summarized Θyz and Θxy at module level and compared the module-level summaries across 338

modules. To quantify the module-level influence of expression levels on each group of phenotypes, 339

from the direct influence Θyz and indirect influence Byz we computed the overall effect sizes of all 340

genes in the given gene module on all phenotypes in each of the lung and blood phenotype groups 341

(
∑

i∈M,j∈K |[Θyz]i,j | and
∑

i∈M,j∈K |[Byz]i,j | for each gene module M and phenotype group K). 342

Similarly, from Θxy and Bxy we computed the overall SNP effect sizes on all genes in the given 343

module (
∑

i,j∈M |[Θxy]i,j | and
∑

i,j∈M |[Bxy]i,j | for each SNP i and module M). 344

Among the 20 gene modules, modules 13-20 overall had stronger influence on both lung and 345

blood phenotypes than the other gene modules (Figures 4A and 4B), although SNP perturbations 346

were found across all gene modules without any preference to those modules with stronger influence 347

on phenotypes (Figure 4C). For modules 13-20, the overall effect sizes on the lung phenotypes 348

ranged between 0.8 and 7.5 for direct and indirect influence with an exception of module 14, whereas 349

for modules 1-12, the overall effect sizes were less than 0.8 (Figure 4A). Modules 13-20 also had 350

strong effects on the blood phenotypes (Figure 4B), although module 13 had substantially stronger 351

effect on the blood phenotypes than on the lung phenotypes. On the other hand, the overall SNP 352

effects were similar across all gene modules for both the direct and indirect SNP effects (Figure 4B). 353

The overall indirect SNP effects were larger for some modules (e.g., module 14), but this was largely 354

because of the substantially stronger edge connectivities in that module, which led to stronger 355
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propagation of the direct SNP perturbation effects. 356

Gene modules that influence phenotypes are enriched for immune genes 357

To determine the functional role of the gene modules, we performed gene ontology (GO) gene set 358

enrichment analysis.38,39 For each module, we performed a Fisher’s exact test to find the 359

significantly enriched GO categories in biological processes (p-value < 0.05 after Bonferroni 360

correction for multiple testing), using the GO database with annotations for 21,002 genes. 361

Among all 20 modules, modules 13-15 had a statistically significant enrichment of GO terms 362

related to immune system function, which also corresponded to the most significant enrichments 363

across all modules (Table 1). Even though modules 16-20 did not have any significant enrichment of 364

asthma-related GO categories, many of the genes in these modules were connected to genes in 365

modules 13-15 in the posterior gene network Λy|x,z (Figure 5), and thus this subset of genes in 366

modules 16-20 may be also involved with immune system function. To see if this is indeed the case, 367

we obtained the significantly enriched GO categories in the 374 genes in modules 16-20 that are 368

connected to modules 13-15 in the posterior network Λy|x,z (p-value < 0.05 after Bonferroni 369

correction). This set of genes was significantly enriched for several GO categories related to immune 370

system processes, including cellular response to stress (p-value = 2.90 ×10−2 with overlap of 35 371

genes out of 1599 genes in the category), regulation of defense response to virus (p-value = 4.36 372

×10−2 with overlap of 6 genes out of 71 genes in the category), and regulation of immune effector 373

process (p-value = 4.42 ×10−2 with overlap of 14 genes out of 409 genes in the category). 374

Thus, all of the modules that influence phenotypes, modules 13-20, showed enrichments in 375

immune-related genes, with significant enrichment for modules 13-15 and weaker but still significant 376

enrichment for modules 16-20. Since asthma is an immune disorder, the enrichment of 377

immune-related genes in the trait-perturbing modules provides evidence that these modules are 378

likely to play an important role in asthma patients. 379
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SNPs perturbing asthma phenotypes overlap with SNPs perturbing immune modules 380

The SNP perturbation of the gene modules above (Figure 4C) may or may not result in a change in 381

phenotypes. To see if the SNPs perturbing each gene module have an impact on the lung and blood 382

phenotypes, we compared the top module-specific eQTLs in Θxy with the SNPs with the strongest 383

effects on the lung or blood phenotypes in Bxz inferred from our sparse Gaussian chain graph model. 384

The SNPs with the strongest effects on the lung (or blood) phenotypes were determined based on 385

the sum over the SNP effects on all lung (or blood) phenotypes in |Bxz|. Similarly, the top 386

module-specific eQTLs were determined based on the sum over the SNP effect sizes on all expression 387

levels in each module in |Θxy|. We obtained the overlap between the SNPs perturbing the 388

phenotype network and the SNPs perturbing the gene network, considering the top 100 and 200 389

module-specific eQTLs and top 200 SNPs perturbing each phenotype group (the cutoff for top 200 390

SNPs shown as the magenta line at SNP effect size 0.013 for lung traits in Figure S1A and at SNP 391

effect size 0.0037 for blood traits in Figure S1B). Using Fisher’s exact test, we also assessed the 392

significance of these overlaps within the set of SNPs with non-zero effects in Θxy. 393

In our comparison, only a subset of the eQTLs influenced phenotypes, but the eQTLs perturbing 394

the immune modules, modules 13-20, were more likely to perturb the phenotypes than the eQTLs for 395

the other modules (Figures 6A and 6B). Among the top 100 module-specific eQTLs, only a fraction 396

of those SNPs overlapped with top 200 SNPs perturbing phenotypes (ranging from 0% to 18% of 397

eQTLs across modules for an overlap with SNPs perturbing lung phenotypes and ranging from 2% 398

to 20% of eQTLs across modules for an overlap with SNPs perturbing blood phenotypes). These 399

fractions increased as we considered more eQTLs as in top 200 and all module-specific eQTLs. This 400

matches with the observations from previous studies that not all of the eQTLs affect higher-level 401

phenotypes21 and that trait-associated SNPs are likely to be eQTLs.40 However, in our analysis, the 402

eQTLs for immune-related modules, modules 13-20, tended to have larger overlaps than the other 403

modules (Figures 6A and 6B). Furthermore, we found these overlaps are statistically significant for 404

all of the immune modules, modules 13-20, but not for all of the other modules, and the most 405

statistically significant overlaps were from the immune modules (Figures 6C and 6D). This suggests 406
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that eQTLs that perturb the modules that influence phenotypes are more likely to perturb 407

phenotypes than eQTLs that perturb other gene modules. 408

The immune modules mediate SNP perturbation of phenotypes 409

To understand the molecular mechanisms that underlie the SNPs perturbing phenotypes beyond the 410

simple overlap of SNPs perturbing the phenotype network and SNPs perturbing the gene network, 411

we used the Perturb-Net inference procedure to obtain the decomposition of the SNP effects on 412

phenotypes Bxz into the component SNP effects on phenotypes BM1

xz , . . . ,BM20

xz mediated by each of 413

the 20 gene modules. We examined this decomposition for the 50 SNPs with the strongest effects on 414

each group of lung and blood phenotypes (the cutoff for top 50 SNPs is shown as the green line at 415

SNP effect size 0.04 for the lung phenotypes in Figure S1A and at SNP effect size 0.011 on blood 416

phenotypes in Figure S1B). 417

For each set of 50 SNPs with the strongest perturbation effects on lung or blood phenotypes, 418

nearly all of their effects on phenotypes were mediated by modules 12 through 20. The 419

decomposition of the SNP effects on lung phenotypes (Figure 7A) into the 20 components (Figure 420

7B) shows that only the components for modules 12 through 20 contain non-zero SNP effects on the 421

lung phenotypes, except for module 6, which mediates the effects of SNP rs1008932. We further 422

summarized the component SNP effects by summing across all lung phenotypes for each SNP 423

(
∑

j∈Lung |[B
M
xz]i,j | for module M and SNP i; Figure 7C). In Figure 7C, for 45 out of the 50 SNPs 424

the SNP effect on the lung phenotypes is mediated by a single module from modules 12-20. For the 425

other 5 SNPs, although their effects on phenotypes were mediated by two or three modules, the 426

module with the strongest mediator effect had effect size at least 5 times as large as the other 427

modules. Although only 20 SNPs overlapped between the two sets of top 50 SNPs for lung and 428

blood phenotypes, the SNP effects on blood phenotypes were also mediated by modules 12-20 429

(Figure 8). This indicates that modules 12-20 can potentially explain the molecular mechanisms 430

behind the SNP perturbations of asthma phenotypes. 431
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Module 13 explains the molecular mechanism of the previously known association 432

between SNP rs63340 and asthma susceptibility 433

We performed an in-depth analysis of module 13, its influence on asthma phenotypes, and its 434

perturbation by SNP rs63340, one of the SNPs with the strongest effects on this module and also on 435

phenotypes (Figure 9). SNP rs63340 ranked third for its effect on module 13 and 41st for its effect 436

on phenotypes. The genome region 16q21, where SNP rs63340 is located, has been previously found 437

to be linked to asthma and atopy in several previous genome-wide screenings,41,42,43,44,45 though the 438

mechanism behind this association has not been fully elucidated. Our model indicated that this locus 439

directly perturbs the expression levels of NRP1, DCANP1, EPHB1, NLRP7 and GZMB. Several of 440

these genes have been previously linked to asthma. NRP1 is known to be a part of one of important 441

mediators involved in the pathogenesis of asthma.46 A promoter nucleotide variant in DCANP1 was 442

previously associated with serum IgE levels among asthmatics.47 EPHB1 has been previously linked 443

to lung function traits in asthma.48 Our model found EPHA2, KCNA5, NRP1, and CLEC4C as key 444

mediator genes, determined by the row of Bm
xz for SNP rs63340 and for gene m in module 13 445

summed across all phenotypes, that mediate the effects of SNP rs63340 on asthma phenotypes. 446

Among these genes, KCNA5 has been known to be connected to pulmonary vasoconstriction49,50
447

and a SNP near KCNA5 was significantly associated with asthma.51 In addition, CLEC4C has been 448

known to be involved in immune response.52,53 Thus, the results from Perturb-Net are well 449

supported by the previous findings in the literature and provide insights into the gene network 450

underlying the previously reported association between the locus and asthma phenotypes. 451

Comparison with other methods 452

We compared our method with the two-layer Lasso both qualitatively by visual inspection of the 453

estimated parameters and quantitatively by assessing the predictive power of different methods. 454

Comparison of the estimated models We compared the results from our approach and the 455

two-layer Lasso by visually inspecting the estimated SNP effects on gene modules and the estimated 456

gene module effects on phenotypes. For the top 50 SNPs perturbing the lung phenotypes (Figure 7), 457
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we examined the overall SNP effects on each gene module based on Θxy and Bxy from our model 458

and Axy from the two-layer Lasso (
∑

j∈M |[Θxy]i,j |,
∑

j∈M |[Bxy]i,j |, and
∑

j∈M |[Axy]i,j | for SNP 459

i and module M). To see how each gene module influences phenotypes, we computed the 460

magnitudes of overall gene module effects on each phenotype from Θyz and Byz in our model and 461

Ayz in the two-layer Lasso (
∑

j∈M |[Θyz]j,k|,
∑

j∈M |[Byz]j,k|, and
∑

j∈M |[Ayz]j,k| for module M 462

and phenotype k). 463

Unlike the Perturb-Net model, the two-layer Lasso does not model direct and indirect 464

perturbation effects separately but attempts to capture both types of effects in a single set of 465

parameters. Thus, the perturbation effects captured by the two-layer Lasso appeared to be a 466

compromise between the direct and indirect perturbation effects captured by Perturb-Net (Figure 467

10). However, the SNP effects appeared to be similar across Θxy, Bxy, and Axy in the module-level 468

summaries (Figures 10A-10C), because the direct SNP perturbation effects tended to propagate to 469

other genes only within each module, but not to genes in other modules. On the other hand, the 470

module effects on phenotypes showed a distinct pattern across Θyz, Byz, and Ayz (Figures 471

10D-10F), because in our model, the direct influence of gene expression levels on a phenotype 472

induces the indirect influence on other correlated phenotypes, whereas the Lasso parameter tries to 473

capture both types of information in a single parameter. 474

Comparison of prediction accuracy We assess the ability to make predictions about new 475

asthma patients based on the estimated Perturb-Net model and compare the results with those from 476

the two-layer Lasso. We split the data into train and test sets and obtained the prediction accuracy 477

using the test set after training a model on the train set. We set aside 25 samples as a test set and 478

used the remaining 115 fully-observed samples and 34 partially observed samples to train a sparse 479

Gaussian chain graph model with our semi-supervised learning method. We also trained a model, 480

using only the 115 fully observed samples with the supervised learning method, and compared the 481

results from the two-layer Lasso, also trained from the fully observed samples. Given the estimated 482

models, we performed prediction tasks and obtained the prediction error as the squared difference 483

between the observed and predicted values averaged across samples in test set. 484
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The Perturb-Net model estimated from all data had the smallest prediction error for all of the 485

prediction tasks (Table 2). In particular, our model with semi-supervised learning performed better 486

than our model with supervised learning, demonstrating that leveraging partially observed data can 487

help learn a model with greater predictive power. For supervised learning, our model outperformed 488

Lasso. This demonstrates that taking into account the network structure in expression levels and 489

clinical phenotypes increases the performance on prediction tasks. 490

Discussion 491

We introduced a statistical framework called Perturb-Net for learning a gene network underlying 492

phenotypes using SNP perturbations and for identifying SNPs that perturb this network, given 493

population genotype, expression, and phenotype data. Compared to many of the previous methods 494

that focused on the co-localization of eQTLs and genetic association signals for phenotypes,13,14,15 495

using multi-stage methods,10,11,12 our approach combines all available data in a single statistical 496

analysis and directly models the multiple layers of a biological system with a cascade of influence 497

from SNPs to expression levels to phenotypes, while modeling each layer as a network. Our 498

probabilistic graphical model framework allows to model eQTLs with or without an impact on 499

phenotypes for an investigation of co-localization of SNPs perturbing expression levels and SNPs 500

perturbing phenotypes and to extract rich information on the molecular mechanisms that explains 501

the influence of SNPs on phenotypes. We developed fast learning algorithms called Fast-sCGGM 502

and Mega-sCGGM for learning sCGGM components of the Perturb-Net model, which serve as the 503

key subroutine of our Perturb-Net learning method, to enable analysis of human genome scale data 504

within a few hours. 505

Our results from applying Perturb-Net to asthma data confirmed the observations from the 506

previous studies, including GWAS, eQTL mapping, and gene network modeling.11,40 Our results 507

confirmed the finding from previous studies on combining the results of GWAS and eQTL mapping40
508

that there is a partial overlap between SNPs perturbing expression levels and SNPs perturbing 509

phenotypes. In addition, this overlap was more significant for eQTLs that perturb trait-associated 510
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modules than eQTLs that perturb other parts of the gene network, as was previously reported.21 511

The analysis of the asthma data with Perturb-Net provided new insights. Perturb-Net was able 512

to systematically reveal the gene network that lies between the SNPs and phenotypes and to uncover 513

how different parts of this gene network modulate the SNP effects on phenotypes in a statistically 514

principled manner. Often, there are genetic loci that have been previously known to be linked to the 515

disease susceptibility, though little is known about the underlying molecular mechanism. In such 516

cases, the Perturb-Net analysis of asthma data demonstrated the potential to reveal the molecular 517

pathway that are perturbed by previously known trait-associated loci. 518

Perturb-Net provides a flexible tool that can be extended in several different ways in a 519

straightforward manner. Because the sparse Gaussian chain graph model in Perturb-Net uses 520

sCGGMs as building blocks, the sCGGM component models can be threaded in different ways to 521

form sparse Gaussian chain graph models with different structures. For example, if expression data 522

from multiple tissue types are available for a patient cohort along with genome sequence and 523

phenotype data, a sparse Gaussian chain graph model can be set up with multiple component 524

sCGGMs, each corresponding to the gene network under SNP perturbation in each tissue type, 525

linked to another sCGGM for modeling expression levels influencing phenotypes. Models like this 526

can reveal SNPs that perturb phenotypes through different tissue types and through different 527

modules in each tissue-specific gene network. Another possible extension is to thread more than two 528

component sCGGMs within a sparse Gaussian chain graph model to model more than two layers in 529

a biological system, including epigenomes, metabolomes, and proteomes. 530

Appendix A: Fast-sCGGM and Mega-sCGGM for efficiently 531

learning sCGGMs 532

We introduce our scalable learning algorithms for sCGGM, since the learning algorithm for sparse 533

Gaussian chain graph models in Eq. (1) uses the sCGGM learning algorithm as a key module. 534

Assume an sCGGM7,8 for gene expression levels y ∈ R
q for q genes and genotype data x ∈ {0, 1, 2}p 535
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for minor allele frequencies at p loci be given as follows: 536

p(y|x) = exp(−yTΛy − 2xTΘy)/Z(x), (7)

where Λ is a q × q matrix representing a gene network, Θ is a p× q matrix modeling SNPs 537

influencing the expression levels of genes in the network, and 538

Z(x) = (2π)q/2|Λ|−1 exp(xTΘΛ−1ΘTx) is the constant to ensure the probability distribution 539

integrates to 1. Then, given genotype data X ∈ R
n×p for n samples and p SNPs, each element 540

taking a value from {0, 1, 2} for the number of minor alleles at the locus, and expression data 541

Y ∈ R
n×q for q genes for the same samples, a parameter estimate of the sCGGM in Eq. (7) can be 542

obtained by minimizing L1-regularized negative log-likelihood: 543

min
Λ≻0,Θ

f(Λ,Θ) = g(Λ,Θ) + h(Λ,Θ), (8)

where g(Λ,Θ)=−log |Λ|+tr(SyyΛ+2Sxy
TΘ+Λ−1ΘTSxxΘ) is the smooth negative log-likelihood, 544

given data covariance matrices Sxx = 1
nX

TX,Sxy = 1
nX

TY,Syy = 1
nY

TY, and 545

h(Λ,Θ)=λΛ‖Λ‖1 + λΘ‖Θ‖1 for the non-smooth elementwise L1 penalty. λΛ, λΘ > 0 are 546

regularization parameters. 547

Below, we introduce Fast-sCGGM for learning an sCGGM that substantially reduces 548

computation time by orders of magnitude compared to the previous state-of-the-art method.22 Then, 549

we describe Mega-sCGGM, a modification of Fast-sCGGM, that performs block-wise computation to 550

learn a model from large human genome-wide data on a machine with limited memory. 551

Fast-sCGGM for improving computation time 552

Fast-sCGGM uses an alternate Newton coordinate descent method that alternately updates Λ and 553

Θ, optimizing Eq. (8) over Λ given Θ and vice versa until convergence. Our approach is based on 554

the key observation that with Λ fixed, the problem of solving Eq. (8) over Θ becomes simply the 555

well-known Lasso optimization, which can be solved efficiently using a coordinate descent method.54 556
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On the other hand, optimizing Eq. (8) for Λ given Θ requires forming a quadratic approximation to 557

find a generalized Newton direction and performing line search to find the step size. However, this 558

computation is significantly simpler than performing the same type of computation on both Λ and 559

Θ jointly as in the previous approach.22 Our algorithm iterates between the following two steps until 560

convergence: 561

• Coordinate descent optimization for Θ given Λ: With Λ fixed, the optimization 562

problem in Eq. (8) becomes 563

argmin
Θ

gΛ(Θ) + λΘ‖Θ‖1, (9)

where gΛ(Θ) = tr(2Sxy
TΘ+Λ−1ΘTSxxΘ). Since gΛ(Θ) is a quadratic function, Eq. (9) 564

corresponds to the Lasso problem and the coordinate descent method can be used to solve this 565

efficiently. 566

• Coordinate descent optimization for Λ given Θ: Given fixed Θ, the problem in Eq. (8) 567

becomes 568

argmin
Λ≻0

gΘ(Λ) + λΛ‖Λ‖1, (10)

where gΘ(Λ) = − log |Λ|+ tr(SyyΛ+Λ−1ΘTSxxΘ). In order to solve this, we first find a 569

generalized Newton direction that minimizes the L1-regularized quadratic approximation 570

ḡΛ,Θ(∆Λ) of gΘ(Λ): 571

DΛ = argmin
∆Λ

ḡΛ,Θ(∆Λ) + λΛ‖Λ+∆Λ‖1, (11)

where ḡΛ,Θ(∆Λ) is obtained from a second-order Taylor expansion and is given as 572

ḡΛ,Θ(∆Λ) = vec(∇Λg(Λ,Θ))T vec(∆Λ) +
1

2
vec(∆Λ)

T∇2
Λg(Λ,Θ) vec(∆Λ).
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In the above equation, ∇Λg(Λ,Θ) = Syy −Σ−Ψ and ∇2
Λg(Λ,Θ) = Σ⊗ (Σ+ 2Ψ), where 573

Σ = Λ−1 and Ψ = ΣΘTSxxΘΣ, are the components of the gradient and Hessian matrices 574

corresponding to Λ. The problem in Eq. (11) is again equivalent to the Lasso problem, which 575

can be solved efficiently via coordinate descent. Given the Newton direction for Λ, we update 576

Λ← Λ+ αDΛ, where step size 0 < α ≤ 1 ensures sufficient decrease in Eq. (8) and positive 577

definiteness of Λ. The α is obtained by line search on the objective in Eq. (10). 578

In order to further reduce computation time, we adopt the following strategies that have been

previously used for sparse Gaussian graphical model and sCGGM optimizations.22,55 First, to

improve the efficiency of coordinate descent for the Lasso problem in Eqs. (9) and (11), we restrict

the updates to an active set of variables given as:

SΛ = {(∆Λ)ij : |(∇Λg(Λ,Θ))ij | > λΛ ∨Λij 6= 0}

SΘ = {(∆Θ)ij : |(∇Θg(Λ,Θ))ij | > λΘ ∨Θij 6= 0}.

Because the active set sizes mΛ = |SΛ|,mΘ = |SΘ| approach the number of non-zero entries in the 579

sparse solutions for Λ and Θ over iterations, this strategy yields a substantial speedup. Second, to 580

further improve the efficiency of coordinate descent, we store intermediate results for the large 581

matrix products that need to be computed repeatedly. We compute and store U := ∆ΛΣ and 582

V := ∆ΘΣ at the beginning of the optimization. Then, after a coordinate descent update to (∆Λ)ij , 583

row i and j of U are updated. Similarly, after an update to (∆Θ)ij , row i of V is updated. Finally, 584

in each iteration of Fast-sCGGM, we warm-start Λ and Θ from the results of the previous iteration 585

and make a single pass over the active set. This ensures decrease in the objective in Eq. (8), while 586

reducing the overall computation time in practice. The pseudocode for Fast-sCGGM is provided in 587

Algorithm 1. 588

Mega-sCGGM for removing memory requirement 589

Fast-sCGGM as described above is still limited by the space required to store large matrices during 590

coordinate descent computation. Solving Eq. (11) for updating Λ requires precomputing and storing 591
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Algorithm 1: Fast-sCGGM

input : Inputs X ∈ R
n×p and Y ∈ R

n×q; regularization parameters λΛ, λΘ

output :Parameters Λ,Θ
Initialize Θ← 0,Λ← Iq
for t = 0, 1, . . . do

Determine active sets SΛ,SΘ
Solve via coordinate descent: DΛ = argmin∆Λ,∆

SΛ=0
ḡΛ,Θ(Λ+∆Λ,Θ) + h(Λ+∆Λ,Θ)

Update Λ = Λ+ αDΛ, where step size α is found with line search
Solve via coordinate descent: Θ = argminΘSΘ

gΛ(Θ) + λΘ‖Θ‖1

q × q matrices, Σ and Ψ = ΣΘTSxxΘΣ, whereas solving Eq. (9) for updating Θ requires Σ and a 592

p× p matrix Sxx. A naive approach to reduce the memory footprint would be to recompute portions 593

of these matrices on demand for each coordinate update, which would be very expensive. 594

Here, we describe Mega-sCGGM that combines the alternating Newton coordinate descent 595

algorithm in Fast-sCGGM with block coordinate descent to scale up the optimization to very large 596

problems on a machine with limited memory. During coordinate descent optimization, we update 597

blocks of Λ and Θ so that within each block, the computation of the large matrices can be cached 598

and re-used, where these blocks are determined automatically by exploiting the sparse stucture. For 599

Λ, we extend the block coordinate descent approach in BigQUIC56 developed for sparse Gaussian 600

graphical models to take into account the conditioning variables in CGGMs. For Θ, we describe a 601

new approach for block coordinate descent update. Our algorithm can, in principle, be applied to 602

problems of any size on a machine with limited memory and converges to the same optimal solution 603

as our alternating Newton coordinate descent method. 604

Blockwise optimization for Λ A coordinate-descent update of [∆Λ]i,j requires the ith and jth 605

columns of Σ and Ψ. If these columns are in memory, they can be re-used. Otherwise, it is a cache 606

miss and we should compute them on demand as follows. We obtain [Σ]:,i by solving linear system 607

Λ[Σ]:,i = ei, where ei is a vector of q 0’s except for 1 in the ith element, with conjugate gradient 608

method. Then, [Ψ]:,i can be obtained from RT [R]:,i, where R = XΘΣ. 609

In order to reduce cache misses, we perform block coordinate descent, where within each block, 610

the columns of Σ are cached and re-used. Suppose we partition N = {1, . . . , q} into kΛ blocks, 611
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Algorithm 2: Mega-sCGGM

input :X ∈ R
n×p and Y ∈ R

n×q; regularization parameters λΛ, λΘ

output :Parameters Λ,Θ
Initialize Θ← 0,Λ← Iq
for t = 0, 1, . . . do

Determine active sets SΛ,SΘ
Partition columns of Λ into kΛ blocks ⊲ Minimize over Λ

Initialize ∆Λ ← 0
for z = 1 to kΛ do

Compute [Σ]:,Cz
, [U]:,Cz

, and [Ψ]:,Cz

for r = 1 to kΛ do

if z 6= r then

Identify columns Bzr ⊂ Cr with active elements in Λ

Compute [Σ]:,Bzr
, [U]:,Bzr

, and [Ψ]:,Bzr

Update all active [∆Λ]i,j in (Cz, Cr)

Update Λ← Λ+ α∆Λ, where step size α is found by line search.
Partition columns of Θ into kΘ blocks ⊲ Minimize over Θ

for r = 1 to kΘ do

Compute [Σ]:,Cr
, and initialize V← Θ[Σ]:,Cr

for row i ∈ {1, . . . , p} if Iφ(S(i,Cr)) do
Compute [Sxx]i,j for non-empty columns j in VCr

Update all active [Θ]i,j in (i, Cr)

C1, . . . , CkΛ
. We apply this partitioning to the rows and columns of ∆Λ to obtain kΛ × kΛ blocks. 612

We perform coordinate-descent updates in each block, updating all elements in the active set within 613

that block. Let [A]:,Cr
denote a matrix containing columns of A that correspond to the subset Cr. 614

In order to perform coordinate-descent updates on (Cr, Cz) block of ∆Λ, we need [Σ]:,Cr
, [Σ]:,Cz

, 615

[Ψ]:,Cr
, and [Ψ]:,Cr

. Thus, we pick the smallest possible kΛ such that we can store 2q/kΛ columns 616

of Σ and Ψ in memory. When updating the variables within block (Cz, Cr) of ∆Λ, there are no 617

cache misses once [Σ]:,Cz
, [Σ]:,Cz

, [Ψ]:,Cz
, and [Ψ]:,Cr

are computed and stored. After updating 618

each [∆Λ]i,j to [∆Λ]i,j + µ, we maintain [U]:,Cz
and [U]:,Cr

by 619

[U]i,t ← [U]i,t + µ[Σ]j,t, [U]j,t ← [U]j,t + µ[Σ]i,t, ∀t ∈ {Cz ∪ Cr}. 620

To go through all blocks, we update blocks (Cz, C1), . . . , (Cz, Ck) for each z ∈ {1, . . . , kΛ}. Since 621

all of these blocks share [Σ]:,Cz
and [Ψ]:,Cz

, we precompute and store them in memory. When 622

updating an off-diagonal block (Cz, Cr), z 6= r, we compute [Σ]:,Cr
and [Ψ]:,Cr

. Overall, each block 623
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of Σ and Ψ will be computed kΛ times. 624

In typical real-world problems, the graph structure of Λ will exhibit clustering, with an 625

approximately block diagonal structure. We exploit this structure by choosing a partition 626

{C1, . . . , CkΛ
} that reduces cache misses. Within diagonal blocks (Cr, Cr)’s, once [Σ]:,Cr

and [Ψ]:,Cr
627

are computed, there are no cache misses. For off-diagonal blocks (Cr, Cz)’s, r 6= z, we have a cache 628

miss only if some variable in {[∆]i,j |i ∈ Cr, j ∈ Cz} lies in the active set. We minimize the active set 629

in off-diagonal blocks via clustering, following the strategy for sparse Gaussian graphical model 630

estimation in BigQUIC56 and using the METIS37 graph clustering library. 631

Although the worst-case scenario is to compute Σ and Ψ kΛ times to update all elements of ∆Λ, 632

in practice, graph clustering dramatically reduces this additional cost of block-wise optimization. In 633

the best case, if the active set for Λ is perfectly block-diagonal and graph clustering identifies this 634

block diagonal structure, we need to compute Σ and Ψ only once to update all the blocks. A 635

depiction of our blockwise optimization scheme is given in Figure S2. 636

Blockwise Optimization for Θ The coordinate descent update of [Θ]i,j requires [Sxx]:,i and 637

[Σ]:,j to compute [Sxx]
T
:,i[V]:,j , where [V]:,j = Θ[Σ]:,j . If [Sxx]:,i and [Σ]:,j are not already in the 638

memory, it is a cache miss. Computing [Sxx]:,i takes O(np), which is expensive if we have many 639

cache misses. 640

We propose a block coordinate descent approach for solving Eq. (9) that groups these 641

computations to reduce cache misses. Given a partition {1, . . . , q} into kΘ subsets, C1, . . . , CkΘ
, we 642

divide Θ into p× kΘ blocks, where each block comprises a portion of a row of Θ. We denote each 643

block (i, Cr), where i ∈ {1, . . . , p}. Since updating block (i, Cr) requires [Sxx]:,i and [Σ]:,Cr
, we pick 644

smallest possible kΘ such that we can store q/kΘ columns of Σ in memory. While performing 645

coordinate descent updates within block (i, Cr) of Θ, there are no cache misses, once [Sxx]:,i and 646

[Σ]:,Cr
are in memory. After updating each [Θ]i,j to [Θ]i,j + µ, we update [V]:,Cr

by 647

[V]i,t ← [V]i,t + µ[Σ]j,t, ∀t ∈ Cr. 648

In order to sweep through all blocks, each time we select a q ∈ {1, . . . , kΘ} and update blocks 649

(1, Cr), . . . , (p, Cr). Since all of these p blocks with the same Cr share the computation of [Σ]:,Cr
, we 650
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compute and store [Σ]:,Cr
in memory. Within each block, the computation of [Sxx]:,i is shared, so 651

we precompute and store it in memory, before updating this block. The full matrix of Σ will be 652

computed once while sweeping through the full Θ, whereas Sxx will be computed kΘ times. 653

We further reduce cache misses for [Sxx]:,i by strategically selecting partition C1, . . . , CkΘ
, based 654

on the observation that if the active set is empty in block (i, Cr), we can skip this block and forgo 655

computing [Sxx]:,i. We therefore choose a partition where the active set variables are clustered into 656

as few blocks as possible. Formally, we want to minimize
∑

i,q |Iφ(S(i,Cr))|, where Iφ(S(i,Cr)) is an 657

indicator function that outputs 1 if the active set S(i,Cr) within block (i, Cr) is not empty and 0 658

otherwise. We therefore perform graph clustering over the graph G = (V,E) defined from the active 659

set in Θ, where V = {1, . . . , q} with one node for each column of Θ, and 660

E = {(j, k)|[Θ]i,j ∈ SΘ, [Θ]i,k ∈ SΘ for i = 1, . . . , p}, connecting two nodes j and k with an edge if 661

both [Θ]i,j and [Θ]i,k are in the active set. This edge set corresponds to the non-zero elements of 662

ΘTΘ, so the graph can be computed quickly in O(mΘq). 663

We also exploit row-wise sparsity in Θ to reduce the cost of each cache miss. Every empty row in 664

Θ corresponds to an empty row in V = ΘΣ. Because we only need elements in [Sxx]:,i for the dot 665

product [Sxx]
T
:,i[V]:,j , we skip computing the kth element of [Sxx]:,i if the kth row of Θ is all zeros. 666

Our blockwise optimization scheme for Θ is depicted in Figure S3. 667

Parallelization in Fast-sCGGM and Mega-sCGGM 668

We parallelize some of the expensive computations in Fast-sCGGM and Mega-sCGGM on multi-core 669

machines. For both methods, we parallelize all matrix-matrix and matrix-vector multiplications. In 670

addition, we parallelize the computation of columns of Σ and Ψ in Fast-sCGGM and the 671

computation of multiple columns of Σ and Ψ within each block in Mega-sCGGM. In Mega-sCGGM, 672

we parallelize the computation of each row of Sxx whenever it is recomputed. 673
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Appendix B: Efficient implementation of EM algorithm for 674

semi-supervised learning for Perturb-Net model 675

The standard EM algorithm iterates between an M-step for finding the parameter estimate 676

maximizing the expected log-likelihood (or minimizing the negative log-likelihood) and an E-step for 677

finding the expected sufficient statistics based on the posterior probability distribution in Eq. (5). 678

The M-step is carried out by using our Mega-sCGGM algorithm. In E-step, a naive inversion of 679

Λy +ΘyzΛz
−1ΘT

yz to obtain Σy|x,z is expensive and storage of this dense matrix may exceed 680

computer memory for large gene expression datasets. We reduce the time cost and avoid memory 681

limit in E-step, assuming that the number of phenotypes r is relatively small compared to the 682

number of genes (i.e., r << q), which is typical for most studies. Instead of explicitly performing the 683

E-step, we embed the E-step within the M-step, such that the E-step results are represented 684

implicitly to fit in memory and computed explicitly on-demand as needed in the M-step. Specifically, 685

instead of performing the full E-step, we implicitly represent Λy +ΘyzΛz
−1ΘT

yz as Λy +KKT , 686

using low-rank component K = ΘyzL
T
z and the sparse Cholesky factorization of trait network 687

LzL
T
z = Λzz. Then, during M-step, we invert Λy +KKT , one column at a time as needed, using 688

the conjugate gradient method. This modified EM algorithm is equivalent to the original EM 689

algorithm that iterates between an M-step and an E-step, producing the same estimate. 690

Supplemental Data 691

Supplemental Data include 3 figures and 1 table. 692
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Table 1. GO categories enriched in gene modules in the estimated asthma gene network

Size Biological Process Pathway P-value Overlap*

1 314 Cellular macromolecule metabolic process 2.94×10−12 159 / 7006
2 297 Cellular nitrogen compound metabolic process 1.64×10−4 112 / 5164
3 314 Nucleobase-containing compound metabolic process 5.62×10−13 123 / 4538
4 314 Organelle organization 2.02×10−4 79 / 3167
5 314 Nucleobase-containing compound metabolic process 4.58×10−4 106 / 4538
6 314 Unclassified NA NA
7 314 Cellular localization 1.80×10−4 60 / 2287
8 314 Cellular metabolic process 1.73×10−4 178 / 9003
9 314 Cellular metabolic process 8.39×10−6 185 / 9003
10 314 Macromolecule metabolic process 8.73×10−5 159 / 7749
11 314 Heterocycle metabolic process 7.63×10−3 103 / 4715
12 298 Translation 1.65×10−9 27 / 383
13* 297 Immune system process

Response to stimulus
Response to stress

3.66×10−12

1.70×10−9

8.43×10−9

83 / 2552
162 / 8009
90 / 3333

14* 314 Immune response
Leukocyte activation involved in immune response
Granulocyte activation

3.96×10−38

9.04×10−31

1.24×10−26

106 / 1673
62 / 607
53 / 495

15* 313 Cell activation in immune response
Myeloid leukocyte activation
Immune system process

4.95×10−32

5.28×10−32

1.01×10−31

65 / 611
63 / 566
124 / 2552

16 290 Cellular process 3.73×10−3 132 / 15013
17 290 Regulation of macromolecule metabolic process 1.58×10−3 74 / 6142
18 282 Organonitrogen compound metabolic process 1.97×10−2 60 / 5523
19 285 Cell cycle 1.50×10−8 37 / 1355
20 295 Cellular component organization or biogenesis 4.34×10−3 66 / 5525

* The number of genes in the overlap / the total number of genes in the GO category

Table 2. Prediction errors of different methods on asthma test set

Prediction task Lasso Our Model Our Model with Semi-supervised Learning
y|x 0.76494 0.75322 0.75318
z|y 1.03486 0.97068 0.89317
y|x, z 0.78161 0.75346 0.75324
z|x 0.85785 0.85795 0.85709
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Figure 1. Illustration of the Perturb-Net approach. (A) Perturb-Net uses a sparse Gaussian
chain graph model with a cascade of two sCGGMs, one for a gene network influenced by SNPs (blue
solid edges and nodes) and the other for a clinical trait network influenced by gene expression levels
(red solid edges and nodes). The sCGGM inference procedures can be used to infer hidden
interactions in each of the two component sCGGMs, such as the indirect effect of SNP x1 on
expression level y2 through expression level y3 (blue dashed arrow) and the indirect effect of
expression level y3 on phenotype z2 through phenotype z3 (red dashed arrow). (B) The inference
procedures of sparse Gaussian chain graph models are used to infer the information on how the gene
network mediates SNP effects on phenotypes. Examples of such inferred interactions are shown for
the perturbation effect of SNP x1 on phenotype z3 (purple dashed arrow), which can be decomposed
into two components mediated by each of the two gene modules (yellow and orange nodes), and the
inferred dependencies between expression level y3 and expression level y14 (blue dashed line) induced
by phenotype z3 in the posterior gene network, after seeing the clinical phenotypes.
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Figure 2. Comparison of computation time of different methods. The computation time
of our Mega-sCGGM is compared with that of previous learning algorithm for sCGGMs and Lasso.
We applied all methods to all expression data and genotype data from chromosome 1, chromosomes
1-6, chromosomes 1-16, and chromosomes 1-22. The previous algorithm for sCGGMs ran out of
memory at chromosome 1, so we obtained its computation time with much smaller datasets with
1,000 and 10,000 SNPs.
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Figure 3. The Perturb-Net model estimated from asthma data. The parameters of the sparse
Gaussian chain graph model estimated from the asthma data are shown. (A) Asthma phenotype network Λz.
The phenotypes were ordered by hierarchical clustering applied to within each of the two groups of
phenotypes, lung function traits (yellow) and blood test traits (purple). (B) Gene network Λy. The gene
network is annotated with 20 modules obtained from applying a network clustering algorithm METIS37 to
Λy. (C) The influence of gene expression levels on phenotypes Θyz. (D) SNP perturbation of gene
expression levels Θxy for the top 1,000 eQTL hotspots, ordered by genomic location and labeled by
chromosomes. In each panel, non-zero elements of the estimated parameters are shown as blue for positive
interactions and red for negative interactions.
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Figure 4. SNP effects on gene modules and gene-module effects on phenotypes. Given the
estimated Θyz and inferred Byz for gene-expression effects on phenotypes from the Perturb-Net model, we
show the gene-module effects on each group of phenotypes for (A) lung and (B) blood, computed as the sum
of absolute effect sizes across all genes within the module and across all phenotypes in the group. (C) Given
the estimated Θxy and inferred Bxy for SNP effects on gene network, we show the SNP effects on each gene
module, summarized as the sum of absolute effect sizes across all SNPs and all genes within the module.
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Figure 5. Asthma posterior gene network. The posterior gene network Λy|x,z after taking
into account the phenotype data.
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Figure 6. Overlap between SNPs perturbing phenotype network and SNPs perturbing gene

network. For each gene module and each group of lung and blood phenotypes, we found the overlap
between the top 200 SNPs perturbing the phenotype subnetwork and each of the top 100, 200, and all eQTLs
perturbing the gene module. The number of SNPs in the overlap is shown for (A) lung phenotypes and (B)
blood phenotypes. Statistical significance of the overlap is shown for (C) lung phenotypes and (D) blood
phenotypes.
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Figure 7. Top 50 SNPs perturbing lung phenotypes and their perturbations effects on

phenotypes mediated by gene modules. For the top 50 SNPs perturbing lung phenotypes, we show (A)
their effect sizes on phenotypes Bxz and (B) the decomposition of Bxz into component effects
BM1

xz , . . . ,BM20

xz mediated by each of the 20 gene modules. The sum over all component effects in Panel (B) is
equal to the overall effects in Panel (A). (C) We summarize each component SNP effect Bm

xz for module m in
Panel (B) as a row-wise sum of Bm

xz, shown as the mth column in the figure. The SNPs are ordered
according to their overall effect sizes on the lung phenotypes.
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Figure 8. Top 50 SNPs perturbing blood phenotypes and their perturbations effects on

phenotypes mediated by gene modules. For the top 50 SNPs perturbing blood phenotypes, we show
(A) their effect sizes on phenotypes Bxz and (B) the decomposition of Bxz into component effects
BM1

xz , . . . ,BM20

xz mediated by each of the 20 gene modules. The sum over all component effects in Panel (B) is
equal to the overall effects in Panel (A). (C) We summarize each component SNP effect Bm

xz for module m in
Panel (B) as a row-wise sum of Bm

xz, shown as the mth column in the figure. The SNPs are ordered
according to their overall effect sizes on blood phenotypes.
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Figure 9. The gene network for module 13, its influence on asthma phenotypes, and

its perturbation by SNP rs63340. The asthma phenotype network Λz in our estimated model
is shown in the green box and the gene network Λy for module 13 is shown outside of the green box.
The edges across the two networks correspond to direct influence of expression levels on phenotypes
Θyz. The five genes (NRP1, DCANP1, EPHB1, NLRP7, and GZMB) whose expression is directly
perturbed by SNP rs63340 with effect size > 0.05 in Θxy are labeled with arrows, colored red to
indicate positive eQTL effects. Node colors depict the indirect effects of this eQTL on gene
expression levels Bxy and phenotypes Bxz, with red for up-regulation and blue for down-regulation.
Node size of genes depicts the component of the eQTL effects on phenotypes mediated by the given
gene, the row of Bm

xz for SNP rs63340 and for gene m in module 13 summed across all phenotypes.
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Figure 10. Comparison of different methods for learning the cascaded influence of

SNPs to gene modules to phenotypes. For the top 50 SNPs perturbing lung phenotypes
(Figure 7), the effects of these SNPs on each of the gene modules are shown for (A) Θyz from our
model, (B) Byz inferred from our model, and (C) Ayz from the two-layer Lasso. The effects of the
expression levels in each gene module on lung phenotypes are shown for (D) Θyz from our model,
(E) Byz inferred from our model, and (F) Ayz from the two-layer Lasso. The effect sizes in each
model parameter matrix above were summed across all genes within each module after taking
absolute values.
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