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Abstract

With faithful sample preservation and direct imaging of fully hydrated biological material, cryo-
electron tomography (cryo-ET) provides an accurate representation of molecular architecture of cells.
However, detection and precise localization of macromolecular complexes within cellular environments
is aggravated by the presence of many molecular species and molecular crowding. We developed a
template-free image processing procedure for accurate tracing of complex networks of densities in
cryo-electron tomograms, a comprehensive and automated detection of heterogeneous membrane-
bound complexes and an unsupervised classification. Applying this procedure to tomograms of intact
cells and isolated endoplasmic reticulum (ER), we detected and classified small protein complexes like
the ER protein translocons, which were not detected by other methods before. This classification
provided sufficiently homogeneous particle sets and initial references to allow subsequent de novo
subtomogram averaging. Therefore the procedure presented allows a comprehensive detection and
a structural analysis of complexes in their native state. In addition, we present structural evidence
that different ribosome-free translocon species are present at the ER membrane, determine their 3D
structure, and show that they have different localization patterns forming nanodomains.

Introduction

The cellular environment is characterized by the presence of many different molecular species. Complexes,
stable or transient underlie critical cellular functions. Of particular interest are membrane-bound com-
plexes because they are essential for many types of cellular processes, like cell signaling, immune response
and synaptic transmission, and are targeted by more than two thirds of all drugs [1].

In cryo-electron tomography (cryo-ET), biological samples are faithfully preserved by rapid freezing,
which prevents water crystallization and rearrangements of the biological material. Importantly, samples
are imaged in transmission electron microscopy in the same vitrified, fully hydrated state [2, 3]. Therefore,
cryo-ET is uniquely suited for high resolution, direct three-dimensional (3D) imaging of unperturbed
cellular environments [4, 5].

The potential of cryo-ET to yield cellular maps of molecular complexes is hampered by low signal-
to-noise ratio (SNR) in tomograms and the molecular heterogeneity in cells. Because visual detection is
limited to large complexes of characteristic shapes [6], image processing methods have been developed
to interpret tomograms. In template matching, currently the leading detection method in cryo-ET, a
structure of a protein or complex of interest is used to computationally search for similar structures [7, 8,
9, 10, 11, 12]. This approach is particularly suited for complexes that do not form part of larger assemblies
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Algorithm 1 Complete procedure.

1. Density tracing and particle picking

❼ Tracing of density by the Discrete Morse theory based algorithm (DisPerSe)

❼ Simplification by topological persistence

❼ Spatially embedded graph representations of the EM density

❼ Selection of complexes - particle picking

2. General classification

❼ Determination of membrane normal vectors

❼ Constrained refinement (Relion)

❼ Unsupervised classification of rotationally averaged complexes by Affinity propagation

3. Spatial analysis and averaging

❼ Standard 3D classification and constrained refinement (Relion)

❼ Spatial distribution analysis within or between classes

and critically depends on the already existing structures of complexes of interest. Automated methods
were developed for segmentation of cellular components of particular shape, such as lipid membranes
and filaments [13, 14, 15]. Pleomorphic, membrane associated complexes were previously detected by an
automated method [16], but their molecular identification remained challenging [17, 18, 16]. Subtomogram
averaging can yield 3D densities at a resolution higher than that of individual complexes, but requires
biological systems where a complex of interest is present in a large number [19, 20, 21].

To allow comprehensive, high resolution processing of cellular cryo-tomograms, we developed a software
procedure for template-free detection and unsupervised classification of heterogeneous membrane-bound
molecular complexes. It includes methods from other fields that we adapted and further developed, such
as the discrete Morse theory based segmentation, affinity propagation (AP) and spatial point processes,
as well as custom-made software. The classes obtained were sufficiently homogeneous to allow further
processing by standard subtomogram averaging methods [22, 21]. Validations and comparisons with
other methods were performed on phantom and real datasets.

Results

Procedure overview

Our procedure consists of three major parts (Algorithm 1). First, electron density is traced and complexes
are detected in a comprehensive, template-free manner. Then, they are classified into classes containing
structurally similar complexes, rendering them suitable for further processing. Finally, the spatial distri-
bution of complexes and their average densities are determined.

Density tracing and simplification

For an automated tracing of density in cryo-tomograms, we developed a procedure based on DisPerSE,
a software package which employs discrete Morse theory originally developed to identify astrophysical
structures in 3D images of the large-scale matter distribution in the Universe [23]. In general, Morse
theory is used to calculate topological indices (invariants) of a given manifold, while the discrete Morse
theory is applied to simplicial complexes [24, 25].
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Algorithm 2 Simplification by topological persistence

For each pair of connected minima and saddle points (pi, sa) whose values differ by less than a specified
persistence value:

1. Find the other minimum (pk) connected to the saddle point sa and connect it to all saddle points
connected to pi

2. Remove pi, saand all their arcs

3. Add ascending manifold associated with minimum pi to the one associated with minimum pk

4. Remove arcs associated with saddle points of low density

We used DisPerSE to generate Morse complexes comprising the following manifolds: (i) Greyscale
minimum points (termed 0-critical points), (ii) Saddle points that have minima in two and a maximum
in one direction (1-critical points), (iii) Arcs that connect minima and saddle points defined as maximum
gradient curves between these points, (iv) 3-manifolds associated with minima (ascending 3-manifolds).
To better visualize the tracing, we processed a (2D) tomographic slice of a neuronal synapse (Figure 1 A,
C). The minima and the arcs visually corresponded well to the distribution of the electron density.

A high level of noise present in cryo-tomograms causes the detection of many closely spaced local
minima that have only slightly smaller values than their neighborhood, resulting in an overly complex
structure of the calculated Morse complexes. Because of a highly complex network of densities present
in cellular cryo-tomograms, we could not use the Morse complex simplification procedure implemented in
DisPerSE. To solve this problem, we implemented a modified version of the simplification by topological
persistence [23]. Namely, a saddle point and its adjacent minimum that have similar grayscale values are
removed (low persistence pairs), and the affected Morse complex elements are reassigned. (Algorithm 2,
Figure S1). This is equivalent to introducing small perturbations in the greyscale values that remove some
minima, effectively reducing the contribution of noise.

The simplification by topological persistence resulted in a greatly simplified Morse complex, and a
faithful tracing of density (Figure 1D). All together, the choice of manifolds provided by the discrete
Morse theory, combined with the custom-made implementation of the simplification procedure, made it
possible to accurately trace electron density in cellular cryo-tomograms.

Graph embedding and detection of complexes (particle picking)

To streamline further processing, we implemented a procedure that converts the information obtained by
the density tracing to spatially embedded graphs. Namely, each arc is assigned to a graph edge and its
two adjacent minima are assigned to graph vertices associated with the edge (Figure 1B). Vertices and
edges keep the information about the spatial location, greyscale density, geometry and the connectivity
of the underlying minima and arcs. Also included are external information about the identity of cellu-
lar structures, such as the lipid membranes. Therefore, these spatially embedded graphs represent the
distribution of the biological material (proteins and lipids) visualized in a tomogram.

They occupy the central part in the software we developed, because they combine precise geometrical,
localization and biological information, and allow computationally efficient queries that can extract specific
information used to detect individual complexes (particles). Importantly, subgraphs can be selected
starting from vertices belonging to, or at a specified distance from a previously defined membrane or
another cellular structure. Greyscale values and geometrical information associated with vertices and
edges can be used as further constraints. For example, the yellow and the orange star-bound paths
in Figure 1D likely represent an extracellular presynaptic membrane-bound and a transcleft complex,
respectively, while the brown path shows a putative complex that directly links pre- and postsynaptic
intracellular components. Not all selected subgraphs can be directly matched to complexes, even though
subgraphs represent densities. The repositioning or elimination of wrongly selected subgraphs is delegated
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to the subsequent processing steps. Hence, the procedure described so far corresponds to particle picking
in the single particle analysis.

Density tracing validation on phantom data

To validate the Morse theory-based density tracing and the simplification procedures, we created a phan-
tom dataset comprising a rectangular grid having higher density at the intersections, and added variable
amounts of Gaussian noise (Figure S2A). Densities in all phantom datasets were detected by applying
the discrete Morse theory and the topological simplification as outlined above. Grid intersections and
grid bars were taken as the ground truth features for the detection of minima and arcs, respectively.
We detected the minima and arcs that matched the ground truth (true positives, TP), did not match
the ground truth (false positives, FP), as well as the unmatched ground truth features (false negatives,
FN) (Figure S2B). Multiple minima occurring at the same grid intersection were avoided by imposing an
exclusion distance between particles.

Numbers of TPs, FPs and TNs were normalized to the total number of the corresponding ground truth
features. For SNR above 0.05, the FPs and FNs were below 10% and TP minima was above 90%, however
for SNR between 0.05 and 0.1 TP arcs was between 80% and 90% (Figure S2C). To a large extent, this
failure to detect some of the ground truth arcs (these constitute FN arcs) was caused by the minima
that were not detected (FN minima). This was confirmed by normalizing TP arcs to the total number of
ground truth arcs that could be formed given the detected minima (TP arcs corrected in Figure S2C).

General classification

The application of the procedure described in the previous section to complex cellular systems is ex-
pected to yield a set of membrane-bound complexes possessing high compositional and conformational
heterogeneity. Therefore, a general classification procedure capable of separating highly heterogeneous
complexes into groups (classes) of similar complexes is required for further processing.

Particle (complex) positions are used to calculate the direction of vectors perpendicular to the mem-
brane. These normal vectors specify two of the angles that determine the orientation of the particles,
while the third angle is left undetermined. To optimize normal vectors and particle positions, we employ
constrained particle refinement. That is, the two Euler angles that define the normal vectors are allowed
only small changes around the initial values during the alignment step, while the third angle (around
the normal) is not constrained. Furthermore, a high symmetry imposed on the third angle diminishes its
importance for the alignment. The initial reference for this refinement can be obtained from the data, by
randomizing the third angle and averaging all particles (without alignment). The symmetrization around
the normals and the choice of the initial reference reduce the influence of the missing wedge.

The methods chosen for particle classification is the affinity propagation (AP) clustering [26], whereby
nodes (particles) exchange information between each other to reach the optimal partitioning. The advan-
tages of the affinity propagation compared to the standard clustering methods are that this algorithm is
unsupervised, the number of classes is not specified in advance but data driven and it can handle cases
where classes have a very different number of particles.

The success of a clustering procedure critically depends on the manner the clustering distance (simi-
larity) is defined. Here, we represented particles as 2D images obtained by computing particle rotational
averages around their normal vectors (illustrated on Figures S6, S3). We defined the distance between
two particles as the dot product of their normalized rotational averages. In this way, the 2D averages
used for clustering were pre-aligned to each other, and there were no further degrees of freedom that could
affect the clustering. On the contrary, if clustering was based on the 3D particle subtomograms, the angle
around the normal vector would need to be determined, thus hampering the procedure.
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Validation of general classification

To evaluate the AP classification independent of particle picking and to compare it with two other methods
used in the field (K-means and hierarchical clusterings) we generated a test dataset from eight available
reference structures of membrane-bound complexes. To make realistic particles we added different amounts
of noise, tilted them around the membrane normal, rotated around the normal, translated them along the
membrane plane and imposed the missing wedge (see the Methods; Figure S3A).

We classified the test dataset and compared results against the ground truth using three measures. The
first two, Fowlkes-Mallows [27] and the Variation of information [28] compare two different classifications
directly and are currently the state-of-art methods in the clustering analysis, but are rarely used in cryo-
ET [16]. We also made a correspondence between the classes obtained and the ground truth classes, based
on the number of reference structure elements within each class, from which we determine the F1 measure
(see the Methods).

Our data for all three metrics shows that the AP classification is weakly affected by changes in SNR,
displacement range and the number of reference structures (Figure S4A-C). The input preference param-
eter that has to be specified for AP classification only weakly influenced the scores. It showed the best
results for the input preference parameter values between -6 and -3 and good results between -10 and -2,
which defines the range of preference parameter values suitable for cryo-tomograms. In addition, the high
similarity between the AP class representatives (called examplars) and the ground truth class averages
further confirms the strength of the AP classification (Figure S3B).

K-means and hierarchical clustering methods require the number of classes as an input parameter,
but this is usually not known in advance. Our data showed that for the optimally chosen number of
clusters, which is not possible without external information, the performance of K-means and hierarchical
clusterings was similar to the AP using the default input preference values. However, it was drastically
reduced for realistic cases when non-optimal number of classes is chosen (Figure 2A). The results obtained
using r-weighted averages (see the Methods) brought the same conclusions, but the scores improved (Figure
S4D). Therefore, the distinctive advantage of the AP classification is that it yields optimal results without
requiring external prior information.

Detection and classification on microsomal membranes

To test the particle localization and general classification methods introduced above, we used a subset
(26%) of previously analyzed cryo-ET data depicting canine pancreatic microsomes [29]. This work es-
tablished the basic architecture of the translocon complex and structure of its constituents: the Sec61
protein-conducting channel, the translocon-associated protein complex (TRAP) and the Oligosaccharyl-
transferase complex (OST) [30, 31].

We traced biological material as explained above (Figure 3A, Video 1). Particles at the cytoplasmic
and lumenal faces of the ER membrane were located independently of each other, based on minima that
satisfied certain geometrical constraints (see the Methods). Particle positions and the membrane normal
vectors were optimized by the constrained refinement with C10 symmetrization, yielding average densities
having a well-positioned density and a resolved lipid bilayer (Figure 3B).

Classification of cytosolic particles by AP yielded more than 100 classes (Figure S5). Constrained
refinement of these classes, using internal initial references, showed different species of ribosome-translocon
complexes (Figure 3C, D). The best class that contained both cytosolic and lumenal density was used to
generate an initial reference for further processing (Figure S6).

All cytosolic particles were subjected to three rounds of 3D classification. In the first variant of data
processing (termed “bulk cleaning”), all particles were subjected together to a first 3D classification to
remove suboptimal particles (Figure S6, dotted line). The second 3D classification round focused on the
lumenal segments and the third on the small ribosomal subunit, resulting in structures comparable to
those previously reported (Figure S7) [30, 29]. These included fully assembled ribosomes bound to the
fully assembled and partial translocon complexes, as well as ribosomal large subunits. This confirms that
sufficiently homogeneous particle sets were generated by our procedure, which could be further processed
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by standard external reference-free subtomogram classification and averaging.
In the second variant of data processing (termed “AP cleaning”), the first 3D classification was applied

to each AP class separately (Figure S6, dashed line) and the other two 3D classification rounds were
performed as before. This variant yielded the same ribosomal species, but TRAP was better resolved in
the partial translocon complex class, the number of particles was increased and the resolution obtained
was slightly higher (18 Å and 22 Å for fully assembled ribosomes bound to the fully assembled and

partial translocon complexes respectively, and 21 Å for ribosomal large subunits) (Figure 3E). Therefore,
in addition to providing an internal initial reference, the affinity propagation classification thus contains
information that can be exploited by subsequent processing.

Lumenal particles were classified by affinity propagation and the best out of 100 classes was refined
to yield a 3D average of the translocon (Figure S5B). The bulk cleaning variant, using the translocon
average as the initial reference, yielded a well resolved ribosome-translocon class and classes representing
two different ribosome-free translocon states (Figure 3F). Among the particles that contained a defined
lumenal density, 15% had an associated ribosome and thus corresponded to the ribosome-translocon
complex. Among the ribosome-free complexes, 68% corresponded to fully assembled translocon (TRAP,
OST and Sec61) and 17% likely represented individual OST complexes. These structures were resolved

to 22 Å, 14 Å and 16 Å, respectively (Figure S5D). Importantly, without the initial reference generated
from affinity propagation classification, the same 3D classification procedure failed.

Therefore, our Morse theory-based detection is capable of picking small complexes, like the translocon
or even smaller individual OST complexes (≈200 kDa lumenal mass). The unsupervised classification by
affinity propagation was instrumental to carry the processing to a level where the external reference-free
standard 3D classification and refinement procedures could be used.

Validation of density tracing and particle picking on microsomal membranes

Next, we compared the performance of our Morse theory-based density tracing and particle picking method
with the standard methods used in the field: template matching, local density detection (after low-pass
filtering) and random picking. In all cases we analyzed a subset of tomograms used in the previous section
and picked particles on the lumenal side of the microsomes, up to 20 nm to the membrane. Template-
matching was done using the ribosome-free translocon average density obtained in the previous section
(Figure 3F).

The picked particles were subjected to a 3D constrained refinement with a high symmetry, followed
by 3D classification that used the same ribosome-free translocon density as the initial reference. This
procedure differs from the one presented in the previous section in that it skips the general classification,
but relies on an external initial reference. In all cases, the classification converged to a stable number
of particles after 15-20 iterations (Figure 2B). All five classes from Morse-picked particles contained a
significant number of particles. One class represented the translocon complex, while another two classes
likely represented two other small membrane-bound complexes. Among the last two classes, one probably
contained false positive picks because the average showed just a well-resolved membrane bilayer, while
the other class likely contained a mixture of other complexes. This shows that small complexes can be
reliably detected by Morse picking.

Four classes of random-picked particles contained a significant number of particles, but none of them
yielded recognizable densities. The local density detection and template matching yielded particles that
all converged to one class and produced poor averages. Therefore, among the particle picking methods
tested, the Morse method was the only one that successfully detected small complexes in general and the
translocon complex in particular.

Detection and classification in situ

We applied our procedure for the detection and classification of membrane-bound complexes to tomograms
of intact P19 embryonic carcinoma cells. After the Morse-based density tracing, particles were picked in the
vicinity of endoplasmic reticulum (ER) membranes. Because the orientation of the membranes could not
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be always determined and the cellular interior is densely populated, we expanded the general classification
to include three rounds of AP classification. The first AP classification served to clean the particle set and
to group other classes into datasets defined by the following densities: large densities located on the same
side of the membrane where particles were picked, large densities on the side opposite from the particles
and the small densities (Figure S8). After the subsequent two AP classification rounds, class averages
were obtained for selected classes (Figure S9).

As expected, ribosomes were prominent in the AP classes derived from the large densities on the large
density on particle side dataset (Figures 4, S9A). Furthermore, we obtained other class averages that
showed a distinct morphology. One of them we tentatively assigned to the Inositol trisphosphate (IP3)
receptor and two other to various assembly states of MHC-I peptide loading complex (PLC), based on
the similarity with densities previously obtained by single particle analysis [32, 33].

The ribosome-translocon complex was detected in the dataset containing large densities on the opposite
side of the membrane (Figures 4, S9B). It is important to note that the Morse based procedure picked
the translocon complex directly, while the large densities (ribosomes) seen in the AP class averages arose
during the classification.

Importantly, we obtained an AP class average from the small densities dataset that was visually
consistent with our ribosome-free full translocon and OST complexes from the microsomal data, as well
as with the ribosome-bound translocon from the in situ data (Figures 4, S9C, 3F). We also generated
several other AP averages showing small densities, the identification of which would require a more in-
depth analysis. Inspection of these classes showed homogeneous sets of particles, confirming the validity
of the classification.

Particles randomly chosen from the small density dataset after the first, and those chosen after the
second AP classification were refined. Both resulting averages showed only the membrane, confirming the
importance of our AP - based general classification approach. All together, our procedure is applicable
to cryo-tomograms of intact cellular interior and allows the detection of even small ER membrane-bound
complexes and their separation into classes that are sufficiently homogeneous for standard processing.

Spatial distribution analysis

Methods available for the analysis of spatial point processes can provide further information about the
distribution and clustering of complexes and assist with classification. Specifically, monovariate distribu-
tion functions analyze a single class. Among these, the first order functions are based on the distance
to the closest point, either from other points (nearest neighbor distribution) or from arbitrary locations
(spherical contact function), or both (J-function) [34]. A more detailed description is obtained by Ripley’s
second order functions, which evaluate the distribution at different length scales, by considering distances
between all pairs of points [35, 36]. Furthermore, bivariate versions of the nearest neighbor and Ripley’s
functions characterize colocalization and co-clustering of particles between two classes.

To assess the statistical significance, the above functions are evaluated with respect to the random
distribution (null hypothesis). Due to the restricted and irregular shape of the region where the particles
are located, analytical models cannot be used. Instead, many random point distributions need to be
generated within the particle region. To this end, we implemented a Monte-Carlo method that generates
random distributions of a specified number of particles within an arbitrary space (see Methods).

Spatial organization of microsomal complexes

As an example of using spatial point distribution methods to address biological questions, we investigated
the spatial organization of the microsomal particle classes obtained above. Upon visual inspection, some
classes showed distinct distributions (Figure 5A, Video 2). In order to quantitatively determine whether
the complexes were clustered and at which length scales, we calculated the univariate Ripley’s function
for the particle classes and compared them with results obtained for simulated particles.

The ribosome-free translocon complex showed a significant clustering at length scales from about 8 nm
to more than 50 nm, while the non-translocon associated OST was borderline significant (at p=0.05 level)
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at 10-20 nm in respect to the random distribution (Figure 5B,C). We confirmed these results by using the
first order functions: the nearest neighborhood, spherical contact distribution and J-functions all showed
significant clustering distribution of the ribosome-free translocon complexes (Figure S10).

As expected, the distribution of ribosomes, comprising all three final classes of the cytosolic particles
(Figure 3E), also showed significant clustering (Figure 5D) likely induced by polyribosome formation. In
addition, using the bivariate Ripley’s L function, we did not detect a significant colocalization between
ribosomes and ribosome-free translocon complexes (Figure 5E, F). These examples show that spatial point
process methods allow a quantitative characterization of the organization of molecular complexes.

Discussion

The mining of the rich information content of cellular cryo-electron tomograms is hindered by by the
crowded nature of cells populated by many different molecular species. To overcome this problem, we cre-
ated a template-free procedure for detection and classification of pleomorphic membrane-bound molecular
complexes visualized in cellular cryo-tomograms.

In order to trace density in cryo-electron tomograms, we adapted an existing discrete Morse theory-
based procedure and modified the topological persistence simplification [23]. Applications on both phan-
tom and biological data showed accurate tracing of densities at low signal-to-noise conditions characteristic
of cryo-tomograms. We developed software to convert the tracing data into spatially embedded graphs
that incorporate geometrical, connectivity and greyscale information, which allows automated particle
localization. While this Morse theory-based particle picking does not require the presence of membranes,
here we included this information to determine position and orientation of particles in respect to local
membranes. Direct comparison on real cryo-tomograms showed that our Morse theory-based picking per-
forms much better that other commonly used methods and that it was the only one that could detect
small complexes.

Because this rather comprehensive particle picking yields highly heterogeneous particles, may of which
do not represent complexes, their structural classification is a challenging task. We found that the combi-
nation of unsupervised classification by the AP clustering [26] and the use of 2D particle rotation averages
around the membrane normals allows an efficient and successful classification. While the AP classification
was previously shown to be superior to K-means and hierarchical clusterings, they performed similarly in
our tests when the correct number of classes was set as a parameter to K-means and hierarchical cluster-
ings. However, a distinctive advantage of AP is that it determined the optimal number of classes from
the data, without an external input.

Applying our procedure on a dataset depicting isolated microsomes [29], we obtained 3D densities of
ribosome-independent translocons, small ER membrane-resident complexes with domains projecting into
the lumenal side of microsomes (≈260 kDa total lumenal mass) and even smaller individual OST (≈200
kDa lumenal mass) complexes. These were not previously detected by template-matching on the same
dataset. In addition, we obtained 3D densities of different species of ribosomes, consistent with previous
template-matching approaches [30, 29]. Small complexes were detected in cryo tomograms before, but not
in heterogeneous, cellular systems [37]. All together, these results show the superiority of our template-free
procedure.

Furthermore, the application of our procedure on complexes imaged in situ resulted in average densities
of several small complexes, including the ribosome-free translocon, medium-sized complexes, as well as
ribosomes. This data was consistent with our results from microsomal membranes. The generally lower
resolution of the in situ data can be attributed to a more dense and heterogeneous cellular environment
and to technical differences between these datasets.

These results demonstrate that the procedure presented here can be applied to small complexes, in
their native sate, that were beyond the reach of template-matching. It is not limited by the availability of
high resolution structures and, unlike template-based approaches, does not introduce an initial bias that
might affect subtomogram classification and averaging. Furthermore, being template-free, our procedure
can localize heterogeneous complexes, or complexes that adopt different compositional and conformational
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states. In both applications, the unsupervised classification by AP provided particle sets that were suffi-
ciently homogeneous for the subsequent standard 3D classification and refinement procedures, as well as
internal, data-driven initial references, Together, these results allowed us to determine de novo average
3D densities of several complexes.

The rotational averaging of membrane-bound complexes eliminates the only unknown rotational ori-
entation. Consequently, it removes the problem of incorrect alignment that can hinder classification and
diminishes the effect of the missing wedge, while keeping sufficient structural information for classifica-
tion. The combination of these may be the reason why we successfully applied the AP classification on
large datasets (more than 170 000 particles). Because the ability to determine normal vectors is the only
membrane-related requirement, our procedure can be applied to complexes attached to any cellular mem-
brane and also larger structures such as the cytoskeleton. The previous template-free approaches, based on
automated pattern mining, deep learning and the difference of Gaussians picking methods, were successful
only on large complexes, and did not reach resolution comparable to ours, neither on simulated nor on real
datasets [38, 39, 40, 15]. Some of these use 3D rotation-invariant properties for classification, a promising
method for further developments, but even in the most recent work membrane-attached complexes could
not be detected [40]. This argues that processing membrane-bound and membrane-independent com-
plexes are two distinct problems that may require different approaches. Because of the major importance
of membrane-bound complexes for biochemical signaling pathways, such as those involved in the immune
response, development or synaptic transmission, as well as their dominant role in drug development [1],
the procedure described here may be applied to a wide range of fundamental biological processes.

The results obtained from the microsomal data provide structural proof for the presence of ribosome-
free translocon complexes in the ER membrane that either await binding of ribosome-nascent chain com-
plexes for co-translational protein transport and membrane insertion, or are engaged in post-translational
processes. Notably, the majority of these ribosome-free translocon complexes already comprise all con-
stituents known to be present in the ribosome-associated translocon, arguing against a step-wise assembly
of the translocon complex on the ribosome. In metazoans, the STT3A type OST complex is stably inte-
grated into the translocon complex for co-translational glycosylation of nascent proteins, while the STT3B
type OST complex is excluded from the translocon and takes care of glycosylation sites skipped by STT3A
[41, 42]. Thus, the individual, not translocon-associated OST complexes we localized in the ER membrane
likely correspond to STT3B type OST complexes.

Finally, we implemented and adapted the first and the second order spatial distribution functions to
characterize point-particle patterns in regions of arbitrary shape. A clustering method based on Voronoi
tessellation was recently developed for the detection of large point clusters on a dense background present
in super-resolution fluorescence data [43]. This is substantially different from our system, where points
(particles) are less numerous but more significant because they were previously selected by stringent clas-
sification steps. Using the spatial distribution functions, we observed a significant clustering of ribosome-
free translocon complexes on microsomal membranes. This suggests the presence of nanodomains in the
ER membrane for post-translational protein transport and membrane insertion, established by direct or
indirect interactions between these complexes.

In conclusion, we showed that the template-free procedure presented here is uniquely suited to ac-
curately trace density in cryo-electron tomograms, localize and classify heterogeneous membrane-bound
molecular complexes, and provide initial references for 3D refinement. Therefore, it extends the applica-
bility of cryo-ET to small and heterogeneous membrane-bound molecular complexes in their native state
and makes possible large-scale, non-invasive detection, localization and de novo structure determination
of molecular complexes in situ.

14

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 1, 2019. ; https://doi.org/10.1101/413484doi: bioRxiv preprint 

https://doi.org/10.1101/413484


Methods

Synaptosomal preparation

Cerebrocortical synaptosomes were extracted from 6–8 week old male Wistar rats as described previously
[44, 45, 18] in accordance with the procedures accepted by the Max Planck Institute for Biochemistry. In
brief, anesthetized animals were sacrificed, and the cortex was extracted and homogenized in homogeniza-
tion buffer (HB; 0.32 M sucrose, 50 mM EDTA, 20 mM DTT, and one tablet of Complete mini EDTA-free
protease inhibitor cocktail (Roche; 10 ml, pH 7.4) with up to seven strokes at 700 rpm in a Teflon glass
homogenizer. The homogenate was centrifuged for 2 min at 2000 g, and the pellet was resuspended in HB
and centrifuged for another 2 min at 2 000 g. Supernatants from both centrifugations were combined and
centrifuged for 12 min at 9500 g. The pellet was resuspended in HB and loaded onto a three-step Percoll
gradient (3%, 10%, and 23%; Sigma-Aldrich) in HB without protease inhibitor cocktail. The gradients
were spun for 6 min at 25 000 g, and the material accumulated at the 10/23% interface was recovered
and diluted to a final volume of 100 ml in Hepes-buffered medium (HBM; 140 mM NaCl, 5 mM KCl, 5
mM NaHCO3, 1.2 mM Na2HPO4, 1 mM MgCl2, 10 mM glucose, and 10 mM Hepes, pH 7.4). Percoll
was removed by an additional washing step with HBM by centrifugation for 10 min at 22 000 g, and the
pellet was resuspended in HBM and immediately used in the experiments. All steps were performed at
4➦C.

Preparation of P19 cells

Murine P19 cells were cultured in alpha-MEM containing nucleosides supplemented with 10% (v/v) FBS,
100 mg/mL each of penicillin and streptomycin at 37➦C with 5% CO2. Cells were cultivated on Gold
Quantifoil grids (R2/1, Au 200 mesh grid, Quantifoil Micro Tools, Jena, Germany). Additional carbon
(20–25 nm) was deposited on the film side of the grids in a carbon evaporator (MED 020, BAL-TEC) and
plasma cleaned for 45 s prior to their use. Next, grids were sterilized under UV irradiation for 30 min
and immersed in culture medium in a CO2 incubator for 30 min. Cells were detached from cell culture
flasks using 0.05% trypsin-EDTA, seeded on 4-6 pre-treated Quantifoil grids in 35-mm dishes and kept in
an incubator overnight to allow adhesion.

Cryo-ET of synaptosomes and P19 cells

For vitrification, a 3-μl drop of 10-nm colloidal gold (Sigma-Aldrich) was deposited on plasma-cleaned,
holey carbon copper EM grids (Quantifoil) and allowed to dry. A 3-μl drop of synaptosomes was placed
onto the grid, blotted with filter paper (GE Healthcare), and plunged into liquid ethane.

Grids with P19 cells were blotted from the reverse side by placing a Teflon sheet on the front and
vitrified by plunging into a liquid ethane/propane mixture at liquid nitrogen temperature using a Vitrobot
Mark 4 (FEI Company, Eindhoven, Netherlands). The Vitrobot was set to 37➦C, 90 % humidity, blot
force 10, blot time of 10 s and 2 s drain time.

Tilt series were collected under a low dose acquisition scheme using SerialEM [46, 47] on Titan Krios
[FEI] equipped with a field emission gun operated at 300 kV, with a post-GIF energy filter (Gatan)
operated in the zero-loss mode and with a computerized cryostage designed to maintain the specimen
temperature at <-150➦C. Images were recorded on a direct electron detector device (K2 Summit operated
in the counting mode). Tilt series were typically recorded from -60➦ to 60➦ with a 2➦ angular increment.
Pixel size was 0.34 nm at the specimen level. Volta phase-plate with nominal defocus of -1 μm [48]

was used. The total dose was kept at 60-100 e-/Å2. Individual frames were aligned using Motioncor2
[49] and dose filtered [50] (P19 cells only). Tilt series were aligned using gold beads as fiducial markers
(synaptosomes) or performed by patch-tracking (P19 cells) and 3D reconstructions were obtained by
weighted back projection (WBP) using Imod [51]. During reconstruction, the projections were binned once
(final voxel size of 0.68 nm) and low pass filtered at the post-binning Nyquist frequency (synaptosomes
only).
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Density tracing and particle picking

Electron densities were traced using DisPerSE software package which is based on discrete Morse theory
(see [23] for outline of DisPerSE, [25] for a more rigorous presentation of discrete Morse theory and [52]
more generally for mathematical topology). Briefly, in Morse theory, a Morse function is defined on a
n-dimensional manifold. A critical point of the Morse function (points where gradient is 0) that has order
k has minima in n-k and maxima in k directions. Gradient paths starting and ending a critical point of
order k define ascending and descending manifolds of dimensions n-k and k, respectively. These include
local minima, maximum gradient paths connecting critical points and 3D catchment basins. Intersections
of ascending and descending manifolds determine Morse-Small cells of dimension 0 to n, which partition
the space according to the gradient paths and provide connectivity information between critical points.
Importantly, 1-critical points are always connected by arcs to two minima. In our case, 3D tomogram
greyscale values were used to define a Morse function. Of particular interest are 0-critical points (local
minima, Morse-Small 0 -cells), the Morse-Small 1 -cells, that is maximum gradient arcs that connect 0 and
1 -critical points (minima and saddle points that have minima in two and a maximum in one direction).
In other words, these trace local density maxima and the “most dense” paths between the densities, thus
providing a network that represents EM density. The discrete Morse theory is defined in a similar manner,
except that a Morse function is defined on a simplical complex (instead on a manifold), in our case the 3D
voxel-based Cartesian grid. The Morse function is then used to determine critical k -dimensional simplices,
ascending and descending manifolds, and discrete Morse-Small cells.

We modified the topological persistence simplification method and implemented it in PySeg package
(Algorithm 2). The procedure first removes the pairs consisting of a minimum and a connected saddle
point whose greyscale values differ by an amount smaller than a specified persistence threshold. Then, the
arcs and ascending manifolds related to removed points are reassigned. Because this procedure may leave
multiple arcs linking the same pair of minima, arcs associated with low-density saddle points are removed.
To determine the persistence thresholds, we run multiple simplifications to find the value that gives a
specified surface density of minima on membranes. In this way, the density detection is normalized across
tomograms. In the same way, (volume) density of minima could be used, so this method is independent
of membranes. Furthermore, because the minima are counted, this normalization depends on the total
density rather than on the number of complexes of interest.

Density tracing information (specified in the form of Morse complexes) is converted to spatially em-
bedded graphs in the following way. Each arc is assigned to a graph edge and its two adjacent minima
are assigned to graph vertices associated with the edge. Vertices and edges keep the greyscale density
and a precise location of the underlying minima and arcs. Furthermore, geometrical information, such
as the Euclidean and the geodesic lengths of arcs are associated with edges. Additionally, these graphs
may also contain external information provided by segmentation of large cellular structures, such as lipid
membranes, organelles or cytoskeleton.

Creation of spatially embedded graphs from Morse complexes and their manipulation was implemented
in PySeg. For some of the standard graph tasks, the graph-tool library was used [53]. Methods to
query properties associated with graph vertices, and edges and methods to extract particles were also
implemented in PySeg. All together, representing density by spatially embedded graphs significantly
increased the computational efficiency.

General classification

The general classification was done using the AP clustering algorithm [26]. In short, the algorithm
separates elements (here particles) in clusters and determines the representative of each class (“exemplar”).
It is based on the iterative calculation of two properties for each pair of elements: the responsibility
quantifies how well suited is the first element to be the cluster representative of the second element,
while the availability shows how appropriate it is for the first element to have the second element as the
representative of its class. In general, initial preferences of each element to be a cluster representative are
specified as input parameters. In all our applications, these preferences are taken to be the same for all
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elements, thus leaving only one parameter. This parameter influences the number of clusters found (the
larger the preference the more clusters), but it is not possible to tune the value of the preference so that
the classification yields a specified number of classes.

For classification by AP, particles were rotationally averaged around membrane normals by computing
mean greyscale values of 2 pixel-wide rings around the normal vectors and the resulting rotational averages
were normalized to a density mean of 0 and standard deviation of 1. As an alternative method, weighting
the rotational averages by the distance to the axis (r-weighting) emphasizes off-axis elements. For the
classification, the similarity between two particles was defined as the dot product between the rotational
averages Unless noted otherwise, the masks used for the AP classification cylindrical.

Rotational averaging of subtomograms around the membrane normal vectors and an interface for the
scikit-learn [54] implementation of the affinity propagation algorithm are provided in PySeg.

Density tracing in phantom data

The phantom dataset contained a 6x6x3 grid with a variable amount of Gaussian noise (SNR between
0.005 and 5). For each SNR, 10 datasets were generated. The size of intersections was 2x2x2 voxels and
of grid bars 8x2x2 voxels. These datasets were processed in 3D using our procedure. The persistence
threshold was set so that the number of minima was 20% higher than the number of grid intersections.
The low-density saddle points were removed to obtain 20% more arcs than grid bars, resulting in a higher
ratio of arcs to minima (2.3) than the default (2.0), which better captured the high connectivity of the
phantom grid. TPs, FPs and FNs were normalized to the total number of ground truth features (grid
intersections and arcs). In order to remove the influence of the detection of minima on arc detection, we
also normalized the TP arcs to the corrected number of ground truth arcs, that is the number of arcs that
could be formed given only the detected minima.

Validation of general classification

To generate a realistic set of particles, eight available high resolution structures of membrane-bound
complexes of different size and shape (4UQJ, 4PE5, 5IDE, 5GJV, 5KXI, 5TJ6, 5TQQ and 5VAI [55, 56,
57, 58, 59, 60, 61, 62]) were selected as the reference structures. First, they were low-pass filtered at
0.524 nm, random noise was added to SNRs of 0.05, 0.01 and 0.005, missing wedge of ➧30owas imposed.
Then, particles were randomly tilted by 0 - 20o with respect to the membrane normal, rotated around
the normal (full range) and displaced along the membrane 0-9 pixels. To test specific parameters, the
following test datasets were created from these particles: (i) one for each SNR (Figure S4A), (ii) one for
each displacement range (0-3, 0-6 and 0-9 pixels; Figure S4B) at 0.01 SNR, (iii) derived from 4-8 structures
at 0.01 SNR (Figure S4C). (iv) For the comparison between the clustering methods, all parameters were
randomized, including the number of particles obtained from each reference structure (800 particles in
total), and SNR was between 0.01 and 0.005 (Figure 2A). The last set was also used for the clustering
methods comparison with r-weighted rotational averages (Figure S4D). Except when noted, 8 structures
were used and 100 particles were generated for each structure. For each dataset, the corresponding ground
truth classes contained particles obtained from one reference structure.

Particles were rotationally averaged around the normals (Figure S3B) and the cross-correlation be-
tween all particle pairs was calculated, to be used as the clustering distance. K-means and hierarchical
classifications were preceded by principal component analysis where the eigenvectors corresponding to the
eigenvalues that contributed to 95% of the variability were kept. Each K-means clustering was repeated
200 times and the mean and the standard deviations were calculated.

Classifications were evaluated by comparing them with the ground truth using the following three
metrics. Fowlkes-Mallows [27] and the Variation of information [28] were implemented in Pyto package as
previously reported [16]. To calculate F1, for each evaluated class we determined the number of particles
belonging to the reference classes. The reference class that contributed the highest number of particles
was then associated to the evaluated class, thus defining a mathematical map from the evaluated to the
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reference classes. We note that this mapping does not have to be one-to-one or onto. Nevertheless, it
allows us to calculate the following properties for each reference class i :

❼ True positives (TPi): Number of elements of all evaluated classes associated with reference class i

that belong to the class i

❼ False positives (FPi): Number of elements of all evaluated classes associated with reference class i
that do not belong to the class i

❼ False negatives (FNi): Number of elements of all evaluated classes not associated with reference
class i, that belong to the reference class i

Now we can define precision (P ), recall (R) and the F1 measure:

P =
1

NR

NR
∑

i=1

TPi

TPi + FPi

R =
1

NE

NR
∑

i=1

TPi

TPi + FNi

F1 =
2P R

P +R

where NR and NE and the number of reference and evaluated classes, respectively. In this way, persistence
and recall show the expected behavior, that is precision increases and recall decreases with the number of
classes (Figure S4A and B).

3D classification and refinement

3D classification and refinement steps were performed in Relion [22]. During the refinement, particle
half-datasets were processed independently according to the “gold-standard” procedure, as implemented
in Relion. The resolution was determined by Fourier shell correlation at the FSC = 0.143 criterion. The
constrained refinement and 3D classification were carried out by initially aligning particles according to
the direction of their normal vectors. The alignment was then optimized by allowing small changes in the
two normal vector angles and small spatial displacements. The alignment around the third angle (around
the normal vector) was not constrained to explore the entire angular range, except when a high symmetry
is used (typically C10). Specifically, we used the two angles defining the normals to the membrane to set
the prior values for angles tilt and psi in Relion particle star files and specified small values (3.66) for
the standard deviations of these two angles as the refine command options. Except for the validation of
particle picking, the initial reference was obtained by aligning all particles according to the two angles
determined from normals and randomizing the third angle (around the normal direction) to remove the
missing wedge, that is no external reference was used.

Processing of microsomal complexes

The processing work-flow is schematically shown in Figure S6.
55 out of 210 the tomograms previously obtained from canine pancreatic microsomes [29] were used in

this study. From these tomograms (1.048 nm pixel size), 122 microsomal membranes were segmented using
the automated procedure TomoSegMemTV [63]. For tracing of densities, persistence simplification and
particle picking, tomograms were smoothed by Gaussian filtering at σv= 2 / 0.8 pixels (for the cytoplasmic
/ lumenal sides). Density tracing and the topological simplification were performed in 3D by our procedure

18

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 1, 2019. ; https://doi.org/10.1101/413484doi: bioRxiv preprint 

https://doi.org/10.1101/413484


as described above. To account for different quality of tomograms, the persistence threshold was set so
that the density of vertices (minima) on all microsomal membrane was 0.0025 nm-3.

To localize cytoplasmic / lumenal particles, we selected vertices that were located at 25-75 nm / 3-
15 nm Euclidean and 25-50 nm / 3-30 nm geodesic distance (length of the shortest path composed of
arcs) from the membrane and had up to 2.5 sinuosity (ratio of geodesic and euclidean distances). For each
selected vertex, the closest connected membrane vertex was detected, and these membrane vertices were
chosen to represent particles, resulting in 64 000 and 62 000 cytosolic and lumenal particles, respectively.
A particle exclusion distance of 5 nm was imposed. These particle positions were used to reconstruct
particles in Imod [51] at a pixel size 0.524 / 0.262 nm and with a box size 120 / 160 pixels (for the
cytoplasmic / lumenal sides).

Further processing was done essentially in the same way for the cytoplasmic and lumenal particles, as
follows. Particle position and normal vectors were optimized using Relion by the constrained refinement
with C10 symmetry. They were rotationally averaged, and the general classification was performed using
the AP clustering. The initial preference was set to -10, to prevent getting a large number of classes The
resulting classes were visually inspected to select the cytosolic class showing the best cytoplasmic and
lumenal densities, and the lumenal class showing the best lumenal density. These classes were averaged
by constrained refinement to yield densities to be used as initial references for the further processing.

Unless noted otherwise, the masks used for the AP and for the following 3D classification and refinement
steps were cylindrical, for cytoplasmic particles 40x120 pixels (radius x height) containing both cytosolic
and lumenal space, and for lumenal particles 25x110 pixels, containing lumenal and only little cytoplasmic
space just above the membrane.

We then performed three rounds of 3D classification. False positive particles were removed by the first
3D classification round, with constrained alignment, using all cytosolic / lumenal particles and starting
from the previously obtained initial references. In the bulk cleaning variant, all particles were classified
together and the best class (resembling the initial reference the most) was selected for further processing
(2600 cytosolic and 21 000 lumenal particles). In the AP cleaning variant, each affinity propagation class
was subjected to 3D classification and the best classes were selected (7100 cytosolic particles from 15
affinity propagation classes). The second 3D classification round was focused on the opposite sides of the
particles (lumenal / cytosolic) and the third round on the smaller regions. Both 2nd and 3rd classification
steps were performed without alignment, using the alignment parameters from the first 3D classification
round (the masks used are shown in Figure 3 E, F). Specifically, for the cytosolic particles, the second 3D
classification was focused on the ER lumen and generated ribosome class bound to different translocon
species (fully assembled translocon: 3400 particles; partially assembled: 1800 particles), while the third
round of 3D classification focused on the cytosolic face of the ER membrane to separate translocon-bound
ribosome (1064 particles) from translocon-bound large ribosomal subunits (873 particles) (Figure 3 E). For
the lumenal particles, ribosome-bound (1800 particles) and the ribosome-free translocon (11 000 particles)
classes were generated during the second 3D classification step focused on the cytosolic side, while the
third 3D classification round focused on the ER lumen yielded two classes representing different ribosome-
free states (separate OST complexes and full translocon complexes, 2200 and 8600 particles, respectively)
(Figure 3F). An exclusion distance of 15 nm was imposed in order to remove overlapping particles, likely
originating from translation shifts during the alignment steps. The final classes were averaged by the
constrained refinement, post-processed and the FSC curves were generated (Figure S5).

Validation of density tracing and particle picking on microsomal membranes

For this validation, we analyzed 6 out of 55 microsomal tomograms that we used before. The Morse tracing
and picking was done in the same way as before. For local density detection, tomograms were low-pass
Gaussian filtered at 5 nm and density maxima were chosen. Template matching was done using Pytom
software [64], our ribosome-free translocon complex average (Figure 3F) low-pass filtered at 2.5 nm served
as the template and the angular increment was 12.85o. In all cases, particles were picked on the lumenal
side, up to 20 nm from the membrane, at 1.05 nm pixel size, yielding 13 000 - 17 000 particles. Further
processing was done with Relion at 0.26 nm pixel size. All classes were first subjected to the constrained
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refinement with C10 symmetry and then 3D classified into five classes with constrained alignment, using
the same ribosome-free translocon complex, filtered at 3.0 nm, as the initial reference.

Detection and classification in situ

Twelve tomograms of intact P19 cells that contained ER were used here. Membranes were segmented with
TomoSegMemTV [63] without any manual intervention. Consequently, the lumenal and cytosolic sides
were not distinguished in the subsequent analysis. Tomograms were low-pass Gaussian filtered at σ = 0.8
pixels, the density was traced using our procedure, vertex density on membranes was 0.0035 nm-3 (all at
1.368 nm pixel size). Particles were picked in the region 3-10 nm away from membranes, having geodesic
distance to the membrane of 3-30 nm. The exclusion distance was 5 nm to allow a rather comprehensive
picking of small complexes. All together, 172 000 particle subvolumes were reconstructed at 0.342 nm
pixel size, with box size of 160 pixels.

Particle position and normal vectors were optimized using Relion by the constrained refinement with
C10 symmetry. They were rotationally averaged and the dot product between them was used as the
similarity measure for the subsequent three rounds of AP classification, the initial preference parameter
was -6.

The first AP classification (at 0.684 nm pixel size) served to discard classes that did showed two, or
did not show any well resolved membrane (34 000 particles), and to group other classes into datasets
defined by the following features: large densities on the particle side of the membrane (28 000 particles),
large densities on the side opposite from the particles (25 000 particles) and the small densities (85 000
particles) (Figures S8, S9). In the second round (at 0.342 nm pixel size), these three datasets were
AP-classified separately. Classes were were visually evaluated and grouped for further processing based
on desired features (ribosome-containing and other classes from the large densities on the particle side
dataset, and ribosome containing classes from the large densities on the opposite side dataset), and some
classes were discarded. The selected particles were subjected to the constrained refinement with C10
symmetry by Relion, to optimize their positions and normals. The mask used for the first two AP rounds
contained membranes and the region on both sides of the membrane. The third round of AP-classification
(at 0.342 nm pixel size) was performed using a mask that did not contain the membrane, to improve the
position and orientation of particles. Selected classes were subjected to constrained refinement, and in
some cases also to 3D classification, by Relion. The third AP classification was not needed for classes
containing ribosomes, from the large density on the particle side dataset.

Averages of selected classes were obtained by constrained refinement using Relion. In some cases
the refinement was preceded by 3D classification. No symmetry was used except that C4 was used for
the class tentatively identified as the IP3 receptor. No external structures were used, all initial references
were provided from the AP classes. Final numbers of averaged particles are: 875 ribosomes, 180 ribosome-
associated translocons, 63 ribosome-free translocons, 41 IP3 receptors, and 108 and 177 PLC complexes.
Overlapping particles were removed. All masks used were cylindrical.

Spatial distribution functions

We implemented the following spatial distribution functions. The nearest neighbor distribution function
G(r) of a particle set is defined as a probability that the nearest neighbor of a particle is found at a
distance ≤ r. The spherical contact distribution F(r) is a probability that the closest particle from an
arbitrary point is found at a distance ≤ r. Consequently, G(r) primarily describes the organization within
particle clusters, while F(r) the empty space. The J-function is a combination of the two:

J(r) =
1− F (r)

1−G(r)

Ripley’s L function is calculated considering the region within which the particles are detected (particle
region), which can have an arbitrary shape, as follows:
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where λ is the overall concentration of particles, Nk(r) is number of points (particles) within a distance
≤r to point k, and Vk(r) is the volume of the intersection of the particle region and a sphere of radius
r centered on the point k [35, 36]. The bivariate versions of functions G(r) and L(r) characterize the
colocalization of two particle sets. They differ from the univariate functions specified above in that the
distances are calculated from particles of one set to the particles of the other set.

We calculated Ripley’s L function for particles on each microsome and obtained the mean. For the
determination of the statistical significance of Ripley’s L function, we generated multiple random distri-
butions (10 for each microsome, that is ≈1200 total) that had the same number of particles and were
located within the same spatial region as the particle set. Random points were given real particle size
and were not allowed to overlap among the same class, effectively imposing an exclusion distance within
a class. The envelope within which 95% of the curves were located was then used to determine whether
the distribution of the particle set was significantly different from the random distribution (at the p<0.05
significance level).

General software methods

The software developed for the work presented here was developed in the object-oriented manner in Python
as PySeg package. The package contains installation and usage instructions, examples on real biological
data and more than 66 000 lines (instructions and examples excluded). It is open-source and available
upon demand.

PySeg uses Pyto package [16], Numpy package, surface meshes were stored using VTK [65] and graphs
are plotted using matplotlib library [66]. We parallelized (shared memory model) some of the most
intensive operations in order to provide a software package able to effectively process big datasets with
many particles and tomograms.

For visualization, Paraview [67] and the UCSF Chimera package from the Computer Graphics Labo-
ratory, University of California, San Francisco [68] software packages were used.

All computations were done on Linux clusters at the computer center of the Max Planck Institute of
Biochemistry.
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Additional information

Accession codes: EM densities have been deposited in the EMDataBank obtained from cytosolic par-
ticles: ribosome bound to the fully assembled (EMD-0074) and partial translocon complex (EMD-0084),
the large ribosomal subunit (EMD-0075), and obtained from lumenal particles: the ribosome-translocon
complex (EMD-0085), the ribosome-free fully assembled translocon (EMD-0086) and the non-translocon
associated OST complex (EMD-0087).
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537, 191–196 (2016).

[59] Morales-Perez, C. L., Noviello, C. M. & Hibbs, R. E. X-ray structure of the human ?4?2 nicotinic
receptor. Nature 538, 411–415 (2016).

[60] Tao, X., Hite, R. K. & MacKinnon, R. Cryo-em structure of the open high-conductance ca,
javax.xml.bind.jaxbelement@741fc2e3, -activated k, javax.xml.bind.jaxbelement@4349c43b, channel.
Nature 541, 46–51 (2017).

[61] Park, E., Campbell, E. B. & MacKinnon, R. Structure of a clc chloride ion channel by cryo-electron
microscopy. Nature 541, 500–505 (2017).

[62] Zhang, Y. et al. Cryo-em structure of the activated glp-1 receptor in complex with a g protein. Nature
546, 248–253 (2017).

[63] Martinez-Sanchez, A., Garcia, I., Asano, S., Lucic, V. & Fernandez, J.-J. Robust membrane detection
based on tensor voting for electron tomography. J Struct Biol 186, 49–61 (2014).

[64] Hrabe, T. et al. Pytom: a python-based toolbox for localization of macromolecules in cryo-electron
tomograms and subtomogram analysis. Journal of structural biology 178, 177–188 (2012).

[65] Schroeder, W. J., Lorensen, B. & Martin, K. The visualization toolkit: an object-oriented approach
to 3D graphics (Kitware, 2004).

[66] Hunter, J. D. Matplotlib: A 2d graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

[67] Ayachit, U. The paraview guide: a parallel visualization application (2015).

[68] Pettersen, E. F. et al. Ucsf chimera, a visualization system for exploratory research and analysis. J
Comput Chem 25, 1605–12 (2004).

25

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 1, 2019. ; https://doi.org/10.1101/413484doi: bioRxiv preprint 

https://doi.org/10.1101/413484

