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 2 

Abstract 24 

Walking movements are orchestrated by the activation of a large number of muscles. The 25 

control of numerous muscles during walking is believed to be simplified by flexible activation 26 

of groups of muscles called muscle synergies. Although significant corticomuscular 27 

connectivity during walking has been reported, the level at which the cortex controls locomotor 28 

muscle activity (i.e., muscle synergy or individual muscle level) remains unclear. Here, we 29 

examined cortical involvement in muscle control during walking by brain decoding of the 30 

activation of muscle synergies and individual muscles from electroencephalographic (EEG) 31 

signals using linear decoder models. First, we demonstrated that activation of locomotor muscle 32 

synergies was decoded from slow cortical waves with significant accuracy. In addition, we 33 

found that decoding accuracy for muscle synergy activation was greater than that for individual 34 

muscle activation and that decoding of individual muscle activation was based on muscle 35 

synergy-related cortical information. Taken together, these results provide indirect evidence that 36 

the cerebral cortex hierarchically controls multiple muscles through a few muscle synergies 37 

during walking. Our findings extend the current understanding of the role of the cortex in 38 

muscular control during walking and could accelerate the development of effective 39 

brain-machine interfaces for people with locomotor disabilities. 40 
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 50 
Introduction  51 

Human locomotor movement is organized by the coordinated activation of a large 52 

number of muscles. It has been suggested that complex muscle activity is generated from a 53 

small number of groups of muscle activations called muscle synergies [1-5]. Locomotor muscle 54 

synergies are thought to be structured in the spinal circuitry [6, 7]. Based on previous studies 55 

examining synergy activation among different subject groups, it has been suggested that the 56 

cortex activates locomotor muscle synergies [1, 2, 7]. These studies reported that locomotor 57 

muscle synergy in healthy adults exhibited activation that was sharply timed around gait events 58 

[1], whereas locomotor muscle synergy in neonates [2] and complete spinal cord injury (SCI) 59 

patients [7] exhibited smooth prolonged activation. The differences in the patterns in neonates 60 

and SCI patients could be caused by immature and injured corticospinal pathways, respectively. 61 

Based on these findings, it is thought that cortical descending commands modulate basic 62 

locomotor muscle synergy activation generated by subcortical structures, particularly in the 63 

spinal cord. However, there is currently no direct evidence of cortico-muscle synergy 64 

relationships supported by simultaneous recordings of cortical activity and muscle synergy 65 

activation during walking. 66 

Unlike quadruped animals [8, 9], human bipedal walking is characterized by 67 

significant cortical activity even during undemanding steady-state walking [10-19]. Significant 68 

cortical activation has been demonstrated previously in premotor, supplementary motor, and 69 

primary sensorimotor regions during real and imagined walking using neuroimaging techniques 70 

such as positron emission tomography (PET) and near-infrared spectroscopy (NIRS) [11, 12]. 71 

Recent studies using electroencephalography (EEG), which has greater temporal resolution, 72 

have demonstrated gait-phase dependent modulation of cortical activity, particularly in the 73 

sensorimotor cortex, using a combined method of independent component analysis and source 74 

localization techniques [13-17]. Other EEG studies have demonstrated significant 75 

corticomuscular connectivity between the leg sensorimotor area and leg muscles during walking 76 
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using individual muscle level analysis [18, 19]. Although these studies strongly suggest cortical 77 

involvement in muscular control during walking, at what level the cortex controls muscle 78 

activity remains unclear, i.e., at muscle synergies or individual muscles. 79 

To address the question, we hypothesized that the human cortex controls locomotor 80 

muscle activity through muscle synergies, rather than through direct control of each muscle and, 81 

then, examined how the cortex is involved in muscle control during walking by decoding the 82 

activations of muscle synergies and individual muscles from EEG signals. Brain decoding 83 

techniques, which predict the mental or motor state of a human from recorded brain signals, 84 

have received substantial attention for the development of brain-machine interfaces (BMIs) for 85 

repairing or assisting deficits in cognitive or sensory-motor functions [20-22]. In addition to 86 

potentially restoring lost functions, neural decoding can provide information on the 87 

physiological principles of how motor movements are controlled by the brain [23]. 88 

In this study, using neural decoding techniques, we demonstrate that the activation of 89 

muscle synergies can be decoded from cortical activity and that the decoding accuracy for 90 

muscle synergies is greater than that for individual muscles. Additionally, we show the 91 

decoding of individual muscle activity is based on muscle synergy related cortical information. 92 

These results provide experimental evidence that the cortex hierarchically controls individual 93 

muscles through locomotor muscle synergies. The findings will shed light on the cortex’s role 94 

in muscular control during walking and provide an important basis for developing effective 95 

neuroprostheses for walking rehabilitation. 96 

 97 

Results 98 

Healthy participants walked on a treadmill at 0.55 m/s for 7 min 30 seconds. Surface 99 

electromyographic (EMG) signals were recorded from 13 leg muscles on the right side. EEG 100 

signals were recorded from 63 channels. EEG data from 30 channels (Figure 1), which are 101 

assumed to be less affected by eye blinks and facial/cranial muscle activity, were used for 102 
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subsequent analysis. Using the EMG and EEG signals, we tried to decode individual muscle and 103 

muscle synergy activations from cortical activity. See Figure 2 for an overview of our decoding 104 

methodology. 105 

 106 

Extracted locomotor muscle synergies 107 

The recorded EMGs were rectified and smoothed by a low-pass filter. Next, using non-negative 108 

matrix factorization (NMF) [2, 3, 24-26], muscle synergies were extracted from each participant. 109 

From the low-pass filtered EMGs, 4.17 ± 0.58 (mean ± SD) muscle synergies were extracted 110 

from each participant. The extracted muscle synergies were grouped into five types using 111 

cluster analysis (synergy A–E, Figure 3). Supplemental Table S1 summarizes the characteristics 112 

of the extracted locomotor muscle synergies. 113 

 114 

Neural decoding of activation of muscle synergies and individual muscles from 115 

EEG signals 116 

As preparation for neural decoding, recorded EEG signals were band-pass filtered in 117 

the delta bend (0.5-4Hz). The filtered signals, which are called slow cortical potentials, were 118 

confirmed to be particularly informative for decoding motor-related parameters [27-32]. We 119 

used multiple linear models, also referred to as Wiener filter, to decode individual muscle and 120 

muscle synergy activations from the slow cortical potentials, as used in previous studies 121 

decoding motor parameters [27-32]. Figure 4 provides examples of real and reconstructed 122 

muscle synergy activations (Figure 4A) and individual muscle activations (Figure 4B) from a 123 

participant. In this participant, all locomotor muscle synergy activations were successfully 124 

reconstructed based on visual inspection (Figure 4A). In contrast, in individual muscle 125 

activation, the amplitude modulation was not sufficiently reconstructed in some muscles, such 126 

as SART, AM, PL, SOL (Figure 4B). 127 
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 To quantify decoding accuracy, we calculated the Pearson’s correlation coefficients 128 

(r) between the real and reconstructed activations in each decoder (Figure 5). The mean values 129 

across the participants ranged from 0.48 to 0.52 in muscle synergy decoders and 0.31 to 0.52 in 130 

individual muscle decoders (Figure 5A). The overall accuracy (i.e., averaged correlation values 131 

across all decoders in each type [muscle synergy or individual muscle]) of the muscle synergy 132 

decoder was higher than that of the individual muscle decoder (t(11) = 5.30, p = 0.0003, paired 133 

t-test, Figure 5B). 134 

Next, to validate the results of neural decoding, the same decoding process was 135 

performed on phase-randomized EEG signals to estimate the chance levels. We generated 100 136 

surrogate datasets and evaluated the mean and 95% confidence intervals of the decoding 137 

accuracy from the distribution of decoding accuracy of the surrogate datasets (Figure 5C). The 138 

decoding accuracy from the phase-randomized data was low regardless of the type of muscle 139 

synergies or individual muscles (range of mean r values: 0.0085−0.025). The decoding accuracy 140 

from the original EEGs exceeded the 95% confidence interval of the surrogate datasets for all 141 

muscle synergy and individual muscle decoders in all the participants. 142 

 143 

Relationships between muscle synergy decoders and individual muscle decoders 144 

Although the decoding accuracy of muscle synergy activation was similar for all 145 

synergy types, the decoding accuracy of individual muscle decoders varied widely across 146 

different muscles (Figure 5A). In this study, the cortex is assumed to be involved in muscle 147 

control through muscle synergies. Based on this assumption, the variability of decoding 148 

accuracy in individual muscles would be reproduced by individual muscle activations indirectly 149 

decoded from muscle synergy activations decoded from muscle synergy decoders. To test this 150 

hypothesis, we reconstructed individual muscle activations by summing the outputs of each 151 

decoded muscle synergy (Figure 6A). The decoding accuracy of directly decoded individual 152 
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muscle activations was found to have a very strong positive correlation with that indirectly 153 

decoded from the outputs of decoded muscle synergies (r = 0.97, Figure 6B). This result 154 

indicates that if muscle activation is not well decoded through decoded muscle synergies, the 155 

decoding accuracy of the muscle will be low even when it is directly decoded. 156 

The decoding accuracy relationships suggest that decoding of individual muscle 157 

activation is based on muscle synergy-related cortical information. If so, the weights of the 158 

individual muscle decoders (Wmuscle) should be represented as a linear combination of those of 159 

muscle synergy decoders (Wsyn) with non-negative coefficients. To test this possibility, 160 

300-dimensional weights of an individual muscle decoder were reconstructed as a linear 161 

combination of the weights of muscle synergy decoders with non-negative coefficients (Wmuscle’, 162 

conceptual schema presented in Figure 6C). The similarity between the original and 163 

reconstructed weights (i.e., Wmuscle and Wmuscle’, respectively) was quantified by Pearson’s 164 

correlation coefficient, which was 0.91 ± 0.11 (mean ± SD) across all muscles of all the 165 

participants. Regarding each type of muscle, the mean similarity values across participants 166 

ranged from 0.77 to 0.99 (Figure 6D). Thus, as expected, the weights of individual muscle 167 

decoders represented very similar patterns as those reconstructed from the weights of muscle 168 

synergy decoders. 169 

 170 

Contributions of electrodes to neural decoding 171 

To evaluate the spatial contributions of cortical activity for predicting muscle synergy 172 

activations, we calculated the contribution of each electrode from the weights of the decoding 173 

model [33]. Figure 7A shows examples of the contributions of each electrode to the decoding in 174 

one participant. In this participant, the contribution of each electrode was approximately 7% at 175 

the highest. Thus, widely-distributed cortical activity, rather than activity from one specific 176 

electrode and area, contributed to decoding. The widely-distributed contribution of the whole 177 

cortex was also observed in the mean contribution in each type of synergy (Figure 7B). 178 
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 These results suggest that broad cortical activity is involved in the control of 179 

locomotor muscle synergy. To further validate the widely-distributed contribution of cortical 180 

activity to the decoding of locomotor muscle synergy, we divided the electrodes into four major 181 

regions of interest (ROIs), namely frontal, central, lateral, and parietal ROIs (Figure 7C). Next, 182 

for each ROI, we performed the same decoding procedure used for all electrodes and compared 183 

the decoding accuracies. The comparisons of the decoding accuracy did not show any 184 

significant differences among ROIs, except for that between the central and parietal ROIs in 185 

synergy E (Figure 7D). Nevertheless, the decoding accuracy in the full electrodes was 186 

significantly higher than that in each ROI (Figure 7D, p < 0.05, False discovery rate (FDR) 187 

corrected for multiple comparisons, see Table S2−S6 for detailed statistical values). 188 

Interestingly, the mean decoding accuracy of the central ROI was the largest for all synergy 189 

types except synergy C, and a significantly higher accuracy was found in the central ROI 190 

compared to the parietal ROI for synergy E (Figure 7D, p = 0.020, FDR corrected for multiple 191 

comparisons). 192 

 193 

Discussion 194 

Cortical control of locomotor muscle synergy 195 

The last 15 years of research has suggested that cortical descending commands modulate basic 196 

locomotor muscle synergy activation generated by subcortical structures [1, 2, 7, 25]. 197 

Nevertheless, currently, there has been no evidence of cortical control of locomotor muscle 198 

synergies from simultaneously recorded cortical and muscle activity. In this study, we revealed 199 

that activation of locomotor muscle synergies decoded from EEGs was moderately correlated 200 

with real activation (Figure 5A), and that decoding accuracy of muscle synergy activation was 201 

generally higher than that of individual muscle activation (Figure 5B). By examining the 202 

relationships between individual muscle and muscle synergy decoders, we also showed that the 203 
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decoding of individual muscle activity is based on muscle synergy-related cortical information 204 

(Figures 6B and 6D). Combined, the decoding results demonstrate significant cortico-muscle 205 

synergy relationships during walking, thus supporting the hypothesis that the human cortex 206 

hierarchically controls locomotor muscle activity through muscle synergies rather than by 207 

directly controlling each muscle [34]. 208 

Regarding cortical control of locomotor muscle synergies in a stroke-injured 209 

neuromuscular system, fewer locomotor muscle synergies resulting from the merging of healthy 210 

muscle synergies are recruited, which reflect disruption in the corticospinal descending 211 

pathways [25]. Therefore, post-stroke changes suggest cortical involvement in the activation of 212 

the locomotor muscle synergies. Other evidence regarding the cortical control of locomotor 213 

muscle synergies has been suggested by altered activation of the muscle synergies in patients 214 

with complete SCI [7] and neonates [2]. Both subject groups exhibited smooth sinusoidal-like 215 

activation patterns of locomotor muscle synergies rather than sharply timed activation, which 216 

was observed in healthy subjects [1, 35]. The sinusoidal-like activation patterns were also 217 

observed in other mammals [2]. Based on luck of corticospinal interactions in SCI patients and 218 

neonates, this similarity may suggest that the sinusoidal-like activation patterns are 219 

phylogenetically conserved in the spinal circuits. Taken together, it is possible that cortical 220 

descending commands modulate basic locomotor muscle synergy activation patterns generated 221 

by the spinal cord into the sophisticated patterns underlying human-specific upright bipedal 222 

walking.  223 

The decoded muscle synergy activation observed here exhibited moderate correlation 224 

with actual activation (Figure 5). This moderate decoding accuracy is expected to derive from 225 

muscle synergy recruitment via multiple neural pathways, such as the brainstem, spinal cord, 226 

and sensory feedback [34, 36, 37] in addition to the cortex. Although the cortex is likely to be 227 

involved in the control of locomotor muscle synergies, its contribution may not be exclusively 228 

dominant. Partial contribution of the cortex to the control of locomotor muscle synergies may 229 

explain the moderate decoding accuracy observed in this study. 230 
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 231 

Global cortical involvement in control of locomotor muscle synergies 232 

Widely-distributed cortical activity, rather than activity from a specific electrode or area, 233 

contributed to decoding (Figure 7). Similarly, previous studies of neural decoding while 234 

walking demonstrated that leg kinematics could be decoded from cortical signals from 235 

widely-distributed regions [27, 28]. Previous work has shown the contributions of widespread 236 

cortical circuits, including the posterior parietal cortex, motor cortex, somatosensory cortex, and 237 

visual cortex, to visually guided walking in cats [38]. Although the contribution of widespread 238 

cortical circuits is limited to challenging walking conditions in cats, such circuits may 239 

contribute to the control of human walking even during steady-state walking because the 240 

mechanical instability of human-specific bipedal walking [39] requires additional cortical 241 

involvement. Indeed, widespread cortical activity has been reported during human walking by 242 

source estimation of EEG signals [13, 40]. In addition, motor imagery studies have 243 

demonstrated locomotor-related activity in brain regions including the primary and 244 

supplementary motor cortex and several bilateral parietal and frontal regions using functional 245 

magnetic resonance imaging (fMRI) [41, 42]. Thus, it is possible that locomotor-related global 246 

activity in the cortex can explain the widely-distributed contribution of electrodes to the 247 

decoding of locomotor muscle synergy activations in the present study. 248 

Of note, the mean decoding accuracy of the central ROI was highest among all ROIs 249 

in all synergy types except one, and significantly higher accuracy was found in the central ROI 250 

compared to the parietal ROI in one synergy type (Figure 7D). Since the central ROI covers the 251 

sensorimotor area, it should contain more information about the control of locomotor muscle 252 

synergy than the other ROIs. A previous study using transcranial magnetic stimulation and 253 

fMRI demonstrated that motor cortical regions activate muscle synergies of the leg and pelvic 254 

floor muscles, and that the regions have functional connectivity to widespread brain regions 255 

[43]. Based on these results and the results of the previous study, motor cortical regions with 256 
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widespread cortical networks may be involved in the control of muscle synergies for leg 257 

muscles during walking, as well as the synergies of leg and pelvic floor muscles [43]. 258 

 259 

Roles of slow cortical potentials in sensorimotor control 260 

 In the present study, slow cortical potentials in the delta bend (0.5–4 Hz) were used 261 

for our neural decoding method. Although such low-frequency cortical activity is associated 262 

with sleep [44], recent studies suggest that low-frequency cortical activity contains 263 

sensorimotor-related information. For example, delta band cortical activity plays a role in 264 

decision-making about somatosensory discrimination [45] and prediction of sensory events [46]. 265 

Additionally, neural decoding studies in humans have demonstrated that delta band activity is 266 

particularly informative for decoding kinematics parameters [27-32] and muscle activity [30]. In 267 

recent rodent studies, multisensory integration in widespread brain networks through slow 268 

cortical waves was suggested by calcium imaging [47]. As more direct evidence, a study on 269 

monkeys revealed intrinsic cyclic activity of slow cortical waves, functioning much like a spinal 270 

central pattern generator for locomotion, in the motor cortex and that slow waves synchronized 271 

upper-limb movements and muscle activity [48]. In addition, they demonstrated the slow 272 

cortical dynamics during sleep and under sedation. Given the task commonality between 273 

upper-limb movement and sleep, it is possible that the slow cortical dynamics are shared with 274 

walking. If the above-mentioned roles of slow cortical waves are conserved in humans, slow 275 

cortical waves may integrate muscle-synergy-related sensor information and be synchronized to 276 

muscle synergy activations. Therefore, locomotor muscle synergy activations could be decoded 277 

from slow waves in this study. 278 

 279 

Applicability to brain-machine interfaces 280 

The decoding methodology and results of this study could contribute to the development of 281 

more effective locomotor rehabilitation approaches for patients with neural disorders. Recently, 282 
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brain-machine interface (BMI) systems, which control stimulators that activate muscles through 283 

functional electrical stimulation (FES) based on cortical signals, have been used to aid recovery 284 

of movement in impaired patients [49]. As a new stimulation pattern of FES, muscle 285 

synergy-based stimulation patterns have been suggested for upper limb reaching [50] and 286 

locomotion [51]. The present results indicate that EEG signals contain information about the 287 

control of locomotor muscle synergies, providing fundamental information for effective 288 

neuroprosthetic systems based on a novel approach (e.g., BMI-FES with muscle synergy-based 289 

stimulation patterns) for restoring locomotion. 290 

 291 

Methodological considerations 292 

Although EEG is a suitable method for examining brain activity during walking because of its 293 

high temporal resolution and mobility, the potential effects of movement artifacts should be 294 

considered. A recent study examined gait movement-related artifacts in EEG data by blocking 295 

the recording of electrophysiological signals (brain, eye, heart, and muscle activity) using a 296 

nonconductive layer (silicone swim cap) [52] and demonstrated that artifacts were smaller in 297 

electrodes in the central region (i.e., the vertex) compared with peripheral regions, because 298 

movement artifacts were caused by vertical head acceleration. In the present study, 299 

widely-distributed cortical activity, including that from central regions and peripheral regions 300 

(Figure 7A, 7B, and 7C), contributed to decoding. In addition, contribution to the decoding of 301 

central region ROI was larger than that of a peripheral ROI in a synergy type (Figure 7C). Thus, 302 

movement artifacts are not expected to have a major impact on the results. 303 

 Last, we used a primary components analysis (PCA)-based artifact rejection 304 

algorithm (ASR) to remove movement artifacts and other artifacts derived from muscle, heart, 305 

and eye activity. The ASR method removes high-variance artifact components from a dataset by 306 

comparison with a resting dataset [53]. This method has been utilized in studies recording EEG 307 

signals during walking, and its effectiveness has been confirmed in several studies [54, 55]. 308 
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Therefore, the effects of movement artifacts on the current decoding results are not expected to 309 

be large. 310 

 311 

Conclusions 312 

We demonstrated that low-frequency cortical waves are informative for the decoding of muscle 313 

synergy activity during walking, and that the decoding of individual muscle activity is based on 314 

muscle synergy-related cortical information. These results suggest that the cortex hierarchically 315 

controls locomotor muscle activity through muscle synergies. These novel findings advance our 316 

understanding of the neural control of human bipedal locomotion. Moreover, they demonstrate 317 

the feasibility of neural decoding of muscle synergy activation, supporting its future 318 

contribution to the development of effective brain-muscle neuroprostheses to restore walking in 319 

patients with mobility limitations. 320 
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Figure legends 520 

Figure 1. EEG electrode montage corresponding to the international 10-20 system. 521 

 522 

Figure 2. Schematic diagram depicting the neural decoding of locomotor muscle synergy and 523 

individual muscle activations from simultaneously recorded EEG signals. Examples of 8 524 

seconds of raw EMG signals, EMG envelopes, muscle synergies, pre- and post-artifact removal 525 

EEG signal from an electrode, and slow cortical potentials in the delta band are shown. 526 

 527 

Figure 3. Five extracted types of locomotor muscle synergies. Average muscle weightings 528 

(bars) and corresponding temporal activation patterns (waveforms) across participants in each 529 

type of locomotor muscle synergy are shown. Each bar height represents the relative level of 530 

activation of each muscle synergy. An enlarged view of the x-axis is shown at the bottom. Lines 531 

indicate the temporal activation patterns of the muscle synergies. Thick lines indicate average 532 

temporal activation patterns, while thin lines indicate their standard deviations (SD). 533 

 534 

Figure 4. Typical examples of decoded and actual muscle synergy activations (A) and 535 

individual muscle activations (B) from a participant. Red and blue waveforms indicate decoded 536 

and actual activation patterns, respectively. Bars represent muscle synergy. 537 

 538 

Figure 5. Decoding accuracy of activation of muscle synergies and individual muscles. (A) 539 

Decoding accuracy (correlation coefficient) for each muscle synergy type (left) and EMG 540 

envelope of an individual muscle (right). The mean and SD across participants are shown. (B) 541 

Overall decoding accuracy for muscle synergy decoders and individual muscle decoders. Mean 542 

values across participants (black) and each participants’ data (gray) are shown. (C) Decoding 543 

accuracy when EEG phase was scrambled. The bars indicate the participant’s mean of means 544 

and the upper ends of the 95% confidence interval obtained from the distribution of the 545 
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surrogate datasets of EEG signals. 546 

 547 

Figure 6. Relationships between muscle synergy decoders and individual muscle decoders. 548 

(A) A schematic flow diagram illustrating directly decoded muscle activity and indirectly 549 

decoded muscle activity reconstructed from decoded muscle synergies. (B) Relationships of 550 

decoding accuracy in each individual muscle activity between those directly decoded from 551 

individual muscle decoders and those indirectly decoded from muscle synergy activations 552 

decoded from muscle synergy decoders. Each plot indicates the value of an individual muscle 553 

from a participant. (C) Schematic diagram of reconstruction of weights of an individual muscle 554 

decoder from those of muscle synergy decoders. (D) Similarity of weights of individual muscle 555 

decoders between the originals and those reconstructed from weights of muscle synergy 556 

decoders. The mean and SD across participants are shown. 557 

 558 

Figure 7. Contribution of each electrode to the decoding of muscle synergy. 559 

(A) Examples of contributions of each electrode to decoding from a participant (B) Mean 560 

contribution of each electrode in each synergy type. The error bars indicate the SD (C) Scalp 561 

map indicating the electrodes included in each region of interest (ROI) to examine the 562 

contributions from different cortical regions to decoding. (D) Decoding accuracy by each ROI 563 

and all electrodes. Data are represented as mean ± SEM. Asterisks indicate significant 564 

differences (*: p < 0.05, **: p < 0.01, FDR corrected for multiple comparisons, See also Table 565 

S2−S6 for detailed statistical values). 566 
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Figure 1 569 
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Figure 2 572 
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Figure 3  574 
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Figure 4 575 
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Figure 5 577 
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Figure 6 581 
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Figure 7 586 
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 590 
Methods 591 

 592 

Experimental model and subject details 593 

Participants 594 

Twelve healthy male volunteers (age, 23–31 years) participated in this study. Each participant 595 

provided written informed consent. The experiments were performed in accordance with the 596 

Declaration of Helsinki and with the approval of the Ethics Committee of the Graduate School 597 

of Arts and Sciences, University of Tokyo. 598 

 599 

Method details 600 

Experimental design and setup 601 

Participants walked on a treadmill (Bertec, Columbus, OH, USA) at 0.55 m/s for 7 min 30 602 

seconds. The last seven minutes of data were used for the analysis. The slow walking speed was 603 

chosen based on two previous studies examining the effects of walking speed on movement 604 

artifacts in EEG signals [52, 54]: Kline et al. [52] used an experimental method to isolate and 605 

record independent movement artifacts with a silicone swim cap (nonconductive material), and 606 

reported large movement artifacts at walking speeds faster than 0.8 m/s. A study that analyzed 607 

relationships between head acceleration and motion artifacts in EEG signals indicated that 608 

recordings were robust at gait speeds below 3.0 km/h (0.83 m/s) [54]. As a static baseline 609 

condition, the participants sat on a chair for two minutes. 610 

 611 

Data collection 612 

Three-dimensional ground reaction forces (GRF) were recorded from force plates under the 613 

right and left belts of the treadmill (sampling rate: 1000 Hz). GRF data were smoothed with a 614 

low-pass filter (zero-lag Butterworth filter, 5 Hz cutoff). MATLAB 2016b (MathWorks, Natick, 615 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 11, 2018. ; https://doi.org/10.1101/413567doi: bioRxiv preprint 

https://doi.org/10.1101/413567


 30 

MA, USA) was used to perform all the post-processing analyses offline. 616 

Surface electromyographic (EMG) signals were recorded from the following 13 leg 617 

muscles on the right side using a wireless EMG system (Trigno Wireless System, DelSys Inc., 618 

Boston, MA, USA): tensor fasciae latae (TFL), gluteus maximus (GM), gluteus medius (Gmed), 619 

sartorius (SART), biceps femoris (BF), semitendinosus (ST), rectus femoris (RF), vastus 620 

lateralis (VL), adductor magnus (AM), tibialis anterior (TA), peroneus longus (PL), soleus 621 

(SOL), and gastrocnemius medialis (MG). EMGs were amplified (with 300 gain preamplifier), 622 

band-pass filtered (20–450 Hz), and sampled at 1000 Hz. 623 

A 64-channel EEG cap (Waveguard original, ANT Neuro b.v., Enschede, 624 

Netherlands) and a mobile EEG amplifier (eego sports, ANT Neuro b.v., Enschede, 625 

Netherlands) were used to record EEG signals at a sampling frequency of 500 Hz. Arrangement 626 

of the electrodes was according to the international 10–20 electrode system. EEG signals were 627 

referenced to CPz and a ground electrode was placed on AFz. Electrode impedances were kept 628 

below 30 kΩ (10 kΩ in most electrodes), which was substantially below the recommended 629 

impedance (below 50 kΩ) for the high-impedance EEG amplifier. Peripheral channels, which 630 

are prone to contamination by facial/cranial muscle activity and eye blinks, were removed from 631 

the offline analysis (channels labeled Fp, AF, FT, T, TP, O, PO, and F5-8, P5-8) [55], resulting 632 

in the 30 channels presented in Figure 1. 633 

 634 

EMG processing and extraction of locomotor muscle synergies 635 

Figure 2 shows an overview of our decoding methodology. From the recorded EMG signals, 636 

EMG envelopes and muscle synergies were used for the neural decoding analysis. 637 

 First, the recorded EMG data were high-pass filtered (zero-lag fourth-order 638 

Butterworth at 30 Hz), demeaned, full-wave rectified, and smoothed with a low-pass filter 639 

(zero-lag fourth-order Butterworth at 4 Hz cutoff) to obtain EMG envelopes [25]. EMG 640 

envelopes were resampled at 100 Hz. The amplitude of EMG envelopes for each muscle was 641 
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normalized to the maximum value for that muscle during the walking task. Muscle synergies 642 

were extracted from the processed EMG envelopes using non-negative matrix factorization 643 

(NMF) [2, 3, 24-26]. For each participant, muscle synergies were extracted from the EMG 644 

dataset organized as a matrix with 13 muscles × 42000 variables (i.e., 100 Hz × 420 sec [7 645 

min]). Using NMF, the EMG matrix (M) was decomposed into spatial muscle weightings (W), 646 

which correspond to the muscle synergies and their temporal activations (C) according to 647 

formula (1): 648 

𝑀 = 𝑆 ∙  𝐶 +  𝐸  (1) 

where M (m × t matrix, where m is the number of muscles and t is the number of samples in the 649 

EMG data matrix) is a linear combination of muscle synergies, S (m × Nsynergy matrix, where 650 

Nsynergy is the number of muscle synergies), and their temporal activation patterns, C (Nsynergy × t 651 

matrix), and E is the residual error matrix. The number of muscle synergies, Nsynergy, was 652 

determined by iterating each possible Nsynergy from 1 to 10. For each Nsynergy, the goodness of fit 653 

was evaluated based on the variance accounted for (VAF) [56]. Based on the VAF, the optimal 654 

Nsynergy was defined as the minimum value fulfilling two criteria: (1) the number of muscle 655 

synergies achieving VAF > 90% [56], and (2) the number to which adding an additional muscle 656 

synergy did not increase VAF by > 5% [57]. Then, we clustered the extracted muscle synergies 657 

using hierarchical clustering analysis to examine the extracted types of muscle synergies 658 

(Ward’s method, correlation distance) based on muscle weightings, as in our previous studies [3, 659 

58, 59]. The gap statistic method was used to define the optimal number of clusters [60]. 660 

 661 

EEG pre-processing 662 

In the current study, fluctuations in the amplitude of slow cortical potentials (0.5 – 4 Hz in the 663 

time domain) were used for the neural decoding analysis (Figure 2) based on a similar 664 

methodology used in previous studies [27-30, 32]. EEG data analysis was performed using 665 

custom programs in MATLAB incorporating functions of EEGLAB 14.1b [61]. The EEG 666 
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signals were band-pass filtered between 0.5−100 Hz with a Butterworth filter (fourth-order). 667 

The “cleanline” function in EEGLAB was used to remove power line noise (50 Hz). Next, the 668 

EEG signals were resampled at 100 Hz. Then, we checked noisy EEG channels based on two 669 

criteria adopted from a previous study (Gwin et al., 2011): 1) standard deviation greater than 670 

1000 µV, and 2) kurtosis of more than five standard deviations from the mean. In this study, no 671 

EEG electrode satisfied the criteria in all the participants. Since various types of artifacts were 672 

potentially introduced in the EEG data, we used an artifact rejection method called Artifact 673 

Subspace Reconstruction (ASR) [53] in EEGLAB to remove artifacts derived from walking, 674 

eye blinks, muscle, and heart activity. Next, the cleaned EEG signals were low-pass filtered at 4 675 

Hz with a zero-phase Butterworth filter (fourth-order) and re-referenced to a common average 676 

reference. Finally, the amplitude of each electrode was normalized by calculating the standard 677 

z-score. 678 

 679 

Neural decoding of muscle synergy and individual muscle activation 680 

To continuously decode the activation of muscle synergies and individual muscles from the 681 

slow cortical potentials, we designed a time-embedded (10 lags, corresponding to 0 ms to -90 682 

msec) linear decoding model, called the Wiener filter [28, 29, 62], for the muscle synergy and 683 

EMG envelope data. The linear model is given by: 684 

𝑦(𝑡)  =  𝑏 +  𝑊!!

!

!!!

!!"!#$%&'!

!!!

∙  𝑥! 𝑡 − (𝑗 − 1)  +  𝑒 (𝑡) (2) 

where y(t) is the predicted time series activation of each muscle synergy or EMG envelope at 685 

time t, b is the intercept, Nelectrode (= 30) is the number of electrodes, L (=10) is the number of 686 

time lags, x(t) is the normalized slow cortical potentials at electrode i at time t, Wij is the weights 687 

at electrode i and time lag j, and e(t) is the residual error. The parameters of the model were 688 

calculated with multidimensional generalized linear regression [28, 29, 62] using the “glm” 689 
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function in MATLAB (Gaussian distribution condition). Neural decoders were designed 690 

separately for each participant and each decoded parameter (i.e., each muscle synergy and each 691 

EMG envelope). 692 

For assessing the predictive accuracy of each decoder, a seven-fold cross-validation 693 

procedure was performed. Thus, the data recorded during the 7 min walking task were divided 694 

into 7 segments (1 min each). Six segments were used for training data while the remaining 695 

segment was used for testing the decoding model. This procedure was repeated for all possible 696 

combinations (i.e., seven times). Correlation coefficients (r) were calculated between the real 697 

activation and the decoded activation at each decoder in each iteration. To compare the overall 698 

decoding accuracy between the two types of decoders (muscle synergy decoders vs. individual 699 

muscle decoders), overall correlation values were calculated for each type per participant. To 700 

minimize the effects of skewness in the sampling distributions on the correlation coefficients, 701 

each correlation coefficient value was averaged after Fisher’s Z-transformation [63]. After 702 

averaging, the Z-values were back-transformed to the scale of Pearson’s r values. 703 

Chance levels of neural decoding were evaluated by scrambling the EEG phase [64]. 704 

Phase-randomized EEG signals were generated by performing Fourier transform of a time series, 705 

and then the inverse Fourier transform was performed. The same decoding procedure was 706 

performed using the phase-randomized EEG signals. We generated 100 phase-randomized EEG 707 

datasets for each participant and performed neural decoding using each randomized dataset to 708 

obtain confidence intervals for the decoding accuracy. 709 

 710 

Analysis of relationships between muscle synergy decoders and individual muscle 711 

decoders 712 

We reconstructed individual muscle activations by summing the outputs of each 713 

decoded muscle synergy to test whether the variability in decoding accuracy in individual 714 

muscles would be reproduced by individual muscle activations indirectly decoded from muscle 715 
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synergy activations decoded from muscle synergy decoders. The output of a decoded muscle 716 

synergy was explained by the product of the muscle weighting component and the decoded 717 

temporal activation pattern from the slow cortical potentials. Next, the decoding accuracy of the 718 

indirectly decoded individual muscle activation through the decoded muscle synergies were 719 

assessed. 720 

To examine the weight of each muscle decoder (Wmuscle) based on those of the muscle 721 

synergy decoders (Wsyn), a 300-dimensional weight of an individual muscle decoder was 722 

reconstructed as a linear combination of the weights of the muscle synergy decoders with 723 

non-negative coefficients (Wmuscle’, conceptual schema presented in Figure 6C). The 724 

non-negative least squares problem was solved by the “lsqnonneg” function in MATLAB. The 725 

similarity of the weights of the original and reconstructed individual muscle decoders (i.e., 726 

Wmuscle and Wmuscle’, respectively) was evaluated by Pearson’s r. 727 

 728 

Contribution of each electrode to decoding 729 

To evaluate the spatial contributions of cortical activity to predict muscle synergy activations, 730 

we calculated the contribution of each electrode from the weights of the decoding model as 731 

determined in a previous study [33]: 732 

%𝑇!  =  
𝑤!"!

!!!

𝑤!"!
!!!

!!"!#$%&'!
!!!

×100; (3) 

for all k from 1 to Nelectrode, where %Tk is the percentage contribution of each EEG electrode k. 733 

 In addition, we divided the electrodes into four major ROIs to examine the 734 

individual contribution of each area to the decoding. The ROIs were the frontal area (F3, F1, Fz, 735 

F2, F4, FC3, FC1, FCz, FC2, and FC4), central area (FC1, FCz, FC2, C3, C1, Cz, C2, C4, CP1, 736 

and CP2), lateral area (FC5, FC3, FC4, FC6, C5, C6, CP5, CP3, CP4, and CP6), and parietal 737 

area (CP3, CP1, CP2, CP4, P3, P1, Pz, P2, and P4). Using the same procedure as for the full 738 

electrodes, the decoding accuracy of each muscle synergy activation was separately calculated 739 
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using the electrode set in each ROI. 740 

 741 

Quantification and statistical analysis 742 

The differences between the overall correlation values (i.e., decoding accuracy) between the two 743 

types of decoders (muscle synergy decoder vs. individual muscle decoder) were assessed using 744 

two-tailed paired t-tests. In addition, the differences in decoding accuracy between each ROI 745 

and the full electrode set were compared using repeated measures one-way analysis of variance 746 

(ANOVA) test with multiple t-tests with FDR correction for each muscle synergy type. For the 747 

statistical tests, the correlation values were transformed into Z-values using Fisher’s 748 

Z-transformation and the tests (i.e., t-test, ANOVA, multiple t-tests with FDR correction) were 749 

conducted on the Fisher’s Z-values. Statistical significance was set at p < 0.05. 750 

 751 

 752 

 753 
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