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 2 

Abstract: 1 

 2 

Background: Insights from neuroimaging-based biomarker research have not yet translated into 3 

clinical practice. This translational gap could be because of a focus of psychiatric biomarker 4 

research on diagnostic classification, rather than on prediction of transdiagnostic psychiatric 5 

symptom severity. Currently, no transdiagnostic, multimodal predictive models of symptom 6 

severity that include neurobiological characteristics have been described.  Methods: We built 7 

predictive models of three common symptoms in psychiatric disorders (dysregulated mood, 8 

anhedonia, and anxiety) from the Consortium for Neuropsychiatric Phenomics dataset (n=272) 9 

which contains clinical scale assessments, resting-state functional-MRI (rs-fMRI) and structural-10 

MRI (sMRI) imaging measures from patients with schizophrenia, bipolar disorder, attention 11 

deficit and hyperactivity disorder, and healthy control subjects.  We used an efficient, data-12 

driven feature selection approach to identify the most predictive features from these high-13 

dimensional data. Results: This approach optimized modeling and explained 65-90% of variance 14 

across the three symptom domains, compared to 22% without using the feature selection 15 

approach.  The top performing multimodal models retained a high level of interpretability which 16 

enabled several clinical and scientific insights.  First, to our surprise, structural features did not 17 

substantially contribute to the predictive strength of these models. Second, the Temperament and 18 

Character Inventory scale emerged as a highly important predictor of symptom variation across 19 

diagnoses. Third, predictive rs-fMRI connectivity features were widely distributed across many 20 

intrinsic resting-state networks (RSN). Conclusions:  Combining rs-fMRI with select questions 21 

from clinical scales enabled high levels of prediction of symptom severity across diagnostically 22 
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 3 

distinct patient groups and revealed that connectivity measures beyond a few intrinsic RSNs may 1 

carry relevant information for symptom severity.  2 

 3 

Keywords: Elastic Net, LASSO, Random Forest, Regression, CNS, Depression 4 

 5 

Introduction: 6 

 7 

The field of psychiatry has long relied on making diagnoses and recommending treatment 8 

for disorders based solely on clinical phenomenology, but this approach may hamper prognostic 9 

assessment, treatment, and drug development (1, 2). Biomarkers are biological characteristics 10 

that can serve as indicators for normal or pathogenic processes or intervention and exposure 11 

responses (3).  Thus, they enable prediction of these assessments and outcomes and can therefore 12 

be an important clinical tool for clinicians.  But biomarker development within psychiatry lags 13 

behind other areas of medicine.  One reason for this may be that the field is still exploring 14 

biological measures able to robustly describe a complex psychiatric space.  Another reason may 15 

be that a diagnostic biomarker approach does not fully account for the heterogeneity of 16 

symptoms under the umbrella of a single diagnosis or the shared symptoms between multiple 17 

diagnoses.  This is because clinical symptoms such as depressed/elevated mood, anhedonia, and 18 

anxiety span multiple diagnostic categories (4) but vary between patients, show differential 19 

responses to treatments, and follow different prognostic trajectories.  As suggested by the 20 

Research Domain Criteria (RDoC) approach (5, 6), supplementing the current clinical approach 21 

with a biologically-grounded approach that addresses transdiagnostic symptom variation may 22 

provide an avenue for creating more robust biomarkers in psychiatry.   23 
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 4 

Evidence is emerging that biological measures, specifically neuroimaging measures such 1 

as electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI), are 2 

associated with symptom dimensions that span multiple psychiatric disorders or diverse 3 

community samples. Several studies have suggested that derived symptom dimensions are 4 

associated with changes in EEG power or resting-state fMRI (rs-fMRI) connectivity 5 

transdiagnostically (i.e., where multiple diagnostically-distinct patient groups are modeled 6 

together) (7–9). Others have found links between task-based fMRI activation or rs-fMRI 7 

connectivity and existing anhedonic, depressive, and anxiety symptom dimensions 8 

transdiagnostically (10–13).  While the symptom to neurophysiological links in these studies are 9 

compelling, most lack a predictive framework, and we are not aware of any attempts toward 10 

creating transdiagnostic predictive symptom models integrating whole-brain, circuit-based 11 

functional neuroimaging with other data modalities. Combining biological and clinical variables 12 

has led to improved predictability in cancer models (14–16) but is underexplored in psychiatry.  13 

The predictive framework is especially powerful beyond associative frameworks (such as 14 

correlation analyses) as it not only allows multivariate modeling to deal with the high-15 

dimensional, multimodal data but also testing of predictive value and generalizability of those 16 

models on a reserved subset or new samples (17–20).  Such transdiagnostic, multimodal 17 

predictive models, optimized for performance, could eventually be used practically as clinical 18 

tools without constraining clinicians by diagnosis.   19 

It is not clear if symptoms have a more circumscribed biological basis to a single or a 20 

select few brain networks as proposed in a recent taxonomy (21, 22) or a basis in multiple 21 

networks (e.g., (10)), so a whole-brain fMRI connectivity approach could help assess this 22 

outstanding question. In particular, we were motivated to test this simultaneously for multiple 23 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 12, 2018. ; https://doi.org/10.1101/414037doi: bioRxiv preprint 

https://doi.org/10.1101/414037


 

 5 

symptoms to also assess the potential of a short rs-fMRI scan to act as a test for a multi-symptom 1 

panel (akin to a blood test). It is also not known if a single, broad self-report clinical assessment 2 

(like the Temperament and Character Inventory or the Hopkins Symptom Checklist) or multiple, 3 

more specific instruments are better at assessing multiple symptoms.  A publicly-available 4 

dataset, the Consortium for Neuropsychiatric Phenomics (CNP; (23)) has included 3 patient 5 

groups with shared genetic risk (24) and MRI and clinical scale data with which we can assess 6 

these questions, so here we used it to explore 3 symptom dimensions – dysregulated mood, 7 

anhedonia, and anxiety. But the multimodal, high-dimensional variable space of both MRI and 8 

clinical scale data presents both methodological and interpretation challenges in building 9 

predictive symptom severity models.  Thus, we apply a commonly-used data-driven feature 10 

selection approach from the field of machine learning to search through a high-dimensional 11 

space and optimize model performance and interpretability.  We take an importance-weighted, 12 

forward selection approach (a variation of forward-stepwise selection, see (25)) as a data-driven 13 

way to identify the optimal feature subset to include in regression model-building (see (26, 27) 14 

for similar forward selection subset approaches to fMRI-based modeling).  Finding an optimal 15 

subset helps in high-dimensional cases where the number of features (usually denoted by p) is 16 

greater than the number of samples (usually denoted by n) to avoid overfitting of the models.  It 17 

also reduces nuisances from uninformative input variables without requiring the modeler to 18 

decide a priori whether a variable is signal or noise.   19 

Thus, our main objective in this study was to use a fully data-driven method to find 20 

highly-predictive, transdiagnostic multimodal symptom severity models for several measures of 21 

dysregulated mood, anhedonia, and anxiety.  Critically, demonstration of a set of highly-22 

predictive models for multiple symptoms from a few broader tests (rs-fMRI, sMRI, scales) 23 
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 6 

would suggest a more feasible application of these tests to the clinic than multiple narrower tests 1 

(like task-based fMRI).  As our approach leads to interpretable features (e.g., the top predictive 2 

scale items or rs-fMRI node-to-node connections are known), a secondary objective was to better 3 

understand the features returned by the best biomarkers at a category level (scales or intrinsic 4 

networks) and compare these to previously proposed hypotheses about associated behavioral and 5 

physiological components underlying symptoms.  With our multimodal approach, we were also 6 

able to evaluate the relative contributions of multiple feature types in the context of multimodal 7 

models. 8 

 9 

 10 

Methods and Materials: 11 

 12 

Participants  13 

 14 

Full details on the participants from the publicly-available CNP dataset are available 15 

including the consenting and human protections information in the data descriptor publication 16 

(23).  Briefly, four groups of subjects were included in the sample which was drawn from adults 17 

aged 21-50 years: healthy controls (HC, n=130), Schizophrenia patients (SZ, n=50), Bipolar 18 

Disorder patient (BD, n=49), and Attention Deficit and Hyperactivity Disorder (ADHD, n=43).  19 

Stable medications were permitted for participants.  Diagnoses were based on the Structured 20 

Clinical Interview for DSM-IV (SCID) and supplemented with the Adult ADHD Interview. Out 21 

of all subjects, one had incomplete clinical phenotype data from the clinical scales used in this 22 

study, 10 had missing sMRI data, and 10 had missing rs-fMRI data. Fifty-five subjects had a 23 
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headphone artifact in their sMRI data, whereas 22 subjects had errors in the structural-functional 1 

alignment step during MRI preprocessing. These subjects were excluded from the corresponding 2 

modeling analyses performed in this study. The participant numbers and demographics 3 

information are given in Table 1.  4 

 5 

CNP Dataset  6 

 7 

The CNP dataset (release 1.0.5) was retrieved from the OpenNeuro platform 8 

(https://openneuro.org/datasets/ds000030/versions/00001). Of the extensive behavioral testing 9 

that participants underwent, we analyzed results from tests of their self-reported symptoms and 10 

traits as clinician-administered instruments were only given to subsets of participants.  The self-11 

reported tests used in our analysis include the Chapman social anhedonia scale (denoted 12 

Chapsoc), Chapman physical anhedonia scale (Chapphy), Chapman perceptual aberrations scale 13 

(Chapper), Chapman hypomanic personality scale, Hopkins symptom checklist (Hopkins), 14 

temperament and character inventory (TCI), adult ADHD self-report scale v1.1 screener (ASRS), 15 

Barratt impulsiveness scale (Barratt), Dickman functional and dysfunctional impulsivity scale 16 

(Dickman), multidimensional personality questionnaire – control subscale (MPQ), Eysenck’s 17 

impulsivity inventory (Eysenck), scale for traits that increase risk for bipolar II disorder 18 

(Bipolar_ii), and Golden and Meehl’s Seven MMPI items selected by taxonomic method 19 

(Golden).   20 

All participants used in this sample also underwent magnetic resonance imaging sessions 21 

with T1 scans (structural MRI) and T2* scans of blood-oxygen-level-dependent (BOLD) resting-22 

state functional-MRI and several tasks.  Here we only utilize the sMRI and rs-fMRI data (304 23 
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 8 

seconds in length), and full details of these MRI acquisitions can be found in Poldrack et al. (23). 1 

Our decision to focus on rs-fMRI data over task-based fMRI was also due to its ability to provide 2 

a fine-grained, data-driven set of functional connectivity features that exhibit meaningful 3 

individual differences (28) that relate to symptoms (e.g., (8, 10, 29)). 4 

 5 

Preprocessing Data into Features 6 

 7 

We chose to use all responses to individual questions from the 13 self-report scales as 8 

input features for a total of 578 questions. Subjects who had missing values for any scales used 9 

in a particular model were not included in that model. Outcome variables for modeling mood, 10 

anhedonia, and anxiety were also selected from the clinical scales.  11 

Preprocessing of sMRI was performed using the recon-all processing pipeline from the 12 

Freesurfer software package (30). Briefly, the T1-weighted structural image from each subject 13 

was intensity normalized and skull-stripped. The subcortical structures, white matter, and 14 

ventricles were segmented and labeled according to the algorithm described in (30). The pial and 15 

white matter surfaces were then extracted and tessellated (31), and cortical parcellation was 16 

obtained on the surfaces according to a gyral-based anatomical atlas which partitions each 17 

hemisphere into 34 regions (32).  The structural features from bilateral aparc.stats and aseg.stats 18 

files were extracted via the aparcstats2table and asegstats2table functions in Freesurfer. 19 

Preprocessing of rs-fMRI was performed using the AFNI software package (33). 20 

Preprocessing of each subject's echo planar image (EPI) data included several steps: removal of 21 

the first 3 volumes (before the scanner reached equilibrium magnetization), de-spiking, 22 
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registration of all volumes to the now first volume, spatial smoothing with a 6 mm full-width 1 

half-maximum Gaussian filter, and normalization of all EPI volumes by the mean signal to 2 

represent data as percent signal change. Anatomical data also underwent several steps: 3 

deobliquing of the T1 data, uniformization of the T1 to remove shading artifacts, skull-stripping 4 

of the T1, spatial alignment of the T1 and Freesurfer-segmented and -parceled anatomy to the 5 

first volume of the EPI data, and resampling of the Freesurfer anatomy to the resolution of the 6 

EPI data.  Subsequently, we used the ANATICOR procedure (34) for nuisance tissue regression.  7 

White matter and ventricle masks were created and used to extract the BOLD signals (before 8 

spatially-smoothing the BOLD signal).  A 25mm-radius sphere at each voxel of the white matter 9 

mask was used to get averaged local white matter signal estimates while the average ventricle 10 

signal was calculated from the whole ventricle mask. Time series for the motion estimates, and 11 

the BOLD signals in the ventricles and white matter were detrended with a 4th order polynomial.  12 

To clean the BOLD signal, we regressed out the nuisance tissue regressors and the six motion 13 

estimate parameters. Cleaned data residuals were used for all subsequent analysis.  Both the 14 

preprocessed T1 scan and the cleaned residuals of the EPI scan were warped to MNI space and 15 

resampled to 2mm isotropic voxels.  The time series of the cleaned residual data was extracted 16 

from each of 264 regions of interest (ROIs) as delineated by the Power atlas (35). At each ROI, 17 

the signals from the voxels within a 5mm radius sphere were averaged. Pearson’s correlations 18 

were then calculated between the averaged time series from all ROIs yielding 34716 unique 19 

edges in the functional connectivity graph (upper triangle of the full correlation matrix).  Quality 20 

control (QC) for MRI preprocessing was performed individually on the whole dataset by two 21 

authors (MM, YL) who had 85% and 89% agreement between them regarding rejection 22 

decisions for each participant’s sMRI and rs-fMRI data, respectively.  Specifically, subjects were 23 
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 10 

excluded if they had mis-registration between fMRI and sMRI scans, >3mm head motion in the 1 

fMRI scan, headphone artifacts that overlapped with brain tissue in the sMRI scan, incorrect 2 

segmentation in the sMRI scan, and aliasing or field of view artifacts in either scan.  3 

Discrepancies were resolved between the two authors in order to create a final rejection list of 4 

participants. 5 

Input features for each subject came from the three preprocessed datasets: raw scores on 6 

the 578 individual items of 13 self-report clinical scales, 270 Freesurfer-calculated structural 7 

measurements (including subcortical volume, cortical volume, cortical area, cortical thickness), 8 

and 34716 AFNI-calculated functional connectivity scores between individual ROIs.  Subsets of 9 

these input features were used as predictor variables in subsequent modeling as explained below.   10 

Output variables that were modeled included those which indexed mood, anhedonia, and 11 

anxiety.  We predicted a mix of total scores and sub-scale sum or average scores from scales that 12 

were given to all three patient groups and HCs to retain the largest number of subjects possible in 13 

our models.  Each of these scores were already calculated and included in the CNP dataset, and 14 

we chose to use them rather than determining our own grouping of individual scores as we did 15 

not always have access to original scale questions.  For mood, we used the average of depression 16 

symptom questions 5, 15, 19, 20, 22, 26, 29, 30, 31, 32, and 54 from the Hopkins inventory 17 

(precalculated “Hopkins_depression” score, further referenced as Mood/Dep_Hopkins in this 18 

study) and the sum of mood questions 1-9 from the Bipolar_ii inventory (precalculated 19 

“Bipolar_mood” score, further referenced as Mood_Bipolar in this study). Anhedonia was 20 

derived from total scores on the Chapman Social Anhedonia scale (precalculated “Chapsoc” 21 

score, further referenced as Anhedonia_Chapsoc in this study) and the Chapman Physical 22 
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Anhedonia scale (precalculated “Chapphy” score, further referenced as Anhedonia_Chapphy in 1 

this study). Anxiety was indexed from the sum of Bipolar_ii anxiety questions 24-31  2 

(precalculated “Bipolar_anxiety” score, further referenced as Anxiety_Bipolar in this study) and 3 

average of anxiety symptom questions 2, 17, 23, 33, 39, and 50 from the Hopkins anxiety score 4 

(precalculated “Hopkins_anxiety” score, further referenced as Anxiety_Hopkins in this study).   5 

Subjects with missing values (“n/a”) for any input or output variables or who did not pass MRI 6 

QC were removed from the input set.  As different input feature sets were used, different models 7 

had different sample sizes. See the samples sizes resulting from this factor in Supplementary 8 

Table S1. 9 

 10 

Regression Modeling  11 

 12 

 All regression modeling was performed with a combination of Python language code and 13 

the Python language toolbox scikit-learn (http://scikit-learn.org/stable/index.html).  We modeled 14 

six different symptom severity scores across the clinical scales.  For each of the six models, we 15 

used seven combinations of feature types as the inputs to be able to evaluate performance of 16 

single and multimodal feature sets.  These included clinical scales only, sMRI only, fMRI only, 17 

scales+sMRI, scales+fMRI, sMRI+fMRI, and scales+sMRI+fMRI.  As input features varied in 18 

their mean values and regularized models require normally-distributed data, we scaled each input 19 

feature separately to have zero mean and unit variance.  We also wanted to explore performance 20 

with a variety of modeling algorithms, so for each scale output and feature set input, we used two 21 

regularized general linear model regression algorithms – LASSO and Elastic Net – and one non-22 

linear regression model algorithm – Random Forest – for the modeling.  These methods have 23 
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been found to improve prediction accuracy and interpretability over regular regression methods 1 

using ordinary least squares.  LASSO (36) was the first to use regularization by imposing an L1-2 

penalty parameter to force some coefficients to zero; this step introduces model parsimony that 3 

benefits interpretability and predictive performance while guarding against overfitting.  If 4 

predictor variables are correlated, however, the LASSO approach will arbitrarily force only a 5 

subset of them to zero which makes interpretation of specific features more difficult.  The Elastic 6 

Net algorithm (37) uses both L1- and L2-penalty parameters to better be able to retain groups of 7 

correlated predictor variables; this improves interpretability as highly predictive features will not 8 

randomly be set to zero thereby diminishing their importance to the model.  It is also better 9 

suited in cases when the number of predictor variables is much greater than the number of 10 

samples (p>>n).  The non-linear regression algorithm Random Forest was also chosen (38) for 11 

comparison purposes.   12 

We built 126 (6 outcome variables x 7 predictor variable sets x 3 model algorithms) sets 13 

of models (Figure 1a).  For each of these sets of models, hyperparameters were tuned using 5-14 

fold cross-validated grid-search on a training set of data (80% of data), and selected 15 

hyperparameters were used on a separate evaluation set of data (20% held-out sample).  The 16 

approaches of cross-validation and of splitting data between training and evaluation data is one 17 

way to minimize overfitting in addition with permutation testing which we also performed below 18 

(18, 39).  The hyperparameter range for LASSO was alpha equal to 0.01, 0.03, and 0.1 (three 19 

samples through the log space between 0.01 and 0.1) which is the coefficient of the L1 term.  20 

Hyperparameter ranges for Elastic Net were alpha equal to 0.01, 0.03, and 0.1, and l1_ratio equal 21 

to 0.1, 0.5, and 0.9 which is the mixing parameter used to calculate both L1 and L2 terms.  22 

Hyperparameter ranges for Random Forest included the number of estimators equal to 10 or 100 23 
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 13 

and the minimum samples at a leaf equal to 1, 5, and 10.  The best hyperparameters were chosen 1 

from the model that maximized the r2 score (coefficient of determination) across the 5-fold cross-2 

validation procedure in the training set and applied to the model of the never-seen evaluation set.   3 

For each of the 126 sets of models, we took an importance-weighted, forward selection 4 

approach to regression modeling, involving three main steps: first, an initial rank-ordering step 5 

for ordering features by importance; second, a forward-selection search step for building a series 6 

of models utilizing growing subsets of ordered features (i.e., the best features) selected from the 7 

first step; and third, an evaluation step to choose the best model and subset of features according 8 

to a prespecified criterion to find the optimal model (Figure 1b, c, d).  This approach thus 9 

integrates feature selection into modeling using a multivariate embedded method that can take 10 

variable interactions into account to potentially construct more accurate models (40).  Within 11 

each step, each new model utilized the training/evaluation set split and grid-search procedure to 12 

optimize hyperparameters as explained above.  First, the feature rank-ordering step uses the full 13 

feature set (either scale only, sMRI only, etc.) as the input to the model algorithms which returns 14 

not only predicted values for the evaluation dataset but also the importance of each feature for 15 

the resulting model (Figure 1b).  Feature importance was assessed from the regression 16 

coefficients with ordering (most important to least important) based on the absolute value of the 17 

coefficient.  Ordering by absolute value reflects that features with the largest magnitude 18 

influence the symptom severity scores the most.  Feature ordering was performed separately for 19 

LASSO and Elastic Net models, but as feature importance is harder to assess for the Random 20 

Forest algorithm (typical regression coefficients are not available), we used the ordering from the 21 

Elastic Net models as input for the subsequent steps of Random Forest modeling instead.   22 
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 Second, the forward-selection search step systematically searches through subsets of the 1 

rank-ordered features (truncated feature sets) for the subset that leads to the best model (Figure 2 

1c).  Since having more features than samples (i.e., p>>n) both increases the risk of overfitting 3 

and decreases the performance due to uninformative features adding nuisances, we chose this 4 

data-driven way of searching the ordered feature space for an optimal subset of features.  We ran 5 

a series of regressions on subsets of the ordered features with subsets chosen in powers of 2 (i.e., 6 

inputting the top feature only, the top 2 features only, the top 4 features only, etc.) up to 215 7 

features.  In order to generate descriptive statistics for this step, we used 25 iterations of 8 

modeling for each feature subset to get median and standard deviation metric scores.  The 9 

metrics chosen for the final step of evaluation were mean squared error (MSE) and r2.  The 10 

median r2 and standard deviation of r2 were found for each subset.  And the “best model” overall 11 

was selected by finding the maximum median r2 value over all feature subsets and selecting the 12 

model that corresponded to that max median r2 value (Figure 1d).  All subsequent follow up is on 13 

the 126 best models for each combination of input x model type x output.  14 

 To find which input feature set (clinical scales only, sMRI only, fMRI only, 15 

scales+sMRI, scales+fMRI, sMRI+fMRI, and scales+sMRI+fMRI) and which model type 16 

(LASSO, Elastic Net, Random Forest) lead to the best biomarkers, subsequent comparisons were 17 

also made based on the r2 of the best models.  The r2 is a standardized measurement of explained 18 

variance (with a maximum value of 1 but an unbounded minimum) while the MSE values are not 19 

standardized across the different models making it less appropriate to use MSE for comparison.  20 

 To test alternative hypotheses that modeling may have been impacted by overfitting or 21 

variables of no interest, we implemented several control scenarios.  We compared model 22 

performance for the best models (chosen by the methods above) with models with permuted 23 
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outcome variables (to test for overfitting) and models that included variables of no interest.  In 1 

the first case, the null hypothesis is that the features and severity scores are independent; 2 

however, an overfit model could misidentify dependence.  But if the high performance of our 3 

models is due to identification of real structure in the data rather than overfitting, the best models 4 

will perform significantly better than models built from the permuted data and we can reject the 5 

null hypothesis (41).  After the original ordering of features and selection of the 2n subset that led 6 

to the best model, we permuted severity scores across subjects for a given outcome variable 100 7 

times and built 100 models based on the permuted scores.  We then calculated predictability 8 

(assessed with r2) from these 100 permuted models which allowed us to generate an empirically-9 

derived distribution of r2 values for calculating a test statistic (p-value) compared to the median 10 

r2 of the chosen best model.  In the second control case, models built with only predictor 11 

variables of no interest allowed us to assess the predictability of these variables to see if possible 12 

confounding variables drive our results.  These variables of no interest included age, gender, 13 

years of schooling, in-scanner mean framewise displacement which was calculated as an L2 14 

norm, and sharp head motion (output of AFNI’s @1dDiffMag). Modeling was also performed 15 

100 times to generate the r2 score distribution and the median r2 was compared to this 16 

distribution.    17 

 18 

 19 

Results: 20 

 21 

Selection of models to predict symptom severity 22 

 23 
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 16 

Within a multimodal dataset, we attempted to find the best predictive models for 1 

symptom severity transdiagnostically comparing results across models for mood, anhedonia, and 2 

anxiety for different predictor variable feature sets and different machine learning algorithms.  3 

We found the best r2 metric was generally for the scales+sMRI+fMRI input set using Elastic Net 4 

across the different outcome variables (a full explanation of how we compared these models for 5 

mood, anhedonia and anxiety outcome scores are further explained in the Supplementary 6 

Materials).   Thus, we have chosen to further examine the features returned for this set of models 7 

more closely.  Also note that the modeling results for Elastic Net using the full feature sets (not 8 

the truncated sets returned by the forward modeling approach) on average explained 22% of the 9 

variance while truncated sets explained an average of 78% for the scales+sMRI+fMRI input 10 

models (metrics for full features sets are presented in Supplementary Table S10).   11 

 For the six models using Elastic Net with scales+sMRI+fMRI input feature set, we 12 

evaluated model performance on the held-out test (evaluation) set with measured v. predicted 13 

plots (Figure 2) and r2 values across models for different outcome variables (Figure 3 and 14 

Supplementary Table S9, last column).  All 6 models were highly predictive with the variance 15 

explained ranging from 65-90%. Next, we compared the proportions of features derived from 16 

scale, fMRI, and sMRI feature sets for the best model for each outcome variable both among the 17 

whole feature set and the top 25% of features (Figure 4a,b).  The best models for 18 

Mood/Dep_Hopkins, Anhedonia_Chapphy, and Anxiety_Bipolar had a roughly equal number of 19 

scale and fMRI features while Anxiety_Hopkins, Anhedonia_Chapsoc, and Mood_Bipolar 20 

models had a bias towards fMRI features (Figure 4a).  Figure 4b demonstrates though that for 21 

many outcome variables there is a disproportionate number of scale features in the top features. 22 

There is a paucity of sMRI features in both the these models as only Anhedonia_Chapphy had 23 
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any sMRI features selected by the models. Because of this lack of sMRI features overall, we do 1 

not further examine this modality.   2 

 3 

Clinical features associated with symptom severity 4 

 5 

We can further examine groupings of the scale-based features sorted by proportion of the 6 

scales from which they are derived.  For each model, the scale features for the best model are 7 

proportionately selected from the scales shown in Figure 5. The TCI scale in particular is highly-8 

represented compared to the other scales in all six models (note that Hopkins, Bipolar, Chapphy, 9 

and Chapsoc items could not be included in all models as we excluded them when predicting 10 

their own sub- or total score).  TCI contains a number of questions on temperament and character 11 

traits that could be related to a variety of symptoms, and our results suggested that it contains 12 

questions that are predictive of mood, anhedonia, and anxiety (Table 2).  For example, 43% of 13 

the questions predictive of Anxiety_Bipolar were from TCI, with the most predictive question 14 

being “I am not shy with strangers at all.”  Positive responses to this question predicted a lower 15 

Anxiety_Bipolar score since the regression coefficient was negative in this model. Though not 16 

uniformly so, some of the other questions also assessed shyness or worry.  The 17 

Anhedonia_Chapsoc model also had a very high percentage of TCI questions, with the most 18 

predictive question being “I would like to have warm and close friends with me most of the 19 

time.”  Here positive responses indicated decreased social anhedonia severity as the regression 20 

coefficient was also negative.  While not all questions in the TCI pertain to people and social 21 

situations, all but one of the remaining questions that were predictive of the Anhedonia_Chapsoc 22 

score did include mention of these situations.  The predictive questions for the 23 
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Anhedonia_Chapphy, Mood/Dep_Hopkins, Mood_Bipolar, and Anxiety_Hopkins scores were 1 

more mixed overall though.  Full feature lists for the scale items can be requested from the 2 

authors.  Additionally, Figure 5 shows that Chaphyp questions were also predictive in all models 3 

(but it only contributed 1-2 items in 5 of the 6 scales).  The most numerous questions (6/31) from 4 

Chaphyp was for Mood_Bipolar which may be expected as the Chapman hypomanic scale and 5 

the Mood_Bipolar subscore of this scale both include an assessment of mania (as opposed to the 6 

Mood/Dep_Hopkins score which is more related to depressed mood and depressive symptoms).  7 

 8 

Neurobiological characteristics of dysregulated mood, anhedonia and anxiety  9 

 10 

The fMRI connectivity features were composed of the strengths of network edges 11 

(connections between nodes) but can also be grouped by suggested intrinsic resting-state 12 

networks from the Power atlas.  As the number of fMRI connectivity features selected by the 13 

models were a small subset of all possible fMRI connectivity features, full connectivity matrices 14 

are quite sparse (see Supplemental Figure S1).  Therefore, we counted the number of edges 15 

within and between each intrinsic resting-state network (RSN) and show these counts in the 16 

connectivity matrices of Figure 6 (left figure of each panel) for each outcome variable. Please 17 

note that connectivity matrices have the same ROIs and networks listed on both axes, and the 18 

lower left triangle is redundant to the upper right triangle.  The predictive fMRI connectivity 19 

features appear mostly distributed across multiple networks rather than selective to a few 20 

particular networks as also demonstrated in the color-coded nodes on the brain surfaces (Figure 21 

6, right figure in each panel – please note that cerebellar nodes are not plotted as we only show 22 

cortical brain surfaces). Connectivity features implicate nodes in 10 RSNs for 23 
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Mood/Dep_Hopkins, 12 RSNs for Mood_Bipolar, 10 RSNs for Anhedonia_Chapphy, 12 RSNs 1 

for Anhedonia_Chapsoc, 13 RSNs for Anxiety_Hopkins, and 10 RSNs for Anxiety_Bipolar 2 

models.  Additionally, all 6 models contain features from nodes labeled as “Uncertain” from the 3 

Power atlas which indicated that Power et al. were uncertain about the RSN membership of these 4 

nodes.  While Anhedonia_Chapsoc connectivity was also distributed, there was a higher 5 

concentration of connectivity features between the Default Mode (DM) network and other 6 

networks.  In particular, the predictive edges between the DM and other networks mostly 7 

originate from the anterior cingulate and/or the medial orbitofrontal lobe.  The 8 

Anhedonia_Chapsoc model also contained nodes in the top 5 features that were located within 9 

Williams’ (21) proposed reward circuit including putamen and OFC.  Edges either within the 10 

DM network or between the DM and other networks consistently were the most numerous 11 

features relative to all other within- and between-network features across all models.  All the 12 

features in each model, including sMRI, are available upon request from the authors. 13 

 14 

Controls 15 

 16 

 It is possible that any predictive models generated from the methods above are influenced 17 

by confounding demographic or other variables (age, gender, years of schooling, and two 18 

measures of in-scanner head motion).   For each of the six outcome variables, we built Elastic 19 

Net models including these variables of no interest; since the number of predictor variables was 20 

only five, the feature selection step was not applied for determining these models though the 21 

grid-search, cross-validation, and training/evaluation set steps were applied.  In comparison to 22 

the median r2 values from the best models using scales+sMRI+fMRI features, the predictability 23 
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of our best models was significantly greater than the variables of no interest models (all p<0.01).  1 

Additionally, another set of Elastic Net models with the Scales+sMRI+fMRI feature set but with 2 

scrambled severity scores (a permutation testing approach) were built and used to test for 3 

overfitting, but we found no evidence of overfitting using this approach as demonstrated by the 4 

empirical null distributions (see Supplementary Materials, Figure S2). For all 6 models, the 5 

median r2 of the best models was statistically significant (p<0.01).  6 

As the models with the least complexity are scales-only models and may be of interest to 7 

some readers, we additionally include results for this set of models in the Supplementary 8 

Materials section (Supplementary Figure S3 and see Table S9 for metrics of scales-only models 9 

built with Elastic Net). 10 

 11 

 12 

Discussion:  13 

 14 

 In this study, we explored models for predicting symptom severity of mood disturbances, 15 

anhedonia, and anxiety in a transdiagnostic sample.  We applied an importance-ranked, forward 16 

selection modeling approach to search for the most predictive input features from a set of clinical 17 

scale measures, sMRI measures, and rs-fMRI measures.  Notably, this data-driven way of 18 

selecting feature subsets led to multimodal neurobehavioral models with consistently high 19 

predictability across multiple symptom domains and also led to high interpretability since it 20 

retains importance scores for individual features. Thus, we demonstrate that the shorter, broadly-21 

applicable 5-minute rs-fMRI scan and a small set of clinical scale assessments can potentially be 22 

used to predict a panel of core symptoms commonly found in various psychiatric disorders.  23 
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Overall, Elastic Net regression models with all three input feature types explained the most 1 

variance but features from the different modalities were not equally represented in the models 2 

when evaluating the magnitude of the coefficients.  The individual, edge-level fMRI connectivity 3 

measures between specific network nodes dominated in nearly all of the regression models for 4 

different symptom measures, but responses to individual questions in self-report clinical scales 5 

were also highly predictive. sMRI measures were not well-represented among the essential 6 

features in our models.  7 

As the main objective in this study was to maximize predictability (we chose variance 8 

explained as the metric) for models whose regression coefficients could be used for 9 

interpretation, we have features that can be assessed for clinical and scientific insights.  It must 10 

be kept in mind, however, that the features of the best models were chosen in the context of other 11 

types of features and are perhaps not as comprehensive as models examining single modalities 12 

(i.e., the number of features, p, for scale items differs in scales-only models compared to 13 

multimodal models).  Additionally, the forward selection approach finds that different p’s 14 

optimize r2 in different models which also restricts comparison across models of similar and 15 

different symptom domains.  Still, there are potentially useful insights that can be extracted at a 16 

high level about each of the feature types and symptom domains.  17 

 18 

Contributions of scale assessments and fMRI connectivity to models 19 

 20 

The relative contributions of the different feature types suggest that both scale items and 21 

fMRI connectivity were highly important to model predictability.  While scale features were not 22 

as greatly represented in the best models’ feature list as fMRI features overall, they tended to be 23 
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more highly represented in the top 25% of features.  Thus, their relative importance may be 1 

higher than fMRI features, though clearly the multimodal models performed better than scales-2 

only models suggesting that both scale and fMRI components contain unique information.  Such 3 

a comparison of different feature types in transdiagnostic or community-based symptom severity 4 

biomarker studies is not as common (but see for example (42) for a comparison of plasma sterols 5 

and demographic variables for prediction of depression severity). It is a valuable step, however, 6 

when multiple data types are available for creating predictive models as each data type has 7 

benefits and drawbacks in ease of collection, measurement stability, resources required for 8 

processing, etc. which may impact choice of data collected for future studies.  With regard to the 9 

largely negative results for sMRI features, a recent review finds that sMRI regularly 10 

underperforms at Major Depressive Disorder (MDD) diagnostic classification in comparison to 11 

fMRI (43).  Others have also suggested that the lack of studies reporting sMRI abnormalities in 12 

SZ, BD, and ADHD has been suggested to reflect the lack of predictability or need for larger 13 

sample sizes in detecting effects in this modality (44, 45).  It is possible that the sample size in 14 

the CNP dataset was not sufficient to maximize the utility of sMRI for prediction. 15 

We further investigated the categorical origins of the fMRI features and clinical scale 16 

features for these models.  Assessing the categorical groupings of importance-ranked fMRI 17 

connectivity features for each model was done according to intrinsic resting-state networks of the 18 

Power atlas which partially overlap with a recently proposed taxonomy of symptom-related 19 

networks suggested by Williams (21, 22).  In contrast with that proposal for a more focused set 20 

of brain regions within specific networks as showing impairment that underlie symptoms, this 21 

analysis demonstrated that overall these highly-predictive features are distributed across 22 

elements of many networks (note that in some models, the edge between two nodes of different 23 
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intrinsic RSN memberships may be the only element involving those networks) in line with other 1 

findings for cross-system representations (46).  This may have the implication that it is useful for 2 

examining whole-brain connectivity between individual nodes when creating models instead of 3 

relying solely upon summary metrics of networks such as graph theory metrics, independent 4 

components, or more circumscribed ROI approaches to connectivity (see (10, 47) for a similar 5 

full ‘connectome’ approach).  Specifically, anhedonia models found not only elements of the 6 

reward circuit that Williams (21, 22) proposed as linked to this symptom but also multiple nodes 7 

in the DM, Salience (SAL), Cingulo-Opercular Task Control (COTC), Fronto-Parietal Task 8 

Control (FPTC), and Visual (VIS) networks among others.  Connectivity changes tied to 9 

rewarding contexts in this wider set of networks have been observed by others (10, 48) while a 10 

meta-analysis of task-based reward processing in MDD demonstrated dysfunctional activation in 11 

a broad set of regions including frontal, striatal, cerebellar, visual, and inferior temporal cortex 12 

(49).  As nodes within the DM network are activated both during self-referential processing and 13 

social and emotional processing (29, 50, 51), symptoms that decrease socially pleasurable 14 

experiences could have bases in this network.  And coordination between several of these 15 

networks are necessary for healthy function, but patients with disruptions to the salience network 16 

may have trouble switching between DM and executive control networks which may underlie 17 

rumination (52) or impaired reward processing (48).  Indeed subcortical nodes of the salience 18 

network (not included in our analysis) are located in mesocorticolimbic emotional and reward 19 

processing centers of the brain (53), so disruption of these functions may propagate to cortical 20 

salience regions and beyond. 21 

Our anxiety models also had informative features across a widespread set of networks 22 

including high representation in the DM network and sparser representation across executive 23 
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networks (FPTC, COTC, Dorsal Attention (DA)), SAL network, and sensory networks.  Though 1 

Williams (21, 22) linked anxiety to a set of networks including a threat circuit, the SAL, DM, 2 

and Attention networks, our findings seem to point to a broader set that have some support from 3 

previous studies.  For example, anxiety has been found related to dysfunction in the DM, SAL, 4 

and Somatomotor networks (54), the FPTC network (55), in addition to COTC and Visual 5 

Attention (VA) networks (56).  Given the core processes of these networks, the underlying 6 

elements of anxiety – trouble regulating emotion in fearful situations, detecting and controlling 7 

conflict, increased attention to emotional stimuli – have reasonable relationships to this set of 8 

networks. 9 

Our depression and mood models predicted outcome variables that were perhaps not as 10 

narrowly-focused on a single symptom.  The Mood/Dep_Hopkins subscore contained depressed 11 

mood questions but also ones about guilt, suicide, loss of interest, and somatic concerns, while 12 

Mood_Bipolar contained questions about both depressed and manic moods, states which the 13 

brain may reflect differently (57). We found that both models also relied on a broad set of 14 

networks beyond the negative affective circuit (ACC, mPFC, insula, and amygdala) proposed by 15 

Williams (21, 22).  Both anterior and posterior nodes of the DM network were informative to the 16 

model as well as FPTC, COTC, Attention, SAL, and Sensory networks.  Cognitive Control 17 

networks, Salience, and Attention, and Affective networks have been proposed to be involved in 18 

depressed mood (58, 59) while a central node, the subgenual cingulate, is involved in mood (60, 19 

61) and connected within the DM network (62) and approximately observed in our findings.  20 

Spielberg and colleagues (63) recently examined connectivity during both depressed and 21 

elevated mood in BD and found increased amygdala-sensory connectivity and abnormal 22 

prefrontal-parietal connectivity during manic states and extensive orbito-frontal to subcortical 23 
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and cortical connectivity in depressed states, while Martino and colleagues (64) found the ratio 1 

of DM to sensory-motor network activity was greater in a depressed state of BD and less in 2 

manic states in BD.  Thus a wide set of regions and networks may be involved in depressed and 3 

elevated mood, but there may be some dissociation between the two with more DM in depressed 4 

mood and sensory involvement in elevated mood.  The Mood_Bipolar outcome variable included 5 

both, so this model includes multiple nodes from both sets of RSNs as important features. 6 

The categorical origins of the clinical scale features demonstrated that there was also 7 

some similarity in the scales from which models for the six outcome variables were drawn as 8 

most included items from the TCI, Hopkins Symptom Checklist, and the Chapman scales.  The 9 

TCI in particular was consistently one of the most predictive scales as assessed by number of 10 

questions contributed for all six models of mood, anhedonia, and anxiety. This scale measures 11 

temperaments such as harm avoidance and novelty seeking (65) which have previously been 12 

associated with depression (e.g., (66) and anxiety (67)). Our results suggest that it also contains 13 

items predictive of anhedonia.  In particular, our models picked out questions from TCI that 14 

pertained to social situations as predictive of the social anhedonia severity, but the 15 

correspondence between physical anhedonia and the predictive TCI questions was less clear.  16 

The consistent representation of TCI across the six measures of three symptoms might suggest 17 

that it could be a useful self-report questionnaire to include when screening patients for multiple 18 

symptom domains. 19 

 20 

Limitations 21 

 22 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 12, 2018. ; https://doi.org/10.1101/414037doi: bioRxiv preprint 

https://doi.org/10.1101/414037


 

 26 

 Our study has some limitations.  Outside of a training and evaluation split of the data, we 1 

were not able to perform additional validation of the models’ predictive ability on an external 2 

dataset.  This would be difficult since the CNP dataset has extensive behavioral phenotyping 3 

with clinical scales which few datasets could replicate unless collected prospectively.  As we 4 

used many of these scales in our models, a thorough validation of the best models would require 5 

a dataset which has the same scales.  Also, as our models are linear, they only model and select 6 

as informative the features which trend in the same direction for all subjects.  For example, it has 7 

been noted by Whitton et al. (68) that the direction of reward-related activity in the ventral 8 

striatum can differ between patient groups that both have anhedonia (i.e., lower in MDD and 9 

higher in BD compared to HC).  Linear models would not be able to pick out this feature.  Thus, 10 

these modeling choices constrain our interpretations, and the features that our models return 11 

should not be seen as a completely comprehensive list of all informative features for predicting 12 

symptom severity or as the only ones potentially involved in the underlying biological processes.  13 

 14 

Conclusions 15 

 16 

 While we have developed models that identify potential biomarkers for 17 

depressed/elevated mood, anhedonia, and anxiety, our work is still highly exploratory.  Robust 18 

biomarkers must undergo several stages of development requiring replication across differing 19 

conditions (e.g., MRI scanners and sites) and increasing sample sizes of datasets to achieve 20 

population-level utility (69).  This study was able to demonstrate one possible data-driven way to 21 

improve biomarker development for predicting symptom severity transdiagnostically and 22 

potentially moves us closer to a personalized medicine approach in diagnosing and treating 23 
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behavioral disorders.  Taking a transdiagnostic symptom-based approach may ultimately provide 1 

more options for predicting longitudinal and treatment outcomes beyond those afforded by 2 

diagnosis alone.  Such an approach can possibly loosen the constraints of diagnoses by allowing 3 

clinicians to estimate symptom severity in broader populations without a diagnosis.  Still, the 4 

RDoC framework suggests that “the critical test is how well the new molecular and 5 

neurobiological parameters predict prognosis or treatment response” (6), and while the high 6 

performance of our symptom severity biomarkers is a step towards creating highly-predictive 7 

models for potentially unknown symptom measures, a critical next step would be to create 8 

longitudinal ones that predict future measures.  9 

 10 
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Table Captions: 15 

 16 

Table 1. Participant Demographics: Demographics for participants in the CNP dataset broken 17 

down by patient group.  18 

 19 

Table 2. Predictive TCI questions for models of mood, anhedonia, and anxiety.  Regression 20 

coefficients (ordered by magnitude) are either positive or negative indicating that a “True” 21 

answer for the the respective question increased or decreased the outcome variable score, 22 

respectively. 23 
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 1 

Figure Captions: 2 

Figure 1. Modeling Approach. a) 126 sets of models were built to examine all permutations of 7 3 

feature set inputs, 3 modeling algorithms, and 6 outcome variables (symptom severity scores). b) 4 

The importance-weighted, forward selection approach to regression modeling involved an initial 5 

rank-ordering step for ordering features by importance, c) a forward-selection search step for 6 

building a series of models utilizing subsets of ordered features selected from the first step, and 7 

d) an evaluation step for evaluating each of these models using these candidate subsets according 8 

to a prespecified criterion to find the optimal model.  An example predicting the total 9 

Mood_Bipolar score using Elastic Net and scales+sMRI+fMRI as input shows how median MSE 10 

(left, top) and median r2 (left, bottom) varies with each feature subset, each with standard 11 

deviation bars. Measured v. predicted outcome scores (right) show how closely the model 12 

predictions are to actual outcome scores for individuals in the held-out sample. 13 

 14 

Figure 2. Measured v. predicted values for best models for (A) mood, (B) anhedonia, and (C) 15 

anxiety. Each dot in scatter plot represents a single subject from the held-out evaluation set and 16 

their measured symptom severity score (x-axis) and predicted score (y-axis). The dashed 17 

diagonal line represents a perfect 1-to-1 linear relationship between measured and predicted 18 

values.  Thus, comparing measured v. predicted outcome scores shows how closely the model 19 

predictions are to actual outcome scores for individuals in the held-out samples for this set of 20 

models.  21 

 22 
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Figure 3. Best median r2 for the best models for each outcome variable. Models selected were 1 

using Scales+sMRI+fMRI as the input feature set and Elastic Net.  Next to each outcome 2 

variable, the corresponding number of non-zero features (p) returned by the model appears. 3 

 4 

Figure 4. Proportions of feature types in best models. A) Proportion of all features returned by 5 

the model.  Blue represents proportion of features from scales, orange represents proportion from 6 

fMRI connectivity measures, and green represents proportion from sMRI measures.  B) 7 

Proportion of feature types in the top 25% of features returned by the model showing that most 8 

models have equal or greater proportion of scale features than among all the non-zero features. 9 

 10 

Figure 5. Proportion of features from each scale for the best model predicting (A) mood, (B) 11 

anhedonia, and (C) anxiety. Of the features returned by the best model that were scale items, 12 

each pie chart shows the proportion of those items that were from the corresponding scales for 13 

the model for each outcome variable.  For example, for the Mood/Dep_Hopkins model, 31% of 14 

the scale items were from the TCI scale, 6% from the Chaphyp scale, etc. Note that this 15 

representation of features does not show the sign of the regression coefficient and whether 16 

predictive features indicate increasing or decreasing symptom severity.  17 

 18 

Figure 6. Connectivity Matrices and ROI locations for fMRI connectivity features of best models 19 

predicting mood (A and B), anhedonia (C and D), and anxiety (E and F) outcome variables.  For 20 

all non-zero fMRI connectivity features returned by the respective model, the number of 21 

individual edges between two nodes is plotted in the connectivity matrix for that model (left plot 22 

in each panel). Each row and column represent a single resting-state network (RSN) from the 23 
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Power atlas. Thus, darker squares represent more features within or between the given networks 1 

with actual feature number superimposed numerically on each square.  Upper and lower triangles 2 

show redundant information.  Cortical surface plots (right plot in each panel) show the ROI 3 

locations colored by RSN membership for each model to display the breadth of networks with 4 

informative features for each model. Note that since only cortical surfaces are shown, no 5 

cerebellar nodes were plotted in the brain plots.  Network labels are AUD: Auditory, CER: 6 

Cerebellar, COTC: Cingulo-opercular Task Control, DM: Default Mode, DA: Dorsal Attention, 7 

FPTC: Fronto-parietal Task Control, MEM: Memory Retrieval, SAL: Salience, SSM-H: 8 

Sensory/somatomotor Hand, SSM-M: Sensory/somatomotor Mouth, SUB: Subcortical, UNC: 9 

Uncertain (i.e., miscellaneous regions not assigned to a specific RSN), VA: Ventral Attention, 10 

VIS: Visual. 11 

 12 

 13 

Tables: 14 

  15 
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Table 1. Participant Demographics. 1 

 HC SCZ BD ADHD Total 

No. of subjects 130 50 49 43 272 

With complete phenotype data 130 50 48 43 271 

With sMRI data** 98 30 44 34 206 

With fMRI data† 104 47 41 37 229 

      

Age      

Mean age 31.26  36.46  35.15  33.09  
SD age 8.74 8.88 9.07 10.76  

Range age 21-50 22-49 21-50 21-50  

      

Gender      

No. of female subjects 62 12 21 22  
Percent female subjects 47.69% 24.00% 42.86% 51.16%  

      

Race      

American Indian or Alaskan Native 19.23% 22.00% 6.25% 0%  
Asian 15.38% 2.00% 0% 2.33%  
Black/African American 0.77% 4.00% 2.08% 2.33%  
White 78.46% 66.00% 77.08% 88.37%  
More than one race 0% 2.00% 14.58% 6.98%  

      

Education      

No high school 1.54% 18.00% 2.08% 0%  
High school 12.31% 44.00% 29.17% 23.26%  
Some college 20.77% 18.00% 25.00% 30.23%  
Associate’s degree 7.69% 4.00% 6.25% 6.98%  
Bachelor’s degree 50.00% 10.00% 29.17% 32.56%  
Graduate degree 6.92% 0% 4.17% 2.33%  
Other 0.77% 4.00% 4.17% 4.65%   

* Demographic information is based on initial number of subjects 

** Excluding subjects with aliasing artifacts  
† Excluding subjects with misaligned structural-function imaging data 

 2 

  3 
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Table 2. Predictive TCI questions for models of mood, anhedonia, and anxiety.  1 

Outcome Variable

Regression 

Coefficient

CNP 

Question 

Label True/False Question

Mood/Dep_Hopkins 0.06 tci149t I often stop what I am doing because I get worried, even when my friends tell 

me everything will go well.

-0.05 tci76p I am more hard-working than most people.

0.04 tci92t I need much extra rest, support, or reassurance to recover from minor illnesses 

or stress.

0.02 tci22t I have less energy and get tired more quickly than most people.

-0.01 tci210t People find it easy to come to me for help, sympathy, and warm understanding.

Mood_Bipolar 0.17 tci140p I often give up on a job if it takes much longer than I thought it would.

0.07 tci12t I often feel tense and worried in unfamiliar situations, even when others feel 

there is little to worry about.

0.06 tci81t Usually I am more worried than most people that something might go wrong in 

the future.

0.05 tci217t I usually feel tense and worried when I have to do something new and 

unfamiliar.

0.04 tci53t I lose my temper more quickly than most people.

Anhedonia_Chapphy 0.77 tci217t I usually feel tense and worried when I have to do something new and 

unfamiliar.

-0.52 tci5p I like a challenge better than easy jobs.

0.52 tci156t I don't go out of my way to please other people.

0.47 tci120t I find sad songs and movies pretty boring.

0.25 tci83t I feel it is more important to be sympathetic and understanding of other people 

than to be practical and tough-minded.

Anhedonia_Chapsoc -1.19 tci117t I would like to have warm and close friends with me most of the time.

1.18 tci231t I usually stay away from social situations where I would have to meet strangers, 

even if I am assured that they will be friendly.

-0.79 tci21t I like to discuss my experiences and feelings openly with friends instead of 

keeping them to myself.

0.57 tci44t It wouldn't bother me to be alone all the time.

0.55 tci46t I don't care very much whether other people like me or the way I do things.

-0.48 tci210t People find it easy to come to me for help, sympathy, and warm understanding.

0.37 tci201t Even when I am with friends, I prefer not to \"open up\" very much.

0.34 tci180t I usually like to stay cool and detached from other people.

0.14 tci70t I like to stay at home better than to travel or explore new places.

Anxiety_Hopkins 0.05 tci141t Even when most people feel it is not important, I often insist on things being 

done in a strict and orderly way.

0.05 tci27t I often avoid meeting strangers because I lack confidence with people I do not 

know.

0.04 tci180t I usually like to stay cool and detached from other people.

Anxiety_Bipolar -0.25 tci157t I am not shy with strangers at all.

0.25 tci54t When I have to meet a group of strangers, I am more shy than most people.

0.23 tci81t Usually I am more worried than most people that something might go wrong in 

the future.

0.16 tci129t I often feel tense and worried in unfamiliar situations, even when others feel 

there is no danger at all.

-0.14 tci3t I am often moved deeply by a fine speech or poetry.

0.10 tci211t I am slower than most people to get excited about new ideas and activities.  2 
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Figures: 2 

 3 

 4 

 5 
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Figure 1. Modeling Approach 1 
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Figure 2. Measured v. predicted values for best models for mood, anhedonia, and anxiety. 1 
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Figure 3. Best median r2 for the best models for each outcome variable. 1 

 2 

Anhedon ia_Chapsoc (p=106)

Anhedon ia_Chapphy (p=32)

Anxiety_Hopkins (p=47)

Mood/Dep_Hopkins (p=28)

Mood_B ipo la r (p=93)

Anxiety_B ipo la r (p=31)

Median r2 (% Variance Explained)

0.72

0.90

0.65

0.80

0.75

0.85

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 12, 2018. ; https://doi.org/10.1101/414037doi: bioRxiv preprint 

https://doi.org/10.1101/414037


 

 48 

Figure 4. Proportions of feature types in best models. 1 
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Figure 5. Proportion of features from each scale for the best model predicting each outcome 1 

variable. 2 
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Figure 6. Connectivity Matrices and ROI locations for fMRI connectivity features of best models 1 

predicting mood, anhedonia, and anxiety outcome variables. 2 
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