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ABSTRACT 

Some scenes are more memorable than others: they cement in minds with consistencies 

across observers and time scales. While memory mechanisms are traditionally 

associated with the end stages of perception, recent behavioral studies suggest that the 

features driving these memorability effects are extracted early on, and in an automatic 

fashion. This raises the question: is the neural signal of memorability detectable during 

early perceptual encoding phases of visual processing? Using the high temporal 

resolution of magnetoencephalography (MEG), during a rapid serial visual presentation 

(RSVP) task, we traced the neural temporal signature of memorability across the brain. 

We found an early and prolonged memorability related signal recruiting a network of 

regions in both dorsal and ventral streams, detected outside of the constraints of 

subjective awareness. This enhanced encoding could be the key to successful storage 

and recognition. 

INTRODUCTION 

Every day, we are bombarded by a mass of images in newspapers, billboards, and on 

social media, among others. While most of these visual representations are ignored or 

forgotten, a select few will be remembered. Recent studies have shown that these highly 

memorable images are consistent across observers and time scales demonstrating that 
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memorability is a stimulus driven effect1-5. This is punctuated by the fact that observers 

have poor insight into what makes an image memorable. For instance, features such as 

interestingness, attractiveness and subjective memorability judgments (what the observer 

thinks they will remember) do not explain the phenomenon2,6. 

Investigations into the neural basis of memorability using fMRI have revealed greater 

contributions in brain regions associated with high-level perception along ventral visual 

stream, rather than prefrontal regions associated with episodic memory7-8. These greater 

perceptual correlates indicate a potential processing advantage of memorable images, 

suggestive of a stronger perceptual representation. In a related vein, using an RSVP 

paradigm mixing images with different levels of memorability, Broers et al. (2017) found 

that memorable images were recognized significantly better than non-memorable images 

with extremely brief display durations9 (13ms), suggesting that features underlying image 

memorability may be accessible early on in the perceptual process. The early response 

of the memorability effect is also supported by work tracking pupillary response and blink 

rates for memorable and non-memorable images, concluding that memorable images 

have both an immediate10 and long-lasting5 effect on recognition performance. 

Taken together, this work suggest that memorable images are encoded more fluently, 

and this perceptual processing advantage correlates with better long-term storage. Here, 

we trace the temporal dynamics of memorable images in order to reveal the time course 

of neural events that influence future memory behavior. We employed high temporal 

resolution of magnetoencephalography (MEG) during a rapid serial visual presentation 

(RSVP) task to isolate the perceptual signature of memorability across the brain. 

In order to focus our investigation on purely perceptual aspects of memorability, we 

isolated the neural signal of memorable images from the influence of higher cognitive 

processes such as the top-down influence of memory. This approach requires the 

consideration of two basic principles: First, we acknowledge that image masking 

procedures, such as those found in traditional RSVP tasks, inhibit neural representations 

of non-target images from reaching awareness11-16. Second, we assume that 

memorability scores from the LaMem dataset17 (normative memory scores collected from 
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thousands of observers) can function as a proxy for individual memory in the current study 

(i.e. an image with a high memorability score would be very likely to be remembered by 

an observer in our study had the information not been interrupted through masking, 

whereas an image with a low score would not)2-5. 

Results revealed an early and prolonged memorability related signal recruiting a network 

of regions in both dorsal and ventral streams, detected outside of the constraints of 

subjective awareness. The enhanced perceptual encoding shown here could be the key 

to improving storage and recognition. 

RESULTS 

During an ultra-rapid serial visual presentation (RSVP) paradigm18, observers performed 

a two-alternative forced-choice face detection task (Figure 1), while MEG data were 

collected. In each RSVP sequence of 11 images (34ms per stimulus), 15 participants 

were instructed to determine whether the middle image, or target, was a face or non-face 

(50% chance), a task they could perform successfully (d’ =3.72, two-sided signed-rank 

test; p<10-4). Importantly, in the face-absent trials the middle image was replaced by a 

scene image (the task-irrelevant target) sampled randomly from 30 images, half with a 

high-memorability score of 0.88±0.06 (mean±std) and half with a low-memorability score 

of 0.59±0.07 (mean±std). The remaining images (distractors) in the sequence were 

sampled from mid-level memorability scores of 0.74±0.01 (mean±std). Task-irrelevant 

target and distractor stimuli came from the LaMem dataset, with pre-acquired 

memorability scores17.  

Following the MEG experiment, observers performed an unanticipated old-new memory 

test, with all targets and novel images shown one at a time. Participants were presented 

with the RSVP target images mixed randomly with 60 novel images matched on high and 

low level features, and instructed to indicate whether they had seen the image at any 

point during the RSVP task. Results show that while the goal-directed target stimuli 

(faces) were detected and remembered well above chance (d’ = 0.59, two-sided signed-

rank test; p < 0.01), memory for task-irrelevant target scenes was at chance level (d’ = -

0.13, two-sided signed-rank test; p = 0.1), corroborating an absence of explicit memory 
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trace. The unanticipated memory tests confirmed that despite 30 repetitions (see 

methods) of each task-irrelevant target scene, participants failed to recall having seen 

these images. This provides the ideal circumstances to evaluate the purely perceptual 

basis of memorability, thus all subsequently described analyses focused only on 

perceptual dynamics of the task-irrelevant scene stimuli and the consciously perceived 

face-target trials were disregarded from further analyses.   

 

Figure 1. Paradigm design. RSVP paradigm, known to greatly reduce awareness to 

images, and examples of high and low memorable task-irrelevant scene targets. Each 

RSVP trial includes presentation of 11 images with the speed of 34 ms per picture (without 

inter-stimulus interval). In half of the trials a face image was embedded in the middle of 

the sequence and participants were asked to detect the face trials (a two-alternative 

forced choice task). In the non-face trials, the middle image was drawn randomly from a 

set of 30 scene images, half high memorable and half low memorable (task-irrelevant 

targets). The presented images in this figure are not examples of the stimulus set due to 

copyright. Depicted images are in publicly available at flicker.com under a Creative 

Commons (CC) license. 
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Temporal trace of memorable images 

After extracting the MEG time series from -100 to 500ms relative to task-irrelevant scene 

target onset, we performed multivariate pattern analysis in a time-resolved manner. For 

each time point (1ms step), we measured the performance of a SVM classifier to 

discriminate between pairs of scene images using leave-one-out cross-validation 

resulting in a 30 x 30 decoding matrix, also known as representational dissimilarity matrix 

(RDM), at each time point (Figure 2A). We then used the representational similarity 

analysis (RSA) framework19-22 to characterize the representational geometry of 

memorability effect in MEG data. In this framework, hypothesized model RDMs can be 

compared against time resolved RDMs created from MEG data by computing their 

correlations (Figure 2A). Here we considered two hypotheses, a linearly separable 

representation between our two conditions, such as a categorical clustering geometry 

(see the model RDM and its 2D multidimensional scaling (MDS) visualization in Figure 

2B), and a nonlinear entropy based representation where one condition is dispersed while 

the other is tightly clustered (see the model RDM and its 2D MDS visualization in Figure 

2C). The comparison of these two candidate model RDMs with the time resolved MEG 

RDMs yielded the correlation time series presented in Figure 2B and C. As depicted, 

while no significant correlations were found between the MEG RDMs and the linearly 

separable model in Figure 2B, the model assuming a more entropy based geometrical 

representation for high memorable images explained MEG RDM patterns with significant 

correlations starting at ~150 ms after target image onset.   

The lack of categorical separability in our representational geometry implies that the 

classical between-categorical decoding analysis is not well suited to describe the 

distinction between these two conditions. Instead, we averaged the decoding values 

(dissimilarities) within high and low memorable scene pairs separately. Figure 3 shows 

the two curves for high and low memorable scenes across time in red and blue, 

respectively. Decoding accuracy was near identical for high and low memorable scenes 

until 149ms, at which point the two curves diverged significantly, revealing the onset of a 

memorability-specific signal, which lasted until 228ms consistent with the results in Figure 

2C. 
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Together, our analysis demonstrates that the two categories of high and low memorable 

images are not linearly separable, but that high memorable images show a more 

distributed geometrical representation than low memorable images. This suggests that 

memorable stimuli are associated with higher differentiability and unique information, as 

illustrated by higher averaged decodings within high memorable scene pairs than low 

memorable scene pairs (Figure 3).  

 

Figure 2. Multivariate pattern analysis and geometrical representation of 

memorability across time. (A) Using MEG pattern vectors at each time point t, a support 

vector machine (SVM) classifier was trained to discriminate pairs of target scene images. 

The performance of the SVM classifier in pairwise decoding of target images populated 

a 30 × 30 decoding matrix at each time point t. This process resulted in time resolved 

representational dissimilarity matrices for MEG data which can then be compared with 

candidate model RDMs by computing their Spearman’s rho correlations. (BC) Two 
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possible representational geometries of memorability and their comparison with MEG 

data. The RDM and MDS plot in panel B show a categorical representation in which high 

and low memorable images are linearly separable. The RDM and MDS plot in panel C 

illustrate a representational geometry where high memorable images are more dispersed 

than low memorable ones. The gray curves in (B) and (C) depict the time course of MEG 

and model RDM correlations. The line below the curve in panel C indicates significant 

time points when the correlation is above zero. Statistical tests used a cluster-size 

permutation procedure with cluster defining threshold P<0.05, and corrected significance 

level P<0.05 (n=15).  

 

Figure 3. Time course of image decoding for high versus low memorable images. 

The pairwise decoding values were averaged within high and low memorable images 

separately. The color coded red and blue lines at the bottom of curves show significant 

time points where the decoding is above the chance level of 50%. The orange line 

indicates significant time points for the difference between high and low memorability. 

Statistical tests used a cluster-size permutation procedure with cluster defining threshold 

P<0.05, and corrected significance level P<0.05 (n=15).  

Temporal generalization reveals an evolutionary dynamics for 

memorable images 

The significant persistence of memorable images from 149-228ms (cluster defining 

threshold p<0.05; corrected significance level p<0.05) suggests this class of stimuli 
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benefited from prolonged temporal processing. This extended processing could manifest 

as either a stable representation sustained over time - i.e. as a form of neural 

maintenance, or a series of distinct representations dynamically evolving over time. To 

investigate, we applied a temporal generalization approach23 which uses the trained SVM 

classifier on MEG data at a given time point t (training time) to test on data at all other 

time points t’ (testing time). Intuitively, if neural representations sustained across time, the 

classifier should generalize well across other time points. The resulting matrices (Figure 

4AB), in which each row corresponds to the time (in ms) at which the classifier was trained 

and each column to the time at which it was tested, reveal that both conditions show a 

diagonally extended sequence of activation patterns starting at ~ 70ms. This shape of 

significant time points suggests that the representations of both conditions dynamically 

evolved over time. Importantly, the greater diagonal reach of the high memorable 

condition suggests further processing during this evolutionary chain. 

 

Figure 4. Temporal generalization. (AB) Generalization of image decoding across time 

for high and low memorable images. The trained SVM classifier on MEG data at a given 

time point t (training time) was tested on data at all other time points t’ (testing time). The 

resulting decoding matrices were averaged within high or low memorable scene images 

and over all subjects. White contour indicates significant decoding values. Statistical tests 

used a cluster-size permutation procedure using cluster defining threshold P<0.05, and 

corrected significance level P<0.05 (n=15). 
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Cortical source of image memorability 

How do the changing patterns of brain activity map onto brain regions? Using MEG source 

localization, we investigated where the memorability-specific effects manifested in the 

visual stream. We broadly targeted three anatomically defined regions-of-interest (ROI) 

known to be involved in building visual image representation. Based on Freesurfer 

automatic segmentation24, we selected the pericalcarine area for early visual processing, 

the inferior temporal area for the ventral stream processing and a parietal area for the 

dorsal stream processing. Within these ROIs we performed the same pairwise decoding 

analysis as for the sensor data but now using cortical source time series within these 

regions. Decoding results suggest that memorability recruited distinct brain regions 

evolving over time: as expected, no significant differences were seen in the pericalcarine 

(Figure 5AD), while significant differences between high- and low-memorable images 

were localized in the left parietal area starting at 153ms (Figure 5B) and then later in the 

right inferior-temporal around 225ms (Figure 5F).  

 

Figure 5. Spatial localization. (A-F) Time course of image decoding in cortical sources. 

RDM matrices were extracted at each time point t using MEG source localization in 

pericalcarine, parietal area and inferior temporal, separately for left and right. The color 
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coded red and blue lines at the bottom of curves show the significant time points where 

the decoding is above chance level of 50%. The orange line indicates significant time 

points for the difference between high and low memorability. All significant statistical tests 

are with permutation tests using cluster defining threshold P<0.05, and corrected 

significance level P<0.05 (n=15). 

DISCUSSION 

In the current study, we examined the temporal processing signature of visual information 

that is likely to be remembered compared to the one likely to be forgotten. We tested this 

effect using high-temporal resolution MEG during an RSVP task to suppress the effects 

of top-down influences of memory. Our results revealed the dynamic neural blueprint of 

the perceptual memorability effect, with highly memorable images showing significantly 

better decoding accuracies between ~150-230 msec. Despite the extremely rapid viewing 

conditions, this signal persisted and evolved over multiple brain regions and timescales 

associated with high-level visual processing (e.g. semantic category or identity 

information). 

 A variety of neuroimaging and recording techniques have demonstrated that the cortical 

timescale of visual perception begins with low level features in early visual cortex at ~40-

100 msec24-29 and reaches the highest stages of processing in the inferior temporal cortex 

within 200 ms after stimulus onset21-22,30-37. Despite memorability being a perceptual 

phenomenon, previous work has revealed that low-level image features, as well as non-

semantic object statistics, do not correlate strongly with memorability scores2, thus these 

features were equalized between conditions here, resulting in the overlapping curves 

within the first 150 msec after image onset (Figure 3) and the lack of any memorability 

effects in the pericalcarine ROI (Figure 5AD). 

Event-related potentials (ERPs) have linked high-level properties of the visual stimulus, 

such as its identity or category, with a timescale roughly 150 msec after stimulus onset30-

31. More recently, MEG work has demonstrated a similar pattern of results21-22,38. While 

the current image set also controlled for high-level semantics between conditions (for 

every high memorable stimulus, there was a matching low memorable stimulus of the 

same semantic category), the memorability effect persisted during this period such that 
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the decoding rate for memorable images did not drop as drastically, but instead persisted 

for an additional ~100 msec (see Figure 3). This suggests that the timescale of the 

memorability effect (~150-230 msec) is reflective of a processing advantage for high level 

perceptual features. 

How does this persistent high-level signal reflect the processing advantages of 

memorable images? To address this question, we examined the temporal generalization 

of the MEG data to reveal how the sequence of the memorability signals manifests over 

time. While the task-irrelevance and rapid masking in the current design inhibited the 

stimulus representations from reaching awareness, recent temporal generalization work 

suggests that unseen stimuli are still actively maintained in neuronal activity over time, 

with an early signal representing the evolution of perception across the visual hierarchy 

(diagonal pattern) and a later signal generalizing over time (square pattern) as a function 

of the subjective visibility of the stimulus39. 

Given that high memorable images are quickly perceived and understood9, we might have 

expected the memorable representations to stabilize more rapidly in the brain (as 

evidenced by a square generalization matrix), potentially reflecting a more durable 

maintenance of information across time. However, in both the high and low memorable 

conditions the generalization matrices were dominated by a diagonal pattern, commonly 

associated with a long sequence of neural responses reflecting the hierarchical 

processing stages of perception23. Importantly, the high memorable representations 

demonstrated a significant diagonal extension over the low memorable condition (Figure 

4), suggesting greater evolution of perception during this processing chain. Thus, the 

prolonged diagonal shape suggests that rather than manifest into memories under the 

current rapid viewing conditions, the representations of these memorable images were 

strong enough to take one step further down the perceptual processing pathway, perhaps 

readying themselves for a reliable transition into long term storage.  

The evolution of signal observed in the diagonal processing chain triggers the question 

of which brain regions are responsible for this perceptual advantage? We performed an 

ROI based cortical source localization to evaluate the contributions of several regions 
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previously associated with perceptual processing. Results revealed that memorability 

was localized to several high-level brain regions evolving over time; with the left parietal 

region recruited first, followed by the right IT cortex and, as predicted, no-significant 

difference observer in the pericalcarine. While hemispheric laterality effects may be a 

reflection of low signal-to-noise ratio, our results implicate high-level visual cortex in both 

the dorsal and ventral streams and not early visual areas to memorability effects. 

The significantly better decoding rate of high-memorable images in these brain regions 

indicates that their cortical representations reflect a more concrete embodiment of the 

stimulus compared to those of low-memorability. However, this strong representation is 

still evolving over time and space as it moves from one high-level perceptual region to 

another. Both the inferior-temporal region and areas encompassed by the parietal cortex 

have been previously associated with the perception of shape, objects, faces and scenes 

and other high-level visual features40-46. Thus, when these regions are recruited during 

natural viewing, memorable images seem to carry a hidden advantage in the form of a 

kind of processing fluency47.  

As the medium of knowledge communication continues to evolve, visual literacy (the skill 

to interpret, negotiate, and make meaning from information presented in the form of an 

image) has become increasingly important. The ability of some images to be quickly 

understood and stick in our minds provides a powerful tool in the study of neural 

processing advantages leading to superior visual understanding. The high temporal-

resolution results reported here provide new insights into the enduring strength of 

perceptual representations, pinpointing a high-level perceptual property that is quickly 

encoded.  

While high-memorable images are more likely to be subsequently remembered, the 

masking effects of the RSVP paradigm halted the processing of perceptual information in 

our study and prevents us from making any claims about the transition from strong 

perceptual representation to memory. Future work should examine the full timeline of 

memorability in the brain; from encoding, to storage to recognition. Given the low spatial 

resolution of MEG, future work should also focus on linking higher spatial resolution brain 
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data to the current timescale. The ability to reliably trace the memorability signal over 

space and time has many practical advantages such as the early detection of perception 

or memory impairments in clinical populations (weaker or slower representations48 and 

the design and establishment of more memorable educational tools for improved implicit 

visual literacy.  

METHODS 

Participants 

Fifteen healthy right-handed human subjects (12 female; age mean ± s.d. 23.8 ± 5.7 

years) with normal or corrected to normal vision participated in this experiment after 

signing an informed written consent form. They all received payment as a compensation 

for their participation. The study was approved by the Institutional Review Board of the 

Massachusetts Institute of Technology and conducted in agreement with the principles of 

the Declaration of Helsinki. 

Experimental Design and Stimulus set 

Stimulus set: The stimulus set comprised 60 target images (30 faces and 30 scenes) and 

150 distractor images of scenes. The scene images (task irrelevant targets and 

distractors) were selected from a large memorability image dataset called LaMem17. The 

30 scenes comprised of 15 high memorable and 15 low memorable images controlled for 

low level features (color, luminance, brightness, and spatial frequency) using the natural 

image statistical toolbox49. The face target images were selected from the 10K USA Adult 

Faces3. 

 RSVP paradigm: Participants viewed RSVP sequences of 11 images each presented for 

34ms without inter stimulus interval in separate trials (Figure 1). The middle image and 

the 10 distractor images, respectively, were randomly sampled from the set of 60 target 

images and the set of 150 distractor images. The image sequence was presented at the 

center of the screen on a gray background with 2.9° of visual angle. Each trial started with 

a 500ms baseline time followed by the RSVP sequence and then a blank screen which 
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was presented for 700 – 1000ms with uniform distribution. The blank screen aimed to 

delay response and thus prevent motor artifacts on the data. At the end of trial, the 

subjects were prompted with a question to report whether they have seen a face image 

in the sequence or not and they responded with their right thumb using a MEG-compatible 

response button box. The experiment included 30 trials for each of the target images and 

trials were randomly ordered and presented in 12 blocks with 150 trials. In order to prevent 

eye movement artifacts, participants were instructed to fixate on a black cross at the 

screen center and only blink when pressing the button to respond. The subjects did not 

see the target images or distractors before the experiment. 

Subsequent memory test: To determine if the target images (middle images in each 

sequence) were encoded in memory or not, after the MEG experiment we asked the 

subjects to perform an unanticipated memory test. They were presented with 120 images, 

the 60 RSVP target images randomly mixed with 60 novel images (30 faces and 30 

scenes matched in terms of low level features and semantics with the target images), and 

were asked to report if they have seen the images during the experiment with 4 levels 

where 1 being a confidently novel image and 4 being a confidently seen image. 

MEG acquisition and preprocessing 

MEG data was collected using a 306-channel Elekta Triux system with the sampling rate 

of 1000 Hz and a band-pass filter with cut-off frequencies of 0.03 and 330 Hz. We 

measured the head position prior to the MEG recording using 5 head position indicator 

coils attached to the subjects’ head. The head position was also recorded continuously 

during the experiment. 

Maxfilter software was applied on the acquired MEG data for head movements 

compensation and denoising using spatiotemporal filters50-51. Then Brainstorm software52 

was used to extract trials from 100ms before to 500ms after target image onset and 

preprocess the data. We removed the baseline mean of each sensor and data was 

smoothed by a low-pass filter of 20Hz. Trials with amplitude greater than 6000 fT (or 

fT/cm) were marked as bad trials. Eye blink/movement artifacts were detected using 
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frontal sensor MEG data and then principal component analysis was applied to remove 

these artifacts from the MEG data. 

MEG multivariate pattern analysis 

Sensor space: We analyzed MEG data using multivariate pattern analysis. To decode 

information of the task irrelevant target stimuli, a linear support vector machine (SVM, 

libsvm implementation53) was used as a classifier. In order to reduce computational load, 

the MEG trials of each condition were sub-averaged in groups of 5 with random 

assignment, resulting in N = 6 trials per condition. At each time point t of each trial, the 

MEG data was arranged in a vector of 306 elements. Then, for each pair of high or low 

memorability scene images (middle scenes in the RSVP sequence) and at each time 

point, the accuracy of SVM classifier was calculated using a leave-one-out procedure. 

The procedure of sub-averaging and then cross-validation was repeated for 100 times. 

The classifier accuracies were averaged over the repetitions separately for pairs of high 

or low memorability scene images. 

Source space: To localize representational information on regions of interest (ROIs), we 

mapped MEG signals on cortical sources (based on Freesurfer automatic segmentation24 

using default anatomy54) and performed multivariate pattern analysis on each ROI. We 

computed the forward model using an overlapping spheres model55 and then using a 

dynamic statistical parametric mapping approach (dSPM) MEG signals were mapped on 

the cortex56. Time series from cortical sources within three regions of interest, namely, 

pericalcarine, inferior temporal and parietal area (concatenating inferior parietal and 

superior parietal) were derived57. In each cortical region of interest, pattern vectors were 

created by concatenating ROI-specific source activation values, and then a similar 

multivariate pattern analysis was applied to the patterns of each ROI. 

Temporal generalization with multivariate pattern analysis 

To compare the stability of neural dynamics of high and low memorable images, we 

studied the temporal generalization of their representations21-23, 58-60 by extending the 

SVM classification procedure. The SVM classifier trained at a given time point t was tested 
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on data at all other time points. The classifier performance in discriminating signals can 

be generalized to time points with shared representations. This temporal generalization 

analysis was performed on every pair of images and for each subject. Then averaging 

within high (or low) memorable images and across subjects resulted in a 2D matrix where 

the x-axis corresponded to training time and y-axis to testing time. 

Statistical inference 

We used nonparametric statistical tests which do not assume any distributions on the 

data61-62. Our statistical inference on decoding time series and temporal generalization 

matrices were performed by permutation-based cluster-size inference (1000 

permutations, 0.05 cluster definition threshold and 0.05 cluster threshold) with null 

hypothesis of 50% chance level. For difference of decoding time series we used 0 as 

chance level. We performed bootstrap tests to assess statistics for peak latency of time 

series. Specifically, we bootstrapped subject-specific time series for 1000 times, each 

time we averaged the time series and found its peak latency, and finally using the 

empirical distribution of peak latencies we assessed the 95% confidence intervals.   
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