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Abstract 
Background: Tuberculosis (TB) is a deadly transmissible disease that can infect almost 

any body-part of the host but is mostly infect the lungs. It is one of the top 10 causes of 

death worldwide. In the 30 high TB burden countries, 87% of new TB cases occurred in 

2016. Seven countries: India, Indonesia, China, Philippines, Pakistan, Nigeria, and South 

Africa accounted for 64% of the new TB cases. To stop the infection and progression of 

the disease, early detection of TB is important. In our study, we used microarray data 

set and compared the gene expression profiles obtained from blood samples of patients 

with different datasets of Healthy control, Latent infection, Active TB and performed 

network-based analysis of DEGs to identify potential biomarker. We want to observe the 

transition of genes from normal condition to different stages of the TB and identify, 

annotate those genes/pathways/processes that play key role in the progression of TB 

disease during its cyclic interventions in human body. We identified 319 genes that are 

differentially expressed in various stages of TB (Normal to LTTB, Normal to Active TB and 

LTTB to active TB) and allocated to pathways from multiple databases which comprised 

of curated class of associated genes. These pathway’s importance was then evaluated 

according to the no. of DEGs present in the pathway and these genes show the broad 

spectrum of processes that take part in every state. In addition, we studied the 

regulatory networks of these classified genes, network analysis does consider the 

interactions between genes (specific for TB) or proteins provide us new facts about TB 

disease, which in turn can be used for potential biomarkers identification. We identified 

total 29 biomarkers from various comparison groups of TB stages in which 14 genes are 

over expressed as host responses against pathogen, but 15 genes are down regulated 

that means these genes has allowed the process of host defense to cease and give time 

to pathogen for its progression. This study revealed that gene-expression profiles can be 

used to identify and classified the genes on stage specific pattern among normal, LTTB 

and active TB and network modules associated with various stages of TB were 

elucidated, which in turn provided a basis for the identification of potential pathways and 

key regulatory genes that may be involved in progression of TB disease. 
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Introduction 

TB is a communicable disease generally caused by the bacterium Mycobacterium 

tuberculosis (MTB). The lungs are typically affected (pulmonary TB) but other 

body parts can be also affected (extra pulmonary TB)(1). The disease spread 

through air when a person who are infected with active TB expel out bacteria, 

for example by coughing and sneezing(2). In 2016, 10.4M individuals infected 

with TB disease and 1.7M died from the disease (including 0.4 million among 

people with HIV, 40% of HIV deaths were due to TB). TB kills more adults in 

India than any other infectious disease (in 2016 an estimated 28 lakh cases 

occurred and 4.5 lakh people died due to TB). India has the highest burden of 

both TB and advanced TB (like MDR TB) and second highest of HIV associated 

TB. In India, the major challenges to curb the TB are poor primary healthcare 

system in rural areas; due to deregulation of private health care leading to 

indiscriminate use of Ist & IInd-line TB drugs; poverty; spreading HIV-infection;  

lack of administrative coordination among government functionaries bodies. In 

our current study, we used meta-analysis of individual raw microarray data (GSE 

series) deposited in GEO database, got from blood samples of individuals with 

different datasets (e.g., Controls vs. TB disease, Control vs. Latent TB, Latent TB 

vs. TB disease). For subsequent analysis, we were selected that showed a 

significant differential expression in most of experiments. We have performed 

gene-transition study from DEGs data and text mining between different stages 

of TB and classified the DEGs in stage specific manner like Normal to Latent TB 

infection, Normal to Active TB and Latent TB infection to Active TB, then 

identified specific interaction network modules and figure out its topological 

properties to anticipate key regulators among which few have fundamental 

significance for their biological activities and regulating mechanism. The present 

method to prioritize the disease genes is mainly centred on the ‘guilt-by-

association’ presumption, that means the physically and functionally linked 

genes are possibly  participated in the same biological-pathways having 

comparable effects on the phenotypes(3). The concept of network theory is an 

imperative method to know the topological properties and the complex-systems 

dynamics correspond to their functional modules. The complex networks may be 

classified into four types of networks: (a) scale-free network, (b) small-world 

network, (c) random network and (d) hierarchical network. For the biologist, 

hierarchical network has special interest because it incorporates the mien of 
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modules and distributed hubs (sparsely) regulate the network. In our study, the 

goal was to give diagnostics a way to define the stages of infection to make 

specific remediation. 

Results 

Differentially Expressed Genes (DEGs) 

 A total of 5680 DEGs were identified after the extensive analysis of all the seven 

GSE series; of which 2660 were up regulated and 3020 were down regulated 

genes. The DEGs were divided into five different comparison groups, Normal vs. 

Latent Infection, Normal vs. active TB and Latent infection vs. Active TB. 

Classification and Overrepresentation Analysis 

A total of 5,680 differentially expressed genes were clustered according to ‘GO-

MF (Molecular Function)’, ‘GO-BP (Biological Process)’ and ‘PANTHER Protein 

Class’ shown in Fig 1. All these predictive DEGs show a broad spectrum of 

protein classes involved in a wide array of processes like binding proteins (RNA 

and DNA), helicases and nucleases are found within the "Nucleic Acid Binding" 

protein-class. The “Enzyme Modulator” category features kinase, G-protein, 

phosphatase and protease-modulators. Structural motif and nuclear hormone 

receptors are part of the “Transcription Factor” protein class. The “Hydrolases” is 

a sub-category of Proteases and Phosphatases. The “Receptor” protein class 

includes cytokine-receptors, protein-kinase receptors, ligand-gated ion channels, 

nuclear-hormone receptors and G protein coupled receptors. Besides these 

proteins classes, signaling molecules, Transferase, oxidoreductase and 

transporter are most abundant protein classes. The two most abundant GO-

Biological Process groups—"Metabolic Process" and "Cellular Process" which is 

not surprising as these contains genes involved in the most basic life processes. 

The "Cellular Process" includes cell cycle, cell-cell signaling, cell component 

movement, growth and proliferation and cytokinesis. The heading “Metabolic 

Process” includes carbohydrate metabolism, cellular amino acid metabolism, lipid 

metabolism, nucleobase-containing compound metabolism, protein metabolism 

and the tricarboxylic acid cycle. "Biological Regulation" includes metabolism, cell 

cycle, the regulation of apoptosis, catalytic activity, translation and homeostasis. 

Beside all these biological processes response to stimulus, localization and 

developmental process also represent the significant number of protein. To know 

the probability of largely occupied protein classes and GO category among the 

DEGs, we used PANTHER’s overrepresentation analysis. When we compared with 
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the reference genome, we found that any of the most abundant categories are 

overrepresented in the data (Table 1).  The five most abundant protein classes 

“Chemokine”, “Cytokine”, “Hydrolase”, “Ribosomal protein” and “RNA binding 

protein” were enriched along with the classes “Signaling molecule” and “Cell 

adhesion molecule”.  The five highly populated GO-Biological Processes were 

also enriched in “Cytokine-mediated signaling pathway”, “Response to external 

stimulus”, “Immune response”, “Locomotion”, and “Signal transduction” besides 

these major classes “Cell communication”, “Developmental process”, “Cellular 

process” and “MAPK cascade” were also enriched in GO Biological Processes. 

Finally, the top six GO Molecular Functions that were enriched are “Chemokine 

activity”, “Cytokine activity”, “Cytokine receptor binding”, “Oxidoreductase 

activity”, and “Receptor binding”. 

 

 

Figure 1: Functional Classification of Differentially expressed genes from various GSE series associated with TB 
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Table 1: Overrepresented PANTHER protein class and GO ontology categories of all differentially expressed genes. 

Overrepresentation was determined by calculating the probability that the number of differentially expressed genes 

belonging to a category is larger or smaller than what would be expected based on a reference human genome. P-values 

are adjusted using a Bonferroni correction. 

 

PANTHER Protein Class P-value FDR 

Chemokine  2.14E-08 2.29E-06 

Cytokine  6.71E-08 4.79E-06 

Hydrolase  5.82E-06 3.11E-04 

Ribosomal protein  1.44E-05 6.15E-04 

RNA binding protein  2.36E-05 8.42E-04 

Signaling molecule  1.46E-04 4.45E-03 

Cell adhesion molecule  2.97E-04 7.95E-03 

Protease  4.81E-04 1.14E-02 

Receptor  1.52E-03 3.25E-02 

GO-Molecular Function P-value FDR 
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Chemokine activity  1.19E-06 7.52E-05 

Cytokine activity  1.18E-06 1.12E-04 

Cytokine receptor binding  5.29E-05 1.67E-03 

Oxidoreductase activity  4.85E-04 1.02E-02 

Receptor binding  5.61E-04 1.07E-02 

Hydrolase activity  3.87E-06 1.84E-04 

Catalytic activity  9.50E-08 1.81E-05 

Protein binding  1.20E-04 3.25E-03 

Structural constituent of ribosome  1.66E-04 3.95E-03 

GO-Biological Process P-value FDR 

Cytokine-mediated signaling pathway  3.45E-08 4.21E-06 

Response to external stimulus  3.75E-08 3.05E-06 

Response to interferon-gamma  1.65E-07 1.01E-05 

Immune response  2.10E-07 1.02E-05 

Sensory perception of chemical stimulus  2.15E-07 8.72E-06 

Locomotion  3.38E-07 1.03E-05 

Signal transduction  5.32E-07 1.44E-05 

Immune system process  3.39E-06 8.27E-05 

Cell communication  5.35E-06 1.19E-04 

Cell proliferation  1.09E-05 2.23E-04 

Response to biotic stimulus  1.59E-05 2.99E-04 

Intracellular signal transduction  1.74E-05 3.03E-04 

Death  4.17E-05 6.79E-04 

Cell death  4.17E-05 6.36E-04 

Cellular component movement  4.60E-05 6.61E-04 

Developmental process  5.75E-05 7.80E-04 

Apoptotic process  6.05E-05 7.77E-04 

Cellular process  9.43E-05 1.15E-03 

Sensory perception  9.74E-05 1.13E-03 

Response to stress  1.04E-04 1.15E-03 

RNA metabolic process  1.93E-04 2.04E-03 

MAPK cascade  2.01E-04 2.05E-03 

Response to stimulus  2.05E-04 2.00E-03 

Cellular defence response  2.12E-04 1.99E-03 

Endocytosis  3.17E-04 2.86E-03 

Receptor-mediated endocytosis  7.23E-04 6.30E-03 

Lipid metabolic process  9.30E-04 7.82E-03 

Negative regulation of apoptotic process  1.01E-03 8.21E-03 

Behaviour  1.04E-03 8.15E-03 

Localization  1.17E-03 8.90E-03 

Regulation of catalytic activity  2.04E-03 1.51E-02 

Sulfur compound metabolic process  2.06E-03 1.48E-02 

Cell adhesion  2.78E-03 1.94E-02 

Biological adhesion  2.78E-03 1.89E-02 

Cell surface receptor signaling pathway  3.44E-03 2.27E-02 

Cellular component biogenesis  3.88E-03 2.49E-02 

Cell-cell adhesion  5.00E-03 3.13E-02 

Cellular amino acid catabolic process  6.59E-03 4.02E-02 
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Regulation of molecular function  6.62E-03 3.94E-02 

GO- Cellular Component P-value FDR 

Extracellular region  6.21E-05 1.96E-03 

Extracellular space  5.48E-04 1.15E-02 

Nucleus  2.01E-03 3.17E-02 

Ribonucleoprotein complex  8.32E-06 5.24E-04 

Nucleolus  3.28E-03 4.13E-02 
 

 

Gene-Transition and GO Enrichment Analysis 

We filtered out genes that are common in more than one series of data for 

further study (Table 2). A GO term enrichment analysis was performed to gain 

a deeper knowledge of these DEGs. We isolated up and down regulated genes 

from each stage and performed GO Enrichment analysis using DAVID tool. The 

molecular pathways associated with the differentially expressed genes were 

identified using KEGG pathway analysis ( see in Table 3 and 4). 
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Table 2: The total number of DEGs from various GSE series associated with TB disease. These genes are classified into 

various category of TB like Normal to latent Infection contain 28 genes, Normal to Active TB disease contains 272 genes 

and latent infection to active TB contains 238 genes in this category. 

 

 

 

 

Normal to Latent Infection 

Up regulated Down Regulated 

IER5L, MS4A6A, DOK2, FZD2, NCKI-ASI, SNHG12, NLRC4, 

XPO7, SMA4, CD36, AFFI, NDUFS8 

IL1A, IL6, ACOD1, IL1B, ELOVL7, PTGS2, EREG, F3, IFIT1, TNF, 

KANK1, CCL4, CXCL11, PTX3, IRAK2, AREG 

Normal to Active TB  

Up regulated Down Regulated 

GBP5,  ISG15,  SAMD9L,  SERPING1,  ANKRD22,  ETV7,  

EPSTI1,  GBP4,  RSAD2,  AIM2,  IFI44,  IFIT3,  FGL2,  FYB,  

MNDA,  PAX5,  OAS3,  OAS1,  IFI6,  TNFSF10,  UBE2L6,  XAF1,  

STAT1,  BST2,  IFI35,  STAT2,  IFI44L,  TRIM22,  IFIH1,  IFITM1,  

ATF3,  BATF2,  IFITM3,  GBP1P1,  RTP4,  FCGR1B,  C1QB,  

CEACAM1,  FBXO6,  SAMD4A,  FRMD3,  CMPK2,  SELL,  CFH,  

TLR8,  LGALS3BP,  SRGAP2,  SECTM1,  NCF1,  SIGLEC1,  

APOL1,  TRIM14,  MB21D1,  CARD16,  FGD2,  RNF213,  

CD163,  PML,  OAS2,  OR52K3P,  LY6E,  RABGAP1L,  P2RX7,  

NRG1,  FBXO32,  TYMP,  PSMB9,  NCF1C,  PNPT1,  CXCL13,  

GMPR,  LAMP3,  HESX1,  C3AR1,  STAT4,  CXCL11,  IFIT2,  

STAP1,  TNF,  ZC3H12A,  RCAN1,  HERC6,  CCL20,  CD83,  

CRIM1,  CCL4,  GCH1,  OASL,  DLL4,  MX2,  EIF2AK2,  EBI3,  

AXL,  MGLL,  IRAK2,  CD80,  IFIT5,  IFIT1,  CCL8,  NFE2L3,  

PLSCR1,  ICAM1,  CXCL9,  TRAF1,  SLAMF7,  CXCL10,  HERC5,  

VCAM1,  DDX58,  NFKB1,  SAMD9,  IGFBP3,  CCL3,  CD274,  

BIRC3,  IRF1,  TAP1,  PARP14,  TMEM140,  WARS,  CASP1,  

GBP2,  PSTPIP2,  PARP9,  RNASE6,  FAM129C,  FZD2,  CD36,  

LRRK2,  MS4A6A,  CCR2,  NAIP,  FCRL2,  P2RY13,  CLEC7A,  

PCDH9,  CD300LF,  CLEC4A,  C10orf54,  BAIAP2-AS1,  

C1orf162,  SORT1,  JAK2,  VAMP5,  SCO2,  ODF3B,  PSME2,  

LOC101930164,  P2RY14,  GBP1,  GBP6,  CARD17,  FCGR1A 

RNF141,  SLC25A37,  ID3,  EMP2,  SKP2,  SLC2A3,  SUN1,  KIT,  

OLR1,  FLNB,  CCDC14,  GAPT,  DHRS9,  IQGAP3,  SESN3,  GINS4,  

HIST1H4C,  CD44,  KANK1,  KCNJ2,  TNIP3,  MIR146A,  CXCL3,  

LOC644090,  MSC,  SOD2,  NLRP3,  SERPINB9,  TNFRSF9,  ARL5B,  

IL24,  ADORA2A,  PHLDA1,  MYO10,  CXCL8,  DNAAF1,  

MIR3945HG,  NR3C1,  TNFAIP6,  SERPINB2,  TNF,  MAP3K8,  

IL1A,  AGO2,  CSF3,  SPAG9,  KYNU,  LOC440934,  CCL20,  

WNT5A,  DENND4A,  ACOD1,  PTGS2,  OSM,  CCL4,  PFKFB3,  

EREG,  ITGB8,  PTX3,  IL36G,  G0S2,  SLC7A11,  ZC3H12C,  

TNFAIP3,  IL6,  CCRL2,  FERMT2,  SLCO4A1,  SGPP2,  FOSL2,  

CCL23,  FLT1,  SERPINB8,  NUP98,  SLC35F5,  MN1,  DDIT4,  

NAMPT,  IRAK2,  IL10,  CD80,  SLC7A5,  AK4,  CXCL2,  UPB1,  

CEMIP,  ADGRG2,  FEZ1,  THBS1,  LACC1,  CXCL1,  TRAF1,  

PHLDA2,  HEY1,  LRP12,  UBTD2,  SLC39A8,  PLPP3,  SLC7A1,  

ATXN1,  KMO,  FNDC3B,  IL1B,  C11orf96,  F3,  PSEN1,  BCAT1,  

GEM,  TFPI2,  PLAUR,  MAFF,  TRIM36,  ZNF697,  INSIG1,  

DPYSL3,  ATP2B1,  NCR3LG1,  MAMLD1,  ZNF540   

Latent Infection  to Active TB 

Up regulated Down Regulated 

CLEC12B,  CD36,  CORO1B,  SIGLEC16  LINC00484,  AK5,  

MS4A6A,  GPBAR1,  RTN1,  MS4A6A,  CREB5,  DPYD,  LDB2,  

CD36,  CD36,  FCN1,  LRRK2,  RASSF4,  RTN1,  CREB5,  ANXA4,  

LPCAT2,  SKAP2,  CPPED1,  RNASE2,  PLSCR3,  CLEC12A,  

BST1,  FGD2,  RAB3D,  FGL2,  CPPED1,  PYCARD,  CEBPA,  

MNDA,  CD33,  PRAM1,  LILRA1,  SLC39A11,  TNFSF13,  

SAMHD1,  DIAPH2,  FAR2,  MSRB1,  TBCK,  FARS2,  

C14orf159,  SAMHD1,  MSRB2,  ATG16L2,  DPYSL2,  AIF1,  

HK3,  MS4A6A,  TNFSF13,  AIF1,  SIGLEC7,  FYB,  CPPED1,  

TNFSF13,  RASSF4,  RPS6KA4,  TBC1D5,  C10orf11,  AGTRAP,  

PYGL,  CARD9,  NAGA,  SKAP2,  SLC9A9,  C1RL,  MS4A6A,  

AIF1,  STX8,  MTHFD1,  KCTD12,  MS4A6A,  CBR1,  ASCL2,  

CPNE8,  MBNL3,  ANXA6,  CALML4,  HSDL2,  SLC22A18,  

KDM1B,  SAMHD1,  IDH1,  DNAJC10,  SAMHD1,  TBXAS1,  

SCLT1,  HSD17B4,  MGST2,  AGTRAP,  NAIP,  JAML,  CORO1B,  

ENTPD1,  ASGR1,  BLVRB,  AOAH,  NIPAL2,  NAAA,  RAB24,  

NAAA,  TST,  COMT,  COMMD10,  CYFIP1,  TALDO1,  ULK2,  

HDAC9,  RBCK1,  CEACAM4,  OBFC1,  FUCA2,  NREP,  NAGA,  

STX10,  ENTPD1,  AKR7A2,  PLOD1,  TRIOBP,  QDPR,  

FAM172A,  CDK19,  DPAGT1,  NAAA,  PARVG,  CLEC4A,  

CLEC4A,  SSBP4,  PNKP,  FBXL5,  ASRGL1,  CARS2,  ATP11A,  

PLXNC1,  TSPO,  ARHGEF6,  AGPAT3,  HEXDC,  PDSS2,  PGM2,  

PRKCB,  H2AFY,  S100A9,  SNX15,  NINJ2,  MAP4,  FARS2,  

PSTPIP1,  GSTK1  

IL1A,  ITGB8,  TFPI2,  COL1A1,  MET,  SERPINB2 GPRC5A,  

SLC7A11,  CYP1A1,  RAB7B,  B3GALT2,  DUSP4,  CXCL1,  MMP19,  

DUSP4,  THBS1,  HEY1,  PPP1R10,  ADAMDEC1,  PDE4DIP,  

CCRL2,  THBS1,  LMNA,  ZC3H12C,  RGS13,  CXCL5,  PMEPA1,  

CXCL5,  SKIL,  LACC1,  DPYSL4,  LACC1,  ABCG1,  AHRR,  LMNA,  

MIR155,  EPHA4,  CD109,  MIR3945HG,  MIR3945HG,  NCR3LG1,  

WHRN,  LMNA,  FAM177A1,  SLC39A8,  HEY2,  C11orf96,  KMO,  

CYP1B1,  SLC39A8,  DUSP16,  ABCG1,  DUSP16,  NFKB1,  LZTS3,  

CXCR3,  PLIN2,  BIRC3,  EPHA4,  LACC1,  DOCK4,  EPB41L3,  

MYO5C,  ZHX2,  CD58,  P2RY10,  CD82,  MAPK8,  PARD6G,  

NAB1,  ABCB4,  AMPD3,  STK38L,  SPECC1L,  IL10RB-AS1,  BANP,  

ETV6,  P2RY10,  PPP1R10,  PDCD4,  MPZL3,  NAB1,  CASC7,  

GGA2 
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Table 3: Gene Set Enrichment analysis of differentially expressed genes among active TB, LTBI, and 

normal condition 

Normal to Latent Infection Normal to Active TB Latent Infection to  Active TB  

Immune response Inflammatory response Response to stimulas 

Inflammatory response Immune response Biological regulation 

transcription factor activity Signal transduction Localization 

Transferase Apoptotic process Cell adhesion 

Transporter GTPase activity Protein phosphorylation 

MAPK cascade Biological regulation Immune response 

Chemokine activity Localization Oxidoreductase activity 

Cellular process Angiogenesis Hydrolase activity 

Biological regulation Cell adhesion DNA-templated 

Response to stimulus Cellular process Angiogenesis 

Metabolic process Response to stimulas Binding 

Protein binding Metabolic process Catalytic activity 

Catalytic activity Binding Receptor activity 

Bindings Catalytic activity Transporter activity 

Signaling molecule Receptor activity Structural molecular activity 

  signal transduction 

Cellular process 

Metabolic process 
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Table 4: Pathways enriched by differentially expressed genes among TB, LTBI, and healthy control (HC). 

Normal to Latent Infection 

Up regulated Down Regulated 

Transcriptional misregulation in cancer   AFF1 Toll like receptor CCL4, CXCL11, IL1B, IRAK2, 

IL6, TNF 

Phagosome, 

AMPK signaling pathway, 

ECM-receptor interaction, 

Hematopoietic cell lineage, PPAR signaling 

pathway, Adipocytokine signaling pathway 

  CD36 

 

NF-Kappa B signaling pathway CCL4, IL1B, PTGS2, TNF 

Cytokin-Cytokin receptor interaction CCL4, IL1A, IL1B, IL6, PTGS2 

MAPK signaling pathway IL1A, IL1B, TNF 

Tuberculosis IL1A, IL1B, IRAK2, IL6, TNF 

Oxidative phosphorylation, Non-alcoholic 

fatty liver disease (NAFLD, Neurotrophin 

signaling pathway, Alzheimer's disease 

 NDUFS8 TNF signaling IL1B, IL6, PTGS2, TNF 

 

NOD-like receptor signaling pathway  NLRC4 

Wnt signaling pathway FZD2 

Normal to Active TB 

Up regulated Down Regulated 

Cytokine-cytokine receptor interaction 

CCL3, CCL8, CCR2, CXCL10, 

CXCL11, CXCL13, CXCL9, 

TNFSF10, TNF 

Cell Cycle SKP2, IQGAP3, BCAT1, ID3, 

IL10, MAPK3K8, PHLDA1, 

PTGS2, THBS1, TRIM36 

Chemokine signaling pathway 

CCL3, CCL8, CCR2, CXCL10, 

CXCL11, CXCL13, CXCL9, 

JAK2, NCF1, NFKB1, STAT1, 

TLR8, TNF 

Chemokine signaling pathway CCL20, CCL23, CCL4, CXCL1, 

CXCL2, CXCL3, CXCL8 

Toll-like receptor signaling pathway 

CCL3, CXCL10, CXCL11, 

CXCL9, CD80, BIRC3, ITF1, 

IRAK2, NFKB1, STAT1, TLR8, 

TNF 

NF-kappa B signaling pathway CCL4, CXCL8, TNFAIP3, 

TRAF1, IL1B, PTGS2 
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NF-kappa B signaling pathway 

 DDX58, BIRC3, ICAM1, 

NFKB1, TNF, VCAM1 
TNF signaling pathway CCL20, CXCL1, CXCL2, 

CXCL3, TNFAIP3, IL1B, IL6, 

MAP3K8, PTGS2 

Transcriptional misregulation in cancer 
ETV7, FCGR1A, IGFBP3, 

NFKB1, PAX5, PML 
PI3K-Akt signaling pathway DDIT4, KIT, CSF3, FLT1, 

ITGB8, IL6, OSM, THBS1 

Pathways in cancer 

BIRC3, FZD2, NFKB1, PML, 

STAT1 
Metabolic pathways AK4, UPB1, BCAT1, DHRS9, 

KYNU, KMO, NAMP, PLPP3, 

PTGS2 

  MAPK signaling pathway FLNB, IL1A, IL1B, MAP3K8 

Latent Infection to Active TB 

                   Up regulated        Down Regulated 

Metabolic Pathway 

AGPAT3, AK5, BST1, CBR1, 

COMPT, DPYD, DPAGT1, HK3, 

HSD17B4, IDH1, LPCAT2, 

MTHFD1, PGM2, PYGL, QDPR, 

TST, TBXAS1, TALDO1 Chemokine signaling pathway 

 

CXCL1, CXCK5, CXCR3, 

NFKB1 

Nod like receptor signaling pathway 
NAIP, PYCARD, CARD9, 

PSTPIP1 TNF signaling pathway 
CXCL1, BIRC3, MAPK8, 

NFKB1 

Regulation of Actin cytoskeleton 
ARHGEF6, TRIOBP, CYFIP1, 

DIAPH2 RAP1 signaling pathway 
MET, DOCK4, PARD6G, 

THBS1 

Biosynthesis of antibiotics 
AK5, HK3, IDH1, PGM2, 

TALDO1 PI3K_AKT signaling 
MET, COL1A1, ITGB8, NFKB1, 

THBS1 

Metabolism of xenobiotics by cytochrome 

p450 

AKR7A2, CBR1, GSTK1, 

MGST2 Metabolic process  

AMPD3, B3GALT2, CYP1A1, 

KMO 

Thyroid hormone synthesis 

ASGR1, CREB5, PRKCB 

Apoptotic 

CXCR3, ETV6, SKIL, BIRC3, 

CYP1B1, EPB41L3, HEY2, 

IL1A, LMNA, MAPK8, NFKB1, 

PDCD4, SERPINB2, THBS1 

Regulation of autophagy 
PYCARD, TBC1D5, ATG16L2, 

LRRK2, ULK2 Focal Adhesion 
MET, BIRCC3, COL1A1, 

ITGB8, MAPK8, THBS1 

Peroxisome 
FAR2, GSTK1, HSD17B4, 

IDH1 MAPK signaling pathway 
DUSPI6, DUSP4, IL1A, 

MAPK8, NFKB1 
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MicroRNAs in cancer 
MET, CYP1B1, MIT155, 

NFKB1, PDCD4, THBS1 

 
 

Amoebiases 
RAB7B, COL1A1, NFKB1, 

SERDINB2 
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• Normal to Latent infection: In this case, we found 12 genes (IER5L, MS4A6A, 

DOK2, FZD2, NCKI-ASI, SNHG12, NLRC4, XPO7, SMA4, CD36, AFFI and 

NDUFS8) are up regulated and 16 genes (IL1A, IL6, ACOD1, IL1B, ELOVL7, 

PTGS2, EREG, F3, IFIT1, TNF, KANK1, CCL4, CXCL11, PTX3, IRAK2 and AREG) 

are down regulated. The GO analysis of these DEGs are enriched in “Immune 

response”, “Inflammatory response”, “Chemokine activity”, “Cellular process”, 

“Biological regulation”, “Regulation of metabolic process”, “Protein binding”, 

“Catalytic activity”, “Bindings” etc. On pathway analysis, most of the DEGs are 

down regulated (beneficial to pathogen) that are enriched in very important 

pathways like Toll-like receptors, NF-Kappa B signaling, Cytokin-Cytokin receptor 

interaction, MAPK signaling pathway, Tuberculosis and TNF signaling. 

• Normal to Active TB disease:  We found total  153 genes (UP regulated) and 

119 genes (Down regulated) among the various cases. In this stage, the DEGs 

were not only enriched in “Inflammatory response”, “Immune response”, “Signal 

transduction”, “Response to stimulas”, “Apoptotic process”, “Cellular process”, 

“Metabolic process”, “Binding”, “Catalytic activity”, “Receptor activity” etc. and 

the most abundant enriched pathways (for up regulated genes) in this stage 

belonged to “Cytokine-cytokine receptor interaction “Chemokine signaling”, 

”Toll-like receptor signaling pathway”, “NF-kappa B signaling pathway”, 

“Transcriptional misregulation in cancer”, “Pathways in cancer” and for down 

regulated genes, the enriched pathways are “Cell cycle”, “Chemokine signaling 

pathway”, “NF-kappa B signaling pathway”, “TNF signaling pathway”, “PI3K-Akt 

signaling pathway, “Metabolic pathways” and “MAPK signaling pathway”. 

 

• Latent infection to Active disease: In this case, we found that 154 genes are 

up regulated and 84 genes are down regulated. Compared with healthy controls, 

TB-disease appeared to be mostly related to “Binding”, “Catalytic activity”, 

“Receptor activity”, “Transporter activity”, “Cellular and metabolic process”, 

“Biological regulation”, “Immune response”, “Oxidoreductase activity” etc. and 

the most abundant enriched pathway (for up regulated genes) in this stage 

belonged to “Metabolic Pathway”, “Nod like receptor signaling pathway”, 

“Regulation of Actin cytoskeleton”, “Biosynthesis of antibiotics”, “Metabolism of 

xenobiotics by cytochrome p450”, “Thyroid hormone synthesis”, “Regulation of 

autophagy”, “Peroxisome” and for down regulated genes, the enriched pathways 

are “Chemokine signaling pathway”, “TNF signaling pathway”, “RAP1 signaling 
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pathway”, “PI3K_AKT signaling”, “Metabolic process”, “Apoptotic”, “Focal 

Adhesion”, “MAPK signaling pathway”, “MicroRNAs in cancer” and “Amoebiases”. 

 

Hierarchical Scale-free Network 

The classified genes of various stages of TB  (mentioned in Table 2) were used 

to construct their regulatory network. We have constructed six networks for UP 

and Down regulated genes separately. The topological parameters of the 

network obey power law distributions (as a function of degree). The probability 

of clustering co-efficient C(k), degree distributions P(k), and neighborhood 

connectivity CN(k) exhibit power law or fractal nature given in Fig 2. The results 

for the all the networks are summarized as follows, 
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Figure 2: Topological properties of all the six networks. The behaviours of degree distributions 

(P(k)), clustering co-efficient (C(k)), neighborhood connectivity (CN(k)), betweenness (CB(k)), 

closeness (CC(k)) and eigen-vector (CE(k)) measurements as a function of degree k. The lines are 

fitted lines with power laws in the data sets. 

 

 

 

This network behaviour indicates hierarchical scale free network(4) (5) (6). The 

power law fits on the data points of the network’s topological parameters are 

done and confirmed by following the standard statistical fitting method given by 

Clauset et al(7). where, the p values to all data sets were calculated (against 

2500 random samplings) that is greater than 0.1 and data fitting goodness is 

less. P(k) and C(k) have negative values that mean the network follows 

hierarchical pattern and positive-value of CN(k) that means the network follow 

the assortativity that identifies a huge cluster of degree-nodes (rich club) which 

Normal to Latent Inf.       Normal to Active TB           Latent Inf. to Active TB 
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regulates the network. The centrality parameters: betweenness (CB), closeness 

(CC) and eigenvector (CE) centralities of the network also show fractal behaviour 

and good connectivity of nodes in a network is distinguished by eigenvector or 

centrality CE(k). It calculates the effectiveness of the spreading (receiving) 

power of data of nodes from the network. These properties follow the power law 

behaviours as follows, 
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Identification of key regulators and properties 

Since the popularity of leading hubs get change according to gene activities and 

its regulation, so we can’t say that all the predictive leading hubs are key 

regulators for disease progression but few of these hubs can play significant 

role, which we called them as fundamental key regulators (FKR). The structure 

of modular and its arrangement are done through Newman and Girvan’s 

standard community finding algorithm at various levels of the organisation. 

Using this community finding algorithm, we found that our six networks are 

hierarchically organised at various levels (S1 Fig 1A and 1B). The Hamiltonian 

Energy (HE) and corresponding modularity (QN) (as a function of levels of 

organization) are found to be decreased as one goes from top to down 

organisation (see in Fig 3). 

 

Figure 3: Energy and modularity distribution in all networks quantified by Hamiltonian 

(HE) and Modularity calculation as a function of network levels 

 

 

S1 FIG 1A & 1B : The modular path of important hub genes from complete network to motif with the 

structures of modules/sub-modules at various levels. 

 

 

 

 

Normal to Latent Inf.     Normal to Active TB       Latent Inf. to Active TB 
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Following the definition of KR, we identified total 29 key regulators from various 

stages of TB. In normal to latent infection, we found eight genes which are  

‘FZD2, NDUFS8, NLRC4’ (Up regulated) and ‘CCL4, IL1B, IL1A, TNF, AREG’ 

(Down regulated), While in latent to active TB, we found 15 genes which are 

‘EIF2AK2, SAMD9L, IFI44L, DDX58, IFI44, HERC5, NFE2L3, LRRK2’ (Up 

regulated) and ‘CSF3, MAP3K8, IRAK2, TNFAIP3, TRAF1, PLAUR, CD44’ (Down 

regulated) and similarly for normal to active TB disease, six genes ‘TST, 

MTHFD1, CARS2’ (Up regulated) and ‘ETV6, NFKB1, MET’ (Down regulated) are 

fundamental key regulators. Datamining using Geneclip 2.0(8)(9) to show that 

28 of 29 genes were enriched in several biological processes shown in Fig 4. 

 

 

Figure 4: Summary of 29 hub genes detected by network analysis and their involvement 

in various biological process. 

 

To understand the regulating ability of each of the 29 KRs, we calculated the 

Probability �
����. 
�������� �  ���

���
                      

Where x shows the no. of edges (y[l]) at level (l) and (E[l]) is total no. of edges 

of the network or modules and sub-modules. The measured probability ����� of 

all the KR show an increase in Px as level increases (top to bottom direction). At 

deeper level of the organisation, regulation of FKR increases and their activities 

become more prominent. Therefore, these FKR become backbone of the 

network-organization, stabilization & active workers at grassroot level (see Fig 

5). 

 

Figure 5: This figure shown the fundamental key regulator from various stage of TB obtained from 

all the six networks to motif/hub through various modules/sub-modules at various level of 

organisation. The probability distribution of the 29 fundamental key regulators as a function of level 

of organisation 

 

Local perturbations driven by key regulators 

The knock-out experiment of all the hubs/motif from the parent networks could 

able to highlight the local perturbations driven by these individual hub or motif, 

and their effect on global network properties. It has been revealed that the 

network is tolerant to hub’s deletion that means the important network-elements 
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are still remain after elimination of hubs at level 0 (parent network). One of 

main cause is that the P-P interactions networks are too dense to be broken into 

fragments by only removing hubs. However, the elimination of these hubs/motif 

from the complete network does cause significant variations in the topological 

properties of the network, where, P(k) and C(k) change significantly in 

complete network level, whereas CN(k) change slightly. Likewise, the variations 

in the exponents of centrality measurements (%, η and δ) also significant 

changes (see in Fig 6). Since, it is clear from the differences in the exponents of 

topological parameters that network perturbation increases when on goes to 

deeper level (top to down direction). In our case, most of the perturbation 

increases after the 3rd level, at this level elimination of key regulator from 

network almost breakdown the submodules existing in the deeper levels, such 

type of behaviour shows that local perturbation is highest at deeper levels. 

 

Figure 6: The changes in the exponents of the three important topological parameters 
(P(k), C(k) and CN(k)) due to hub genes knock-out experiment from parent network 

 

 

The local-community-paradigm: Evidence of self-organization 

The LCP architecture supporting the quick transfer of data across the several 

network-modules and through the local processing too. We have analysed all the 

six networks to check the maintenance of its self-organization at different levels 

using LCP method. For different level, the calculated LCP-corr of all the modules 

or sub-modules are depicted in Fig 7. The average values of LCP-corr (we 

ignored modules which having zero LCP-corr) are greater than 0.853 at each 

level. This shows that the network maintains compactness, self-organisation and 

has efficient data processing. It characterizes robust LCP-networks that are 

dynamic in nature and heterogeneous, which help in network re-organization 

and evolution. 

 

Figure 7: This figure shown the LCP-corr of all the modules/sub-modules at various levels. The 

compactness characterized by 2D plots between √(LCL) verses CA. 
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Discussion 

TB remains one of the most significant infectious disease as a leading cause of 

death worldwide; the present challenge is to develop a delicate & effective method 

to identify the latent TB infection (LTBI).  Once pathogen enter into the 

bloodstream of host, it can infect several tissues like lung, pancreas, or thyroid 

and heart skeletal muscles. However, in latent TB stage, the pathogen remains 

in inactive form for many years before transforming into infectious form or TB-

disease.   However, after TB-medication, there will be a chance to reactivation of 

MTB due to immunosuppressant/MDR in TB bacteria(10) (11). TB is a terrible 

communicable disease in that 90% of cases of latent infection with MTB not 

show any symptoms/sign but have a 10% lifetime possibility of transforming 

into active-TB. To stop the disease epidemic, early diagnosing-method or 

techniques are required. Gene expression profiling have uncovered the 

differences in the transcriptome among normal condition, latent infection and 

active TB. These results not only revealed significant genetic biomarkers 

indicative of, LTBI, TB-disease conditions but also recognized transcriptionally 

regulated genes that varies in biological-functions. 

In our study, we found that the most of DEGs relative to normal to TB disease 

condition (Including Latent Infection) are enriched in important pathway like 

Toll-like receptors. In fact, pathogen is identified by the receptors on the surface 

of immune cells, and Toll-like receptors (TLRs) are one of them. Different TLRs 

including TLR2, 4, 9 and 8 play important roles in TB infection(12). These 

receptors (Toll-like NOD like etc.) are expressed irrespective of whether they 

participate in immune signalling or immunity. The interaction of MTB with these 

receptors (like TLRs) initiates an intercellular signaling cascade that culminates 

in a pro-inflammatory response (cytokines and chemokines that serve as a 

signal for infection).  

Cascade of events going on in response to the TB infection cycle: 

According to the cycle of infection by Young et al., 2008, the exposure of the 

microorganism up to its development to latent stage, there are stringent amount 

of processes have appeared. The long fight of MTB to establish its generation by 

stabilizing its environment for metabolism have evolved with an ability to 

overcome immunity. In this scenario of transferring from Initial infection (say 

Normal) stage to Latent stage have a profound increase in the overall immune 

response outside the Hcell (Host cell) and an increased intensity of basic cellular 
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machine establishment process for the Pcell (Pathogen Cell) as shown in Table 1, 

3. In case, the elimination eliminates the eliminator even after the induction of 

T-cell but able to suppress the effect, Pcells have two choices, either develop 

army or attack the adaption of immunity. In order it decides to enter the resting 

phase (i.e. latent) Mtb’s survival instincts allows it to develop its metabolic 

environment by down regulating antigen presentation and the release of 

cytokines too (like IFNγ). On the other hand, if adaptive immunity has taken its 

chance then Mtb takes the defensive mode by subverting various normal cell 

cycle functioning inside the macrophages thus making a halt on the maturation 

of phagosomes. Mtb does this by downregulating receptor signalling pathways, 

cell cycle mediating molecules, disturbing metabolism also by perturbing 

apoptosis related gene in order to survive the acute phases (active TB).  

Events benefited to Pathogen: Taking cycle of infection into consideration it is 

very difficult to say which process(s) is beneficial to pathogen at which stage. As 

it tries to control the expression of bunch of genes that are involved in many 

different pathways (all at the same time) in order to overcome the pathological 

elimination from the host cell. Once Mtb or any other antigen enters the host it 

initiated a series of action in order to recognise it as self or non- self-molecules. 

This action is taken up by the wandering cells (Macrophages, dendritic and B 

cells) that recognise antigen by PRRs (pattern recognition receptors) thus, 

initiating the release of inflammatory mediators (PTGS2 etc.) that summons 

more of the macrophages to release cytokines (like TNF, IL-1 etc.) and initiate 

complement by TLRs to call for immediate adaptive (humoral kind) immunity. 

Mtb in case finds it difficult to precede it tries to down regulate all these 

processes to enter into the latent state as evident from the Table 3, 4.  In case 

Mtb has to re-infect the host, it prepares itself by up-regulating the basic 

metabolic processes (like Localization, Cell adhesion, Protein phosphorylation 

and biological regulation) by increasing the expression of set of genes. In the 

meantime, it also able to recognise some antibiotics and metabolise, it is using 

cytochrome p450 (called Response to stimulus). Since, in the due course of its 

preparation processes it has established in a very hostile environment (i.e. 

within active immune response in host with vaccination) it does it by further 

down regulating another set of genes that are responsible in host cell to raise 

much more furious attack on Mtb.  

Some beneficial events with respect to Host cell reverted by pathogen: 

After breaching of the first line of defence (Mechanical barriers mucus layers) 
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pathogens are captured by APCs (Antigen presenting cells) like dendrites and 

macrophages. NF-Kappa B signaling pathway is central to the host’s response to 

many pathogens. TNF with  NF-Kappa B signaling  play important role in 

infection dynamics in humans and multiple animal systems(13). Cytokines 

released by macrophages are important intercellular regulators and mobilizers of 

cells to get engaged in innate as well as adaptive inflammatory host defences, 

cell growth, differentiation, cell death, angiogenesis, and development and repair 

processes aimed at the restoration of homeostasis(14). A number of cytokines 

(including TNFα) are regulated by MAPK signaling pathway that are released by 

the macrophages infected with MTB(15) (16), TNF signaling if correctly activated 

help in providing resistance to mycobacteria by inhibiting bacterial growth and 

macrophage death(16). Another set of chemicals like chemokines (a family of 

small cytokines) activated in response infection attract immune system cells 

(other leukocytes) at sites of inflammation, by activating important pathways 

like JAK/Stat, Ras, ERK and Akt pathways(17) (18). 

PI3K-Akt signaling pathway play important roles in apoptosis, autophagy, 

metabolism, cell growth and differentiation. The expression of FoxP3 by 

inhibiting the activation of transcription factor Forkhead-O3a (Foxo1-3a) is 

negatively regulated by this pathway(19). The FoxP3+Treg cells activation which 

will assist to set up a new target for the involvement of TB immunotherapy 

molecules as part of the immune-escape mechanism to provide a theoretical 

basis is inhibited by M.tuberculosis(20). In the case of latent infection to TB 

disease few additional pathways are involved like Regulation of Actin 

cytoskeleton during MTB infection, to maintain the stability of the cytoskeleton, 

macrophages cells themselves are also trying to regulate cytoskeletal associated 

proteins(21). Thyroid hormones (hormones, T4 and T3) are made by thyroid 

gland which is essential for the regulation of metabolic processes throughout the 

body. 

The regulation of autophagy is important for host in response to invading 

mycobacteria, the naïve host defence system recognizes pathogen motifs 

through innate receptors but also produces appropriate effector proteins, 

including cytokines. These innate signals regulate autophagic pathways by up 

regulation of genes of this pathway during infection(22). Recently, a study 

reports that the enzyme Msm_ACTase (from bacteria) aids in scavenging 

increased amount of H2O2 due to over expression of genes involved in 

peroxisome pathway which gives insight to a new mechanism how the pathogen 
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surpass the host defense in Mtb infection(23). Moreover, Macrophages are the 

main effector cells responsible for killing pathogen (MTB) via different 

mechanisms, including apoptosis but important genes in this pathway were 

down regulated by MTB that slow down or stop the apoptotic process(24). Most 

of the MicroRNAs that were found deregulated in cancer are effected by Mtb in a 

similar way while its infestation like deletion, mutation, and epigenetic 

silencing(25).  

In the field of pharmacogenomics, to understand the regulation of disease-

network is the great application in the drug discovery.  We have tried to build 

the networks emphasis on genes that are regulated by network and this 

constructed network of classified genes from various stages of TB shows 

hierarchical nature, that indicate the networks have system level organization 

including modules/sub-modules which are interconnected. Since the network’s 

nature is hierarchical, its synchronisation confirms several important functional 

regulations of the network, but individual gene-activities are not so important. In 

our six networks (including UP & Down regulated genes), a total of 29 key 

regulators were identified by affecting motifs and module regulation, showing 

their biological important and serve as the foundation of network activities and 

their regulations and could be a most probable target gene for disease control. 

We have noticed that in normal to latent infection two genes TNF and IL1B are 

present (down regulated) in most of the important pathways, from literature we 

found that TNF and IL1 (A & B) are key mediators present in severe 

inflammatory diseases. However, both TNF and IL-1 receptor pathways are 

essential for the control of Mycobacterium tuberculosis infection, and it is critical 

to assess the respective role of IL1A, IL1B, and TNF(26) (27). Beside of  CCL4 

expression is high in late phase of the active disease but  lower levels during 

early infection(28). It has been currently reported that AREG play a central role 

in orchestrating both host resistance and tolerance mechanisms. Although AREG 

is   known as epithelial cell-derived factor and recent studies  show that AREG 

can be expressed by multiple populations of activated immune cells in 

inflammatory conditions(29). In Host immune system, NFKB1 plays a major role 

in the activation of immune cells by upregulating the expression of many 

cytokines essential to the immune responses(30) and gene CD44 play important 

role in innate and adaptive immune responses, in the acute inflammatory 

response to both infectious and sterile stimuli and during infection CD44 may 

influence host defence by affecting phagocytosis(31) but in our study, we found 

that NFKB1 and CD44 are down regulated that means, MTB is  burglarize and 
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seizing the host immune system by slow down the expression of NFKB1. It has 

been reported that MET (Hepatocyte growth factor receptor) regulate various 

functions of immune cells, including differentiation and maturation, cytokine 

production, cellular migration and adhesion, and T cell effector function and HGF 

exerts anti-inflammatory activities through MET signaling(32). A group of 

researchers has elucidated that PLAUR domain containing 8 (Lypd8) inhibits 

bacterial invasion of colonic epithelia(33)).The gene TRAF1 has  diverse 

biological functions, acting through direct or indirect interactions with multiple 

tumor necrosis factor receptor (TNFR) and intracellular proteins. Several studies 

have shown that TRAF1 might exert an antiapoptotic role in lymphoma cells via 

regulation of the activation of NF-κB(34). It has been shown that the gene 

TNFAIP3 (A20) is a cytoplasmic zinc-finger protein that is induced under 

inflammatory conditions and acts as a negative-feedback regulator of NF-κB 

activation in response to multiple stimuli(35). It has been shown that IRAK2 and 

its genetic variants as critical factors and potentially novel biomarkers for human 

antiviral innate immunity(36) and MAP3K8 is a serine-threonine kinase has a 

critical function in integrating host immune responses to complex 

pathogens(37). The down regulation of these genes has allowed the process of 

host defense to cease and give time to bacteria for progression. Besides of these 

down regulated genes few genes are up regulated as Host responses against 

pathogen e.g., NLRC4 gene is associated with inflammasome signaling, Its up 

regulation means Inflammasome activation (play an important role in host 

defence against Mtb) not only leads to cytokine secretion but may also cause 

pyroptosis(38) (39) and NDUFS8  genes also play important role in host 

immunity by increase expression level(40). It has been reported that LRRK2 is 

involved in the ifn-γ response and host response to pathogens(41) and the 

genes DDX58 which interact with IRGM and promote its K63-linked 

polyubiquitination, indicating that IRGM is positioned at a nexus of various 

innate immunity(42) while SAMD9L and EIF2AK2 are play key roles in the innate 

immune responses to multiple stimuli, IF2AK2 is also involved in the regulation 

of signal transduction, apoptosis, cell proliferation and differentiation(43) (44) 

(45). 
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Material and Method 

The complete work flow of study is illustrated in Fig 8. 

 Figure 8: Representation of work flow. 

1.  Inclusion Criteria for Differentially Expressed Genes 

A set  of  seven  microarray  data  sets  GSE46268(46),  GSE52819(47),  

GSE64335(48), GSE11199(49),  GSE54992(50),  GSE57028(51),  

GSE83456(52)  were  selected  from  the NCBI GEO repository database 

(http://www.ncbi.nlm.nih.gov/geo/). The GEO2R 

(http://www.ncbi.nlm.nih.gov/geo/geo2r/), a online server that can do advanced 

analyses of GEO-data (using R- platform) and each dataset was studied 

individually using GEO2R which uses the limma-package to find differentially 

based genes by comparing two or more sets of samples across the similar 

experimental conditions to distinguish DEGs that can be visualized. In this study, 

the adjust P values were utilized to reduce the false positive rate using 

Benjamini and Hochberg false discovery rate (FDR) method by default. The 

adjust P value < 0.05 and |logFC| ≥1.5 were set as the cut off criterion. We 

have used the BRCW (Bioinformatics & Research Computing website 

(http://jura. wi.mit.edu/bioc/tools/compare.php)) to select the DEGS which is 

same in at least two datasets of gene expression profile. 

 

 

2. Gene Classification, Ontology and Pathway Analysis of DEGs 

To know the significance of the identified DEGs, we have categorized them by 

GO-molecular function, GO-biological process and protein class using the Protein 

ANalysis THrough Evolutionary Relationships (PANTHER v.13.0) Classification 

System and analysis tools and DAVID (Database for Annotation Visualization and 

Integrated Discovery) an online software (https://david.ncifcrf.gov/)  to enrich 

the given set of DEGs to possible GO terms (53) (54). The PANTHER 

Overrepresentation study (Fisher's Exact with FDR multiple test correction) was 

used to search the data against the PANTHER and GO databases and P-values 

were set according to Bonferroni correction. 

The GO-analysis (Gene ontology) is the useful method For annotation of genes & 

its products and characterization of biological attributes for high-throughput 

genome or transcriptomes data(55). The differentially expressed genes among 

‘Active-TB’, ‘Latent TB’ and ‘Normal condition’ were over-represented in various 
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GO classes. The gene ontology provides and visualize us the basic terms 

subdivided into three important categories namely BP (Biological process), MF 

(Molecular functions) and Biological pathways among those DEGs. 

 

3. Gene-Transition among different stages of TB 

In order to gets the behaviour of normal gene expression perturbation we tried a 

normal way for finding genes associated while moving from one stage to 

another. In all the transition we took into consideration has been provided by a 

list of UP and Down regulated genes, these gene(s) in both the cases (i.e. stage 

from which is transferred to the targeted stage) has its own meaning. This 

meaning to a gene(s) regulation gives us an opportunity to say something about 

the ongoing mechanobiology inside the cell. So, to observe these transitions we 

framed our study in such a way (based on the data we’ve got) that is to take 

every possible transition in view. These transitions are discussed in brief as 

follows. In this study, we made comparison of the gene-expression profiles 

among individuals with normal conditions, latent infection, active TB. Thus, we 

observed the expression of genes from normal to different stages of the TB and 

try to arrest those genes which play key role in progression of TB disease. 

 

• Normal to Latent infection: In this section, we have taken those DEGs 

which are involved in between normal to latent TB condition. In LTBI, the 

bacteria remain inactive form for many years (years-decades) before 

transforming into TB disease. In this study, we have studied several 

biological processes, important pathways that lead to the latent infection 

for identification of latently infected individuals 

• Normal to Active TB: In this section, we have taken those genes which 

are differentially expressed in TB disease condition as compared to normal 

and identified those immune process and pathways which are prominent 

in TB disease. 

• Latent infection to Active TB: In this section, we have taken those 

DEGs which is involved in between latent TB to active TB disease. The 

individual with Latent Tb infection eventually reactivates and becomes 

infectious, seriously influencing epidemiological situation. Mechanisms of 

MTB transition to dormancy and TB reactivation are inadequately 

understood, and biomarkers of latency remain largely mysterious (56). 
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4. Characterization of Topological Properties of Networks 

The structural properties of complex networks are characterized through the behaviours 

of the topological parameters. The following topological properties of the networks were 

studied to learn the important behaviours of the network: Degree distribution, 

Neighborhood connectivity, clustering co-efficient, Betweenness centrality, Closeness 

centrality and Eigenvector centrality. 

• Degree distribution: In a network, the degree k is a centrality measure that 

represents the number of links the node connects with other nodes. For a network 

defined by a graph  � 	 
�, �, where N and E are number of nodes and edges 

respectively, the probability of degree distribution (P(k)) of the network is the ratio 

of the number of nodes having degree to the network size; 

���� �
��

�
                                   

 

Where, nk is the number of nodes having degree k and N is the total number of 

nodes in the network. �
� indicates the importance of hubs or modules in the 

network. It obeys power law P(k) ~ k−γ in scale-free and hierarchical networks 

depending on the value of γ which specifies the importance of hubs or modules in 

the network(57). 

 

• Neighborhood connectivity: The number of neighbours of a node is considered 

as its connectivity. The neighborhood connectivity of a node n is defined as the 

average connectivity of all neighbors of n(58). In the network (CN(k)) 

Neighborhood connectivity is given by, 

����� � ∑ ��� ��

�
�                        

where, �

�

�
  is the conditional probability that a link belonging to a node with 

connectivity ‘k’ points to a node with connectivity ‘q’. The positive power 

dependence of CN(k) could be an indicator of assortativity in the network 

topology. 

 

• Clustering co-efficient: This property of a network represents the measure of the 

interconnection of a node with its neighborhood node and strength of its 

interconnection. It is the ratio of the number of its nearest neighborhood edges ei 

to the total possible number of edges of degree ki. For an undirected network, 

clustering co-efficient (C(ki)) of ith node can be calculated by, 

����� � ���
��
����

                            

• Betweenness centrality: Betweenness centrality CB of a node represents the 

prominence of information flow in the network, and the extent to which the node 
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has control over the other nodes in the network through communication(59,60). If 

dij(v) indicates the number of geodesic paths from node i to node j passing 

through node v, and dij indicates number of geodesic paths from node i to j, then 

betweenness centrality (CB(v)) of a node v can be calculated by, 

���	� �  ∑ ���
�

���
�,�,�����                    

• Closeness centrality: Closeness centrality (CC) measures how fast information is 

spread from a node to other nodes accessible from it in the network(61). The CC of 

a node i is the reciprocal of the mean geodesic distance between the node and all 

other nodes connected to it in the network, and is given by, 

����� � �

∑ ����

                                         

where dij represents the geodesic path length from nodes i to j, and n is the total 

number of vertices in the graph reachable from node i. 

• Eigenvector centrality: Eigenvector centrality of a node i (CE(i)) in a network is 

proportional to the sum of  i’s neighbour centralities(62), and it is given by, 

����� � �

�
∑ 	�����
�                                    

where, nn(i) indicates nearest neighbors of nodes i in the network. λ is 

eigenvalue of the eigenvector vi is given by, Avi = λvi where, A is the adjacency 

matrix of the network (graph). The principal eigenvector of A, which corresponds 

to maximum eigenvalue λmax, is taken to have positive eigenvector centrality 

score. Eigenvector centrality can be used as an indicator of node’s spreading 

power in the network. 

 

5. Community Analysis: Leading Eigen-vector method 

In hierarchical network, to distinguish the nature of modular and its properties is 

important to explaining the predicting about the activities of network at various levels of 

hierarchy and access the organizing principle of the network. In our study, the Leading 

Eigen Vector method (LEV)(63,64) was used to detect the communities in R from 

package ‘igraph’(65). The LEV method is the most promising one for community 

detection as it calculates the Eigen value and exemplifying the significance for each link. 

To grub only motif, we detected modules from complete network and then sub-modules 

from the modules at each level of organization.  

 

Modularity: Modularity determine how a network is divided in communities(66). 

Modularity (Q) is expressed as follows, 

                    � � �

� 
∑ ��� � ����

� 
�  ����, �����                              
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where m is the total number of edges in the community, Aij is the adjacency matrix of 

size i × j, k represents degrees, and the δ function yields 1 if nodes i and j are in the 

same community. 

6. Genes Tracing  

To access the regulation of network, we first tried to find out the most influential nodes 

within the network. The gene tracing (up to motif level) was done purely on the 

appearance of the respective genes in various sub modules obtained from the clustering. 

Then these genes were used to get the picture of changes in the network-organization in 

their absence. 

 
 
 

7. Hub Knock out Experiment 

To know the changes of organization within the complex network in the absent of most 

influencing nodes, we must do removal of constructed rich-clubs or leading hubs 

(breaking monopoly) in the networks. We consecutively eliminate all the important hubs 

(one by one) from each network and measured the network properties of the 

reorganized network to characterize the regulating abilities of the hubs by calculating the 

degree of structural change due to their absent. The topological properties of the 

network were estimated  using Network Analyzer, and for eigen value calculation, we 

used CytoNCA(67),  plug-ins in Cytoscape for topological properties.  

 

8. LCP-DP approach to estimate the network compactness 

The representation of topological properties of a network in 2D parameter space of 

common neighbors (CN) index of interacting nodes and local community links (LCL) of 

each pair of interacting nodes in the network, and it provides information on number, 

size, and compactness of communities in a network, which can further be used as a 

measure of self-organization in the network(68). The CN index between two nodes x and 

y can be calculated from the measure of overlapping between their sets of first-node-

neighbors S(x) and S(y) given by, �� 	 !
� " !
�. If there is significant amount of 

overlapping between the sets S(x) and S(y) (large value of CN), the possible likelihood 

of interaction of these two nodes could happen and so an increase in CN represents the 

rise in compactness of the network, showing its faster information processing abilities. 

Further, the LCLs between the two nodes x and y, whose upper bound is defined by, 

max
&'& 	
�

�
'(
'( ) 1, is the number of internal links in local-community (LC), which is 

strongly inter-linked group of nodes. Most probably these two nodes link together if CN 

of these two nodes are members of LC(69). LCP-DP has been found to have a linear 

dependence between CN and √&'& (70).  The LCP correlation (LCP-corr) is the Pearson 

correlation co-efficient between the variables CN and LCL defined by; 

             ��� � ���� � ,-.
/0,1/1

2��2���
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where 345
'(, &'& is the covariance among &'& & '( and σLCL & σCN are SD (standard 

deviations) of CN and LCL respectively.  

 

9. Energy Distribution in the network: Hamiltonian energy calculation 

The Hamiltonian energy (HE) is used to organize a network at a certain level by following 

the formalism of Constant Potts Model(71,72). The energy distribution at the global and 

modular level of a network is given by Hamiltonian energy (HE), which is in the self-

organization of the system. Hamiltonian energy of a network or module or sub-module 

can be measured by, 

                               !�6� � � ∑ "#66 � $%6 
� &                    

Where ec and nc are the number of edges and nodes in a community ‘c’ and ‘γ’ is the 
resolution parameter acting as an edge density threshold which is set to be 0.5.  
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