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Abstract 
Motivation:  
Extraction of biomedical knowledge from unstructured text poses a great challenge in the                         
biomedical field. Named entity recognition (NER) promises to improve information extraction and                       
retrieval. However, existing approaches require manual annotation of large training text corpora,                       
which is laborious and time-consuming. To address this problem we adopted deep learning                         
technique that repurposes the 43,900,000 Entity- free-text pairs available in metadata associated                       
with the NCBI BioSample archive to train a scalable NER model. This NER model can assist in                                 
biospecimen metadata annotation by extracting named-entities from user-supplied free-text                 
descriptions.  
 
Results: We evaluated our model against two validation sets, namely data sets consisting of                           
short-phrases and long sentences. We achieved an accuracy of 93.29% and 93.40% in the                           
short-phrase validation set and long sentence validation set respectively.  
 
Availability: All the analyses, pre-trained model, environments, and Jupyter notebooks pertaining to                      
this manuscript are available on Github: https://github.com/brianyiktaktsui/DEEP_NLP .  
 
Contact:  hkcarter@ucsd.edu  
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Fig1. Repurposing public biospecimen data for NER training  (A) Depiction of training NER model using pre-annotated Entity- free-text pairs available from public 
biospecimen annotation data (BioSamples) from NCBI ( A.1) Example of Entity- free-text pairs from BioSamples. In this example, the free-text phrase  Glioblastoma stage 4 
system  is a  Disease  entity. (A.2 ) Expected results of an NER model recognizing biomedical concepts from sentences.  (B ) Histogram of the 30 most frequently used 
entities (x-axis) available in the current set of BioSamples. These atomic named entities (blue labels) can be used to extract concepts from composite entities TITLE and 
DESCRIPTION (red labels).   

 
1 Introduction 

Named Entity Recognition (NER) is an important task in the           
biomedical Natural Language Processing (NLP) domain. For example,        
NER can extract entities such as diseases, species, treatments, genes or           
geographical locations from biomedical free-text. A well constructed        
NER allows efficient document categorization and thus improve        
document retrieval accuracy.  

Using NLP to automate the extraction of entity labels from biomedical            
textual data continues to be an area of active research. Biomedical NLP            
engines like MetaMap (Aronson, 2001), cTakes (Savova et al. , 2010)          
and TaggerOne (Leaman and Lu, 2016) have been successfully applied          
in biomedical research settings for automated information extraction by         
using a mix of rule-based algorithms and corpus building, where corpus           
is a set of free-texts annotated by curators for text model generation.            
However, the body of biomedical knowledge is constantly increasing in          
size as well as language complexity (Huang and Lu, 2016). This trend            
means that new biomedical text will be composed using words, sentence           
structures or entity types that were unseen by the model at the time of              
construction. Thus, these approaches are difficult to adapt to such          
changes as corpus generation is often limited by the high financial cost            
of hiring expert curators.  

Another approach that has been adopted that involves extracting a set           
of predefined terms from free-text to increase the relevancy of retrieved           
data (Galeota and Pelizzola, 2017; Barrett et al. , 2013; Shah et al.,            
2009), where the terms and their relationships are often curated in the            
form of an ontology. However, the maintenance of coherency in an           
ontology is often difficult and also requires manual curation. In          
summary, existing approaches for NER do not scale well because of           
their dependence on manual curation.  

In recent years, deep learning techniques have replaced much of the           
pre-processing steps required to extract knowledge from free-text. Some         
of the techniques include 1) word embedding to represent the concepts of            
words in dense format (Mikolov et al. , 2013), and 2) recurrent neural            
network (RNN) which utilizes Long Short-Term Memory (LSTM) cells         
to capture the dependency of words (Sutskever et al., 2014). Recently,           
studies have shown that deep learning was capable of a generating an            
NER with high accuracy in biomedical text (Zhu et al. , 2018; Wu et al.,              
2017). However, their approaches require a large training corpus.  

Here, we utilized the millions of BioSample (Barrett et al., 2012)           
metadata annotations hosted by NCBI to train a deep learning based           
NER model. The BioSample metadata is natively encoded as Entity-          

free-text pairs and contains over 1,000,000 sample annotations spanning         
over 100,000 studies, making it a great resource for training          
deep-learning-based NER models. The BioSamples are comprised of the         
NCBI primary archives, including the Sequence Read Archive (SRA)         
(Kodama et al., 2012) and the database of Genotypes and Phenotypes           
(dbGAP) (Mailman et al., 2007).  

Given the community driven nature of BioSample reporting, we         
believe that the NER model can be kept up to date with the evolving              
biomedical vocabulary by simply retraining with the latest BioSamples.         
Therefore, we evaluated the potential of repurposing the vast amount of           
BioSample annotations for training an NER model. First, we showed that           
word embedding can be used to increase the sample coverage for model            
training. We then adopted deep learning techniques to repurpose these          
BioSamples to train a scalable NER model (Fig. 1A), by first generating            
a short phrase classification model with an accuracy of 93.29%.          
Subsequently, we constructed an NER model for complete sentences, by          
utilizing the scores emitted by the short phrase classification and N-gram           
model (Brown et al., 1992). We achieved an accuracy of 93.4% for this             
NER model. We also compared this NER model with MetaMap          
(Aronson, 2001).  
 
2 Method 
2.1 BioSample data landscape 

The BioSample annotation records were downloaded from the NCBI         
FTP website (ftp.ncbi.nlm.nih.gov/sra/reports/Metadata/) on May 15,      
2018. The XML-encoded sample files were parsed into a python pickle           
object to allow simple data loading. Only ASCII characters from the           
BioSample are retained and python package spaCy was used for word           
tokenization with default parameters. We retrieved 2,921,722 BioSample        
records (SRA BioSample Symbol: SRS), spanning over 106,110 studies.         
The resulting python pickle object for SRS was 1.4GB. Each BioSample           
record is associated with a single biospecimen and has the metadata           
encoded in entity- (attribute) - free-text pairs. An example record is           
shown in Figure 1A.1. Details for BioSample annotation structure can be           
found at https://www.ncbi.nlm.nih.gov/biosample/docs/attributes/ and    
https://www.ncbi.nlm.nih.gov/sra/docs/submitmeta/.  

The BioSample entity fields are diverse (n=19,996) as they are          
designed to capture the experimental conditions from over 100,000         
studies. The retrieved biospecimen records consist of 43,907,007 Entity-         
free-text pairs. The number of unique text entries associated with each           
entity scales with the number of SRS records (Supplementary Fig.1),          
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suggesting BioSample annotation data can capture annotation diversity.        
The 145 BioSample entities are associated with over 10,000 biospecimen          
records and the top 30 most frequently used entities are listed in Figure             
1B, suggesting a large volume of annotation data is available from           
BioSample for training a deep learning based phrase classification         
model.  

DESCRIPTION and TITLE are among the top 10 most frequently          
used entries in BioSample (Fig. 1B). These composite entity fields have           
a mean length of 46.10 characters, 3.19-fold longer (Fig. 2) than the rest             
of the free-text fields (mean=14.46 characters, 95% confidence interval:         
1.0 - 65.0 characters, Supplementary Fig. 2), suggesting that they could           
be made up of specific experimental entities like source name, age, sex,            
etc. This begs the question of whether we can reclassify those           
annotations using an NER trained by the more atomic entities.  

 

 
Fig. 2 Text length distribution of top entities  
 
 
2.2 Vectorization of biomedical words to expand data        
coverage in NER model training 
2.2.1 Word embeddings retrieval 

Traditionally, words have been represented by a sparse hot-one          
encoding scheme in NLP. However, this trend changed when word          
embedding was introduced (Mikolov et al., 2013). In principle, the          
semantic similarity of words should be representable by geometric         
distances between trained word embeddings. This approach has the         
advantage of not requiring the laborious process of pre-defining the          
meaning of words by hard-coding semantics for each word or generating           
rules for part-of-speech tagging. For this project, we used a published           
biomedical word embedding model (Chiu et al. 2016) that was trained on            
the entire PubMed, PMC and Wikipedia text corpora, with a total of            
5,443,656 word vectors where each word is represented by 200 features. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.2.2 Evaluation of semantic similarities at word, sentence, and         
entity resolution using word embedding 

 
Fig. 3 Word embeddings group related terms in PCA space 
 

The first validation of the utility of word embedding for this task was in               
the automatic identification of semantically similar words. The high         
number of word vectors enabled capture of word variations. For          
example, the word embedding model grouped related sequencing        
keywords in the PCA (Principal Component Analysis) space (Fig. 3;          
variance explained: PC0: 34.2%; PC1: 20.4% ).  

 

 
Fig. 4 Native sentence embeddings recover reasonable grouping  

 
The second utility of word embedding we found was in combining           

semantically similar entities to increase BioSample coverage for model         
building and validation, as it has been recognized that there is a lack of              
standardization in metadata annotation (Brazma et al., 2001). To         
summarize and represent a free-text sentence, a sentence embedding         
vector can be generated by taking the feature-wise mean of the           
embedding vectors of the words with the free-text. (Iyyer et al. , 2015)            
For example, sex is synonymous with gender and tissue is synonymous           
with cell type. When we randomly drew 100 biospecimen records with           
sex, gender , tissue and cell type BioSample entities, the sentence          
embedding vectors were able to group the free-texts according to their           
semantics (Fig. 4). To summarize at the entity level, we further reduced            
the sentence level embeddings to entity level embeddings using the same           
method. The entity embedding vectors of the 30 most commonly used           
BioSample entities cluster by cosine similarity, which further shows         
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higher embedding similarities for the more semantically similar entities         
(Supplementary Fig. 3).  
 
2.2.3 Expansion of NER training data coverage using entity         
embedding similarities 

The entities selected for the NER model are the commonly used            
metadata attributes including Species, Genotype, Disease state, Cell        
type/tissue, Geographical Location, and Treatment/Conditions. To      
identify samples in each class from BioSample archive, we first          
incorporated the corresponding official BioSample attributes:      
SCIENTIFIC_NAME, genotype, disease, cell type, geo_loc_name,      
treatment. Then, to increase the sample coverage for each entity class in            
NER training, we identified all the entities with a high cosine similarity            
(>0.8) with the corresponding official BioSample entity, and all those          
retrieved entities deemed synonymous from the label names        
(Supplementary Table 1), suggesting that all the entities in the          
BioSample with high embedding similarities can be potentially merged         
to reduce the complexity of the database and increase sample size for            
each equivalent class. For example, the sample coverage of genotype          
entity increased by 62.65% after merging the BioSample entities with          
high embedding similarities.  

 
2.3 NER model training and validation 

An NER model takes in free-text of any length and extracts the            
biomedical entities in phrases. Traditional entity recognition models        
require the corpus to be in complete sentences with entity labels           
annotated in order for the model to segment and identify phrase           
boundaries, as suggested by the popular corpus format ConNLL (Tjong          
Kim Sang 2002). However, this approach is not useful for the BioSample            
metadata which is encoded as Entity- free-text pairs. Therefore, we          
hypothesized that we could first train a short phrase entity classification           
model and then use an n-gram approach to extract named entity           
segments in longer sentences by identifying n-grams with high emission          
probability (Fig. 5).  

 
2.3.1 Short phrase entity classification model construction and        
validation 

In order to train the short phrase entity classification model, we           
retained only text comprising 2 to 7 words. The upper bound of 7 words              
corresponds to the 95th percentile of the distribution of phrase lengths in            
a highly curated general purpose medical vocabulary called the NCI          
Thesaurus (Sioutos et al. , 2007/2). This filtering also has the advantage           
of limiting the number of parameters in the Recurrent Neural Network           
(RNN) model. To build and validate the deep learning based NLP model            
for short phrase entity classification, we first randomly split the training           
and validation cohorts in a 4:1 ratio by studies, to maximize           
training-validation set independency. The deep NLP model is trained         
based on a bidirectional RNN architecture with LSTM cells (biLSTM)          
(Graves and Schmidhuber, 2005).  

For both the training and testing data, we first converted the           
biospecimen free-text to a sentence by word ID matrix, where each row            
in the matrix consists of a sequence list of word embedding IDs. Then,             
the model was constructed and trained with the following layers:  

1. An embedding layer to convert word embedding IDs to word          
vectors. 

2. A bidirectional layer with a total of 64 hidden units, and a            
dropout rate of 0.5.  

3. A dense, fully connected layer with logistic activation function         
for outputting the probability score used for classification. The         
number of neurons in this layer is the same as the number of             
entities. 

The Adam optimizer (Kingma and Ba, 2014) with categorical          
cross-entropy as loss function was used to compile the deep learning           
model. This biLSTM model was constructed and trained using keras          
v2.7.1 with tensorflow v1.8.0 backend on a single machine with 48           
physical cores with four Intel(R) Xeon(R) CPU E5-4650 v3 @ 2.10GHz,           
with a learning rate of 0.001 and batch size of 100.  
 

2.3.2 Long sentence NER model construction and validation 

 
Fig. 5 Depiction of NER model 
 

Each free-text input is segmented into sentences using commonly used           
separators like ‘:’ , ‘.’ , ‘,’. In total, 179 stop words from the python               
package NLTK were removed from the input sentence. For each          
sentence, the non-alphanumeric characters were removed. To generate        
entity scores for each n-gram, the algorithm scans for entities among all            
phrases that match phrase lengths specified during model construction,         
by applying the short phrase classification model on each n-gram with n            
ranges from 2 to 7 in the sentence. Only n-grams with at least 2 tokens               
matching with word embedding IDs are retained. The tokens were then           
converted to word embedding IDs and became input to the predictive           
function of the short phrase entity classification model. Therefore, each          
n-gram will be associated with a vector of entity scores emitted by the             
logistic activation function from the last layer of the biLSTM, ranging           
from 0.0 to 1.0.  

We also estimated the baseline neural net emission entity scores by            
executing the prediction function without any input. All the n-grams          
from emission vectors with absolute sum difference < 0.01 with baseline           
emission are zeroed. For overlapping n-grams that have the same entity,           
only the n-gram with the highest probability score will be retained.  
 
2.4 Data generation for validation and method comparison 
2.4.1 Manual curation set 

To compare our NER model against manual curation, we manually           
curated 185 sentences selected from 100 randomly drawn BioSample         
records with a DESCRIPTION entity using Dataturk       
(https://dataturks.com/). For each sentence, we highlighted the token        
segments that described the entities selected in model construction. We          
then downloaded the annotated data in JSON format and compared it           
against the prediction results.  
 
2.4.2 MetaMap set 
We compared the performance of our NER model against MetaMap           

from NLM, which has been adopted by GIANT (Greene et al., 2015) for             
automating biospecimen annotation extraction. We used the online        
MetaMap service (URL:   
https://ii.nlm.nih.gov/Batch/UTS_Required/MetaMap.shtml) to extract   
the terms from the validation cohort. In order to match the UMLS            
semantic types generated from MetaMap to our entities, we mapped the           
UMLS semantic types to UMLS groups using the table from the           
MetaMap website:  
https://MetaMap.nlm.nih.gov/Docs/SemGroups_2013.txt.  
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3 Results 
3.1 Short phrase entity classification model performance 

The short phrase entity recognition model was able to classify 93.29%            
percent of the data correctly in the validation cohort. All the entities were             
able to achieve an ROC-AUC (Fig. 6a) and an accuracy (Fig. 6b) over             
90% in the validation cohorts, suggesting a good sensitivity and          
specificity. Next, we also observed a high F1 score of 92.14% across all             
the entities, suggesting our the model also has high precision and recall            
over all the classes. 

 
Fig. 6 Short phrase classification model performance (A) ROC-AUC of entities           
(B) Contingency table quantifying percentage of entities predicted correctly in          
validation cohort. 
 

Also, the accuracy of the short phrase entity recognition model           
improved when trained with more data (Fig. 7), confirming the utility of            
using the ever growing source of community-contributed BioSample        
data to train a more accurate NER model.  

 
Fig. 7 Volume of data scale with training performance  
 
3.2 NER performance in long sentence 

Since BioSample metadata is in the format of entity- free-text pairs as             
opposed to a fully annotated corpus, we evaluated the possibility of           
using an n-gram approach to segment the text. For each n-gram, we            
assign the entity with the highest short phrase classification score.  

We compared the performance of the model against manual curation           
and the existing tool MetaMap (Aronson, 2001) from NLM. We          
manually curated 100 free-text entries from samples with the         
DESCRIPTION field, with a total of 185 sentences where 139 sentences           
had at least one entity extracted in curation. The model yielded an            
accuracy of 0.934 in entity memberships recovery for each sentence. We           
then compared the performance of the model against MetaMap. For the           
task of biological entity recognition, our NER model had superior          
performance in terms of precision, sensitivity and specificity and         
F1-score (Table 1).  

The poor precision and recall in MetaMap are likely due to the high              
level of multi-mapping (perplexity) among the terms in the output. For           
example, the phrase “liver hepatoblastoma” from validation annotation        
record SRS1098269 is mapped only to the Disease entity in our data,            
while MetaMap assigned mappings to Liver (Tissue) and        
Hepatoblastoma (Disease) independently, and also mapped the word        
“liver” to less relevant entities like Food. In addition, our model was able             

to extract phrases like “germline sp1” correctly as Genotype, while          
MetaMap mapped “germline” as a cell type “Germ Line” and did not            
recognize “sp1” as Genotype related. Also, “sc 197” (ERS396144) is an           
antibody was first developed in 2010. MetaMap trained using the          
MedTag (Smith et al., 2005) corpus that was last updated in 2005            
according to the file transfer program (FTP) timestamp, thus explaining          
why it could not capture this entity that was described in recent years.             
Finally, instead of recognizing “MRG15 null” (DRS033379) as a single          
entity Genotype like our model, MetaMap recognized the word         
“MRG15” as a Gene and null as an Qualitative concept.  
 
 Deep bio NER MetaMap 

Sensitivity/recall 93.21% 73.86% 

Specificity 94.09% 68.69% 

Precision 82.68% 47.72% 

F1-score 87.63% 57.98% 

Table 1: NER performance comparison with MetaMap 
 
 
4 Discussion  

Here, we trained a deep learning based NER model by repurposing the             
vast amount of BioSample metadata in NCBI, available as entity-          
free-text pairs. We first showed that the word embeddings were able to            
group the free-text annotations at various resolutions, i.e. word, sentence          
and entity level. This allowed us to utilize entity embeddings to merge            
synonymous entity labels to increase sample coverage for short phrase          
entity classifier training. The short phrase entity classification model was          
effectively able to extract entities from phrases in the validation set. We            
then used this model to extract named entities from long sentences. We            
were able to achieve a higher accuracy using our NER model when            
compared with existing method MetaMap (Aronson, 2001). 

Existing methods require a large annotated data corpus that is difficult            
to come by. For example, existing biomedical NER has relied on           
laborious corpus curation and annotation of the entities in each sentence.           
Expert curation is costly in terms of both time and monetary expenses,            
and may suffer from curation bias. For example, MetaMap (Aronson,          
2001) relied on the MedTag (Smith et al., 2005) corpus from NLM,            
which has only 15,000 sentences in total and was last updated in 2005             
based on the FTP timestamp, which means that this corpus may not            
provide coverage for new domain knowledge. 

In contrast, our approach can incorporate new vocabulary and entity           
definitions without the need for human intervention. The word         
embeddings (Chiu et al. 2016) used here were generated by PubMed           
articles and Wikipedia, and entity-free-text pairs were generated by the          
biomedical research community. We then utilized neuron emission        
strengths from the trained NER for phrase segmentation. This entire          
process was free of any manual curation. As a result, this model can be              
readily extended in vocabulary and NER capability by simply         
incorporating more training examples or new embeddings as they         
become available.  

Furthermore, our model has a concise code base which improves           
readability and extendability. For example, the code base in cTakes          
consists of 1,404 java files with a total of 234,388 lines of code, and the               
code base in MetaMap consist of 218 files with 260,586 lines of code,             
while our model can be fully specified in less than 200 lines of code. Our               
approach eliminates the need for stemming, part of speech tagging (POS)           
and dependency parsing. Thus, deep learning simplifies model        
construction and provides good performance for automated biological        
entity recognition. 

We acknowledged that there are limitations to our approach. For           
example, there is no professional curator to ensure the correctness of the            
BioSample entries which may have contributed to lower accuracy of our           
NER prediction. In addition, we incorporated a limited number of          
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entities into the model. Further evaluation is merited to determine          
whether adopting a Convolution Neural Network (CNN), or adding         
Conditional Random Fields (Zheng et al., 2015) or attention layers          
(Luong et al., 2015) will further improve the model. Also, we did not             
include any numerical entities due to the lack of availability of           
annotations (only the age entity had more than 10,000 biospecimen          
annotations). In the future, we are also interested in better understanding           
the confounding relationships between the entities in the BioSample         
archive and developing algorithms to identify synonyms entities,        
possibly by using community finding algorithms like Clixo (Kramer et          
al. , 2014).  
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Supplementary Figures and Tables 
 
 

 
Supplementary Fig. 1 Number of unique free text annotations scales with the number of SRS records for each attribute. 

 

 
Supplementary Fig. 2 Distribution of free text length (x-axis) over SRA entity- free-text pairs (y-axis)  
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Supplementary Fig. 3 Entity embedding recovers biospecimen entity similarities 
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Supplementary Fig. 4: Histogram of percentage of curated text overlap with NER predicted text (x-axis) over curated spans (y-axis).  
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Entity class 
name BioSample entity name Cosine 

similarity 

# of samples per 
BioSample entity 

 
 

# of samples   
(aggregated) 

Fold 
increase 

Species 

SCIENTIFIC_NAME 1.00 1,136,856 

1,539,081 1.35 

organism 0.98 29,037 
Organism 0.90 2,894 

host scientific name 0.86 9,909 
Species 0.85 578 

host 0.84 205,511 
specific host 0.83 11,114 

host_scientific_name 0.83 4,297 
host organism 0.83 372 

nat-host 0.82 1,516 
specific_host 0.81 14,088 

Genotype 

genotype 1.00 75,566 

122,909 1.63 

genotype/variation 0.97 28,730 
plant genotype 0.88 195 

mutant 0.85 314 
mutation 0.83 428 

phenotype 0.82 13,892 
host_genotype 0.80 3,784 

Disease state 

disease 1.00 21,654 

34,239 1.58 

tumor type 0.87 691 
diagnosis 0.86 3,351 

disease state 0.85 3,715 
DiseaseState 0.83 173 

cancer type 0.82 311 
tumor 0.82 355 

clinical history 0.82 280 
disease status 0.82 2,077 

cell description 0.80 1,632 

Cell 
type/tissue 

cell type 1.00 94,819 

417,924 4.41 

cell description 0.94 1,632 
cell_type 0.93 18,162 

source cell type 0.93 106 
cell types 0.91 160 

source_name 0.91 297,941 
cell-type 0.89 286 
CellType 0.88 342 

cell subtype 0.88 1,220 
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biomaterial_type 0.86 182 
progenitor cell type 0.86 169 

tissue/cell type 0.85 783 
DIFFERENTIATION_STAGE 0.84 170 

cell 0.83 1,616 
differentiation status 0.82 111 

cell line source 0.81 225 

Geographical 
Location 

geo_loc_name 1.00 389,901 

509,997 1.31 

geographic location 0.96 13,640 
geo loc name 0.94 704 

geographic location (country   
and/or sea, region) 0.92 7,920 

geographic location (country   
and/or sea,region) 0.87 12,833 

country 0.86 24,413 
geographic location (country   
and/or sea,region) 0.84 539 

birth_location 0.83 3,182 
geographic location (country   
and/or sea) 0.81 56,576 

Geo_loc_name 0.80 289 

Treatment and  
conditions 

treatment 1.00 73,041 

90,516 1.24 

treated with 0.92 3,026 
treatment protocol 0.91 583 
drug treatment 0.89 977 
agent 0.89 2,570 
stimulated with 0.86 247 
protocol 0.85 2,769 
Treatment 0.84 3,591 
sample group 0.82 1,176 
cell treatment 0.82 231 
experimental condition 0.82 187 
culture conditions 0.81 391 
culture condition 0.80 1,220 
treatment group 0.80 405 
sample treatment 0.80 102 

 
 
Supplementary Table 1: Entity embedding can recover synonymous BioSample entity labels which can increase the sample size in each entity class.  
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