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Abstract

High-dimensional hypothesis testing is ubiquitous in the biomedical sciences, and
informative covariates may be employed to improve power. The conditional false dis-
covery rate (cFDR) is widely-used approach suited to the setting where the covariate
is a set of p-values for the equivalent hypotheses for a second trait. Although related
to the Benjamini-Hochberg procedure, it does not permit any easy control of type-1
error rate, and existing methods are over-conservative. We propose a new method for
type-1 error rate control based on identifying mappings from the unit square to the unit
interval defined by the estimated cFDR, and splitting observations so that each map
is independent of the observations it is used to test. We also propose an adjustment
to the existing cFDR estimator which further improves power. We show by simula-
tion that the new method more than doubles potential improvement in power over
unconditional analyses compared to existing methods. We demonstrate our method
on transcriptome-wide association studies, and show that the method can be used in
an iterative way, enabling the use of multiple covariates successively. Our methods
substantially improve the power and applicability of cFDR analysis.

1 Introduction

In the ‘omics’ approach to biology, a large number n of descriptive variables are considered
in the analysis of a biological system, intended to provide a near-exhaustive characterisation
of the system under consideration. Typically only a small proportion of the investigated
variables are associated with the behaviour of the system, and we seek to identify this
subset of variables, along with the magnitude and direction of their associated effect sizes.
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A first step is generally to test each hypothesis in a frequentist framework, generating
a corresponding set of p-values. Often, additional information is available in the form
of an external covariate, which assigns a numerical value to each hypothesis which has
different (unknown) distributions amongst associations and non-associations. Information
from such covariates can be incorporated into hypothesis testing to improve power in
detecting associations.

A range of procedures have been proposed for this type of analysis. An important
consideration is the form of the (two-dimensional) rejection rule applied to the p-value-
covariate pairs. An optimal procedure (in terms of minimising type 2 error and controlling
type 1 error) determines rejection regions on the basis of a ratio of bivariate probability
densities (PDFs) of the p-value and covariate under the null and under the alternative.
One approach to the problem at hand is to estimate this ratio directly [1, 2, 3]. Other
approaches include ‘filtering’ on covariate values [4], weighting hypotheses according to the
value of the covariate [5, 6, 7, 8, 9], modulating a univariate test of p-values in response
to the covariate in some other way [10, 11, 12], and binning covariates in order to treat
each bin separately [13]. Since covariates can be of many types (continuous, categorical;
univariate, multivariate; known or unknown distributional properties) and can relate to
the p-values in a range of ways, this array of methods is necessary to manage the range of
problem types.

The conditional false discovery rate (cFDR) circumvents the difficulties of estimating
PDFs by approximating the optimal ratio using cumulative density functions (CDFs) [14].
In this case, the covariate is generally a set of p-values arising from an analogous procedure
on the same variables for a second ‘conditional’ trait with an unknown degree of similarity
to the trait giving rise to the primary set of p-values (which we call the ‘principal’ trait).
The method has been extensively used in genomics [14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38]. Formally, the cFDR is a posterior
probability of non-association with the principal trait given that p-values for the principal
and conditional traits fall below p-value thresholds p, q respectively. It is readily estimated
using empirical CDFs (ECDFs) [14].

The cFDR is a useful Bayesian quantity in its own right. Generally, the cFDR is
used in effectively a frequentist way: roughly, for each observed p-value pair (pi, qi), we
estimate the cFDR at (p, q) = (pi, qi) and reject the null hypothesis if this estimated value
is less than some threshold α. This process is nearly analogous to the Benjamini-Hochberg
procedure (B-H) [39] on a single set of of p-values pi, but unlike BH, it does not control
the FDR at α (nor any other conventional measure of type-1 error rate). In a previous
paper [23] we proposed a rough method to approximately control FDR in this setting, but
our method was drastically conservative.

The main contribution of this paper is to propose a much improved type-1 error rate
control strategy for cFDR, which improves power relative to previous methods. Our method
transforms cFDR estimates into ‘v-values’, v-values’, which function analogously to p-
values and can be used to control FDR or family-wise error rate (FWER). In four secondary
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contributions, we a) propose an improvement to the existing estimator which improves
power, b) show several asymptotic results about the method and demonstrate that the
effect of certain troublesome properties is small, c) enable and demonstrate iterative use
of the procedure, and d) compare the general cFDR method with PDF-based, parametric
and kernel density estimator (KDE)-based approaches. An R package is provided.

In this paper, we begin by describing a motivating example using transcriptome-wide
association studies (TWAS). We then summarise the cFDR and its estimator, and describe
its relation to the B-H procedure. We then describe our method to transform cFDR
estimates into p-value-like quantities, and discuss how the cFDR approach relates to similar
methods in the field. We evaluate the type-1 error rate control and power of the method,
and finally describe an iterated form of the procedure for use with multiple sets of covariates.

1.1 Motivating example

We consider a transcript-wide association study (TWAS) [40] of breast cancer BRCA [41])
and ovarian cancer (OCA [42]), which are epidemiologically and biologically similar dis-
eases [43]. TWAS test for association between levels of predicted expression of transcripts
(gene products) in various tissues between cases (BRCA or OCA) and controls. For each
transcript-tissue pair, the TWAS generates a p-value against the null hypothesis that the
predicted mean expression of that transcript in that tissue is the same in case and control
populations, according to a transcript-prediction rule learnt from independent data. The
TWAS in question test around 10,000 gene transcripts across 45 tissues (though many
transcript-tissue pairs are missing), and after we restrict to transcript-tissue pairs common
to both studies, we are left with a set of ≈ 105 p-values pBRCA, pOCA for association
with BRCA and OCA respectively (further detail is given in supplementary material sec-
tion 9.1). We wish to find which of the variables are associated with BRCA, and thus
investigate a null hypothesis H0

BRCA of non-association. Given established genetic corre-
lations BRCA and OCA, we hope to leverage the OCA TWAS results to increase power in
this search. We will assume that we have no prior knowledge that any variables are more
likely to be BRCA- or OCA- associated, that absolute Z-scores zBRCA = Φ−1(pBRCA/2),
zOCA = −Φ−1(pOCA/2) have a block-diagonal correlation structure where block locations
are known, and that under a null hypothesis H0

BRCA of no association with BRCA, zBRCA
and zOCA are independent.

A straightforward approach is to apply the Benjamini-Hochberg (B-H) procedure to
the values pBRCA (figure 1, panel A). BRCA and OCA tend to have associations at the
same variables, suggesting that a rejection region should reflect this to improve power. A
natural way to do this is to only consider those variables for which zOCA exceeds some
threshold, which allows rejection of H0

BRCA at a looser zBRCA threshold (figure 1, panel B).
FDR control is maintained under the independence assumption above [4]. However, this
procedure is problematic: a threshold on zOCA must be chosen a priori, and variables with
zOCA falling below the red line have H0

BRCA retained automatically.
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The cFDR procedure circumvents this problem (figure 1, panel C). The associated re-
jection region, which we term an L-region, ‘adapts’ to the joint distribution of zBRCA and
zOCA. For small α, the L-region approximates an optimal rejection region (appendix 8.1).
A major shortcoming is that although a B-H procedure with FDR controlled at α is re-
peatedly used to generate the L-region, the overall FDR is not controlled at α, nor any
straightforward function of α ([23]; appendix 8.2).

In this paper, we demonstrate a straightforward and effective way to control the type-1
error rate (specifically FDR or FWER) in the cFDR procedure. As α varies from 0 to 1,
the leftmost boundary of the L-region ‘sweeps’ across the entire (+,+) quadrant, and for
α1 < α2, we have L(α1) ⊆ L(α2). Thus we can associate each point (x,y) in the (+,+)
quadrant with the smallest L-region containing it, which will generally have (x,y) on its
leftmost border. Loosely, we control FDR by estimating the probability that each point
would lie within its associated region under H0

BRCA. We term this the v-value, which has
similar properties to a p-value and can be used in the B-H procedure.

Care must be taken when applying rejection rules to the same data on which those rules
were determined, so we use a leave-one-out procedure which avoids this problem (section 3,
appendix 8.4). We show that the rejection region generated by the cFDR approximates
the best-possible rejection region (section 2.2, appendix 8.1), and that rejection regions
converge reasonably fast as the number of variables under consideration increases (sec-
tion 8.3). The rejection region is non-parametric, and we show that the cFDR method
can outperform parametric methods (section 5.2). Finally, the v-values may be considered
‘adjusted’ p-values, which enables straightforward iteration of the method with further sets
of p-values at the same variables, discussed in section 5.5.

2 Review of cFDR estimator

2.1 Definitions

Assume that we have results from n pairs of hypothesis tests against two series of null
hypotheses (Hp

0 (i), Hq
0(i)) in the form of a set S of bivariate p-values S = (pi, qi), i = 1..n.

In our motivating example, Hp
0 (i) and Hq

0(i) are non-association of the ith tissue-gene
pair with BRCA and OCA respectively. We consider (Hp

0 (i), Hq
0(i)) to be realisations of

independent Bernoulli random variables Hp
0 , H

q
0 satisfying P (Hp

0 ) = π0, P (Hq
0) = πq0, and

pi, qi to be IID realisations of random variables P,Q satisfying:

P |Hp
0 ∼ U(0, 1)

P ⊥⊥Q|Hp
0 (1)
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although assumption (1) can be relaxed. We denote

F0(p, q) = P (P ≤ p,Q ≤ q|Hp
0 ) = pF q0 (q) (2)

F (p, q) = P (P ≤ p,Q ≤ q)
f0(p, q) = f(P = p,Q = q|Hp

0 ) = f q0 (q) (3)

f(p, q) = f(P = p,Q = q)

where the separability of (2) and (3) is due to assumption (1).

2.2 Optimal procedure

UnderHp
0 , the probability of a random instance of (P,Q) falling in a regionR is

∫
R f0(p, q)dpdq.

To find an ideal two-dimensional rejection region for hypothesis testing, we wish to fix this
value at a level α while maximising the probability

∫
R f(p, q)dpdq. This optimal region (or

one such optimal region) is given by the set of points {(p, q) : f0(p, q)/f(p, q) ≥ kα} for
some kα (a formal statement and proof are given in appendix 8.1, and this is also shown in
various forms in [1, 2, 3]). In equivalent terms, an optimal decision rule for the set S would
rank p-value pairs according to f0(pi, qi)/f(pi, qi) or equivalently P (Hp

0 |P = pi, Q = qi).
A natural approach is to estimate f0 and f using a parametric approximation [1, 3]

or local approximations using kernel density estimates (KDEs) [2] or spline models [44].
However, PDFs are difficult to estimate in general, and there may be little reason to
believe parametric assumptions are satisfied; in our motivating example (figure 1, panels
A-C) there is little reason to think that a smooth rejection region would be optimal.

2.3 Conditional false discovery rate

The conditional false-discovery rate [14] takes an alternative approach of instead ranking
points by an estimate of F0(p, q)/F (p, q). This estimate is obtained by estimating the
monotonically-related quantity:

cFDR(p, q) = P (Hp
0 |P ≤ p,Q ≤ q) (4)

=
P (P ≤ p|Hp

0 , Q ≤ q)
P (P ≤ p|Q ≤ q)

P (Hp
0 |Q ≤ q) (5)

Suppose we have a multiset X of p-value pairs (pi, qi). If almost all these pairs are iid
realisations (pi, qi) of (P,Q), then for fixed p, q, the empirical CDFs

1

|X|
|{i : (pi, qi) ∈ X, pi ≤ p, qi ≤ q}|

1

|X|
|{i : (pi, qi) ∈ X, qi ≤ q}|
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are consistent estimators of P (P ≤ p,Q ≤ q), P (Q ≤ q) respectively. Given assump-
tion (1), we have p = P (P ≤ p|Hp

0 ) = P (P ≤ p|Q ≤ q,Hp
0 ) and (for the moment) we

may conservatively approximate P (Hp
0 |Q ≤ q) = 1. Given X, we thus define the estimated

cFDR (denoted ̂cFDR), as a function of two variables (p, q) ∈ (0, 1):

̂cFDRX(p, q) = p
max(|{i : qi ≤ q, (pi, qi) ∈ X}| , 1)

max(|{i : pi ≤ p, qi ≤ q, (pi, qi) ∈ X}|), 1)
(6)

For fixed p, q, ̂cFDRX(p, q) is a generally-biased but consistent estimator of cFDR(p, q)/P (Hp
0 |Q ≤

q), which converges uniformly on fixed regions at a rate of O(n−1/2) (see appendix 8.3),
and it is usually a downwards-biased (conservative) estimator of cFDR(p, q).

Approximating P (Hp
0 |Q ≤ q) = 1 in equation (6) disregards any variation on P (Hp

0 |Q ≤
q) with q, so we introduce at this stage an estimate of P (Hp

0 |Q ≤ q), which we can multiply

with ̂cFDRX(p, q) to improve the accuracy of approximation of cFDR(p, q). Our estimate
is

P (Hp
0 |Q ≤ q) = P (Hp

0 )
P (Q ≤ q|Hp

0 )

P (Q ≤ q)

≈ π0
P (Q ≤ q|P > 1/2)

P (Q ≤ q)

≈ min(1, |{i : (pi, qi) ∈ X, qi ≤ q, pi > 1/2}|)
min(1, |{i : (pi, qi) ∈ X, qi ≤ q}||{i : (pi, qi) ∈ X, pi > 1/2}|)

= P̂ rX(Hp
0 |Q ≤ q) (7)

where we approximate π0 = P (HP
0 ) = 1. We denotêcFDRnX(p, q) = ̂cFDRX(p, q)P̂ rX(Hp

0 |Q ≤ q) (8)

Estimating π0 (rather than setting π0 = 1) would uniformly scale all estimates of cFDR(p, q),
which has no effect on our rejection procedure.

In the hypothesis testing setting, we aim to use ̂cFDR or ̂cFDRn to construct a decision
rule on our set S of observed p-value pairs (we will forego the n superscript from now,
with the understanding that it may be added). A simple approach is to reject Hp

0 (i) if̂cFDRS(pi, qi) ≤ α, but ̂cFDRS(p, q) is not monotonically increasing with p and we do not
want to reject Hp

0 for some (pi, qi) and not for some other pair (pj , qj) with qi = qj but
pj < pi. Hence, we can use the decision rule (as per [14])

Reject Hp
0 if: ∃ p′ ≥ pi : ̂cFDRS(p′, qi) ≤ α (9)

This enables a rejection region with a single rightmost boundary, as shown in panels D
in figure 1. It closely parallels the B-H [39] procedure (B-H) on a set of p-values. Suppose
we have a set S1 of p-values p1, p2, ..., pn, and define

BHS1(p) = p
|S1|

max(1, |{i : pi ≤ p, pi ∈ S1}|)
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Then the B-H procedure can be written as

Reject Hp
0 if: ∃ p′ ≥ pi : BHS1(p′) ≤ α (10)

The B-H procedure controls FDR at α, and if it is performed with S1 as the subset of S
for which qi ≤ γ (where γ is a threshold chosen independently of S), the FDR will still be
controlled at α if assumption (1) is satisfied [4, 5]. The rejection procedure (9) is equivalent
to repeatedly performing this ‘thresholded’ B-H at γ = qi, and using that decision rule for
point (pi, qi) (panel C, figure 1).

When procedure (9) is used, the FDR is no longer controlled at α, and indeed can
exceed α by an arbitrary proportion. This is most easily seen in the extreme case

P,Q|Hp
0 ∼ U(0, 1)2 (11)

P,Q|Hp
1 ∼ (0, 0) (12)

in which we can show that the FDR αTRUE of rejection procedure 9 applied to ̂cFDR
satisfies

lim
n→∞

(
αTRUE(1− α)

α(1− αTRUE)

)
= log

(
1− απ0

1− π0

)
(13)

and when applied to ̂cFDRn satisfies

lim
n→∞

(
FDR

α

)
=

1− log
(

α
1−α

1−π0
π0

)
1− α log

(
α

1−α
1−π0
π0

) (14)

with the corollary that the actual FDR when using rejection procedure 9 can be an arbi-
trarily large multiple of α. These formulae are proved in theorem 6, appendix 8.2.

Previous work using the cFDR generally interprets it in a Bayesian context, without
requiring a bound on FDR or FWER. In [23] we introduced a method to choose an α∗ such
that rejection criterion (9) roughly controlled the FDR at α, but that method was overly
conservative, generally controlling FDR at a far lower level than needed.

3 Map from p-value pairs to v-values

We identify a ‘rejection region’ associated with ̂cFDR by adding a ‘test point’ (p, q) to a
set of points X and considering the region for which a hypothesis corresponding to (p, q)
is rejected under (9) with S = X + (p, q).

The function ̂cFDRX+(p,q)(p, q) is now defined on the unit square. It is difficult to
use, however: when considered as a function of p with fixed q, it does not monotonically
increase with p. We thus definêcFDRtX(p, q) = min

p′≥p
̂cFDRX+(p′,q)(p

′, q) (15)
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and define the ‘L-region’ LX(α):

LX(α) =
{

(p, q) : ̂cFDRtX(p, q) ≤ α
}

(16)

= {(p, q) : ∃p′ ≥ p : ̂cFDRX+(p′,q)(p
′, q) ≤ α} (17)

and define the ‘L-curve’ as the rightmost boundary of this region. We note that

α ≤ β ⇒ LX(α) ⊆ LX(β) (18)

We now show the following, and include the brief proof:

Theorem 1. Assume that P,Q|HP
0 is a bivariate continuous random variable with support

[0, 1]2, and set µ0 as its induced measure. Suppose X = (pi, qi) ∈ [0, 1]2, i ∈ 1..n is a fixed

finite set of points. Define LX(α) as per equation 16, with ̂cFDR defined as per either
equation 6 or equation 8, and define the ‘v-value’ as a function of p, q ∈ (0, 1)2

vX(p, q) = inf
γ:(p,q)∈LX(γ)

(µ0 [LX(γ)])

(
= min

γ:(p,q)∈LX(γ)

(∫
LX(γ)

f0(x, y)dxdy

))
(19)

the second definition being valid in our more restrictive context (section 2). Then for
α ∈ (0, 1)

Pr
(
vX(P,Q) ≤ α|HP

0

)
≤ α (20)

Proof. Since X is finite LX(α) is Lesbegue-measurable, so the integral in 19 is well-defined.
Given α ∈ (0, 1), let

Γ(α) = {γ : µ0 [LX(γ)] ≤ α} (21)

Suppose there exists γ(α) ∈ Γ(α) with (p, q) ∈ LX(γ(α)). Then from definition 19 we have

vX(p, q) ≤ µ0 [LX(γ(α))] ≤ α (22)

so, using property 18

Pr(vX(P,Q) ≤ α|HP
0 ) ≤ Pr

(P,Q) ∈
⋃

γ(α)∈Γ(α)

LX (γ(α)) |HP
0


= sup

γ(α)∈Γ(α)
(µ0 [LX(γ(α))])

≤ α

If there exists γ such that α = µ0[L(γ)] then (p, q) ∈ LX(γ)⇔ vX(p, q) ≤ α, so equality is
achieved in 20
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Remark 1.1. With Γ defined as per 21, and setting µ1 as the induced measure of P,Q|HP
1 ,

the power of the rejection procedure

{Reject HP
0 if vX(p, q) ≤ α} (23)

is
P (reject HP

0 |HP
1 ) = sup

γ(α)∈Γ(α)
(µ1(LX(γ(α))) (24)

and the type-1 error rate is ≤ α

Theorem 1 assumes the probability measure F0 of P,Q|HP
0 is known. In practice, it

must be estimated. This can be readily done given assumption (1), as will be shown in
section 3.2. We can think of the function vX(p, q) as a map from the unit square to the
unit interval, where the map is defined by the points X.

We note that property 20 indicates that the value vX(p, q) is interpretable as a p-value

against Hp
0 , using ̂cFDRt(p, q) as a test statistic (it may even be thought of as a definition

of a p-value [45]). In this sense, it is slightly conservative due to the ‘≤ α’ rather than
‘= α’ in 20. Resultant v-values may thus be used in the B-H procedure to control FDR,
or used with a Šidák correction to control FWER. For the remainder of this paper, we will
seek to control FDR by the B-H procedure.

In order to use theorem 1 to generate a p-value for a test point (p, q) we must assume
X is ‘fixed’. In practice, this means (pi, qi) must be independent of values (p, q); hence,
not in X.

Given our set of points S = (pi, qi), this is easily managed: to test (pi, qi), we simply
leave (pi, qi) out of the points used to define the we use on (pi, qi) itself. That is, given our
set S of datapoints as above, we define the ‘leave-one-out’ v-value

v(pi, qi) = vS−(pi,qi)(pi, qi) (25)

The problem can also be managed by leaving out blocks of points; for a partition of 1..n
into blocks 1, 2, ..., k, supposing i is in block b(i), the ‘block-out’ v-value is defined as

v(pi, qi) = vS−block b(i)(pi, qi) (26)

If observations (pi, qi) are not independent but have a block-diagonal correlation structure,
then this procedure is necessary in order to ensure property (20) holds for (p, q) = (pi, qi):
since each observation (pi, qi) carries information about the other p-value pairs it is cor-
related with, removing it will not remove the influence of point (pi, qi) on the map. In
this case, blocks should be chosen so that p-value pairs are independent between blocks,
but possibly dependent within blocks. Such structure arises often in -omics experiments;
in genetics, independence of allele counts may be assumed between chromosomes, but not
generally within.
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For comparison, we also define the ‘naive’ v-value

v(pi, qi) = vS(pi, qi) (27)

where pi, qi is in S.
In the subsequent section, we note several asymptotic properties of L-regions and v-

values. We note that consistency of L-region estimation is not necessary for type-1 error
rate control: there is no requirement in theorem 1 for the values in X to have the same
distribution as P,Q. L-regions are also identical under monotonic transformations of the
function ̂cFDR(p, q), so the method is unaffected by the approximation P (HP

0 ) ≈ 1 in
equation 7.

3.1 Asymptotic properties of L-regions and v-values

We describe several asymptotic properties of L-regions and v-values. Estimator 7 is not
generally consistent, so we focus our attention on properties of regions defined using ̂cFDR
rather than ̂cFDRn. We divide out the quantity estimated in 7, write F (q) = Pr(Q ≤ q)
and define

C(p, q) =
cFDR(p, q)

Pr(Hp
0 |Q ≤ q)

= p
F (q)

F (p, q)
(28)

which we generally assume to be differentiable on the unit square. We recall definition 15
and note the following (proved in appendix 8.3:

Theorem 2. Let R be the region of the unit square for which F (p, q) ≥ γ > 0 and F (q) > 0.

Then on R, ̂cFDR(p, q) converges uniformly to C(p, q), and if ∂C(p, q)/∂p ≥ 0, then so

does ̂cFDRt(p, q)
This theorem indicates that the empirical L-curve converges to a contour of C(p, q),

where the contour exists. Although the region R does not cover the entire unit square, in
practice it usually has Lesbegue measure 0: if P (HQ

0 , H
P
0 ) > 0 and P,Q|HQ

0 , H
P
0 ∼ U(0, 1)2

then F (p, q) is bounded away from 0 on (0, 1)2. We note that C(p, q) is meaningful only
when F (p, q) > 0.

Because of the uniform convergence, this can be translated into a statement about
v-values. Given an L-region L(α), we define the M-region as the ‘expected’ L-region:

M(α) = {(p, q) : C(p, q) ≤ α} (29)

and the ‘error’ on the v-value v =
∫
L(α) f0(p, q)dpdq as

|∆v| =

∣∣∣∣∣
∫
L(α)

f0(p, q)dpdq −
∫
M(α)

f0(p, q)dpdq

∣∣∣∣∣ (30)

Now we have
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Theorem 3. Define R as in theorem 2, and further assume that f0(p, q) = f(P = p,Q =
q|HP

0 ) is known and on R we have ∂C(p, q)/∂p ≥ γ2 > 0. Write Rc = [0, 1]2 \ R. Then
the maximum error on any v-value is∫

Rc
f0(p, q)dpdq +O

(
1√
n

)
(31)

thus, as n → ∞, v-values based on ̂cFDR converge at a rate O(n−1/2) to those that
would be obtained using C(p, q), plus a fixed error. We also note that under the conditions
in both theorems, if R has negligible Lesbegue measure, and there exists γ such that∫

M(γ)
f0(p, q)dpdq = 1

then as n→∞ the power of rejection procedure 23 satisfies

P (reject HP
0 |HP

1 )→ µ1[M(γ)] (32)

where µ1 is defined as in equation 23. Finally, we note that neither consistency nor un-
biasedness of the ̂cFDR estimator is necessary for the p-value property in theorem 1 to
hold. Proofs of theorems 2 and 3 are given in appendix 8.3.

3.2 Estimation of P,Q|Hp
0

Recalling equation (3), we may write f0(p, q) = f q0 (q). To estimate f q0 , we assume that
(Q|Hp

0 ) ∼ (Q|P ≥ 1/2), and approximate the latter with a mixture-Gaussian distribution

−Φ−1

(
Q

2

) ∣∣∣∣P >
1

2
∼

{
|N(0, 1)| prob = π0

|N(0, σ2
0)| prob = 1− π0

(33)

where N(µ, σ) is the normal distribution with mean µ and variance σ2. Estimates π̂0, σ̂0

of π0 and σ0 can be readily made using an expectation-maximisation algorithm [46], using
the values qi for which the corresponding pi is ≥ 1/2. We then estimate the density f0(p, q)
of P,Q|HP

0 as:

f̂0(p, q) = 1f q0 (q) = π̂0 + (1− π̂0)
φ(Φ−1(q/2), σ = σ̂0)

φ(Φ−1(q/2), σ = 1)
(34)

where φ is the normal density function with SD σ. If P,Q have a known dependence
under Hp

0 , an alternative distribution can be used for computing v(L) (see supplementary
material, section 9.2). The PDF f q0 could be estimated in other ways; for example, a kernel
density estimate [47].
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3.3 Correlation between v-values

Decision rules based on multiple p-values generally require adjustment if p-values are depen-
dent (eg [39]). If v-values are obtained by the leave-one-out procedure (25) they are slightly
pairwise dependent. The dependence is small; if X ′ = X − (pi, qi) − (pj , qj) the values
vX′(pi, qi), vX′(pj , qj) are independent, so the pairwise dependence between v-values corre-
sponding to (pi, qi), (pj/qj) only arises from the differences vX′+(pj ,qj)(pi, qi) − vX′(pi, qi),
vX′+(pi,qi)(pj , qj) − vX′(pj , qj); that is, the effect of a single point ((pj , qj), (pi, qi) respec-
tively) on the map vX′ defined by |X ′| = |X|−2 points. Indeed, we show that the expected
change to v-values on adding a single new point is small:

Theorem 4. Suppose we add a point (p∗, q∗) to a set of n points (pi, qi), considered as
realisations of P,Q, and conditions are satisfied for convergence of v-values as above. Let
∆v(L(α)) be the shift in a v-value corresponding to an L-curve L(α) after adding (p∗, q∗).
Then

Eα∼U(0,1)(|∆v(L(α))|) = O

(
1

n2

)
(35)

The proof is given in appendix 8.4. When v-values are defined using block-out as in
(26), v-values are independent within-block but dependent between blocks. The Benjamini-
Hochberg procedure is also sensitive to higher-order (non-pairwise) dependence between
v-values, but we show by simulation in section 5, residual dependence does not generally
lead to failure of FDR control, even when we increase dependence by enforcing correlation
between observations pi, pj and between qi, qj .

3.4 Algorithm

We can now present our final algorithm.

Algorithm 1 Controlling type-1 error rate in cFDR

Input: ‘principal’ p-values p1, p2, ...pn; ‘conditional’ p-values q1, q2, ...qn; optionally
fold assignment b : 1..n→ 1..k such that (pi, qi)⊥⊥ (pj , qj)

∣∣b(i) = b(j)
Output: v-values v1, v2...vn

1: Identify the set {qi : pi > 1/2} and make estimates π̂0, σ̂0 of π0, σ0 as per (33)
2: Set f̂0(p, q) as per equation (34)
3: for i ∈ 1..n do
4: Set S′ = {(pj , qj) : j 6= i} (leave-one-out) or S′ = {(pj , qj) : b(j) 6= b(i)} (block-out)
5: Find ci = min{c : (pi, qi) ∈ LS′(c)}
6: Set vi =

∫
LS′ (ci)

f̂0(p, q)dpdq

7: Return (v1, v2, ..., vi)

We can interpret vi as ‘the probability that a randomly-chosen (p, q) pair has a more

extreme ̂cFDR value than ̂cFDR(pi, qi)’; that is, as a p-value. This allows straightforward
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FWER or FDR control, especially as v-values are almost independent. The v-values order
hypotheses such that a rejection rule {reject HP

0 (i) if vi ≤ α} has near-optimal power, in
terms of corresponding to near-optimal forms for rejection regions. Much of our method-
ology can also be used if values qi are not p-values for some second trait, as long as they
fall in (0, 1). However, approximation 33 may be inappropriate if this is not the case.

4 Relation to other methods

A wide range of approaches have been proposed for the problem of high-dimensional asso-
ciation testing using an informative covariate. Given the correspondingly wide variation in
problems of this type, the optimal method is likely to depend on circumstance. In general,
we will take P, p,Hp

0 to refer to p-values and hypotheses for the trait of primary interest,
and Q, q to refer to the covariate.

4.1 Determination of rejection region form

The simplest approach to covariate-based testing is ‘independent filtering’ [4] in which
attention is restricted to the set {(pi, qi) : qi ≥ q0}, with the B-H procedure then applied to
the corresponding subset of values of pi. This procedure is equivalent to rejection regions
which are a series of rectangles with upper border at q = q0. Independent filtering is clearly
non-optimal, but is well-suited to some problem types [4].

As discussed above, a range of approaches aim to approximate the optimal rejection
regions based on f0/f . In [1] and [3], parametrisation leads to rejection regions constricted
to a particular parametric class; in [1] that of oracle rejection regions under mixture-
Gaussian forms of f0 and f . In [2] and [44], boundaries of rejection regions are necessarily
smooth at a scale corresponding to the smoothing kernel width, but can take otherwise
arbitrary forms. An alternative approach is to ‘bin’ covariates [5, 13] which leads to L-
curves which are step-functions with steps spaced according to the resolution of the bins.

An approach in [11] estimates P (Hp
0 |Q = q) for each q to modulate a B-H type test

for each observation. The entire effect of the covariate in this method is encompassed
through the value of P (Hp

0 |Q = q), which necessarily relies on point-estimates of the PDF
f(Q = q|Hp

0 ), and hence the method is dependent on the accuracy of this estimate.
Another common approach to covariate modulation is the weighted Benjamini-Hochberg

procedure [7], in which each p-value pi is reweighted to a value pi/wi (where
∑
wi = 1)

and the standard B-H procedure is then applied to the values pi/wi. Our method can be
interpreted in these terms, setting wi = vi/pi, but this is rather unnatural; there is no clear
way to interpret what the ratio vi/pi means, and this approach does not make use of the
‘p-value property’ in equation (20).

The use of empirical CDFs to generate rejection regions has the advantage of making
use of the global distribution of P,Q, while spline- and kernel-density based estimates can
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generally only use local observations. The cFDR-based method has the obvious disadvan-
tage of not converging to the optimum rejection region, and it can be less powerful than
parametric approaches if parametric assumptions hold. However, using CDFs rather than
PDFs allows faster convergence of rejection regions with n, and this favours the cFDR
approach if n is small, particularly if CDF- and PDF- based regions are similar and PDFs
are difficult to model well.

Under certain circumstances, contours of CDF- and PDF-based methods are similar.
A precise statement, proof, and demonstration is given in appendix 8.5.

4.2 Censoring of points

In general terms, the process determining a decision rule to be used on observation (pi, qi)
cannot easily make use of the datapoint (pi, qi) itself, since the use of the point biases the
choice of decision rule in some way. Approaches by [1, 2] censor the points used in the
decision rule to those already rejected in a stepwise approach, and a method in [3] masks
the information available for the decision rule by effectively adding the point (1− pi, qi) to
the dataset.

Since cFDR uses the entire dataset to estimate empirical CDFs, complex censoring
can require that the cFDR estimator be changed in a non-trivial way. In particular, there
is no obvious way to apply the methods proposed by [2] or [3]. We propose avoiding
the problem by leaving out the point (pi, qi) directly (equations (25),(26)), at the cost of
residual correlation in resultant v-values. While crude, this corresponds to a near-minimum
censorship of points, and the resultant correlation tends to be small enough to ignore (see
appendix 8.4).

4.3 Asymmetry and management of extreme outliers

An important property of the cFDR-based method is asymmetry, in that Hp
0 cannot gener-

ally be rejected based on a low qi alone (this can be seen by noting that ̂cFDR(pi, qi) ≥ pi,
and pi can only exceed ̂cFDRn in rare circumstances). Parametric approaches such as
those in [1, 3] are not generally robust to this; for example, in [1], an extremely low qi
could lead to rejecting Hp

0 even if the corresponding pi were close to 1 and P,Q were inde-
pendent (given that the degree of dependence is estimated). This property of the cFDR is
very important when pi and qi are derived from GWAS on different diseases; it is entirely
possible and even expected that a very strong association in the conditional trait is not an
association with the principal trait. This property also differentiates our approach from
meta-analysis of two sets of p-values.
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4.4 Relation to original FDR-controlling method for cFDR

In a paper in 2015 [23], we identified the problem of failure of FDR control at α when using a

rejection rule ̂cFDR ≤ α and proposed a rough solution. We proposed identifying L-curves
and estimating f0 as above, and for each L-region LS(α∗), identifying a rectangle R(α∗)
contained within it with vertices (0, 0), (0, qr), (pr, 0), (pr, qr). Since R(α∗) ⊆ LS(α∗), we
have

Pr ((P,Q) ∈ LS(α∗)) ≥ Pr ((P,Q) ∈ R(α∗)) (36)

and ̂(pr, qr) ≤ α∗, so the FDR associated with rejecting any (p, q) pairs falling in LS(α∗)
was approximately

E

(
|{i : pi, qi ∈ LS(α∗), Hp

0}|
min (|{i : pi, qi ∈ LS(α∗)}|, 1)

)
≈ Pr ((P,Q) ∈ LS(α∗)|Hp

0 )

Pr ((P,Q) ∈ LS(α∗))

≤ Pr ((P,Q) ∈ LS(α∗)|Hp
0 )

Pr ((P,Q) ∈ R(α∗)|Hp
0 )

Pr ((P,Q) ∈ R(α∗)|Hp
0 )

Pr ((P,Q) ∈ R(α∗))

≈ Pr ((P,Q) ∈ LS(α∗)|Hp
0 )

Pr ((P,Q) ∈ R(α∗)|Hp
0 )

̂cFDRS(pr, qr) (37)

≤

∫
LS(α∗) f0dpdq∫
R(α∗) f0dpdq

α∗ (38)

To approximately control FDR at α, our procedure found α∗ so that expression (38) was
≤ α and rejection Hp

0 whenever (pi, qi) ∈ LS(α∗).
As well as being approximate, this procedure was conservative due to inequality (36).

Our new method avoids this conservative assumption, and is on firmer theoretical ground.
Furthermore, our old method precluded use of ̂cFDRn given approximation (37). We
show by simulation below that this results in substantial improvement in power in our new
method.

5 Assessment of performance

In this section, we address five main points. Firstly, we demonstrate that our new method
controls type-1 error rate (FDR) appropriately, and that the censoring approach of (25)
and (26) is necessary. Secondly, we demonstrate that power is substantially improved

relative to our previous method for fixed level of FDR control, and that use of ̂cFDRn
over ̂cFDR improves power further. We then demonstrate that in settings where para-
metric assumptions are not satisfied, rejection regions based on ̂cFDRn can correspond
to a more powerful procedure than rejection regions based on alternative CDF or PDF
estimators. We examine the effect of correlation between observations pi, qi on our main
FDR-controlling methods, and demonstrate that the disadvantage of using our leave-one-
out method (equation 25) instead of the leave-out-block method (equation 26) out method
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in the presence of correlation is loss of power rather than loss of FDR control. Finally, we
assess the degree of shared association between P and Q which is necessary for our method
to give an advantage over p-values alone.

In each simulation, we sampled a set of values S = (pi, qi), i ∈ 1..n. The sampling
schema we used itself depended on a series of underlying parameters, which were themselves
sampled from a joint distribution specified in 1, or a conditional distribution of it. We also
separately considered several fixed values of parameters.

We first chose a fixed total number of hypotheses n, then split these into four classes
of fixed size: C1 of size npq1 associated in both P and Q, C2 of size np1 associated only with
P , C3 of size nq1 associated only with Q and C4 associated with neither P nor Q. Within
each class, samples (pi, qi) were identically distributed.

Variable Description Sampling distribution

n
Total number of
variables

10U(3,4) (rounded)

npq1
Number of variables
assoc. with P , Q

U(0, 200) (rounded)

np1
Number of variables
associated with P

U(0, 200) (rounded)

nq1
Number of variables
associated with Q

U(0, 200) (rounded)

sp
Scale for distribution
of P (see below)

U
(

3
2 , 3
)

sq
Scale for distribution
of Q

U
(

3
2 , 3
)

d
Form of alternative
distributions

1: Normal, 2: t (3df),
3: Cauchy, eq. prob.

Table 1: Variables used in simulations

For i ∈ C1, C2, we sampled pi (determined by d, sp) by first simulating Z scores:

d=1: −Φ−1
(pi

2

)
1
sp
∼ N(0, 1)

d=2: −Φ−1
(pi

2

)
1
sp
∼ t(df = 3,ncp = 0)

d=3: −Φ−1
(pi

2

)
1
sp
∼ Cauchy(location = 0, scale = 1)

where −Φ−1
(pi

2

)
can be considered a Z-score corresponding to pi, and sp a scaling factor

for the distribution. We set the distribution of qi ∈ C1, C3 similarly, with sq in place of sp.
The values pi, qi for i ∈ C4 were sampled from U(0, 1).

Although effect sizes are often assumed to follow normal distributions, real data is
often noisier, with longer tails, and recent work suggests non-normal distributions may be
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a better fit in the case of GWAS data [48]. We chose the alternative distributions (normal,
t (3df), and Cauchy) to span behaviours from ‘well-behaved’ (normal) to ‘long-tailed’ (t)
to ‘chaotic’ (Cauchy) to survey a wider range of possibilities.

Samples pi, pj and qi, qj were generally independent (unless otherwise specified), but
we also sampled under two patterns of dependence. Firstly, we simulated a ‘block’ cor-
relation structure in which we divided samples into three blocks, and within each block
sampled z-scores zpi , zpj , zqi , zqj corresponding to pi, pj and qi, qj such that cor(zpi , zpj ) =
cor(zqi , zqj ) = ρ if i, j were in the same block and class, and cor(zpi , zpj ) = cor(zqi , zqj ) = 0
otherwise. Secondly, we simulated an equicorrelation structure in which cor(zpi , zpj ) =
cor(zqi , zqj ) = ρ whenever i and j were in the same class. When d ∈ 2, 3, we used the off-
diagonal elements of the normalised dependence matrix in the multivariate T distribution
in place of correlation.

When relevant, we also sampled parameters from the distribution specified in table 1
conditional on np1 +npq1 = 0; that is, no associations with P . We plotted results from these
simulations separately to those with parameters drawn from the unconditional distribution.

Given a rejection procedure, we defined

FDP =

{
0 if no rejections
number of falsely rejected null hypotheses

total number of rejections if ≥ 1 rejection

TDP =

{
0 if no rejections
number of correctly rejected null hypotheses

true number of associations if ≥ 1 rejection

We analysed type 1 error in terms of the estimated FDR, FDR = E(FDP ) ≈ FDP , and
power in terms of the corresponding true-discovery rate TDR = E(TDP ) ≈ TDP . We
compared FDP and TDP between samples by estimating them via a Gaussian-weighted
moving average across the independent variable (usually np1 +npq1 ). We show 95% pointwise
confidence envelopes derived as per [49], except in cases where such envelopes obstruct
viewability of the plot. In these cases, we state that values TDR(A) for one method
A ‘exceed’ paired values TDR(B) of another method B if in at least six of eight equal
subdivisions of the x-axis range the following three conditions hold: TDR(A) > TDR(B)
more than TDR(B) > TDR(A), the mean ¯TDR(A)− TDR(B) is positive, and a Wilcoxon
test of ranks on TDR(A)−TDR(B) rejects the null hypothesis of a symmetric distribution
around 0 with p < 5× 10−3 (or the equivalent with FDR in place of TDR). Each line on
each plot corresponds to > 5000 simulation runs. All raw simulation results and analytic
code are publically available at https://github.com/jamesliley/cfdr pipeline.

5.1 New FDR-controlling procedure leads to greater power than previ-
ous method, and adjustment improves power further

We first compared FDR control amongst five methods, aiming to control the FDR at either
α = 0.1 or α = 0.01:
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1. the B-H method applied to the values pi, labelled ‘P-val’

2. the B-H method applied to ‘naive’ v-values v(pi, qi) = vS(pi, qi) as per equation 27
for reference, labelled ‘Naive’

3. the B-H method applied to ‘leave-one-out’ v-values v(pi, qi) = vS−(pi,qi)(pi, qi) as per
equation 25, labelled ‘LOO’

4. the B-H method applied to block-out v-values (after randomly separating observa-
tions into three equally sized subdivisions, so (pi, qi) is in subdivision b(i), defining
v-values vS−b(i)(pi, qi)) as per equation 26, labelled ‘LOB’

5. our previous method for FDR control applied to (pi, qi), labeled ‘Orig.’

We sampled simulation parameters according to table 1, or the corresponding conditional
distribution of table 1 with np1 + npq1 = 0.

Expected FDP was consistent with the FDR control level when using leave-one-out v
values or ‘block-out v-values (rejection procedures 3,4). When using the ‘naive’ v-values
vS(pi, qi) (rejection procedure 2), FDR was not controlled at the requisite level. The FDR
using methods 3 and 4 exceeded the FDR of our original method (rejection procedure 5),
indicating that our original method was conservative. FDR control was maintained when
using the approximation of f0 in equation (33). Results are shown in figure 2.

Having established the validity of rejection methods 3, 4, we compared the power of
‘adjusted’ cFDR ( ̂cFDRn) and non-adjusted cFDR ( ̂cFDR) using the leave-one-out v-
value (rejection procedure 3) and the power of our previous method, rejection procedure 5,

applied to ̂cFDR (labelled ‘Orig’). The TDR of ̂cFDRn exceeded the power of ̂cFDR,

which in turn exceeded the power of our previous rejection procedure on ̂cFDR (figure 3).

We report FDR and TDR for p-values, ̂cFDRn and oracle cfdr for a range of fixed
simulation parameters in table 2

5.2 PDF- based estimation leads to a less powerful procedure than CDF-
based estimation

As n→∞, consistent estimators of P (Hp
0 |P = p,Q = q) will converge to optimal rejection

regions while estimators of P (Hp
0 |P ≤ p,Q ≤ q) will not, and hence the former will

ultimately be more powerful. However, we found that under the distribution of simulation
parameters in table 1, the ECDF-based estimator ̂cFDRn is considerably more powerful
than two PDF-based estimators of P (Hp

0 |P = p,Q = q).
Results are shown in figure 4. We considered parametric (labelled ‘PDF param’) and

KDE-based (labelled ‘PDF KDE’) estimators of P (Hp
0 |P = p,Q = q). The parametric

model was based on a four-Gaussian model detailed in supplementary material, section 9.4.
We separated cases in which parametric assumptions were satisfied (ie d = 1 in table 1)

and in which they were not (d = 2, 3). The TDR of ̂cFDRn exceeded the TDR of both
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Description TDR(P) FDR(cFDR) TDR(cFDR) TDR(oracle)

Reference 0.194 0.0955 0.208 0.212
No effects 0.0973
Weak effects 0.00803 0.0814 0.00795 0.00904
Large variance in effect sizes 0.493 0.0957 0.517 0.527
Larger n 0.173 0.0995 0.189 0.193
Smaller n 0.26 0.0795 0.265 0.269
No non-null shared hypotheses 0.188 0.102 0.178 0.187
All non-null hypotheses shared 0.195 0.0963 0.26 0.309
Negative information 0.302 0.0585 0.314 0.319
Block correlation 0.2 0.0974 0.213 0.217
Equicorrelation 0.191 0.0897 0.205 0.209

Table 2: FDR and TDR of p-value, ̂cFDRn, and oracle cfdr (best possible procedure) using
leave-one-out v-values (equation 25) for a range of simulation parameters, controlling FDR
at α = 0.1. All descriptions are relative to ‘Reference’ which has the following parameter
values: n = 5000, np1 = nq1 = npq1 = 100, sp = sq = 2, d = 2. TDR is undefined if
np1 +npq1 = 0. ‘Negative information’ means fewer -than random shared associations, rather
than more (np1 = nq1 = 2000, npq1 = 0) . Complete parameter values, confidence intervals,
and more detailed results are shown in supplementary table 3.

estimators of P (Hp
0 |P = p,Q = q). The performance of an oracle CDF procedure (using

exact contours of F0/F as rejection regions, labelled ‘CDF oracle’) and an oracle PDF
procedure (using exact contours of f0/f as rejection regions, labelled ‘PDF oracle’) are
shown for comparison.

5.2.1 Parametric- and KDE- based cFDR estimators are less powerful than
the ECDF-based estimator

We also examined PDF- and KDE- based estimates of the cFDR rather than the cfdr.
Details of the alternative estimators are given in supplementary material, section 9.4.

When parametric assumptions were satisfied (figure 5, left panel), performance of the

ECDF-based ̂cFDRn, parametric (labelled ‘CDF param’) and KDE-based (labelled ‘CDF
KDE’) cFDR estimators was equivocal. When parametric assumptions were not satisfied
(d = 2, 3 as per table 1; figure 5, right panel), the TDR of the ECDF estimator exceeded
the TDR of the the parametric and KDE estimators. The performance of an oracle CDF
procedure (using exact contours of F0/F as rejection regions) is shown for comparison.
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5.3 Correlated samples lead to lower TDR but FDR control is main-
tained

When pi, qi had either block correlation or equicorrelation, we found that FDR control was
maintained when using leave-one-out v-values (equation 25) and when using leave-out-
block v-values (equation 26. Under equicorrelation, the TDR of leave-out-block exceeded
the TDR of leave-one-out v-values. Under block correlation, although TDR of leave-out-
block did not formally exceed the TDR of leave-one-out, a paired Wilcoxon rank-sum test
on TDR values rejected the null hypothesis of a symmetric distribution around 0 with
p < 1× 10−6 in favour of leave-out-block.

Maintenance of FDR control is expected, as the Benjamini-Hochberg procedure controls
FDR more conservatively when p-values are positively correlated than when independent.
Figure 6 shows FDR and TDR controlling at α = 0.1 in the case ρ = 0.01, including
performance of p-values pi under the BH procedure for comparison. The case ρ = 0.1 is
similar and is shown in supplementary figure 23

5.4 TDR of ̂cFDRn
becomes higher than TDR of p-value alone when ≈

20% of hypotheses are shared

Finally, we assessed the proportion of non-null hypotheses for P which needed to be shared
with Q in order for ̂cFDRn to have an advantage in TDR over only considering P . When
no non-null hypotheses are shared, the values qi confer no information on HP

0 , so we expect
that use of v-values will add only noise and the TDR of the p-value will be larger than
that of the v-value. We plotted the difference in TDR between ̂cFDRn (using leave-one-
out v-values) and p-values pi against npq1 /(n

pq
1 +np1), and found that this difference became

positive when around 20% of hypotheses were shared (figure 7). This figure is dependent on
our simulation parameters: a smaller percentage of hypotheses may lead to an advantage
of ̂cFDRn if, for instance, effect sizes were very large.

5.5 Iterated cFDR

Since our proposed method for type-1 error rate control maps p-value/covariate pairs to
v-values preserving the p-value property, we are free to use the resultant v-values in a
second cFDR-based analysis against a second covariate. This enables immediate and simple
adaptation to a setting in which more than one set of covariates are available. In our
motivating example, this would allow us to subsequently ‘condition’ on other potentially
related diseases as well as OCA.

We simulated a set of p-values {p} = {pi, i ∈ 1..1000}, with 100 true associations (Hp
1 )

in which p-values were sampled from 2Φ(−|N(0, 32)|) (where Φ is the normal CDF) and
900 non-associations (Hp

0 ) in which p-values were sampled from U(0, 1). We then similarly

simulated sets of covariates {qj} = {qji , i ∈ 1..1000} with 100 true associations (Hq
1), which

for even j were randomly spaced amongst the 1000 variables (uninformative covariates)
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and for odd j overlapped more-than-randomly with associations with principal p-values
(informative covariates), with around 54 shared associations on average (strictly, such that
P (Hq

1 |H
p
1 ) = 15P (Hq

1 |H
p
0 )).

Starting with v0 = p, we conditioned on each set of {qj} in succession, so vi+1 =

v(vi, q
i). We used ̂cFDRn as an estimator and used leave-one-out v-values. Originally 19

of 100 null hypotheses were correctly rejected using p alone (p < 5 × 10−5 = 0.05/1000.
On repeated conditioning, almost all all v-values when Hp = 1 tended to 0: 99 null
hypotheses were correctly rejected using v500. Under Hp

0 , v-values remained uniform on
(0, 1) (figure 8). This indicated the potential to greatly strengthen the power of a high-
dimensional association analysis by repeated conditioning in this manner, even when only
half of the sets of covariates are informative.

5.6 Summary of BRCA analysis

Finally, we return to the motivating example. cFDR rejects more null hypotheses for
BRCA (724) than B-H on BRCA data alone (678, figure 1A) or the subset of variables
with OCA association (280, figure 1B). The procedure is asymmetrical in that it will not
reject a BRCA null hypothesis for a low OCA p-value alone, and can readily be reversed:
supplementary figure 18 shows a similar analysis analysing association with OCA.

6 Discussion

We present an improvement to the conditional false discovery rate method, a widely-used
procedure in genetic discovery. Our new methods essentially involve computing an analogy
of the p-value corresponding to the ranking of hypotheses defined by the cFDR estimator.
Our method enables the cFDR to be used definitively in the discovery phase of -omics
studies with control of a type-1 error rate. The general procedure of multiple p-value
testing with a covariate has wide scientific application; see [1, 2, 11] for examples.

The ̂cFDR and ̂cFDRn estimators make no distributional assumptions on P ,Q. The
type-1 error rate controlling method requires modelling of the PDF of P,Q|Hp

0 , but this
requires approximating a univariate PDF Q|Hp

0 . Furthermore, this PDF is only used
as an integrand rather than for direct point-estimates. It is reasonable to expect that for
approximations to complex PDFs, relative average errors over intervals will be smaller than
relative errors at individual points; parametric approximations tend to be smoother than
the true distribution at a fine scale, and KDE-based approximations rougher. An obvious
shortcoming of cFDR-based methods is the lack of asymptotic optimality. Methods based
on consistent estimators of f0/f will eventually outperform any estimator of F0/F for large
enough n (see supplementary material, section 9.5). However, the ECDF-based cFDR
estimator was far stronger than PDF-based estimators at the values of n we simulated
at (103 − 104). In practical terms, it is important to note that n, being the number of
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variables, cannot generally be increased indefinitely, as opposed to, for instance, sample
size. Essentially, the fitting of L-curves corresponds to a procedure by which the similarity
between P,Q is assessed, and the degree of modulation when moving from p to v values
corresponds to this similarity. Moreover, this assessment of similarity occurs intrinsically
on the basis of the joint CDF rather than relying on a parametric description.

L-curves may not change monotonically with Q; that is, it may be possible to reject a
null hypothesis with p-values (p, q1) and not reject a null hypothesis with p-values (p, q2),
q2 < q1 (see the lower-left panel of figure 1). It would be possible within our framework
of FDR control (theorem 1) to force L-curves to be monotonic with Q, and indeed since
this would result in straight-up-and-down segments on L-curves, the loss of power due to
noise when P and Q are unrelated (figure 7) may be reduced in this case. However, non-
monotonicity of L-curves is potentially advantageous in a biostatistical setting. Between
TWAS or GWAS for similar diseases, it may be the case that shared non-null hypotheses
have ‘moderately’ small p-values, corresponding to common general shared medium-risk
pathological causes, but non-shared non-null hypotheses have ‘extremely’ small p-values,
corresponding to specific high-risk pathologies. Non-monotonic L curves allow this effect
to be modelled. Unrestricted L-curves also allow use to be made of q-values such that
P (HP

0 |Q = q) is lower with low q, rather than higher: we show this in table 2, row
’Negative information’.

Our proposed ‘iterated cFDR’ procedure can be thought of as a meta-analysis of a
series of experiments EP , EQ1 , EQ2 , ... giving rise to p-value sets {pi}, {q1

i }, {q2
i }, ... when

only the first set ({pi}) are known to test the correct hypotheses; that is, be U(0, 1) for
null hypotheses. It enables us to find the set of non-null hypotheses corresponding to EP
(denoted {Hp

1}), even though the set of non-null hypotheses corresponding to EQj (denoted

{HQj
1 }) may only partly overlap {Hp

1}, may contain hypotheses not in {Hp
1}, and (half the

time) may even carry no information about Hp
1 at all. This could be used to refine the set

of association statistics {pi} for a disease of interest by using sets of association statistics
{q1
i }, {q2

i }, ... at the same variables for a range of separate traits. It could also be used
to improve power when repeating an -omics study in a new ethnic group by levering on
previous studies in different ethnicities.

In summary, our method improves the power of cFDR analyses and allows it to be used
confidently in the setting of multiple hypothesis testing. This can enable more efficient
use of data, and more information to be gained from the same datasets. Our method con-
tributes to a set of tools for high-dimensional statistical analysis and has wide application
across a range of fields in biomedicine and elsewhere.

7 Code availability

All functions necessary to apply the methods detailed in this work are available in the R
package
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https://github.com/jamesliley/cfdr

A full pipeline to generate the results in this paper is available in the git repository
https://github.com/jamesliley/cfdr pipeline.
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Figure 1: Illustration of cFDR approach using example data from TWAS study of breast
cancer (BRCA), conditioning on ovarian cancer (OCA). Each plot shows test statistics
from BRCA (x axis) and OCA (y axis) on either the Z (A-C) or p-value (D) scale. All
rejection regions use methods to control FDR at < 1 × 10−6. A Benjamini-Hochberg (B-
H) procedure applied to BRCA statistics alone, leads to a rejection region to the right of
the blue dashed vertical line. B B-H applied to those variables for which zOCA exceeds
the threshold shown by a solid red line. C cFDR procedure: for the ith values zBRCA(i)
zOCA(i), a B-H procedure aiming to control the FDR at α is conducted on only the variables
for which zOCA ≥ zOCA(i), and if the ith null hypothesis is rejected during this procedure,
it is rejected overall. We term the rejection region corresponding to this value α an ‘L-
region’ L(α), shown as the shaded region. D The exposition that follows using p-values
rather than Z scores, and so we reproduce the data and L(α) on the p-value scale. On this
scale, the estimated cFDR at a point pBRCA, pOCA can be considered an estimate of the
FDR corresponding to a fixed rejection region given by the box with pBRCA, pOCA as its
top-right corner, and the L-region L(α) roughly as the locus of top-right corners of boxes
with estimated cFDR equal to α. Two such boxes are illustrated on the figure.
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Figure 2: FDR control of various methods against np1 + npq1 , the total number of vari-
ables associated with P (the primary study under consideration). The horizontal line
shows α = 0.1, the desired FDR control level. Simulations in the left panel integrate
L-regions over the the true distribution f0; simulations in the right panel integrate over
the estimated distribution as per equation (33). Shaded regions indicate 95% confidence
envelopes. Curves show moving weighted averages using a Gaussian kernel with SD 15% of
the X axis range. Lines on the left indicate FDR control with np1+npq1 = 0. A corresponding
plot with α = 0.01 is shown in supplementary figure 19.

25

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2020. ; https://doi.org/10.1101/414318doi: bioRxiv preprint 

https://doi.org/10.1101/414318
http://creativecommons.org/licenses/by-nc-nd/4.0/


100 200 300

0.
24

0.
26

0.
28

0.
30

n1
p+ n1

pq

T
D

R

P−val.
cFDRn

cFDR
Orig.

Figure 3: TDR of various methods against np1+npq1 , the total number of variables associated
with P (the primary study under consideration), at FDR control level α = 0.1. Shaded
areas show 95% pointwise confidence envelopes. A corresponding plot with α = 0.01 is
shown in supplementary figure 20. Curves show moving weighted averages using a Gaussian
kernel with SD 15% of the X axis range.
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Figure 4: TDR of PDF-based methods against np1 + npq1 , the total number of variables
associated with P (the primary study under consideration), controlling FDR at α = 0.1.
In the left panel, parametric assumptions were satisfied (ie d = 1 in table 1) and in the right
panel, they are not (d = 2, 3). Shaded regions show pointwise 95% confidence intervals.
A corresponding plot with α = 0.01 is shown in supplementary figure 22. Curves show
moving weighted averages using a Gaussian kernel with SD 15% of the X axis range.
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Figure 5: TDR of various methods against np1 + npq1 , the total number of variables associ-
ated with P (the primary study under consideration), restricting to simulations in which
parametric assumptions were satisfied (left panel) or were not satisfied (right panel), at
FDR control level α = 0.1. A corresponding plot with α = 0.01 is shown in supplementary
figure 21. Confidence intervals are omitted for visual clarity Curves show moving weighted
averages using a Gaussian kernel with SD 15% of the X axis range.
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Figure 6: FDR (left) and TDR (right) of FDR-controlling methods leave-out-block (equa-

tion 26) and leave-one-out (equation 25) applied to ̂cFDRn, and the BH procedure applied
to p-values, under several models of correlation between observations (ρ = 0.01). Confi-
dence envelopes are omitted for visual clarity. Vertical lines show FDR with 95% confidence
intervals at np1 + npq1 = 0 (the p-value appears not to control FDR under equicorrelation,
but it is well-known to do so theoretically). A corresponding figure with ρ = 0.1 is shown in
supplementary figure 23. Curves show moving weighted averages using a Gaussian kernel
with SD 15% of the X axis range.
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Figure 7: Difference in TDR between ̂cFDRn (assessed by leave-one-out v-values) and
p-values, controlling FDR at α = 0.1, against npq1 /(n

pq
1 + np1) (proportion of non-null

hypotheses for P which are shared with Q). The performance of the oracle CDF method is
shown for comparison. Shaded areas show pointwise 95% confidence intervals. Points and
lines at the leftmost edge show TDR values and 95% confidence intervals when npq1 /(n

pq
1 +

np1) = 0. A corresponding figure with α = 0.01 is shown in supplementary figure 24. Curves
show moving weighted averages using a Gaussian kernel with SD 15% of the X axis range.
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Figure 8: Iterated cFDR. Left part of plot shows where non-null hypotheses fall in p/qj

(blue vert. lines for p, red for qj). Non-null hypotheses are shared more-than-randomly
in only every second set qj . Right part shows p/vj values (blue/red lines respectively)
plotted in ascending order under Hp

1 , Hp
0 , and the number of p/vj values which reach

Bonferroni-corrected significance.
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Appendix

8.1 Optimal procedure

In this section, we show the following result. This is not original; it is shown in various
forms in (at least) [1, 2, 3].

Theorem 5. Let f0 and f1 be positive Lesbegue-integrable functions of (p, q) on some
region Ω. Suppose a Lesbegue-measurable region R0 satisfies:

1. R0 = {(p, q) : f0(p, q)/f1(p, q) ≤ k, (p, q) ∈ Ω}

2.
∫
R0
f0(p, q)dpdq = α

3.
∫
R0
f1(p, q)dpdq = 1− β

Then no Lesbegue-measurable region R ⊂ Ω satisfies both∫
R
f0(p, q)dpdq = α (39)

and ∫
R
f1(p, q)dpdq > 1− β (40)

Proof. Suppose such a region existed. Then given condition 39, we must have f0(p, q)/f1(p, q) >
k in R \R0, and since the integral of f0 over R is equal to its integral over R0,∫

R\R0

f0(p, q)dpdq =

∫
R0\R

f0(p, q)dpdq = α−
∫
R0∩R

f0(p, q)dpdq (41)

Hence ∫
R
f1(p, q)dpdq =

∫
R\R0

f1(p, q)dpdq +

∫
R∩R0

f1(p, q)dpdq

≤ k
∫
R\R0

f0(p, q)dpdq +

∫
R∩R0

f1(p, q)dpdq

= k

∫
R0\R

f0(p, q)dpdq +

∫
R∩R0

f1(p, q)dpdq

≤
∫
R0\R

f1(p, q)dpdq +

∫
R∩R0

f1(p, q)dpdq

=

∫
R0

f1(p, q)dpdq = 1− β (42)

a contradiction of 40. Regions R 6= R0 can satisfy 39 and∫
R
f1(p, q)dpdq = 1− β (43)

if and only if R0 \R and R \R0 have Lesbegue measure 0.
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Corollary 5.1. If f0(p, q) = f(P = p,Q = q|HP
0 ) and f1(p, q) = f(P = p,Q = q|HP

1 )
(where HP

1 is the alternative) then amongst all rejection regions R with fixed type-1 error
rate α =

∫
R f0(p, q)dpdq, power is maximised on a region inside a contour of f0/f1, if such

a region exists.
Denoting f(p, q) = π0f0(p, q) + (1 − π0)f1(p, q), it is clear that a contour of f0/f1 is

also a contour of f0/f and of P (Hp
0 |P = p,Q = q), so an optimal rejection region is given

by
{(p, q) : P (Hp

0 |P = p,Q = q) ≤ kα} (44)

for some kα.

8.2 Failure of FDR control with ̂cFDR < α

As described in section 2, rejection procedure (9) is similar to the B-H procedure, and it
may be naively thought that it also controls the FDR at α. This is not the case, and indeed
the FDR of such a procedure (and the corresponding procedure with ̂cFDRn) may exceed
α by an arbitrary factor depending on α and π0.

This is most easily seen by considering the extreme case in which

P,Q|Hp
0 ∼ U(0, 1)2 (45)

P,Q|Hp
1 ∼ (0, 0) (46)

where π0 = P (Hp
0 ) as usual. In this case we show:

Theorem 6. Under the above distribution of P,Q, as n→∞, the FDR αTRUE of rejection
procedure (9) for ̂cFDR satisfies

αTRUE(1− α)

α(1− αTRUE)
= OR(αTRUE , α)→ log

(
1− απ0

1− π0

)
(47)

and the corresponding procedure for ̂cFDRn satisfies

αTRUE
α

→
1− log

(
α

1−α
1−π0
π0

)
1− α log

(
α

1−α
1−π0
π0

) (48)

Corollary 6.1. For ̂cFDR, the relative error in FDR (relative to α) can grow arbitrarily

large as π0 → 1, α → 0. For ̂cFDRn, the error can grow arbitrarily large as α → 0,
regardless of π0.

Proof. Suppose that we have a dataset S = {(pi, qi)}, i ∈ 1..n of draws from P,Q un-
der 45,46. Due to assumption 45 we have P (P ≤ p,Q ≤ q|Hp

0 ) = pq and due to 46 we have
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P (P ≤ p,Q ≤ q|Hp
1 ) = 1. Now

cFDR(p, q) = P (Hp
0 |P ≤ p,Q ≤ q)

=
π0pq

(1− π0) + π0pq

Now

P (Hp
0 |Q ≤ q) =

P (Q ≤ q|Hp
0 )P (Hp

0 )

P (Q ≤ q|Hp
1 )P (Hp

1 ) + P (Q ≤ q|Hp
0 )P (Hp

0 )

=
π0q

(1− π0) + π0q

(49)

The estimate ̂cFDR(p, q) is proportional to a consistent estimator of

cFDR(p, q)

P (Hp
0 |Q ≤ q)

= p
(1− π0) + π0q

(1− π0) + π0pq
(50)

and since P > 1/2⇒ Hp
0 , approximation 7 in the main paper is consistent, and ̂cFDRn(p, q)

is a generally consistent estimator of cFDR(p, q).

The FDR of the rejection procedure ̂cFDR(p, q) ≤ α converges to the FDR of the
rejection region Rα = {(p, q) : cFDR(p, q)/P (Hp

0 |Q) ≤ q) < α} as n→∞ (see diagram in
figure 12). Since this rejection region contains (0, 0), all (1−π0)n non-null hypotheses will
be rejected, and the proportion of the total null hypotheses rejected will converge by the
law of large numbers to∫

Rα

f(P,Q|Hp
0 )dpdq =

∫
Rα

dpdq

=
α

1− α
1− π0

π0
log

(
1− απ0

1− π0

)
(51)

and thus the FDR αTRUE converges to

αTRUE →
number of null (pi, qi) in Rα
total number of (pi, qi) in Rα

=
π0n

∫
Rα
dpdq

(1− π0)n+ π0n
∫
Rα
dpdq

= α
log
(

1−απ0
1−π0

)
1− α+ α log

(
1−απ0
1−π0

) (52)
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which can be written as

log

(
1− απ0

1− π0

)
=
αTRUE(1− α)

α(1− αTRUE)
= OR(αTRUE , α) (53)

where OR is the odds ratio. Hence αTRUE can exceed α by an arbitrary degree when pi0
is close to 1.

The second part of the proof can be shown similarly. The RHS of equation 48 rises as
− log(α) as α→ 0, whatever the value of π0.

8.3 Convergence results

In these appendices, we omit the X from ̂cFDRX(p, q) and other functions when it is clear.
We consider p, q to be in (0, 1)2.

Set n = |X|, Fn(q) = min(1, |{i : qi ≤ q, (pi, qi) ∈ X}|), Fn(p, q) = min(1, |{i : pi ≤
p, qi ≤ q, (pi, qi ∈ X)}|), F (q) = P (Q ≤ q), F (p, q) = P (P ≤ p,Q ≤ q), and

C(p, q) =
cFDR(p, q)

P (Hp
0 |Q ≤ q)

=
pF (q)

F (p, q)
(54)

We will assume ∂F (p, q)/∂p exists on (0, 1)2.

We define ̂cFDRtX(p, q) = minp′≥p ̂cFDRX+(p′,q)(p
′, q), and ̂cFDRtnX(p, q) similarly

for ̂cFDRnX (‘t’ for ‘truncated’), so

LX(α) =
{

(p, q) : ̂cFDRtX(p, q) ≤ α
}

(55)

The boundary of LX(α) is continuous and piecewise-differentiable.
In this section, we show a series of results relating to convergence of cFDR estimates.

We show results relating to convergence of ̂cFDR and ̂cFDRt on a line q = q0, along with
convergence of the co-ordinates of L-curves on such lines. We then show slightly weaker
results regarding convergence across two-dimensional regions of the unit square.

Theorem 7. Suppose that on a line segment q = q0, pγ < p < 1, we have F (p, q) ≥ γ > 0

and F (q0) > 0. Then on this segment, ̂cFDR(p, q) converges uniformly to C(p, q) as

n → ∞. If additionally we have ∂C(p, q)/∂p ≥ 0, then ̂cFDRt(p, q) converges uniformly
to C(p, q) also.

Proof. Condition on q = q0, and (for the moment) Fn(q) = m. Set ε < δ and let

g−(p, ε) = p
m
n

F (p, q) + ε
g+(p, ε) = p

m
n

F (p, q)− ε
(56)
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From the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality we have

Pr

(
F (p, q)− ε ≤ Fn(p, q)

m
≤ F (p, q) + ε

∣∣∣∣q = q0, Fn(q0) = m

)
≥ 1− e−2mε2

⇒ Pr

(
g−(p, ε) ≤ ̂cFDR(p, q)) ≤ g+(p, ε)

∣∣∣∣q = q0, Fn(q0) = m

)
≥ 1− e−2mε2 (57)

If ∂C(p, q)/∂p ≥ 0, then (57) also holds for ̂cFDRt. To see this, note ̂cFDR(p, q) ≥̂cFDRt(p, q), so if ̂cFDRt(p, q) ≥ g+(p, ε) then ̂cFDR(p, q) ≥ g+(p, ε) also. Now

∂

∂p
C(p, q) ≥ 0⇒ F (p, q) ≥ p ∂

∂p
F (p, q)

⇒ F (p, q) + ε ≥ p ∂
∂p
F (p, q)

⇒ g−(p, ε) > 0

Suppose that for some p we had ̂cFDRt(p, q0) ≤ g−(p). Then either ̂cFDR(p, q0) =̂cFDRt(p, q0) or ̂cFDRt(p, q0) = ̂cFDR(p′, q0) for some p′ > p. In the first case ̂cFDR(p, q0) ≤
g−(p), and in the second, ̂cFDR(p′, q0) = ̂cFDRt(p, q0) ≤ g−(p) ≤ g−(p′); in either

case, ̂cFDR(p, q) escapes the bound g−(p) somewhere. Thus the probability on the LHS

of (57) can only increase if ̂cFDRt replaces ̂cFDR, and ̂cFDRt(p, q) is contained within
the bounds g−(p), g+(p) with probability at least 1− exp(−2mε2).

We now move to remove the condition Fn(q0) = m. Denote the events

A :
{
g−(p, ε) ≤ ̂cFDR(p, q) ≤ g+(p, ε)

}
(58)

B : {q = q0}

and, for some ε2 < F (q0)

C :

{
p
F (q)− ε2
F (p, q) + ε

≤ ̂cFDR(p, q) ≤ p F (q) + ε2
F (p, q)− ε

}
(59)

Denote by S(ε2) the set of integers in [n(F (q0)− ε2), n(F (q0) + ε2)] (and assume n is large
enough that S(ε2) is nonempty). If m = Fn(q0) ∈ S(ε2), the interval in event A is a
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subinterval of that in event C. Thus

P (C|B) =
∑
m

P (C|B,Fn(q0) = m)P (Fn(q0) = m)

≥
∑

m∈S(ε2)

P (C|B,Fn(q0) = m)P (Fn(q0) = m)

≥
∑

m∈S(ε2)

P (A|B,Fn(q0) = m)P (Fn(q0) = m)

≥ (1− e−2 min{S(ε2)}ε2)P (m ∈ S(ε2))

≥ (1− e−2n(F (q0)−ε2)ε2)(1− e−2nε22) (60)

where the last inequality comes from the DKW inequality on Fn(q). Since p ≥ pε and
F (p, q) ≥ γ the widest part of the interval in event C can be made arbitrarily small on the

interval (pε, 1) and ̂cFDR(p, q) converges uniformly to C(p, q). If ∂C(p, q)/∂p ≥ 0, then so

does ̂cFDRt(p, q).
Corollary 7.1. Under the assumptions in theorem 7, ̂cFDR(p, q) and ̂cFDRt(p, q) are
bound with fixed probability on the line segment q = q0, pγ < p < 1 in intervals of width
O(n−1/2)

Proof. In inequality 60, set

ε =
r√

F (q0)− ε2
ε2 =

r2√
n

(61)

Then the RHS is (1− exp(−2r2))(1− exp(−2r2
2)) which may be made arbitrarily small by

varying r, r2, and the difference between the upper and lower bounds in event C|B is

p
F (q0) + ε2
F (p, q0)− ε

− p F (q0)− ε2
F (p, q0) + ε

= 2p

√
F (q0)r + F (p, q0)r2

F (p, q0)2

1√
n

+O

(
1

n

)
(62)

Theorem 8. Suppose that on a line segment q = q0, pγ < p < 1, we have F (p, q) ≥ γ > 0,
F (q0) > 0, and ∂C(p, q)/∂p ≥ γ2 > 0. Denote by l(α) the value of p at the intersection of
the L-curve L(α) with the line q = q0, so

l(α) = sup{p : ̂cFDRt(p, q0) ≤ α} (63)

and c(α) the value of p such that C(p, q0) = α (unique if it exists). For any δ > 0, the
function |l(α)− c(α)| converges uniformly to 0 for α ∈ [C(pε, q0) + δ, 1].
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Proof. Since C(p, q0) is continuous and increasing on [pε, 1], the value c(α) exists for
α ∈ [C(pε, q0), C(1, q0)] ⊃ [C(pε, q0) + δ, 1] by the intermediate value theorem. The

function ̂cFDRt(p, q) is continuous and nondecreasing on [0, 1] and hence l(α) exists for

α ∈ [ ̂cFDRt(0, q0), ̂cFDRt(1, q0)] = [0, 1].

Given arbitrarily small positive ε3, δ2 < δ choose n large enough that ̂cFDRt(p, q0) is
contained in [C(p, q0)−δ2, C(p, q0)+δ2] for p ∈ [pε, 1] with probability at least 1−ε3. Then

with probability ≥ 1 − ε3, whenever the curve ̂cFDRt(p, q) is in the region bounded by
the rectangle pε ≤ p ≤ 1, C(pε, q0) + δ ≤ q ≤ 1, it is bounded by the curves C(p, q0)− δ2),
C(p, q0)+δ2. The distance between the two curves in the q-direction is at most 2γ2δ2. Thus,

if for some α ∈ [C(pε, q0) + δ, 1], we have |l(α)− c(α)| > γ2δ2, the curve ̂cFDRt(p, q0) must
escape the region bounded the curves C(p, q0)− δ2), C(p, q0) + δ2.

So with probability at least 1− ε3 we have

∀α ∈ [C(pε, q0) + δ, 1] : |l(α)− c(α)| ≤ γ2δ2 (64)

which proves the statement. This is illustrated in figure 9.

p

C
(p

,q
0)

pε 1

C
(p

ε,q
0)

 +
 δ

1

δ
C(p,q0)
C(p,q0)±δ2

cFDRt(p,q0)

Figure 9: Convergence of intersections of L-curves with a line q = q0. FunctionŝcFDRt(p, q0), C(p, q0), and C(p, q0)± δ2 are shown. The vertical distance between dashed
red lines is 2δ2, and since ∂C(p, q0)/∂p ≥ γ2, the horizontal distance is at most 2δ2γ2.
We must restrict the proof to α > C(p, q0) + δ because we cannot assert the behaviour of̂cFDRt(p, q) left of the line p = pε.

We now proceed to the proof of theorem 2, restated here:
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Theorem 2. Let R be the region of the unit square for which F (p, q) ≥ γ > 0 and F (q) > 0.

Then on R, ̂cFDR(p, q) converges uniformly to C(p, q), and if ∂C(p, q)/∂p ≥ 0, then so

does ̂cFDRt(p, q)
Proof. We proceed very similarly to theorem 7. We employ a result from [50] that for any
ε > 0

Pr

(
sup |Fn(p, q)− F (p, q)| ≥ r√

n

)
≤ c(ε)e(2−ε)r2 (65)

from which, wherever F (p, q) > fmin >
r√
n

Pr

(
1

F (p, q) + r√
n

≤ 1

Fn(p, q)
≤ 1

F (p, q)− r√
n

)
≥ 1− c(ε)e(2−ε)r2

Pr

(
pFn(q)

n

F (p, q) + r√
n

≤ ̂cFDR(p, q) ≤
pFn(q)

n

F (p, q)− r√
n

)
≥ 1− c(ε)e(2−ε)r2 (66)

The values Fn(p, q) and Fn(q) are dependent. However, given some r2 > 0, we have for all
q (by the DKW inequality)

Pr

(
F (q)− r2√

n
≤ Fn(q)

n
≤ F (q) +

r2√
n

)
≥ 1− 2e−2r22 (67)

Denoting the event in (66) by A, the event in (67) by B, and C as:

p(F (q)− r2√
n

)

F (p, q) + r√
n

≤ ̂cFDR(p, q) ≤
p(F (q) + r2√

n
)

F (p, q)− r√
n

(68)

we have, since the interval in A is a subinterval of that in C when conditioning on B:

P (C) = P (C|B)P (B) + P (C|¬B)P (¬B)

≥ P (C|B)(1− 2e−2r22)

≥ P (A|B)(1− 2e−2r22)

≥ (1− c(ε)e(2−ε)r2)(1− 2e−2r22)

As before, this bound also holds for ̂cFDRt as long as ∂C(p, q)/∂p > 0.

Corollary 8.1. Under the assumptions in 2, ̂cFDR and ̂cFDRt are bound with fixed
probability in R in intervals of width O(n−1/2)
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Proof. The difference between the upper and lower bounds in (68) is

2p(rF (q) + r2F (p, q))

F (p, q)2

1√
n

+O

(
1
√
n

3

)
(69)

Our final result describes errors on v-values. Given an L-region L(α), we define the
M-region as the ‘expected’ L-region:

M(α) = {(p, q) : C(p, q) ≤ α} (70)

and the ‘error’ on the v-value v =
∫
L(α) f0(p, q)dpdq as

|∆v| =

∣∣∣∣∣
∫
L(α)

f0(p, q)dpdq −
∫
M(α)

f0(p, q)dpdq

∣∣∣∣∣ (71)

We now are now in a position to prove theorem 3.

Theorem 3. Define R as in theorem 2, and further assume that f0(p, q) = f(P = p,Q =
q|HP

0 ) is known and on R we have ∂C(p, q)/∂p ≥ γ2. Write Rc = [0, 1]2 \ R. Then the
maximum error on any v-value is∫

Rc
f0(p, q)dpdq +O

(
1√
n

)
(72)

Proof. Using theorem 2, bound ̂cFDRt(p, q) between C(p, q)−δ, C(p, q)+δ with probability
≥ 1− ε3, where δ = O (1/

√
n).

Since F (p, q) is nondecreasing with p, we can describe R = {(p, q) : F (p, q) ≥ γ} as the
union of line segments q = q0, pε(q0) ≤ p ≤ 1. We now define R1 as the union of all line
segments q = q0, pε(q0) + δγ2 ≤ p ≤ 1; that is, R with the leftmost border shifted δγ2 to
the right.

We show the result by firstly noting that if an L-curve intersects a line segment q = q0

at l(α) > pε(q0) + δγ2, and we have that |l(α)− c(α)| > δγ2 (where c(α) is the intersection
of the border of M(α) with q = q0), then event C (equation 68) must have occurred in
R, by the same argument as for theorem 8. Thus with probability at least 1 − ε3, every
segment of a right-most border of an L-region L(α) in R1 is at a horizontal distance from
the corresponding rightmost-border of M(α) of at most δγ2
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We now write

∆v =

(∫
L(α)∩Rc

f0(p, q)dpdq −
∫
M(α)∩Rc

f0(p, q)dpdq

)

+

(∫
L(α)∩(R\R1)

f0(p, q)dpdq −
∫
M(α)∩(R\R1)

f0(p, q)dpdq

)

+

(∫
L(α)∩R1

f0(p, q)dpdq −
∫
M(α)∩R1

f0(p, q)dpdq

)
(73)

The first term is at most
∫
Rc f0(p, q)dpdq. The region R \ R1 has constant width δγ2,

and since f0 only varies with q, hence the second term is at most
∫
R\R1

f0(p, q)dpdq =

δγ2 = O(n−1/2). Within R1, if the horizontal separation between curves at the rightmost
border of L(α) and M(α) is greater than δγ2, then C has occurred, so this can happen
with probability at most ε3. Thus with probability 1− ε3, the third term is also bounded
by δγ2 = O(n−1/2), establishing the result.

8.4 Influence of a single point

Intuitively, adding a single point to a map defined by n other points should have a small
effect on that map, and hence on the resultant v-values. We show the following:

Theorem 4. Suppose we add a point (p∗, q∗) to a set of n points (pi, qi), considered as
realisations of P,Q, and conditions are satisfied for convergence of v-values as above. Let
∆v(L(α)) be the shift in a v-value corresponding to an L-curve L(α) after adding (p∗, q∗).
Then

Eα∼U(0,1)(|∆v(L(α))|) = O

(
1

n2

)
(74)

Proof. Consider the profile of ̂cFDRt(p, q) on a line q = q0, and how this changes with the
addition of (p∗, q∗). The functions Fn(q), Fn(p, q) will be taken to be with respect to the
n points (pi, qi) but not (p∗, q∗).

For q0 < q∗, the addition of (p∗, q∗) changes neither Fn(q0) nor Fn(p, q0), so on lines

q = q0 < q∗ the profile of ̂cFDRt will remain the same.
Denote

c+(p) = p
Fn(q) + 1

Fn(p, q)
c−(p) = p

Fn(q) + 1

Fn(p, q) + 1
(75)

For q0 > q∗, p < p∗, the value of ̂cFDR(p, q0) will increase by

c+(p)− p Fn(q)

Fn(p, q)
=

p

Fn(p, q0)
(76)
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and for q0 > q∗, p > p∗, it will decrease by

p
Fn(q)

Fn(p, q)
− c−(p) = p

Fn(q0)− Fn(p, q0)

Fn(p, q0)(Fn(p, q0) + 1)
(77)

In either case, ̂cFDR(p, q0) changes by O
(

1
n2

)
. The behaviour of ̂cFDRt is a little more

complex. If we define c+
t (p) and c−t (p) analogously to ̂cFDRt(p, q0), then for p > p∗,̂cFDRt(p, q0) shifts to c−t (p), and for p < p∗, it shifts to min(c+

t (p), c−t (p∗) (see example in
figure 10).

We can show that the absolute difference in ̂cFDRt(p, q0) is always less than the abso-

lute difference in ̂cFDR(p, q0) after adding (p∗, q∗). Denote these differences ∆ ̂cFDR(p, q0)

and ∆ ̂cFDRt(p, q0). Since ̂cFDRt(p, q0) always shifts to between c−t (p) and c+
t (p), it suf-

fices to show that

c+
t (p)− ̂cFDRt(p, q0) ≤ ∆ ̂cFDR(p, q0) (78)̂cFDRt(p, q0)− c−t (p) ≤ ∆ ̂cFDR(p, q0) (79)

Inequality (78) follows from the observation that c+(p) ∝ ̂cFDR(p, q0), so order relations

between ̂cFDR(p, q0) and c+(p, q0) are preserved. Thus

|∆ ̂cFDRt(p, q0)| = min
p′≥p

∆| ̂cFDR(p′, q0)| ≤ |∆ ̂cFDR(p′, q0)| (80)

Order relations are not preserved between ̂cFDR(p, q0) and c−(p), but the denominators

increment at the same values of p. The functions ̂cFDR(p, q0) and c−(p) both rise linearly

in p between successive increment points pa, pd of Fn(p, q0), with ̂cFDR(p, q0) having the
higher gradient, since

Fn(q)

Fn(p, q)
>

Fn(q) + 1

Fn(p, q) + 1
(81)

At pd, both functions are discontinuous and drop in value. On (pa, pd), the values of c−t (p)

and ̂cFDRt(p, q0) are either equal to c−(p), ̂cFDR(p, q0), or ‘censored’ at some values

c−(p′), ̂cFDR(p′, q0) with p′ > p (see the right-hand part of figure 10 for an example of

this). We note that c−(p) > c−(p′), p′ > p ⇒ ̂cFDR(p, q0) > ̂cFDR(p, q0), so the first
point at which c−t (p) is censored on (p1, p2) is further right than the first point at whicĥcFDRt(p, q0) is censored. Denote the leftmost point at which ̂cFDRt(p, q0) is censored as
pb and the leftmost point at which c−t (p) is censored as pc, so pa ≤ pb ≤ pc ≤ pd.

On (pa, pb), where neither are censored, ̂cFDR(p, q0) − c+(p) = ̂cFDRt(p, q0) − c−t (p)

and ∆ ̂cFDR(p, q0) = ∆ ̂cFDR(p, q0). On (pb, pc), when only ̂cFDRt(p, q0) is censored,̂cFDRt(p, q0)− c−t (p) = ̂cFDR(pb, q0)− c−(p) < ̂cFDR(p, q0)− c−(p), so ∆ ̂cFDR(p, q0) ≤
∆ ̂cFDR(p, q0). On (pc, pd), we have ̂cFDRt(p, q0) − c−t (p) = ̂cFDR(pb, q0) − c−(pc) ≤
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̂cFDR(pc, q0)− c−(pc) ≤ ̂cFDR(p, q0)− c−(p), so again, ∆ ̂cFDRt(p, q0) ≤ ∆ ̂cFDR(p, q0).
Thus, for all p,

|∆ ̂cFDRt(p, q0)| ≤ |∆ ̂cFDR(p, q0)| = O

(
1

n2

)
(82)

where the multiplicative factor in O(1/n2) is independent of q0. This inequality is demon-
strated in the right panel of figure 10.

Denote by lα the value of p at the intersection of an L-curve corresponding to ̂cFDRt(p, q) ≤
α with the line q = q0. We have lα = max{p : ̂cFDRt(p, q0) = α}. The value lα may shift
substantially when adding p∗, q∗, as shown in figure 10 However, the effect is small on
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Figure 10: Behaviour of ̂cFDR and ̂cFDRt on a line q = q0 after adding a point (p∗, q∗)
to a set of n points (n is considerably smaller in this example than in figure 9). In the left

panel, curves of ̂cFDR and ̂cFDRt before and after adding (p∗, q∗) are shown. Adding
(p∗, q∗) may have a substantial impact on the intersection of an L-curve with q = q0, such
as that in the horizontal line: the black and red points show the intersection points of
a curve before and after adding (p∗, q∗). However, the average effect across all curves is
limited to the integral of the difference between the black and red lines, which is O

(
1/n2

)
.

The right panel demonstrates that |∆ ̂cFDRt(p, q)| ≤ |∆ ̂cFDR(p, q)|.

average. The plot of the function l(α) before and after adding (p∗, q∗) is identical to the

plot of the function of p given by ̂cFDRt(p, q0) before and after adding (p∗, q∗) rotated by
π/2. The average difference in movement of lα is the integral of the difference in lα with
and without (p∗, q∗). However, this is simply the area between the two curves, which is
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invariant under rotating π/2. Hence∫ 1

0
∆lαdα =

∫ 1

0
∆ ̂cFDRt(p, q0)dp = O

(
1

n2

)
(83)

Denote the region L(α) : ̂cFDRt(p, q) ≤ α and the co-ordinates of its rightmost border
(L-curve) (q, lα(q)), q ∈ (0, 1). Then, denoting the indicator function by I

v(L(α)) =

∫ 1

0

∫ 1

0
I ((p, q) ∈ L(α)) f0(p, q)dp dq

=

∫ 1

0

∫ 1

0
I ((p, q) ∈ L(α)) f q0 (q)dp dq

=

∫ 1

0
f q0 (q)

∫ 1

0
I ((p, q) ∈ L(α)) dp dq

=

∫ 1

0
f q0 (q)lα(q)dq

(84)

and the average error in v-values v(L(α)) over α ∼ U(0, 1) is

Eα∼U(0,1)(|∆v(L(α))|) =

∫ 1

0
∆v (L(α)) dα

=

∫ 1

0

∫ 1

0
f q0 (q)∆lα(q)dq dα

=

∫ 1

0
f q0 (q)

∫ 1

0
∆lα(q) dαdq

= O

(
1

n2

)∫ 1

0
f q0 (q)dq

= O

(
1

n2

)
(85)

as required.

8.5 Asymptotic equivalence of PDF- and CDF- based L-regions

We show in this section that under a fairly common condition L-regions based on the PDF
of p, q are similar to L-regions based on the CDF. In this section, we generally work on the
Z-scale rather than the p-value scale for convenience.
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Denote a ‘fast-decreasing’ function as a function g such that for each ε1, ε2 > 0, there
exists δ such that for all X,Y of distance at least δ from the origin, we have∫∫

x≤X,y≤Y
(x−X)2+(y−Y )2≤ε21

g(x, y)dxdy > (1− ε2)

∫∫
x≤X,y≤Y

g(x, y)dxdy (86)

so for x ≤ X, y ≤ Y , the function g falls off rapidly enough as x, y decrease that we can
disregard its value except when it is close to X,Y .

We show the following:

Theorem 9. Denote c(x, y) = f0(x, y)/f(x, y) and C(x, y) = F0(x, y)/F (x, y). Given a
region of the (−,−) quadrant Aε = (−∞, 0] × (I1 − ε, I2 + ε) (where ε > 0 is arbitrarily
small), suppose that for x, y ∈ Aε and for sufficiently small α we have

1. f0 and f are fast-decreasing continuous positive functions

2. Along horizontal rays in A, c(x, y) satisfies ∂2 log (c(x, y)) /∂x2 > 0

3. The contour c(x, y) = α is continuous and bounded, and the rightmost bound increases
to ∞ as α→ 0

Then for each ε3 > 0, there exists an ε1 as above and an α1 such that whenever α < α1,
there is a contour of C(x, y) is never further than ε3 from the contour c(x, y) = α in the
region A0.

Proof. Set R3 as the region defined by the union of all circles of radius ε3 with centres on
points y, lα(y). Choose ε1 = ε3/2 (supposing that ε1 < ε), and define R1 similarly to R3

with radii ε1. Let α+ be the minimum value of f0/f on the rightmost border of R1, and
α− the maximum value on the leftmost border so α+ > α > α−.

Condition 2 implies that for fixed y

d

dx

(
c(x+ ε1, y)

c(x, y)

)
< 0 (87)

Since the horizontal distance between the rightmost border of R3 and the curve is at least
2ε1 and similarly from the leftmost border of R3, the values α+−α, α−α− must increase
for fixed ε1 as we move left. Thus, for some fixed ε2 > 0, choose δ2 large enough that
α+/α− > 1/(1− ε2)2 and larger than the δ corresponding to ε1, ε2 by assumption, and α1

large enough that the contour c(x, y) is entirely left of the line x = −δ2.
Let X,Y be a point in A0 to the right of R3, so a circle of radius ε1 centred at X,Y is

in Aε but does not intersect R1. Thus across such a circle, the value of c(x, y) is at least
α+. Similarly, across a circle of radius ε1 centred to the left of R3, the value of c(x, y) is
at most α−

45

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2020. ; https://doi.org/10.1101/414318doi: bioRxiv preprint 

https://doi.org/10.1101/414318
http://creativecommons.org/licenses/by-nc-nd/4.0/


For x, y to the right of R3, denote by H the circle of radius ε1 centred at x, y. Now by
the fast-decreasing property of f0 and f , we have

F0(x, y) >

∫
H
f0(x, y)dxdy > α+

∫
H
f(x, y)dxdy > α+(1− ε2)F (x, y) (88)

so C(x, y) > α+(1− ε2). Similarly for x, y to the left of R3, we have C(x, y) < α−/(1− ε2).
By our choice of α1, we have α+(1− ε2) > α−/(1− ε2), so any contour of C(x, y) at a level
between these values must pass within R3 through A0.

Contours of F0/F correspond to contours of cFDR, and contours of f0/f correspond
to contours of P (Hp

0 |P = p,Q = q). Theorem 8.5 has obvious analogies in other quadrants,
and for the p-value rather than z-score scale.

The conditions in the theorem may seem restrictive, but they are satisfied by many
distributions; for instance, when f0 and f are mixture Gaussian, and f dominates f0 as
|x| → ∞. Figure 11 shows the similarity of a range of shapes of contours of C and c.

46

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2020. ; https://doi.org/10.1101/414318doi: bioRxiv preprint 

https://doi.org/10.1101/414318
http://creativecommons.org/licenses/by-nc-nd/4.0/


0 2 4 6 8 10

0
5

10
15

0 2 4 6 8 10
0

5
10

15

0 2 4 6 8 10

0
5

10
15

0 2 4 6 8 10

0
5

10
15

Figure 11: These plots show contours of CDF- based and PDF-based L-regions for a
range of distributions of P,Q. Plots are on the Z-score scale (eg, rejection regions in
terms of ZP , ZQ). The distributions are parametrised in terms of the mixture-Gaussian
distribution detailed in supplementary material, section 9.4.1; parameters ((π0, π1, π2, τ1,
τ2, σ1, σ2)) were (0.7,0.1,0.1,2,3,1.5,1.5), (0.7,0.1,0.1,2,2,3,3), (0.99,0.0005,0.0003,2,3,4,3),
(0.7,0.1,0.05,3,2,2,2) respectively. Curves are generated passing through the points ZP , ZQ
= (3, 2..6), with curves further to the right corresponding to smaller α. As α gets smaller,
contours F0(x, y)/F (x, y) = α (black lines) become closer to contours of f0(x, y)/f(x, y) =
α (blue lines) under reasonably general circumstances
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Figure 12: Rejection regions for rejection procedure (9) under assumptions in section 8.2.
FDR is not controlled for either of the cFDR-based rejection regions. For reference, the
B-H procedure applied to the set of (p, q) pairs with q ≤ q0 would reject everything in the
dark gray rectangle, which includes all true positives, and this would control FDR at α.
The cFDR based rejection regions reject the same number of true-positives, but far more
false positives, so FDR control is lost.
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9 Supplementary material

9.1 TWAS details

TWAS test association of gene expression (a biologically interpretable quantity) with some
trait, when the trait and expression have not been measured on the same individuals,
by using a reference expression-quantitative trait locus (eQTL) study and genome-wide
association study (GWAS). A TWAS firstly uses eQTL data to learn rules to predict
mRNA expression levels in a given tissue according to individual genotype, then applies
these rules to predict expression for each individual in a GWAS, and finally compares these
predicted expression levels across the GWAS trait of interest [40].

The results from a TWAS are a set of p-values corresponding to tissue-gene pairs. The
object is to find which tissue-gene pairs are associated with the disease under consideration;
that is, which p-values come from a distribution other than U(0, 1). In general, such tissue-
gene pairs are a small proportion of all those considered. We consciously ignore any prior
information which could be derived from tissues likely to be BRCA or OCA associated, for
purposes of demonstration.

We considered TWAS datasets for breast cancer (BRCA, [41]) and ovarian cancer
(OCA, [42]), containing tests for varying numbers of genes across 54 tissues. BRCA and
OCA have considerable phenotypic overlap [43], and we may hope that summary statistics
for one disease may be useful for leverage in association analyses of the other. We consid-
ered RNA-tissue pairs available in both datasets, restricting our analysis only to pairs in
which RNA expression was predicted using data from the GTEx consortium, comprising a
total of n = 80222 hypotheses.

Given the GWAS-scale dimensionality of testing, we chose a conservative FDR control
level α = 1 × 10−6. We used both ̂cFDR and ̂cFDRn to generate v-values, and used the
block-out method with blocks assigned according to genes, so expression levels for each
gene were assigned a separate block (for 11327 folds in total).

9.2 Correlation of P,Q|Hp
0

Throughout this paper we have largely assumed that P ⊥⊥Q|Hp
0 , but methods can be easily

adapted as long as the distribution P ⊥⊥ Q|Hp
0 is known (or we are happy to assume it is

known). An example where this occurs is in the GWAS literature in which the studies
giving rise to pi and qi share samples (usually control samples), which induces a known
correlation between P and Q under Hp

0 .
This can generally be managed by using the true f0 (or an approximation allowing for

dependence of P,Q under Hp
0 ) in equation 19 in the main paper and accounting for the

true f0 in the computation of P (P ≤ p|Q ≤ q,Hp
0 ) necessary to estimate cFDR (equation 6

in main paper) where it is otherwise equal to p under assumption (1) in the main paper.
We demonstrate how to approximate P (P ≤ p|Q ≤ q,Hp

0 ) and f0 in the specific case
of shared controls in a previous paper [23].
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9.3 Simulations

9.4 Alternative cFDR estimators, and estimators of cfdr

In this section, we introduce new estimators of the cFDR P (Hp
0 |P ≤ p,Q ≤ q) and cfdr

P (Hp
0 |P = p,Q = q), for use in simulations as detailed in section 5 of the main paper.

The main incentive for different estimators of cFDR is the tendency for the ECDF based
estimator (equation (6) in the main paper) to have marked discontinuities at extremes of
the unit square. This is illustrated in figure 13. The main incentive for estimators of cfdr is
to allow comparison of PDF- and CDF- based estimators of the optimum rejection region
detailed in section 2.2 in the main paper.

9.4.1 Parametric estimators for cFDR and cfdr

The estimate ̂cFDR is based on empirical quantities estimated directly by empirical CDFs
of (P,Q). We consider here estimators based on approximating the joint distribution of
P,Q using a bivariate mixture-normal parametrisation. This estimator enforces continuity
of ̂cFDR on the open unit square, and is robust to small deviations in p-values, overcoming
the effect detailed in figure 13. It is easiest to visualise parametrisations as distributions
over the unsigned Z scores (Zp, Zq) =

(
−Φ−1(P/2),−Φ−1(Q/2)

)
with Φ−1(x) denoting the

standard normal quantile function at x.
We use a parametrisation with seven parameters: (π0, π1, π2, τ1, τ2, σ1, σ2), which

parametrise a four-part bivariate mixture-Gaussian distribution over the (+,+) quadrant
with PDF:

fp(x, y) = 4π0NΣ0(x, y)

+ 4π1NΣ1(x, y)

+ 4π2NΣ2(x, y)

+ 4(1− π0 − π1 − π2)NΣ3(x, y) (89)

where NΣ(x, y) is the PDF of the bivariate normal distribution centred at the origin with
variance Σ, the factor of 4 is due to to only unsigned Z-scores being used, and

Σ0 = I2 Σ1 =

(
τ2

1 0
0 1

)
Σ2 =

(
1 0
0 σ2

1

)
Σ3 =

(
τ2

2 0
0 σ2

2

)
(90)

This model specifies a proportion π1 of study variables to be associated only with the trait
of interest P (with SD(ZP ) = τ1), a proportion π2 to be associated only with the second
trait Q (with SD(ZQ) = σ1), and a proportion (1 − π0 − π1 − π2) to be associated with
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Figure 13: Dependence of ̂cFDR values on location of nearby points. In this example,
we denote by (p1, q1), (p2, q2) the points at the (unique) left and lower extremes of the
observed p-value distribution respectively; that is, p1 = min(pi), q2 = min(qi). We set NQ

as the number of points with q1 ≤ qi ≤ q2 (small black points). If we add a test point
(p′, q′) (shown in red) in a small neighbourhood of either (p1, q1) or (p2, q2), the estimated̂cFDRS+(p′,q′)(p

′, q′) (shown in red next to the point) differs by a factor of 2 in different
quadrants of the neighbourhood.
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both (V ar(ZP , ZQ) = Σ3). We can now write:

fp0 (x, y) = f(ZP = x, ZQ = y|Hp
0 )

= 4
π0

π0 + π2
NΣ0(x, y)

+ 4
π2

π0 + π2
NΣ2(x, y) (91)

We allow different values of σ1, σ2 and τ1, τ2 to allow for potentially different reasons for
shared (both P and Q) and independent (P XOR Q) associations.

Maximum-likelihood estimates of parameters (π0, π1, π2, τ1, τ2, σ1, σ2) can be obtained

using an E-M algorithm [46]. Given these and corresponding estimates f̂p, f̂p0 of fp, fp0
and F̂ p, F̂ p0 of F p, F p0 we can then define an estimate of cFDR (implicitly conditioning on
parametric assumptions):

̂cFDRpX(p, q) =
P (P ≤ p|Q ≤ q,Hp

0 )

P (P ≤ p|Q ≤ q)
P (Hp

0 |Q ≤ q)

=
F̂ p0 (−zp,−zq)
F̂ p(−zp,−zq)

F̂ p(−zp,−∞)

F̂ p0 (−zp,−∞)
P (Hp

0 |Q ≤ q) (92)

The quantity P (Hp
0 |Q ≤ q) may be estimated up to directly from parametric assumptions

as

P (Hp
0 |Q ≤ q) =

P (Q ≤ q|HP
0 )

P (Q ≤ q
P (Hp

0 )

∝ F̂ p0 (−zp,−∞)

F̂ p(−zp,−∞)
(93)

or may be estimated on the basis of the empirical CDF of Q|P > 1/2 as per equation 7 in

the main paper. We found that the performance of ̂cFDRp was stronger when using the
empirical estimate in equation 7 than the parametric estimate in equation 93 (figure 14)

The local cfdr can be readily estimated as

ĉfdr
p

X(p, q) =
f(ZP = zp, ZQ = zq|Hp

0 )

f(ZP = zp, ZQ = zq)
P (Hp

0 )

∝
f̂p0 (zP , zQ)

f̂p(zP , zQ)
(94)

where X in this case is the set of points used in the estimation of parameters.
We note that estimator 92 implicitly includes an estimate of P̂ rX(Hp

0 |Q ≤ q), computed
from parameter estimates. However, we found that performance of the estimator was
improved when equation 7
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Figure 14: Performance (TDR) of parametric cFDR estimator against np1 + npq1 , using
either a parametric (‘Par. adj’) or empirical (‘Emp. adj’) estimate of Pr(HP

0 |Q ≤ q),
and separating cases where parametric assumptions hold (‘par. hold’) or do not hold
(‘par. not hold’). See section 5 for further details. Shaded regions show 95% pointwise
confidence envelopes. The empirical estimate leads to better performance when parametric
assumptions are not satisfied, and equivocal performance when they are.

9.4.2 KDE-based estimators for cFDR and cfdr

To avoid distributional assumptions while maintaining a smooth form for the density of
P,Q, a second estimator of P (P ≤ p|Q ≤ q) can be derived from a two-dimensional kernel
density estimator (KDE). We had no reason to prefer any kernel function over another, so
opted to use a normal kernel with constant variance I2. The PDF corresponding to Zp, Zq
at x, y was modelled in the usual way as

fk(x, y) =
1

n

∑
i

1

σpσq
φ

√(x− {−Φ−1(pi/2)}
σp

)2

+

(
y − {−Φ−1(qi/2)}

σq

)2
 (95)

where φ(.) is the standard normal density. Values σp and σq are determined using a
standard method based on the observations pi, qi ∈ X [47].

Unlike the parametric estimate above, this does not intrinsically specify the density of
P,Q|Hp

0 . We thus incorporate the estimator P̂ rX(Hp
0 |Q ≤ q) from equation 7 in the main
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paper, and write (implicitly conditioning on correctness of approximations)

̂cFDRkX(p, q) =
P (P ≤ p|Q ≤ q,Hp

0 )

P (P ≤ p|Q ≤ q)
P (Hp

0 |Q ≤ q)

=
pP (Q ≤ q)

P (P ≤ p,Q ≤ q)
P (Hp

0 |Q ≤ q)

=
p
∫∞
zq

∫∞
0 fk(x, y)dxdy∫∞

zq

∫∞
zp
fk(x, y)dxdy

P̂ rX(Hp
0 |Q ≤ q) (96)

where X is the set of points used in the KDE in equation 95. We note that this estimator
converges to ̂cFDRn as σp, σq → 0.

Estimating local cfdr using KDEs requires estimation of f(ZP = zp, ZQ = zq|Hp
0 ).

We use assumption 1 from the main paper, and as for equation 7 in the main paper we
assume that Q|Hp

0 ∼ Q|P > 1/2. We then fit a one-dimensional KDE to the values

zqi |pi > 1/2, and denote the resultant function of q as f̂k0 (q). We then write (conditioning
on assumptions)

f̂0(p, q) = pf̂k0 (q)

ĉfdr
k
(p, q) =

f(P = p,Q = q|Hp
0

f(P = p,Q = q)

=
f̂0(p, q)

fk(zp, zq)
(97)

9.5 Analysis of cFDR estimators

We required that all estimators be nonincreasing in p, so all were censored when generating
L-curves or designing rejection procedures in the same way as in 9 and 16 for ̂cFDR in the
main paper.

We show in figures 15, 16, 17 a series of plots at different values of n which in-
dicate the behaviour of L-curves as n increases. In all cases, P,Q are sampled under
the parametric assumptions in supplementary section 9.4.1, with (π0, π1, π2, τ1, τ2, σ1,
σ2) = (0.7, 0.1, 0.15, 1.5, 2, 1.5, 2). Curves are drawn through (0.1, 0.1), which would gen-
erally corresponds to a very high FDR level, so oracle PDF and oracle CDF curves are
markedly different.

Importantly, ĉfdr
p

and ĉfdr
k

converge to the optimal rejection region (oracle PDF)

while ̂cFDR, ̂cFDRp and ̂cFDRk do not. However, the estimates of the latter are less
noisy.
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Figure 15: L-curves using various methods for cFDR estimation; n=1000. CDFs on left,
PDFs on right.
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Figure 16: L-curves using various methods for cFDR estimation; n=10000. CDFs on left,
PDFs on right.
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Figure 17: L-curves using various methods for cFDR estimation; n=100000. CDFs on left,
PDFs on right.

61

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2020. ; https://doi.org/10.1101/414318doi: bioRxiv preprint 

https://doi.org/10.1101/414318
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 Supplementary figures

62

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2020. ; https://doi.org/10.1101/414318doi: bioRxiv preprint 

https://doi.org/10.1101/414318
http://creativecommons.org/licenses/by-nc-nd/4.0/


0 2 4 6 8

0
2

4
6

8

Rej. reg: cFDR−based, OCA|BRCA

zOCA

z B
R

C
A

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●
●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●
● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● Obs. Z scores
H0 rejected
Rej. reg. border

Figure 18: Association analysis of OCA using test statistics for BRCA as covariates. Vari-
ables and methods are similar to panel C in figure 1 in the main paper.
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Figure 19: FDR control of various methods against np1 + npq1 , the total number of vari-
ables associated with P (the primary study under consideration). The horizontal line
shows α = 0.01, the desired FDR control level. Simulations in the left panel integrate
L-regions over the the true distribution f0; simulations in the right panel integrate over
the estimated distribution as per equation (33). Shaded regions indicate 95% confidence
envelopes. Curves show moving weighted averages using a Gaussian kernel with SD 15%
of the X axis range. Lines on the left indicate FDR control with np1 + npq1 = 0.
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Figure 20: TDR of various methods against np1 + npq1 , the total number of variables asso-
ciated with P (the primary study under consideration), at FDR control level α = 0.01.
Shaded areas show 95% pointwise confidence envelopes. Curves show moving weighted
averages using a Gaussian kernel with SD 15% of the X axis range.
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Figure 21: TDR of various methods against np1 +npq1 , the total number of variables associ-
ated with P (the primary study under consideration), restricting to simulations in which
parametric assumptions were satisfied (left panel) or were not satisfied (right panel), at
FDR control level α = 0.01. Curves show moving weighted averages using a Gaussian
kernel with SD 3/10 of the X axis range.
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Figure 22: TDR of PDF-based methods against np1 + npq1 , the total number of variables
associated with P (the primary study under consideration), controlling FDR at α = 0.01.
In the left panel, parametric assumptions were satisfied (ie d = 1 in table 1) and in the right
panel, they are not (d = 2, 3). Shaded regions show pointwise 95% confidence intervals.
Curves show moving weighted averages using a Gaussian kernel with SD 15% of the X axis
range.
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Figure 23: FDR (left) and TDR (right) of FDR-controlling methods leave-out-block (equa-

tion 26) and leave-one-out (equation 25) applied to ̂cFDRn, and the BH procedure applied
to p-values, under several models of correlation between observations (ρ = 0.1). Confidence
envelopes are omitted for visual clarity. Vertical lines show FDR with 95% confidence in-
tervals at np1 + npq1 = 0. Curves show moving weighted averages using a Gaussian kernel
with SD 15% of the X axis range.
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Figure 24: Difference in TDR between ̂cFDRn (assessed by leave-one-out v-values) and
p-values, controlling FDR at α = 0.01, against npq1 /(n

pq
1 + np1) (proportion of non-null

hypotheses for P which are shared with Q). The performance of the oracle CDF method is
shown for comparison. Shaded areas show pointwise 95% confidence intervals. Points and
lines at the leftmost edge show TDR values and 95% confidence intervals when npq1 /(n

pq
1 +

np1) = 0. Curves show moving weighted averages using a Gaussian kernel with SD 15% of
the X axis range.
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11 Supplementary tables

Description n np1 nq1 npq1 sp sq d ρ

Reference 5000 100 100 100 2 2 2
No effects 5000 0 0 0 2 2 2
Weak effects 5000 100 100 100 1.5 1.5 1
Large variance in effect sizes 5000 100 100 100 3 3 3
Larger n 10000 100 100 100 2 2 2
Smaller n 1000 100 100 100 2 2 2
No non-null shared hypotheses 5000 150 150 0 2 2 2
All non-null hypotheses shared 5000 0 0 200 2 2 2
Negative information 5000 2000 2000 0 2 2 2
Block correlation 5000 100 100 100 2 2 2 0.05
Equicorrelation 5000 100 100 100 2 2 2 0.05

Description FDR(P) TDR(P)

Reference 0.096 (0.0929,0.099) 0.194 (0.192,0.196)
No effects 0.0881 (0.0704,0.106)
Weak effects 0.1 (0.0868,0.113) 0.00803 (0.00748,0.00857)
Large variance in effect sizes 0.0956 (0.0938,0.0975) 0.493 (0.491,0.496)
Larger n 0.1 (0.0971,0.103) 0.173 (0.171,0.175)
Smaller n 0.08 (0.0777,0.0824) 0.26 (0.258,0.263)
No non-null shared hypotheses 0.0991 (0.0956,0.103) 0.188 (0.185,0.19)
All non-null hypotheses shared 0.0982 (0.0952,0.101) 0.195 (0.193,0.197)
Negative information 0.0595 (0.0587,0.0604) 0.302 (0.301,0.303)
Block correlation 0.0961 (0.0925,0.0997) 0.2 (0.194,0.206)
Equicorrelation 0.0987 (0.093,0.104) 0.191 (0.182,0.2)

See continuation on following page
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Description FDR(cFDR) TDR(cFDR)

Reference 0.0955 (0.0926,0.0984) 0.208 (0.206,0.21)
No effects 0.0973 (0.0788,0.116)
Weak effects 0.0814 (0.0695,0.0934) 0.00795 (0.00742,0.00849)
Large variance in effect sizes 0.0957 (0.0939,0.0975) 0.517 (0.514,0.519)
Larger n 0.0995 (0.0964,0.103) 0.189 (0.187,0.191)
Smaller n 0.0795 (0.0772,0.0818) 0.265 (0.263,0.268)
No non-null shared hypotheses 0.102 (0.0979,0.105) 0.178 (0.175,0.18)
All non-null hypotheses shared 0.0963 (0.0939,0.0987) 0.26 (0.258,0.263)
Negative information 0.0585 (0.0576,0.0593) 0.314 (0.312,0.315)
Block correlation 0.0974 (0.0939,0.101) 0.213 (0.207,0.219)
Equicorrelation 0.0897 (0.0843,0.095) 0.205 (0.196,0.215)

Description FDR(oracle) TDR(oracle)

Reference 0.0953 (0.0925,0.0982) 0.212 (0.21,0.214)
No effects 1 (1,1)
Weak effects 0.0873 (0.0752,0.0994) 0.00904 (0.00846,0.00962)
Large variance in effect sizes 0.0945 (0.0927,0.0963) 0.527 (0.524,0.529)
Larger n 0.0997 (0.0966,0.103) 0.193 (0.191,0.195)
Smaller n 0.0787 (0.0765,0.0809) 0.269 (0.266,0.271)
No non-null shared hypotheses 0.0975 (0.094,0.101) 0.187 (0.185,0.19)
All non-null hypotheses shared 0.0805 (0.0783,0.0826) 0.309 (0.307,0.312)
Negative information 0.058 (0.0572,0.0588) 0.319 (0.318,0.32)
Block correlation 0.0933 (0.0901,0.0965) 0.217 (0.211,0.223)
Equicorrelation 0.0955 (0.0905,0.101) 0.209 (0.2,0.218)

Table 3: FDR and TDR of p-value, ̂cFDRn, and oracle cfdr (best possible procedure) using
leave-one-out v-values (equation 25) for a range of simulation parameters, controlling FDR
at α = 0.1. Cells show mean and 95% confidence interval. TDR is undefined if np1+npq1 = 0.
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