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Abstract: 

Social symptoms of autism spectrum disorder (ASD) are typically viewed as consequences of 

an impaired Theory of Mind, i.e. the ability to understand others' covert mental states. Here, 

we test the assumption that such "mind blindness" may be due to the inability to exploit 

contextual knowledge about, e.g., the stakes of social interactions, to make sense of 

otherwise ambiguous cues (e.g., idiosyncratic responses to social competition). In this view, 

social cognition in ASD may simply reduce to non-social cognition, i.e. cognition that is not 

informed by the social context. We compared 24 adult participants with ASD to 24 

neurotypic participants in a repeated dyadic competitive game against artificial agents with 

calibrated mentalizing sophistication. Critically, participants were framed to believe that 

they were competing against humans (social framing) or not (non-social framing), hence the 

"reverse Turing test". In contrast to control participants, the strategy of people with ASD is 

insensitive to the game's framing, i.e. they do not constrain their understanding of others' 

behaviour with the contextual knowledge about the game (cf. competitive social framing). 

They also outperform controls when playing against simple agents, but are outperformed by 

them against recursive algorithms framed as human opponents. Moreover, computational 

analyses of trial-by-trial choice sequences in the game show that individuals with ASD rely on 

a distinctive cognitive strategy with subnormal flexibility and mentalizing sophistication. 

These computational phenotypes yield 79% diagnosis classification accuracy and explain 62% 

of the severity of social symptoms in people with ASD.  

 

 

  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 11, 2018. ; https://doi.org/10.1101/414540doi: bioRxiv preprint 

https://doi.org/10.1101/414540
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

 

Introduction 

The diagnosis of autism spectrum disorders or ASD is based on alterations in two cognitive 

domains [1]: reciprocal social interaction (social deficits) and flexibility of behaviour (non-

social deficits). Although one of the most heritable neurodevelopmental conditions [2,3], 

there is a remarkably small overlap between the genes that are associated with the distinct 

ASD-like behavioural traits in the general population [4]. This may explain ASD's high clinical 

heterogeneity [5], and eventually challenge the relevance of research agendas aimed at 

identifying a unique aetiology for both social and non-social deficits in ASD [6]. Somewhat 

paradoxically, this also highlights the importance of forging social and non-social 

neurocognitive theories, which can bridge the gap between biological and clinical 

observations in ASD [7,8]. This work is a step forward in this direction. 

One of the most influential theories about ASD social deficits asserts that these are 

eventually due to an underlying impairment in Theory of Mind or ToM [9,10], i.e. the ability 

to understand others' covert mental states. This has been repeatedly evidenced in children 

using tests of ToM, e.g., false belief understanding [11–13], sarcasm/irony detection [14,15] 

or moral evaluation [16,17]. However, these tests yield quite unreliable results in older 

individuals. For example, high-functioning ASD adolescents and adults successfully pass 

false-belief [18] or facial emotion recognition [19] tests. Further refinements of the "mind 

blindness" theory of ASD thus suggest that although adults with ASD may succeed in simple 

mindreading tasks when explicitly instructed to mentalize, they lack some form of implicit 

and spontaneous ToM [20–22]. Alternatively, one may argue that social deficits in adults 

with ASD may only become apparent when the task mirrors the demands of ecological social 

exchanges, which critically rely on highly contextual and interactive signalling [8,23]. This is 
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because social deficits in ASD may be less about inaccurate processing of "socially-salient" 

stimuli (e.g., facial expressions, speech prosody, etc...), than about the inability to exploit 

contextual knowledge about, e.g., the stakes of social interactions, to make sense of 

otherwise ambiguous cues (e.g., idiosyncratic responses to social competition). In this view, 

social cognition in ASD may simply reduce to non-social cognition, i.e. cognition that is not 

informed or constrained by the social context.  

Recent advances in artificial social cognition [24–26] now enable us to mimic the way human 

players adapt to others in the context of simple repeated dyadic games. Rather than asking 

whether this type of algorithm passes the Turing test [27], we ask whether believing it is 

human or not changes the way people interact with it. The nature of such "reverse Turing 

test" will be clearer below (see Figure A0 in the Supplementary Text S1). We start with the 

premise that social interactions induce a specific evolutionary challenge, namely: forecasting 

others' overt behaviour from learned associations with predictive cues, including past 

behaviour [28,29]. Critical here is the notion that people may engage with others equipped 

with a cognitive repertoire composed of many learning strategies, each of which may be tied 

to distinct representations and/or policies. Arguably, somewhere at the end of the spectrum 

lie ToM-related learning strategies that derive from adopting the intentional stance [26,30–

32], whose sophistication increases with the depth of recursive beliefs (as in "I believe that 

you believe that I believe..."). Nevertheless, learning in social contexts can take less 

sophisticated forms, ranging from simple heuristics, to trial-and-error learning, to cognitive 

shortcuts of ToM that simply care about others' overt reaction to one's own actions [33]. The 

ability to compliantly draw learning strategies from one's cognitive repertoire is what we 

term flexibility. Importantly, mathematical modelling can be used to turn a given learning 

strategy into a learning rule (i.e. the precise way in which agents adapt to the history of past 
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actions and outcomes). In appropriate experimental contexts (e.g., dyadic games), this 

endows learning strategies with a specific behavioural signature that can be disclosed from 

quantitative analyses of trial-by-trial choice sequences [26]. One can then measure and 

compare the computational properties of people's learning repertoire, in particular: its ToM-

sophistication and its flexibility. In what follows, were refer to these as "computational 

phenotypes" of social cognition. We then ask whether people with and without ASD differ 

with respect to these computational phenotypes, which we infer from observed trial-by-trial 

choices in dyadic interactive games against artificial players. Critically, participants are not 

told about the algorithmic nature of their opponents. Rather, we have them believe either 

that they are competing against each other (social framing) or that they are gambling like in 

a casino (non-social framing). We focus on peoples' ability to alter their behavioural strategy 

as a function of whether or not they think they are competing against someone, hence the 

"reverse Turing test". We predict that, in contrast to control participants, adults with ASD 

would not be able to constrain their understanding of others' behaviour with the contextual 

knowledge about the game (cf. competitive social framing), hence failing our "reverse Turing 

test". 

 

Results 

We asked 24 adult participants with ASD and 24 control participants to play repeated games 

against artificial "mentalizing" opponents, which differ in their ToM sophistication 

(hereafter: k-ToM agents, see below). In total, each participant played 4x2x2=16 games (4 

opponent types, 2 framing conditions, 2 repetitions), where each game consisted in 60 

successive trials. To succeed, subjects had to anticipate and predict the behaviour of their 
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opponent, who hid himself in one out of two possible locations at each trial (see Figure 1 

below). 

Opponents either followed a predetermined pseudo-random sequence with a 65% bias for 

one hand (RB), or were designed to deceive the participants from learned anticipations of 

their behaviour (0-ToM, 1-ToM and 2-ToM). The difference between k-ToM opponents lies in 

how they learn from the past history of participants’ actions, where k refers to their 

calibrated ToM sophistication. In brief, 0-ToM does not try to interpret the participants' 

action sequence in terms of a strategic attempt to win. Rather, it simply assumes that abrupt 

changes in the participants' behaviour are a priori unlikely. It thus tracks the evolving 

frequency of participants’ actions, and chooses to hide the reward where it predicts the 

opponent will not seek. It is an extension of “fictitious play” learning [34], which can exploit 

participants' tendency to repeat their recent actions. In contrast, 1-ToM is equipped with 

(limited) artificial mentalizing, i.e. it attributes simple beliefs and desires to participants. 

More precisely, it assumes that participants’ actions originate from the strategic response of 

a 0-ToM agent that attempts to predict its own actions. Note that the computational 

sophistication of artificial mentalizing is not trivial, since 1-ToM has to explicitly represent 

and update its (recursive) belief about its opponents' beliefs. Practically speaking, 1-ToM 

learning essentially consists in an on-line estimation of 0-ToM’s parameters (e.g., learning 

rate and behavioural temperature) given the past history of both players’ actions. This 

makes 1-ToM a so-called “meta-Bayesian” agent [26,35] that can outwit strategic opponents 

that do not mentalize when competing in the game (such as 0-ToM). Although 1-ToM is 

mentalizing, it is not capable of dealing with other mentalizing agents. This is the critical 

difference between 1-ToM and 2-ToM. At this point, suffices to say that 2-ToM is an artificial 
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mentalizing agent that can learn to predict how other mentalizing agents (such as 1-ToM) 

will behave.  

Critically, participants were not cued about opponent conditions. This implies that they had 

to adapt their behaviour according to their understanding of the history of past actions and 

outcomes. In addition, except in the control (RB) condition, there is no possibility to learn 

the correct answer from simple reinforcement. This is because k-ToM artificial learners 

exhibit no systematic bias in their response. Further details regarding the experimental 

protocol as well as k-ToM artificial agents can be found in the Methods section below. 

Figure 2 below summarizes the performance results, in terms of the net rate of correct 

answers in each of 4x2 conditions, for both (control and ASD) groups. 

One can see that the performance patterns are markedly different between NT and ASD 

participants. To begin with, the performance of NT participants qualitatively reproduces 

previous experiments with healthy human adults [26]. In brief, in the non-social framing 

condition, NT participants eventually lose against artificial mentalizing agents (1-ToM and 2-

ToM) whereas they maintain their earnings in the social framing condition. The ASD group 

however, seems to show no effect of the framing manipulation, i.e. their performance 

pattern across opponents is the same, irrespective of whether they believe that they are 

competing against other people or not. Interestingly, they seem to lose against artificial 

mentalizing agents (as NT controls in the non-social framing condition), but they outperform 

NT controls against non-mentalizing learning agents (0-ToM). We performed a pooled 

variance ANOVA to assess the statistical significance of these observations. We found a 

significant three-way interaction between group (ASD vs NT), opponent and framing 

(F[3,690]=3.6, p=0.014, R2=1.5%), a significant interaction between group and opponent 
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(F[3,690]=9.5, p<10-4, R2=4.0%) and a main effect of opponent (F[3,690]=33.7, p<10-4, 

R2=12.8%). We then looked more closely at the three-way interaction using post-hoc tests. In 

the NT group, there was a main effect of opponent (F=4.5, p=0.004), no main effect of 

framing (F=2.6, p=0.11) but a significant interaction opponent x framing (F=3.7, p=0.011). In 

the ASD group, there was a main effect of opponent (F=38.7, p<10-4) but no main effect of 

framing (F=0.5, p=0.46) nor interaction (F=1.3, p=0.27). In other terms, only NT participants 

show the opponent x framing interaction. This is due to the fact that NT participants perform 

better in the social than in the non-social framing only against artificial mentalizing agents 

(p<10-4). Now focusing on performances against artificial mentalizing agents, there was a 

significant interaction between group and framing (p=0.001). This is because against 1-ToM 

and 2-ToM, NT participants perform significantly better than ASD people against artificial 

mentalizing agents in the social framing (p<10-4) but not in the non-social framing (p=0.65). 

Besides, ASD participants perform significantly better than NT participants against 0-ToM 

(p<10-4), and this effect does not depend upon the game's framing (p=0.46). 

At this point, we asked whether we could classify ASD and NT participants based upon their 

performance patterns in the task. Averaging performances over repetitions yielded a feature 

space of 8 dimensions (4 opponent types, 2 framings), which was then fed to a classifier 

based upon logistic regression [36]. Test classification accuracy was evaluated using a simple 

leave-one-out cross-validation scheme. The classifier achieved 73% of correct out-of-sample 

classifications, which is statistically better than chance (p=0.001). This will serve as a 

reference point for evaluating the added-value of computational phenotypes. 
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One of the main differences between NT and ASD participants is thus that the latter seem to 

be insensitive to the framing manipulation. This interpretation, however, neglects the 

possibility that distinct leaning strategies may eventually yield similar performances in the 

game. In other terms, performance measures are potentially blind to learning strategies, 

which can only be inferred from analyses of trial-by-trial action sequences in the game. We 

thus considered a set of eight distinct learning models that constitute peoples' potential 

learning repertoire. Each of these learning models provides a probabilistic prediction of 

observed peoples' trial-by-trial choice sequences. We then performed a subject-specific 

bayesian model comparison of these models, and evaluated both the flexibility - f̂ - and the 

ToM-sophistication - k̂ - of peoples' learning repertoires. In what follows, we refer to these as 

peoples' "computational phenotypes". We refer the interested reader to the Methods 

section. 

We first asked whether control and ASD participants would show differences in their 

repertoire's ToM-sophistication. Figure 3 below shows the repertoire's ToM-sophistication k̂  

averaged across repetitions, across opponent conditions and across participants, for each 

group and for both framing conditions. 

A simple ANOVA shows no evidence for an interaction between group and framing 

(F[1,46]=0.6, p=0.42, R2=1.4%), no main effect of framing (F[1,46]=1.8, p=0.18, R2=3.8%), but 

a significant group effect (t[46]=1.9, p=0.03, R2=7.3%). Post-hoc tests show that this group 

difference is mostly driven by the social framing condition: whereas there is no significant 

difference between the groups in the non-social condition (t[46]=1.1, p=0.13, R2=2.7%), 

there is a strong group difference in the social framing condition (t[46]=1.9, p=0.03, 
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R2=7.5%). In other words, only in the social framing do control participants exhibit higher 

ToM-sophistication than ASD participants. 

We then investigated whether control and ASD participants show differences in their 

repertoire's flexibility. Figure 4 below shows the repertoire's flexibility f̂ , both across 

framings and across repetitions. 

Here again, there is no significant interaction between group and condition type 

(F[1,46]=0.55, p=0.46, R2=1.2%), but there is a significant main effect of condition type 

(F[1,46]=5.54, p=0.02, R2=10.7%) and a main effect of group (t[46]=3.4, p=0.001, R2=20.4). 

Post-hoc tests show that this group difference in repertoire's flexibility is strong both across 

framings (t[46]=3.4, p=0.001, R2=20.7%) and across repetitions (t[46]=2.8, p=0.004, 

R2=14.4%). Also, ASD participants show no difference in repertoire's flexibility when 

considered across framings or across conditions (p=0.26). This contrasts with control 

participants, who exhibit a significantly greater repertoire's flexibility across framings than 

across repetitions (p=0.03).  

If only, this computational analysis confirms that ASD participants are relatively insensitive to 

the game's framing. But do these computational phenotypes provide clinically useful 

information, above and beyond performance scores? We address this question by assessing 

the accuracy of a diagnosis classifier relying upon peoples' flexibility f̂  and ToM-

sophistication k̂ . To begin with, we classified participants based upon computational 

phenotypes alone. The classifier only reached 67% of correct out-of-sample classifications. 

This is statistically significant (p=0.014), but worse than classification accuracy based upon 

performance patterns alone. However, when pooling performance patterns and 

computational phenotypes together, the classifier now yielded 79% of correct out-of-sample 
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classifications (p<10-4). This is important, since it means that computational phenotypes 

bring additional, diagnosis-relevant, information. 

Finally, we asked whether we could predict, from estimated computational phenotypes, 

inter-individual variations in symptom severity among ASD participants. More precisely, we 

focused on the 'social' and ‘stereotyped behavior’ subscores of the ADOS scale, which 

quantify social and non-social deficits, respectively. We found that inter-individual 

differences in computational phenotypes predict social deficits with high accuracy 

(F[4,15]=6.1, p=0.004, R2=62.1%) but not non-social deficits (F[4,15]=1.5, p=0.25, R2=28.8%). 

 

Discussion 

In this work, we have performed a matched comparison of social and non-social 

behavioural adaptation in individuals with and without autism. In contrast to typically 

developed individuals, individuals with ASD do not change the way they play according to 

whether or not they believe they are competing with other humans. Typical individuals 

outperform people with ASD only when they think they are competing with another human 

being (and while playing against learning algorithms equipped with artificial mentalizing). 

However, people with ASD outperform typical individuals against non-mentalizing learning 

algorithms, irrespective of the task framing (social and non-social). The learning repertoire of 

individuals with ASD exhibits less flexibility and less ToM-sophistication, especially when the 

task is framed as a social game. Taken together, performance patterns and computational 

phenotypes correctly classify up to 79% of the participants according to their diagnosis. In 

addition, computational phenotypes predict 62% of the variance of the severity of social 

symptoms in ASD people. 
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Maybe the most striking result of our work is that people with ASD fail our "reverse 

Turing test", in the sense that their cognitive strategy is insensitive to the game's framing. 

Recall that we demonstrated this in four different ways: (i) ASD participants show no 

difference between performance or ToM-sophistication scores between framing conditions 

(cf. Fig. 2), (ii) performance variations induced by opponent types in different framing 

conditions are significantly correlated (see section 4 in Supplementary Text S1), (iii) model-

free decompositions of their trial-by-trial choice sequences show no effect of framing (see 

section 5 in Supplementary Text S1), and (iv) their learning repertoire exhibits very low 

flexibility across framing conditions (cf. Fig. 4). Importantly, participants' debriefing showed 

that the framing manipulation was similarly credible in both groups of subjects (see section 2 

in Supplementary Text S1). In line with social motivational theories of autism [37], one may 

argue that, in contrast to control participants, ASD participants may not have been 

interested enough to invest the cognitive effort required for improving their performance in 

the social framing condition. Such global motivational and/or attentional interpretations are 

unlikely however, because ASD participants actually outperform controls against 0-ToM in 

the social framing condition. In addition, financial incentive manipulations have no effect on 

performance in the game (see section 3 in Supplementary Text S1). In any case, our 

computational results rather suggest that people with ASD rely on a very limited learning 

repertoire, which they deem reliable in both social and non-social contexts. It is interesting 

to note that the model that best captures trial-by-trial choice sequences of ASD players, in 

both framing conditions, is the so-called "influence learning" strategy [33]. From a 

computational standpoint, this model possesses broad adaptive fitness because it essentially 

is a generic way of learning in reactive environments (i.e. environments that react to one's 

actions). In other words, influence learning can be seen as an all-purpose cognitive toolkit 
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that would be expected to perform well in a wide range of contexts, excluding challenging 

social interactions (cf. pattern of performances against RB, 0-ToM, 1-ToM and 2-ToM in 

section 9 in the Supplementary Text S1). Obviously, our experimental claim does not go as 

far as to assert that the cognitive repertoire of ASD people is generally limited to influence 

learning. Nevertheless, it provides a remarkable example of how people in the autism 

spectrum may solve the unavoidable trade-off between behavioural adaptability and 

cognitive complexity. 

This type of trade-off is arguably steepest in ecological social contexts. Not only may 

subtle signals (e.g., facial expressions, speech prosody, etc...) reflect profoundly different 

mental states, but the stakes of typical social exchanges may be dynamic, partially implicit, 

multiple and even conflicting (e.g., impose a deal and induce sympathy). This implies that 

flexibility may be a critical feature of typical social cognition [38]. In this work, we provide 

two independent pieces of evidence in favour of this notion. First, in the ASD group, the 

severity of social symptoms is partially predicted by our measure of repertoire flexibility. 

Second, in the NT group, flexibility (between repetitions) is significantly higher in the social 

than in the non-social framing condition (see section 7 in Supplementary Text S1). On the 

one hand, these results contribute to the ongoing debate regarding the specificity of social 

cognition [23,39]. In brief, social cognition is special, if only because its flexibility is enhanced 

(notwithstanding its sophistication). On the other hand, they also bridge a gap between 

social and non-social theories of ASD. Recall that the latter typically take weak context-

sensitivity as a feature of ASD cognition [40,41]. Importantly, our results tend to support the 

view that social deficits in ASD may be but a limiting case of the failure to account for the 

social context when drawing inferences about others. 
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Methods 

Ethics statement 

Behavioural assessments were performed in accordance with institutional ethical guidelines, 

which comply with the guidelines of the declaration of Helsinki. The research protocol was 

approved by the Ethical Committee of the Hôpital Rivière-des-Prairies, Montréal, where the 

tests were performed. 

Experimental methods 

Participants: n=24 adults with ASD without mental nor language deficiency and n=24 NT 

control subjects participated in the study. All subjects were French speakers (Québec), and 

both groups were matched in terms of gender balance (ASD: 21 males, NT: 21 males), age 

(ASD: 25.5 y.o. ± 5.7; NT: 27.9 y.o. ± 8.6) and IQ (ASD: 104 ± 17; NT: 106 ± 14). ASD 

participants were assessed with ADOS-G and met DSM-5 criteria for ASD. NT participants 

went through a semi-structured interview to screen for any psychiatric treatment history, 

learning disorders, personal or family history (2 degrees) for mood disorder, ASD or 

schizophrenia. No included participant reported strong depressive symptoms (Beck 

depression Inventory score<20). All participants gave their informed consent, were fully 

debriefed at the end of the experiment, and received a financial compensation for their 

participation. 

The behavioural task consists of a computerized game (60 trials each) with two framing 

conditions. In the social condition, the task was framed as an online competitive game with 

another participant. In the non-social condition, it was framed as a betting -casino-like- 
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game. In fact, both games were played against four different learning algorithms with 

different artificial mentalizing sophistication (ranging from a random sequence with a bias to 

so-called 2-ToM agents). At each trial, subjects had 1300 ms to make a binary choice (the 

place to hide or the slot machine to try), which was fed to the learning algorithms to 

compute online predictions of the participant's action at the next trial. In total, each 

participant performed 2×4×2=16 games (2 framings, 4 opponent types, 2 repetitions) in a 

pseudo-randomized order. We refer the interested reader to the Supplementary Text S1 for 

more details regarding the experimental protocol.  

 

Computational modelling of learning strategies 

In this section, we give a brief overview of the set of candidate learning models, with a 

particular emphasis on k-ToM models (because these are also used as on-line algorithms 

during the experimental phase). We will consider repeated dyadic (two-players) games, in 

which only two actions are available for each player (the participant and his opponent). 

Hereafter, the action of a given agent (resp., his opponent) is denoted by selfa  (resp., opa ). A 

game is defined in terms of its payoff table, whose entries are the player-specific utility 

( ),self opU a a  of any combination of players' actions at each trial. In particular, competitive 

social interactions simply reduce to anti-symmetric players’ payoff tables (see Table 1 

below). 
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                   Hider       

Seeker 
Left Right 

Left 1,0 0,1 

Right 0,1 1,0 

Table 1: Competitive payoff table. 

Participants play the role of the seeker, the opponent is the hider. 

 

By convention, actions 
opa  and 

selfa  take binary values encoding the first ( 1a = ) and the 

second ( 0a = ) available options. According to Bayesian decision theory, agents aim at 

maximising expected payoff ( ),self opV E U a a⎡ ⎤= ⎣ ⎦ , where the expectation is defined in 

relation to the agent's uncertain predictions about his opponent's next move. This implies 

that the form of the decision policy is the same for all agents, irrespective of their ToM 

sophistication. Here, we consider that choices may exhibit small deviations from the rational 

decision rule, i.e. we assume agents employ the so-called "softmax" probabilistic policy: 

( ) 1
1

1 exp

selfP a
V

β

= =
⎛ ⎞Δ+ −⎜ ⎟
⎝ ⎠

         (1) 

where ( )1selfP a =  is the probability that the agent chooses the action 1selfa = , VΔ  is the 

expected payoff difference (between actions 1selfa =  and 0selfa = ), and β  is the so-called 

behavioural "temperature" (which controls the magnitude of deviations from rationality). 

The sigmoidal form of Equation 1 simply says that the probability of choosing the action 

1selfa =  increases with the expected payoff difference VΔ , which is given by: 
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( ) ( )( ) ( ) ( ) ( )( )1,1 0,1 1 1,0 0,0

2 1

op op

op

V p U U p U U

p

Δ = − + − −

= −
     (2) 

where 
opp  is the probability that the opponent will choose the action 1opa = , and the 

second line derives from inserting the above payoff matrix (Table1). In brief, Equation 2 

simply says that participants are rewarded for correctly guessing where their opponent is 

hiding. 

Let us now summarize the mathematical derivation of k-ToM models, which essentially differ 

in how they estimate 
opp  from the repeated observation of their opponent's behaviour. We 

will see that k indexes a specific form of ToM sophistication, namely: the recursive depth of 

learners’ beliefs (as in "I believe that you believe that I believe..."). Note that k-ToM’s 

learning rule can be obtained recursively, starting with 0-ToM [29].  

By convention, a 0-ToM agent does not attribute mental states to his opponent, but rather 

tracks his overt behavioural tendency without mentalizing. More precisely, 0-ToM agents 

simply assume that their opponents choose the action 1opa =  with probability ( )op
tp s x= , 

where the unknown log-odds tx  varies across trials t  with a certain volatility 0σ  (and s  is 

the sigmoid function). Observing his opponent's choices gives 0-ToM information about the 

hidden state x ,  which can be updated trial after trial using Bayes rule, as follows: 

( )( )

( ) ( )( )

0 0 0 0
1 1

0

0 0
1 10 0

1

1
1

1

op
t t t t t

t

t t
t

a s

s s

μ μ μ

μ μ
σ

− −

− −
−

≈ + Σ −

Σ ≈
+ −

Σ +

       (3) 
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where 
0
tμ  (resp. 

0
tΣ ) is the approximate mean (resp. variance) of 0-ToM's posterior 

distribution ( )0
1:
op

t tp x a . Inserting ( )1 1 1:ˆ op op
t t tp E s x a+ +

⎡ ⎤= ⎣ ⎦  into Equation 1 now yields 0-ToM's 

decision rule. Here, the effective learning rate is the subjective uncertainty 0Σ , which is 

controlled by the volatility 0σ . At the limit 0 0σ → , Equation 3 converges towards the 

(stationary) opponent's choice frequency and 0-ToM essentially reproduce "fictitious play" 

strategies [34]. 

0-ToM's learning rule is the starting point for a 1-ToM agent, who considers that she is facing 

a 0-ToM agent. This means that 1-ToM has to predict 0-ToM's next move, given his beliefs 

and the choices' payoffs. The issue here is that 0-ToM's parameters (volatility 
0σ  and 

exploration temperature β ) are unknown to 1-ToM and have to be learned, through their 

non-trivial effect on 0-ToM's choices.  At trial 1t + , a 1-ToM agent predicts that 0-ToM will 

chose the action 1opa =  with probability ( ),0 0 0
1 1:,op

t t tp s v x a+ = o , where the hidden states 
0
tx  

lumps 
0σ  and β  together and the mapping 0v  is derived from inserting 0-ToM's learning 

rule (Equation 3) into Equations 1-2. Similarly to 0-ToM agents, 1-ToM assumes that the 

hidden states 
0
tx  vary across trials with a certain volatility 1σ , which yields a meta-Bayesian 

learning rule similar in form to 0-ToM's, but relying on first-order meta-beliefs (i.e. beliefs 

about beliefs). In brief, 1-ToM eventually learns how her (0-ToM) opponent learns about 

herself, and acts accordingly (cf. Equations 1-2). 

1-ToM agents are well equipped to deal with situations of observational learning. However, 

when it comes to reciprocal social interactions, one may benefit from considering that 

others are also using ToM. This calls for learning strategies that rely upon higher-order meta-

beliefs. By construction, k-ToM agents ( 2k ≥ ) consider that their opponent is a κ -ToM 
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agent with a lower ToM sophistication level (i.e.: kκ < ). Importantly, the sophistication 

level  κ  of k-ToM's opponent has to be learned, in addition to the hidden states xκ
 that 

control the opponent's learning and decision making. The difficulty for a k-ToM agent is that 

she needs to consider different scenarios: each of her opponent's possible sophistication 

level κ  yields a specific probability  ( ),
1 1:,op

t t tp s v x aκ κ κ
+ = o  that she will choose action 1opa = . 

The ensuing meta-Bayesian learning rule entails updating k-ToM's uncertain belief about her 

opponent's sophistication level κ  and hidden states xκ : 

( )
( )

( )( )
( ) ( )

1

, ,, ,
1, 1

, ' , ' , ' , '
1 1

' '

, , , ,
1 1 1

1, , ,
1 1 1 1

1

1

'

opop
tt aa

k opk op
t tk t t

t k op k op
t t t t

k k

k k k op k
t t t t t t t

k k k k T
t t t t t t

pp

p p

W a s v

s v W W

κ κκ κ
κ

κ κ κ κ

κ κ

κ κ κ κ κ κ κ

κ κ κ κ κ κ κ

λλλ
λ λ

μ μ λ μ

σ μ λ

−

−−

− −
< <

− − −

−

− − − −

⎡ ⎤⎡ ⎤ −⎢ ⎥⎢ ⎥≈ ⎢ ⎥⎢ ⎥ −
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

≈ + Σ −

⎡ ⎤Σ ≈ Σ + +⎢ ⎥⎣ ⎦

∑ ∑

o

o

1−

      (4) 

where 
,k

t
κλ  is k-ToM's posterior probability that her opponent is κ-ToM, and Wκ

 is the 

gradient of vκ
 with respect to the hidden states xκ

. Equation 4 also captures 1-ToM’s 

learning rule, when setting 1,0 1tλ � . Note that although the dimensionality of k-ToM's beliefs 

increases with k, k-ToM models do not differ in terms of the number of their free 

parameters. More precisely, k-ToM’s learning and decision rules are entirely specified by 

their prior volatility kσ  and behavioural temperature β . 

Formally speaking, only k-ToM agents with k≥1 are mentalizing about others' covert mental 

states, i.e. represent and update others’ beliefs. They can do this because they adopt the 

intentional stance [32], i.e. they assume that 
opp  is driven by their opponent's hidden 

beliefs and desires. More precisely, they consider that the opponent is himself a Bayesian 
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agent, whose decision policy ( )1op opp P a= =  is formally similar to Equation 1. This makes k-

ToM meta-Bayesian learners [35] that relies upon recursive belief updating ("I believe that 

you believe that I believe..."). Critically, the recursion depth k induces distinct ToM 

sophistication levels, whose differ in terms of how they react to the history of players’ 

actions in the game.  

With the exception of 0-ToM, we so far only described sophisticated learning models that 

are capable of (artificial) ToM. But clearly 0-ToM is not the only way people may learn in 

social contexts without mentalizing. We thus consider below other learning strategies that 

may populate peoples’ learning repertoire. 

First, let us consider a heuristic learning model, whose sophistication somehow lies in 

between 0-ToM and 1-ToM. In brief, "influence learning" adjusts a 0-ToM-like learning rule 

to account for how her own actions may influence her opponent’s behaviour [33]: 

( ) ( ) ( )( )1
1

prediction error "influence" adjustment term

1 1 2op op op op op op self op
t t t t t t t tp p a p p p a s pη λ β −
+ = + − + − − −

14243 144444424444443

    (5) 

where η  (resp. λ ) controls the relative weight of its prediction error (resp. the “influence” 

adjustment term). Numerical simulations show that, in a competitive game setting, Inf wins 

over 0-ToM but loses against k-ToM players with k≥1. In other terms, although it is in 

principle able to adapt to reactive environments, Inf cannot successfully compete with 

learners endowed with mentalizing [28]. 

Second, participants may learn by trial and error, eventually reinforcing the actions that led 

to a reward. Such learning strategy is the essence of classical conditioning, which is typically 

modelled using reinforcement learning or RL [42]. In this perspective, participants would 
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directly learn the value of alternative actions, which bypasses Equation 2. More precisely, an 

RL agent would update the value of the chosen option in proportion to the reward 

prediction error, as follows: 

( )1

1

   if action  was chosen

                         otherwise 

i i i self
t t t t t

i i
t t

V V R V a i

V V

α+

+

⎧ = + − =⎪
⎨

=⎪⎩

     (6) 

where ( ),self op
t t tR U a a=  is the last reward outcome and α  is the (unknown) learning rate. 

At the time of choice, RL agents simply tend to pick the most valuable option (cf. Equation 

1). 

Third, an even simpler way of adapting one's behaviour in operant contexts such as this one 

is to repeat one's last choice if it was successful and alternate otherwise. This can be 

modeled by the following update in action values: 

1

1

    if action  was chosen

  otherwise 

i self
t t t

i
t t

V R a i

V R

+

+

⎧ = =⎪
⎨

= −⎪⎩
       (7) 

This strategy is called win-stay/lose-switch (WS), and is almost identical to the above RL 

model when the learning rate is 1α = . Despite its simplicity, WS can be shown to have 

remarkable adaptive properties [43]. 

Last, the agent may simply act randomly, which can be modeled by fixing the value 

difference to zero ( 0VΔ = ). Although embarrassingly simple, this probabilistic policy 

eventually prevents one's opponent from controlling one's expected earnings. It thus 

minimizes the risk of being exploited at the cost of providing chance-level expected earnings. 

It is the so-called "Nash equilibrium" of our "hide and seek" game. Since we augment this 
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model with a potential bias for one of the two alternative options (as all the above learning 

models), we refer to it as biased Nash or BN. 

 

Empirical estimates of computational phenotypes 

Our working hypothesis is that people may not always rely on the same learning model 

across different game sessions or conditions. Rather, they select a learning strategy from 

among a repertoire, whose flexibility and ToM sophistication define our computational 

phenotypes. The empirical estimation of these thus consists of three steps. First, we perform 

a statistical (Bayesian) comparison of learning models [44]. For each subject, we fit trial-by-

trial actions sequences 1:60a  with each learning model ( m ∈{BN, WSLS, RL, 0-ToM, Inf, 1-ToM, 

2-ToM, 3-ToM}) using a variational-Laplace approach [45,46]. This eventually yields 

8x48x4x2x2=6144 model evidences ( )1:60p a m  (8 models, 48 participants, 4 opponent 

conditions, 2 framing conditions, 2 repetitions). 

Second, we define the repertoire's flexibility (1,2)f̂  (between conditions 1 and 2) in terms of 

the posterior probability that a given participant employs different learning strategies across 

two conditions: 

( ) ( ) ( )(1,2) (1) (2) (1) (2) (1) (1) (2) (2)
1:60 1:60 1:60 1:60

ˆ , 1
m

f p m m a a p m m a p m m a= ≠ = − = =∑   (8) 

where (1)m  (resp. (1)m ) is the participants' learning strategy in the first (resp. second) 

condition, ( )(1) (1)
1:60p m m a=  (resp. ( )(2) (2)

1:60p m m a= ) is the probability that the participant 

had a learning strategy m  given his trial-by-trial choice sequence (1)
1:60a  (resp. (2)

1:60a ) in 
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condition 1 (resp. condition 2). Note that we measure the repertoire's flexibility f̂  both 

across framings and across repetitions. 

Third, we define the repertoire's ToM-sophistication k̂  in terms of the expected depth of 

recursive belief update: 

( )1:60 1:60
ˆ

k

k E k a k p k a= ⎡ ⎤ =⎣ ⎦ ∑         (9) 

where ( ) ( )1:60 1:60" "p k a p m k ToM a= = −  is the posterior probability of model k-ToM given 

the participant's trial-by-trial choice sequence 1:60a . Note that we restrict the summation in 

Equation 9 to k-ToM models, because the depth k of recursive beliefs is not defined for the 

other learning models. Note that we measure the repertoire's ToM-sophistication k̂   in both 

framing conditions (social and non-social). 

All statistical analyses were performed using the VBA toolbox [36]. 
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Figure legends 

Figure 1: Experimental protocol. Left: social framing ("hide-and-seek" game). Right: non-

social framing (Casino game). At each trial, participants have 1300 msec to pick one of the 

two options (social framing: wall or tree, non-social framing: left or right slot machine). 

Feedback is displayed for 1 sec; and includes the trial outcome (win or loss) and the actual 

winning option (social framing: character picture, non-social framing: three identical items). 

 

Figure 2: Behavioural performance results. Group average net rate of correct answers (y-

axis) against the four opponent types (x-axis) for both framing conditions (blue: social, red: 

non-social) in both ASD (left) and control (right) participants. Note: The net rate of correct 

answers is defined as (n+-n-)/(n++n-), where n+ and n- be the number of correct and 

incorrect responses, respectively. In this and all subsequent figures, error bars depict the 

standard error around the mean. 

 

Figure 3: Model-based analysis of trial-by-trial choice sequences: ToM sophistication 

scores. ToM sophistication scores are shown as a function of framing conditions (left: social, 

right: non-social) for both control (gray) and ASD participants (back). 

 

Figure 4: Model-based analysis of trial-by-trial choice sequences: repertoire's flexibility. 

The repertoire's flexibility is shown across framing conditions (left) and across repetitions 

(right) for both control (gray) and ASD participants (back). 
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