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Abstract9

Classification of neurons into specific subtypes is essential for better understanding of brain10

function and information transmission. Despite continuous progress, there is still no consensus11

regarding categorizing neuron taxonomy into proper subtypes. Current morphology-based classi-12

fication approaches largely rely on the dendritic tree structure or on the general axonal projection13

layout. In this study, we support the use of a morphology-based classification approach, focusing14

on the axonal tree. We demonstrate that utilizing the geometrical parameters of axonal tree struc-15

tures significantly improves neuronal classification compared to the dendritic tree classification.16

Furthermore, we used neuronal activity patterns to classify interneurons into subtypes as well.17

Simulations of the activity along ramified axonal trees indicate that the axonal branching geometry18

may yield diverse responses in different subtrees. The classification schemes introduced here can19

be utilized to robustly classify neuronal subtypes in a functionally relevant manner. Our results20

open the door for deducing functionality from anatomical data.21

Quantitative analysis of neuronal types and their properties are critical for better understanding22

and deciphering brain function [1–3]. Despite the attempts to standardize the terminology for neuronal23

types, there is no clear consensus regarding neuron nomenclature [4], leaving neuronal classification24

an ongoing challenge [5–11]. To date, interneuron classification is based on morphology [12], mem-25

brane properties and firing patterns [13–15], neurochemical markers [16,17], connectivity patterns [18,19],26

transcriptome [20–24], and epigenomics [25]. The resulting classifications are highly correlated, implying27

that these subtypes indicate functionally distinct classes [26–31]. The morphology-based classification28

approaches include dendritic tree geometry [32–35] and axonal projection [36–38], where directionalities29

of axons are taken into account. Topological persistence-based methods were also developed to30

support comparisons between individual neurons and classification [39–42]. Topological motifs of the31

axonal tree were found to differentiate interneurons and pyramidal cells [43–45]. So far, no studies have32

used the geometrical properties of the axonal tree for neuronal classification, specifically the axonal33

branch diameter, branch length, and the geometric ratio (GR) values.34

Different types of neurons have different ion channels with various kinematics and densities,35

spreading across the soma, axons and dendrites [46,47]. Using evolutionary algorithms, the Blue Brain36

Project (BBP) fitted the experimental recordings of rat cortical neurons with specific ion channel37

types and parameters [48,49]. Firing patterns are commonly defined by neuronal responses to step38

currents, according to the criteria established at the Petilla convention [50]. Combinations of contin-39

uous, delayed, and bursting onset patterns, with accommodating, non-accommodating, stuttering,40

irregular, and adapting steady-state behaviors, led to establishing eleven electrical types (e-types),41

ten of which exist in interneurons and one in pyramidal cells. The distribution of each of the ion chan-42

nels along specific neuronal types and cortical layers as well as the fitted parameters are indicated43
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in the Neocortical Microcircuit Collaboration Portal (NMC) [51]. Activity-based neuronal classification44

is a promising and interesting path that remains to be explored.45

Here, we have leveraged the advancement of imaging techniques that led to growth in high-46

resolution 3D reconstructions along with the development of big neuronal morphology databases,47

such as the Blue Brain Project [52], the Allen Institute Brain Atlas [53,54], and NeuroMorpho.Org [55] to48

classify neurons into subtypes based on their morphology and activity. We first classified interneu-49

rons based on axonal tree morphology parameters, obtaining fairly accurate discrimination. Adding50

dendritic tree morphology to the axonal one improved the prediction rates. Finally, we considered51

an axonal tree activity-based neuronal classification and further improved the classification’s results.52

Building a classification scheme based on all these features is shown here to robustly classify neu-53

rons in a functionally relevant manner.54

Results55

Classification of interneuron types by morphology56

To classify interneurons based on axonal tree morphologies, high-resolution traced neurons were57

analyzed. For this purpose, neuron reconstructions were downloaded from the NeuroMorpho.Org58

database, and filtered for several criteria to obtain a high-quality dataset for classification (Table 1).59

Only neurons from a cortex with at least 10 axonal branches and 1,000 axonal segments were in-60

cluded. To achieve high precision in axonal tree geometry, only neurons with at least 10 axonal diam-61

eter values measured were included. The resulting filtered dataset is diverse because the interneu-62

rons were taken from different cortical layers of male and female rats (n=312, 78%) and mice (n=90,63

22%), and were analyzed by different labs. Figure 1 shows representative examples of interneuron64

morphology types [56]. The distinct geometrical properties of these axonal trees are evident.65

Filter criteria basket Martinotti neurogilaform bitufted double bouquet chandelier bipolar

All data in NeuroMorpho.Org 7.4 829 294 209 93 64 68 606

Cortex only 564 228 139 88 63 36 40

With both axon and dendrite data 508 224 127 56 56 31 40

≥ 10 axonal branches and ≥ 1, 000
axonal segments

437 193 122 53 52 29 34

≥ 10 axonal diameter values mea-
sured

196 99 40 20 20 17 10

Table 1: Neuron reconstructions filtration. The table summarizes the number of neurons that were included
after each filtration step according to their types.

The most prominent interneuron types are basket, bitufted, chandelier, Martinotti, and neurogli-66

aform [57]. Owing to the wide variety of basket cell morphologies, they are commonly divided into67

large, nest, and small basket cell subclasses [58]. We therefore focused here on classifying four types68

of interneurons: bitufted, chandelier, Martinotti, and neurogliaform (see also the Supplementary ma-69

terial for an analysis of all types).70

Each neuron reconstruction is characterized by 28 features, based on common quantitative mor-71

phological measurements [50,59,60]. The parameters can be divided into three categories: overall72

topology, branch length, and diameter (Supplementary Table S1). Overall topology measurements73

include the number of branches, the branch order, Sholl analysis [61], the axonal tree size, and sym-74

metry. Branch length-related parameters include the total length, the branch lengths, the path length,75

and the branch length divided by the square root of the diameter [62]. The diameter-related parameters76

include the mean and max diameter values and the GR measures [63]. These features are expected77

to reflect signal propagation dynamics along the axonal tree [62,64,65].78

To avoid biases in classification due to unequal group sizes, we down-sampled our data to include79

16 neurons in each group. These neurons were selected as the reconstructions with the highest80

number of diameter values measured from each group. Briefly, we applied a 4-fold cross validation81

scheme with 1,000 repeats, and used a multinomial logistic regression approach with regularization to82
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Figure 1: Representative examples of different interneuronal types. Line width is proportional to the
axonal (blue) or dendritic (red) segment’s corresponding diameter. Data are projected into the XY plane. Cells
used for visualizations are as follows: NMO 06143 (a), NMO 61613 (b), NMO 79459 (c), NMO 61580 (d),
NMO 37062 (e), NMO 04548 (f), and NMO 61602 (g).

classify the data. The resulting F1-scores are presented in Fig. 2a. F1-scores range between 0.776,83

for bitufted cells, and 0.928 for chandelier, resulting in an average F1-score of 0.837, based only on84

the axonal tree’s morphological parameters. These results are supported by the fact that chandelier85

cells are, indeed, the easiest cells for experts to classify manually [12]. To validate our approach, we86

repeated this process for shuffled label data in which we permuted the interneuron type labels among87

all the cells in the data. This exercise resulted in a significantly lower performance, with an average88

F1-score of 0.196 (Supplementary Fig. S1a). To emphasize the importance of the diameter-related89

measures for this classification, we constructed a distinct data set composed of interneurons with90

a smaller number of diameter measurement values. In particular, we replaced the 16 interneurons91

in each group, which were selected according to the highest number of diameter values measured,92

with another selection of 16 interneurons in each group with the lowest number of diameter values93

measured. This new selection of interneurons is included in the fourth row of Table 1 but it is discarded94

in the fifth row. The resulting average F1-score is 0.702 (Supplementary Fig. S1b), compared to 0.83795

in the high-resolution case. This result supports our assumption that fine diameter differences are96

important for classifying interneuron types; this may be relevant for enhancing our understanding of97

the different interneuron types. To further explore this point, we forced all radii in the initial high-98

resolution data to be 1µm, and performed a similar classification scheme. Interestingly, the average99

F1-score decreased from 0.837 to 0.646 (Supplementary Fig. S1c).100

To compare the above classification based on axonal tree morphology to the more common clas-101

sification based on dendritic tree morphology, we applied an analogous classification approach to the102
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dendritic trees of the same neurons. The resulting F1-scores are presented in Fig. 2b. The dendritic103

tree-based classification is better for detecting neurogliaform cells (0.83 compared to 0.445-0.623 in104

other cell types). This result agrees with the observation that neurogliaform cells are known for their105

thinness and abundance of radiating dendrites [66]. In fact, of the four cell types, this is the only case106

in which the dendritic tree-based classification performs better than the axonal tree-based classifica-107

tion (0.83 compared to 0.795). Interestingly, the dendritic tree-based classification performs poorly108

on chandelier cells (0.445), and with high rates of mis-classifications for bitufted and Martinotti cells.109

In contrast, the axonal tree-based classification, identified these cells as having a very high success110

rate (F1-score of 0.928).111

We next combined axonal and dendritic tree morphology parameters and applied the same clas-112

sification scheme as before. This resulted in an improved classification performance: the average113

F1-score changed from 0.837 for axonal trees and 0.619 for dendritic trees to 0.878 for the two114

combined (Fig. 2c). The corresponding sensitivity and precision values for all these classification115

schemes are presented in Supplementary Fig. S2.116

The classification results for six interneuron types, also including the double-bouquet and basket117

cells, results in an average F1-score of 0.752 for the axonal tree morphology, and an average F1-score118

of 0.435 for the dendritic tree morphology (Supplementary Fig. S3). A remarkable similarity between119

the axonal trees of the double-bouquet and Martinotti cells is evident. This resemblance supports120

previous studies that showed the similarity between the electrophysiological properties of these two121

types of neurons [5,67]. A heatmap comparing the distributions of the morphological parameters for122

each interneuron type is presented in Supplementary Fig. S4.123

The selected classification logistic regression models by axonal and dendritic trees store in them124

information about morphological features that are important for differentiating between interneuron125

types (Supplementary Fig. S5). For example, neurogliaform cells are characterized by symmetrical126

topology, high Sholl values at 100µm, and high values of mean GR of the axonal tree. In the dendritic127

tree, however, they are characterized by low values of mean GR. In contrast, bitufted cells have128

low values of the mean GR in the axonal tree, and high values of mean GR in the dendritic tree.129

Chandelier cells have high values of mean branch length and mean branch length divided by the130

square root of diameter; Martinotti cells are characterized by high values of the maximum dendritic131

branch length and the maximum path length.132

bitufted chandelier Martinotti neurogliaform

bitufted

chandelier

Martinotti

neurogliaform

0.776 0.0 0.077 0.119

0.0 0.928 0.006 0.066

0.128 0.029 0.849 0.042

0.131 0.042 0.006 0.795

Axonal morphologya
bitufted chandelier Martinotti neurogliaform

0.581 0.282 0.147 0.041

0.236 0.445 0.224 0.095

0.056 0.224 0.623 0.057

0.023 0.052 0.069 0.83

Dendritic morphologyb
bitufted chandelier Martinotti neurogliaform

0.806 0.006 0.081 0.075

0.001 0.964 0.02 0.001

0.147 0.044 0.837 0.0

0.094 0.003 0.009 0.906

Axonal and dendritic morphologyc

Figure 2: Classification by morphology. F1-score matrices for a. Axonal tree morphology only (average
F1-score: 0.837), b. Dendritic tree morphology only (average F1-score: 0.619), and c. Axonal and dendritic
tree morphologies combined (average F1-score: 0.878).
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Classification of interneuron types by signal propagation dynamics133

To study the signal propagation dynamics, we measured the response to current stimulus pulses134

injected into the soma at various frequencies along the axonal tree. Figure 3 presents an example of135

simulated neuronal activity along axonal branches of a basket cell. Figure 3a shows the experimental136

setup: the morphology of the neuron, depicted according to the digitally reconstructed morphology,137

the location in which the stimulus is induced, and the locations in which the propagated dynamics is138

recorded. In this example, we used the membrane properties of the ‘continuous non-accommodating’139

(cNAC) e-type, obtained from the BBP repertoire to simulate signal propagation. Figure 3b shows140

electrical activity patterns observed in four points along the axonal tree. In the soma, all the stimulus141

pulses lead to action potential (denoted as ‘0’), and in the other probed locations intermitted trains142

occurred (denoted as ‘1-3’). Figure 3c presents an ‘axonogram’ of the axonal tree of the neuron143

presented in Fig. 3a. Each axonal branch appears as a separate line, with the line width proportional144

to the branch diameter. Figure 3d is a raster plot of the spikes’ timing along each branch of the axonal145

tree. The branch color in the axonogram (Fig. 3c) corresponds to the firing pattern measured along146

it.147
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Figure 3: Activity recorded along the axonal tree. a. An XY projection for the NMO 06143 interneuron [27].
Axons are in blue and dendrites are in red. b. An example of firing patterns in four different locations. Panels
0-3 (indicated in the top right part of each graph) correspond to the arrows shown in a. c. Axonogram: a
dendrogram of the axonal tree only. Horizontal line widths indicate axonal diameters. Line color indicates the
fraction of spike train that propagates: maroon - 1, orange - 0.75, deep sky blue - 0.66, violet - 0.5, and navy
- 0.375. d. Raster plot of the electrical activity; each row represents the activity at the corresponding (same
height) axonal branch in c. Black squares on the bottom row indicate the current pulses applied to the soma
(330Hz). The response to the first 1, 000ms is not shown, to rule out the influence of the initial condition.
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Figure 4 shows the electrical response along the axonal tree for different stimulus frequencies148

for the cNAC e-type. At 200Hz (Fig. 4a) the axonal tree is split into two subtrees, each exhibiting149

a different firing pattern, in particular, an uninterrupted train and a ‘1:1’ pattern in which only every150

other pulse propagates. For a stimulus frequency of 300Hz (Fig. 4b), there are 8 subtrees with three151

different response types, and at 400Hz (Fig. 4c), there are 23 subtrees with five different response152

types. Figure 4d presents the number of subtrees as a function of stimulus frequency (blue curve).153

The dots (marked in ‘a’, ‘b’, and ‘c’) correspond to the scenarios presented in Figs 4a, 4b, and 4c.154

In addition to cNAC, three other e-types were considered for propagating dynamics: cAC, bAC, and155

bNAC. The decision to focus on these e-types resulted from an analysis that showed a high degree of156

propagating signal similarity between e-types (see Supplementary Fig. S6). The number of subtrees,157

generated for the cAC, bNAC, and bAC e-types, are presented in Fig. 4d (dashed curves, and see158

Supplementary Figs S7-S9).159
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Figure 4: Effects of stimulus frequency on the signal propagation dynamics. Axonograms showing the
responses of the same interneuron (as in Fig. 3) to three stimulus frequencies are presented in a. (200Hz), b.
(300Hz), and c. (400Hz). The number of subtrees as a function of stimulus frequency is plotted in d.

We then tested the possibility of using neuronal activity signatures to classify interneuron types.160

To this end, we have engineered activity-based features from Hill diversity indexes [68] (see Methods).161

Figure 5 shows the mean and standard deviation of the q = 0 diversity index as a function of the162

stimulus frequency. Note that when q = 0, the diversity index is equal to the number of subtrees.163

Detailed graphs for three Hill diversity indexes (q = 0, q = 1, and q = 100) for the six interneuron164

types are presented in Supplementary Fig. S10. Neurons were classified using multinomial logis-165

tic regression, and assessed with a 16-fold cross validation scheme with 1,000 repeats. Figure 6166

presents the classification results in terms of F1-score for three scenarios: axonal tree morphology167

(Fig. 6a), axonal tree activity (Fig. 6b), and a combination of both (Fig. 6c). The corresponding sensi-168

tivity and precision values of these classification schemes are presented in Supplementary Fig. S11.169

Combining the axonal morphology with axonal tree activity improves the classification’s average F1-170

score from 0.837 to 0.843. The classification results for the six interneuron types are presented in171

Supplementary Fig. S12.172
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Figure 5: Axonal response characterized by diversity index as a function of stimulus frequency. Solid
lines represent the mean diversity index (q = 0) normalized by the number of branches, and the shaded
regions represent plus minus one standard deviation. Each panel shows the response for another e-type:
a. Continuous accommodating (cAC), b. Continuous non-accommodating (cNAC), c. Burst accommodating
(bAC), and d. Burst non-accommodating (bNAC).
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Axonal morphologya
bitufted chandelier Martinotti neurogliaform

0.588 0.146 0.0 0.268

0.18 0.465 0.302 0.04

0.09 0.236 0.595 0.056

0.17 0.148 0.144 0.565

Axonal activityb
bitufted chandelier Martinotti neurogliaform

0.787 0.012 0.03 0.118

0.002 0.926 0.011 0.067

0.123 0.0 0.887 0.026

0.155 0.058 0.019 0.771

Axonal morphology and activityc

Figure 6: Classification by activity. F1-score matrices for a. Axonal tree morphology only (average F1-score:
0.837, same as Fig. 2a), b. Activity only (average F1-score: 0.553), and c. Axonal morphology and activity
combined (average F1-score: 0.843).
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Discrimination between pyramidal cells and interneurons173

We extended the study to include excitatory neurons as well, and classified neurons into two classes:174

interneurons and pyramidal cells. All pyramidal and interneuron reconstructions were downloaded175

from the NeuroMorpho.Org database, and filtered for several criteria to obtain a high-quality dataset176

for classification (Table 2). Reconstructions with fewer than 20 axonal branches, fewer than 1,000177

axonal segments, and fewer than 20 different axonal diameter values measured were discarded. The178

resulting filtered dataset is diverse because the neurons were taken from different brain regions of179

male and female rats (n=225, 66%), mice (n=77, 23%), and humans (n=36, 11%), and were analyzed180

by different labs.

Filter criteria Pyramidal cells Interneurons
All data in NeuroMorpho.Org 7.4 22,428 19,419
Neurons with axon data 3,102 8,071
≥ 20 axonal branches and ≥ 1, 000 axonal segments 1,034 1,439
≥ 20 axonal diameter values measured 146 192

Table 2: Pyramidal and interneuron reconstruction filtration. The table summarizes the number of pyra-
midal cells and interneurons that were included after each filtration step.

181

For this classification we used the same 28 morphological parameters used for the interneuron182

classification (Supplementary Table S1). To avoid biases due to unequal group sizes, we down-183

sampled the interneurons to include 146 randomly selected cells. The distribution of these morpho-184

logical parameters for the pyramidal cells and interneurons are presented in Supplementary Fig. S13.185

Logistic regression was used for classification, and a 4-fold cross validation scheme with 1,000 re-186

peats was applied. The F1-score classification results are presented in Fig. 7a, demonstrating a very187

good classification with an average F1-score of 0.921. The corresponding sensitivity and precision188

are presented in Supplementary Fig. S14. Supplementary Fig. S15 shows the logistic regression’s189

coefficients, indicating the significance of each morphological feature in discriminating between pyra-190

midal cells and interneurons. The most significant parameters are the number of branches, a Sholl191

radius of 300µm, the mean branch diameter, and the number of GR values larger than three. Here192

as well, signal propagation dynamics was simulated using the ‘cAD’ e-type, and a diversity index was193

calculated. The mean and standard deviation of this diversity index for the 146 pyramidal cells is194

presented in Fig. 7b. One can see that the diversity index begins to increase at lower frequencies195

(around 100Hz), compared with those of the four e-types of interneurons (Fig. 5). Since pyramidal196

cells have different e-types compared with interneurons, activity-based classification was not pursued197

here.198
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Figure 7: Classification of interneurons and pyramidal cells. a. F1-score matrix. b. Axonal response
characterized by the diversity index as a function of stimulus frequency for 146 pyramidal cells, using the
continuous adapting (cAD) e-type. Solid lines represent the mean diversity index (q = 0) normalized by the
number of branches, and the shaded regions represent plus minus one standard deviation.
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An interesting question in terms of signal propagation dynamics is whether the response at a199

branching point is symmetric between the two sibling branches [69,70]. To address this question, we200

characterized the type of response in interneurons and pyramidal cells, as a function of stimulus fre-201

quency, for the cAC, cNAC, bAC, bNAC, and cAD e-types. The simulation results of the 192 interneu-202

rons and the 146 pyramidal cells reveal a mixture of symmetric and asymmetric responses. The ratio203

between the number of symmetric and asymmetric responses approached one in interneurons for204

all e-types and frequencies tested. In pyramidal cells we observed more symmetric responses than205

asymmetric responses (Supplementary Fig. S16).206

Discussion207

Numerous studies published in recent years used a variety of approaches to classify cortical in-208

terneurons. These studies raised many questions regarding the identification of neuronal types and209

whether interneurons can be described by either a set of distinct classes or by a continuum of phe-210

notypes [26]. Standard classifications approaches are based on morphology. In particular, they utilize211

soma position, dendritic geometry, axonal projections, and connectivity features. Here we used ax-212

onal tree morphology for interneuron classification, resulting in better classification compared with213

classification based on the dendritic tree morphology. Combining axonal tree morphology with den-214

dritic tree morphology and activity patterns further improved the classification results. For the data215

analyzed here, the average F1-score changed from 0.837 for axonal trees and 0.619 for dendritic216

trees to 0.878 for the two combined. It remains open to study whether additional properties, such as217

electrophysiology, molecularity, and transcriptomics will further improve the classification.218

Interneuron subtypes are known to shape the electrophysiological activity dynamics [71,72], and219

therefore, the use of functionally relevant parameters as classifiers is important [73–75]. In this study,220

an emphasis was given to morphological parameters related to modulation of firing patterns. To this221

end, we recorded simulated activity along each branch of the axonal tree, and not only at the soma.222

This revealed diverse response patterns already at the single cell level. Importantly, we showed223

that these firing patterns can be used to classify interneurons into their known subtypes. Axonal224

tree responses were recorded in a wide range of spike train frequencies (up to 600Hz), since it was225

recently shown that high-frequency trains may exist in fast-spiking neurons and in the rapid spikes of226

bursting [76,77].227

Previous studies have shown how dendritic tree geometry affects the electrical activity in neu-228

rons [78–81]. It was demonstrated that in activity simulations taking into account the dendritic tree229

morphology, rather than a point neuron, can capture local non-linear effects [82,83]. Our results indi-230

cate that it is beneficial to include the full biophysical neuronal structure, including the axonal tree, for231

modeling neuronal activity propagation. In particular, precise measurements of neuronal processes232

were shown here to strongly affect simulation results in single cell models.233

Despite tremendous progress in imaging and reconstruction techniques, there is still excessive234

inter-laboratory variability [8]. Rigorous data standards are lacking and can greatly improve future235

studies. More data of high-resolution reconstructions from diverse sources are of utmost importance236

for more comprehensive species dependent neuron classification. When such additional data be-237

come available, neurons of rats, mice, and humans, from different brain regions and layers, could238

be independently classified. The electrical membrane properties of the reconstructions used here,239

were fitted by the BBP only to the axon initial segment, and do not include axonal boutons and myelin240

sheath effects along the axonal tree [52]. Nevertheless, these properties resemble a close approxima-241

tion of an actual mechanism, and yielded very good classifications. Fitting the electrical membrane242

properties along all the axonal tree, can further improve our understanding of signal propagation in243

neurons.244

The classification schemes introduced here can be utilized to robustly define neuronal subtypes245

in a functionally relevant manner. Axonal tree morphology and activity can be utilized as well in246

an unsupervised fashion to define subtypes. This can advance standardization toward consensus247

regarding neuronal type nomenclature.248
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Methods249

Simulations250

Digitally reconstructed neurons were downloaded from NeuroMorpho.Org version 7.4 (released:251

4/16/2018) [55]. Each neuron’s reconstructed data is stored in an SWC file. We used the notation252

of branch to describe an axonal section between two branching points, or between a branching point253

and a termination point (leaf), and a segment to describe a small compartment in 3D space. Several254

successive segments were used to construct a branch (in line with [84]). The SWC files were imported255

into NEURON simulation using the Import3D tool, which converts all the segments of each branch256

into equivalent diameter cables. The neuronal activity simulations were conducted using NEURON257

simulation environment version 7.5 embedded in Python 2.7.13 [85,86]. The same version of Python258

was used for all other analyses presented here.259

Membrane electrical properties260

To simulate signal propagation dynamics, ion channel mechanisms with different densities were in-261

troduced into the reconstructed neurons. For realistic modeling, we used membrane properties bor-262

rowed from the BBP [51,52]. These e-types were fitted to experiments produced in the cortex neurons263

of Wistar (Han) rats at a temperature of 34◦C. Each e-type is constructed from specific ion channel264

types with varying densities at the soma, axons, and basal and apical dendrites. Details of the ion265

channels, their kinetics, and other parameters can be found in the NMC portal [51] and in the attached266

files there. The specific equations and parameters used here were taken from the following recon-267

structions: L23 LBC cNAC187 5, L23 DBC cACint209 1, L23 LBC bNAC219 1, L5 LBC bAC217 4,268

and L5 STPC cADpyr.269

Current pulses were stimulated in the soma, with an amplitude of 20µA and a duration of 1ms,270

for a range of frequencies. Electrical responses were recorded at the center of each axonal branch.271

For the raster plots (e.g., Fig. 3d), a spike was defined when the voltage peak amplitude exceeded a272

zero voltage threshold. Voltage peaks that were separated by less than 1ms were discarded to avoid273

discretization errors.274

Classification275

Supervised classification was performed using multinomial logistic regression. We used the Logis-276

ticRegression function from the Scikit-learn python library, with an L2 regularization penalty. For277

the classification based on morphological parameters, 1,000 4-fold cross validation repeats were278

produced, i.e., 1,000 choices of 75% of the data for training and 25% for testing the model. All mor-279

phological parameters were first log-transformed, and then standardized for this classification. The280

parameters for both the training and test sets were standardized according to the mean and standard281

deviation of the training set. To select more relevant features (feature selection), the top 15 features282

of the initial logistic regression model were used for the final model. Sensitivity was calculated by283

normalizing each value in the confusion matrix by the sum of the row to which it belongs. Precision284

was calculated similarly but normalization was done according to the column of the confusion matrix.285

F1-score is defined as the harmonic average of sensitivity and precision (Equation 1).286

F1 = 2× precision× sensitivity
precision+ sensitivity

(1)

For activity-based classification, the mean and the standard deviation of the Hill diversity index (Equa-287

tion 2) were calculated as a function of frequency for each interneuron type in the training set. The288

Hill diversity index [68] was calculated for q ∈ {0, 1, 100}, for four e-types, and two definitions of a sub-289

group: 1. A subtree with an identical response, and 2. A set of branches with an identical response290

(possibly in more than one subtree). The Hill diversity index is defined as291

qD =

( R∑
i=1

P q
i

)1/(1−q)
(2)

where R is the number of groups (“species” according to its original definition), and Pi is the nor-292

malized number of members in each group. 0D equals the number of groups. 1D converges to the293
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exponent of Shanon Entropy (Equation 3), and ∞D approaches one over the fraction of the largest294

group.295

1D = exp

(
−

R∑
i=1

Piln(pi)

)
(3)

For each neuron from the test set, the Hill diversity index was calculated, following by calculating the296

distance to the mean index of each interneuron type in the training set in units of standard deviation297

(Equation 4). To avoid singularities, ε = 0.01 was added quadratically to the variance:298 √∑
i

|D̄i −Di|2
σ2i + ε2

(4)

Each diversity curve (e.g., Fig. 5) was normalized by the number of axonal branches.299

Code availability300

The code for the models and simulations will be publicly available on Github upon publication.301
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ter analysis–based physiological classification and morphological properties of inhibitory neu-
rons in layers 2–3 of monkey dorsolateral prefrontal cortex. Journal of neurophysiology.
2005;94(5):3009–3022.

[68] Hill MO. Diversity and evenness: a unifying notation and its consequences. Ecology.
1973;54(2):427–432.

[69] Grossman Y, Parnas I, Spira M. Differential conduction block in branches of a bifurcating axon.
The Journal of physiology. 1979;295(1):283–305.

[70] Parnas I, Segev I. A mathematical model for conduction of action potentials along bifurcating
axons. The Journal of physiology. 1979;295(1):323–343.

15

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 11, 2018. ; https://doi.org/10.1101/414615doi: bioRxiv preprint 

https://doi.org/10.1101/414615


[71] Klausberger T, Somogyi P. Neuronal diversity and temporal dynamics: the unity of hippocampal
circuit operations. Science. 2008;321(5885):53–57.

[72] Chen G, Zhang Y, Li X, Zhao X, Ye Q, Lin Y, et al. Distinct Inhibitory Circuits Orchestrate Cortical
beta and gamma Band Oscillations. Neuron. 2017;96(6):1403–1418.

[73] Sharpee TO. Toward functional classification of neuronal types. Neuron. 2014;83(6):1329–1334.

[74] Hardcastle K, Ganguli S, Giocomo LM. Cell types for our sense of location: where we are and
where we are going. Nature neuroscience. 2017;20(11):1474.

[75] Emmenegger V, Qi G, Wang H, Feldmeyer D. Morphological and Functional Characterization of
Non-fast-Spiking GABAergic Interneurons in Layer 4 Microcircuitry of Rat Barrel Cortex. Cere-
bral Cortex. 2018;.

[76] Eyal G, Mansvelder HD, de Kock CP, Segev I. Dendrites impact the encoding capabilities of the
axon. Journal of Neuroscience. 2014;34(24):8063–8071.

[77] Wang B, Ke W, Guang J, Chen G, Yin L, Deng S, et al. Firing Frequency Maxima of Fast-Spiking
Neurons in Human, Monkey, and Mouse Neocortex. Frontiers in cellular neuroscience. 2016;10.

[78] Mainen ZF, Sejnowski TJ, et al. Influence of dendritic structure on firing pattern in model neo-
cortical neurons. Nature. 1996;382(6589):363–366.
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Supplementary material

Description
1 The number of branches
2 Symmetry - mean of the ratio between the number of children in each daughter branch
3 Maximum branch order
4 Mean branch order
5 Difference between maximum and minimum on the x-coordinates (µm)

6 Difference between maximum and minimum on the y-coordinates (µm)

7 Difference between maximum and minimum on the z-coordinates (µm)

8 Sholl analysis - the number of branch intersections at a radius of 100µm from the soma in 3D
9 Sholl analysis - the number of branch intersections at a radius of 200µm from the soma in 3D
10 Sholl analysis - the number of branch intersections at a radius of 300µm from the soma in 3D
11 The number of branches longer than 200µm

12 The number of branches longer than 300µm

13 The number of branches longer than 400µm

14 Maximum path length, the distance from the soma to the farther leaf (µm)

15 Minimum path length, the distance from the soma to the closer leaf (µm)

16 Mean path length, the distance from the soma to the closer leaf (µm)

17 Maximum branch length (µm)

18 Mean branch length (µm)

19 The total length of all branches in the axonal tree (µm)

20 Maximum branch length divided by the square root of the branch diameter
21 Mean branch length divided by the square root of the branch diameter
22 Maximum branch diameter (µm)

23 Mean branch diameter (µm)

24 The number of GRs above 2
25 The number of GRs above 3
26 The maximum GR value of all branching points
27 The mean GR value of all branching points
28 The percentage the of bifurcations with GR above 2

Table S1: Morphological features of the axonal tree.
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c

Figure S1: Validation classifications. a. Shuffled labels of the axonal tree morphology, average F1-score:
0.196. b. 16 interneurons with the lowest number of diameter values measured in each cell type, with an
average F1-score: 0.702. c. 16 neurons with the highest resolution in each cell type were overwritten with radii
of 1µm. The resulting average F1-score in this setup was 0.646.
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Figure S2: Classification by morphology - sensitivity and precision. Only axonal tree morphology, aver-
age sensitivity score: 0.836 (a), average precision score: 0.84 (d). Only dendritic tree morphology, average
sensitivity score: 0.622 (b), average precision score: 0.622 (e). Axonal and dendritic tree morphology, average
sensitivity score: 0.878 (c), average precision score: 0.881 (f).
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Figure S3: Classification by morphology of six interneuron types. a. Only axonal tree morphology,
average F1-score: 0.752. b. Only dendritic tree morphology, average F1-score: 0.435.
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Figure S4: A heatmap comparing the distributions of morphological parameters. The parameters were
transferred to z-score values. The NeuroMorpho.Org IDs are indicated for each neuron reconstruction on the
right side, and the interneuron subtype is indicated on the left side. The columns are the 28 morphological
parameters organized according to the above dendrogram.
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Figure S5: Logistic regression coefficients. The average of the logistic regression coefficients for the 1,000
repeats of the axonal (a) and dendritic (b) trees’ morphology. Positive values indicate the significance of this
feature for the specific interneuron type.
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Figure S6: Comparison between 10 e-types from the BBP. A heatmap showing the similarity between all
10 interneuron e-types under current pulse frequencies of 100Hz, 200Hz, 300Hz, and 400Hz in terms of firing
pattern, in a basket cell (NMO 06143). In the original experiments conducted by BBP, an elongated current
step was induced, resulting in significant differences between these 10 e-types. In our case, the soma was
stimulated with strong current pulses, leading to very similar responses in several e-types. Hence, we chose
to focus on four e-types: cAC, bAC, bNAC, and cNAC.
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Figure S7: The response for varied stimulus frequencies. ‘cAC’ e-type. a. 100Hz b. 200Hz c. 300Hz d.
400Hz. The line color indicates the fraction of spike train that propagates: maroon - 1, orange - 0.75, deep sky
blue - 0.66, violet - 0.5, navy - 0.375, dim gray - 0.2, and silver - 0. The same neuron as in Fig. 3.
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Figure S8: The response for varied stimulus frequencies. ‘bAC’ e-type. a. 100Hz b. 200Hz c. 300Hz d.
400Hz.
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Figure S9: The response for varied stimulus frequencies. ‘bNAC’ e-type. a. 100Hz b. 200Hz c. 300Hz d.
400Hz.
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Figure S10: Mean of the diversity index at different frequencies. The shaded region represents one
standard deviation. e-types: cAC, cNAC, bAC, and bNAC, for q = 0, 1, 100, for the number of subtrees and the
number of branches for each type of response.
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Figure S11: Classification by activity - sensitivity and precision. Only axon morphology, average sensi-
tivity score: 0.836 (a), average precision score: 0.84 (d). Only activity, average sensitivity score: 0.554 (b),
average precision score: 0.555 (e). Axon morphology and activity, average sensitivity score: 0.842 (c), average
precision score: 0.847 (f). e-types: cNAC, cAC, bAC, and bNAC, q = 0, 1, 100.
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Figure S12: Classification by the activity of six interneuron types. e-types: cNAC, cAC, bAC, and bNAC,
q = 0, 1, 100, average F1-score: 0.296.
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Figure S13: Histogram of the morphological features. The z-score of parameters that have been log-
transformed is presented.
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Figure S14: Classification by morphology. a. Sensitivity, average F1-score: 0.921. b. Precision, average
F1-score: 0.921.
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Figure S15: Logistic regression coefficients. Average of the logistic regression coefficients for 1,000 re-
peats. Positive values indicate significance in pyramidal cells, and negative values indicate significance in
interneurons.
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Figure S16: Symmetric and asymmetric responses at branching points. The fraction of modulated re-
sponses at branching points, for interneurons and pyramidal morphologies under various stimulus frequencies
for five e-types. The upper frames show the simulation results of the 192 interneuron reconstructions, and the
lower frames show the simulation results of 146 pyramidal reconstructions. Symmetric responses are in blue,
and asymmetric responses are in green. The asymmetric states include situations where the firing pattern at
the mother branch is the same or different from the firing pattern at one of the daughter branches. Interneu-
ron morphologies with cAD e-type, and pyramidal morphologies with cAC, cNAC, bAC, and bNAC e-types are
speculative and are not actual existing scenarios. We simulated these scenarios to examine the extent to which
different activities are affected by morphology and by ion channels.
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